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Abstract In this study a finite-volume discretisation of a Lattice Boltzmann equation over unstructured grids 
is presented. The new scheme is based on the idea of placing the unknown fields at the nodes of the mesh 
and evolve them based on the fluxes crossing the surfaces of the corresponding control volumes. The 
method, named unstructured Lattice Boltzmann equation (ULBE) is compared with the classical finite 
volume method (FVM) and is applied here to the problem of blood flow over the endothelium in small 
arteries. The study shows a significant variation and a high sensitivity of wall shear stress to the endothelium 
corrugation degree. 
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1. Introduction 
 
The flow of blood in arteries induces a viscous 
drag between the outermost laminae of the 
fluid and the vessel wall and this mechanism 
has a potential impact on the pathogenesis of 
arterial diseases. The shear stress imposed on 
the wall can affect the functional and structural 
integrity of the endothelial cells, and the 
possibility that such effects might be related to 
the development of atherosclerosis has 
stimulated a great deal of investigation 
(Nerem, 1992; Caro, 2009). Stretching of 
endothelial cells may modify the properties of 
the cell’s membrane in the form of its 
permeability and receptors. Lesions usually 
occur at specific points of the arterial tree, 
which suggests that differences in local stress 
may play some role in its initialization. It is 
now commonly accepted that the preferred 
occurrence of atherosclerosis is in low wall 
shear regions. 
Several researches concerning flows over 
wavy walled boundaries, both from analytical 
(Tsangaris and Leiter, 1984; Thomas et al. 
2006), numerical (Sobey, 1980) and 
experimental (Focke, 1986) points of view    

have been carried out. These studies  are 
based on a regular pattern of the wall profile, 
say sinusoidal or arc-shaped with different 
amplitudes. Most are concerned with relatively 
moderate and high Reynolds numbers and aim 
to understand transition from laminar to 
turbulent flow, by evidencing the formation of 
vortices and flow separation. In Nishimura et 
al. (1990) the characteristics of mass transfer 
are studied in relation to the onset of 
turbulence. 
In this study, though, we consider the 
undulation of the wall as a sequence of 
endothelial cells with their size as obtained 
from the literature (Fig. 1). Only recently it has 
been recognized that the endothelial 
glycocalyx may contribute to the protection of 
the vascular wall in small vessels against 
disease by reducing friction to the flow of 
blood and serving as a barrier for loss of fluid 
through the vessel wall. Particularly in times 
of inflammation though, the endothelial 
glycocalyx is sheared off, to permit attachment 
of leukocytes and movement of water from 
microvessels resulting in the exposure of the 
wavy endothelium (Weinbaum et al., 2003). In 
this work, however, only mechanical effects 
are considered, while all chemical and 
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biological processes of the endothelium are 
neglected. The hemodynamic problem is 
solved by using a Lattice Boltzmann (LB) 
approach (Succi, 2001). The main advantages 
of LB are its simplicity and amenability to 
parallel computing. In particular, owing to its 
kinetic nature, the pressure field and the stress 
tensor are locally available, without the need 
of solving any (usually expensive) Poisson 
problem. 
 

 
 
Fig. 1: The rough surface of the endothelium (from 
Reichlin et al., 2005). Arrows point to granular 
structures on EC’s surface, white line marks 
scanning line for height profile evaluation, scale 
bar corresponds to 5μm. 
 
 
Another key property of LB is that non-
linearities are local (quadratic dependence of 
the local equilibrium on the flow field) and the 
non-localities are linear because advection 
proceeds along constant, straight lines defined 
by the discrete speeds. This is a very useful 
property, not shared by the Navier-Stokes 
equations, in which non-linearity and non-
locality come together into the same 
convective term, that is, the fluid moves its 
own momentum along a space-time changing 
direction defined by the flow speed itself. 
However, a recognized weakness of LB is its 
restriction to regular, uniform lattices 
(Cartesian grids). This limitation is particularly 
severe whenever high local resolution is 
required, as is the case for most flows of 

biomedical interest. For instance, curved 
boundaries must be approximated by staircase 
profiles aligned with the gridline coordinates, 
an approximation which can lead to severe 
inaccuracies, unless a sophisticated treatment 
of the boundary is devised or high grid 
resolution applied (Guo et al., 2002). The 
problem has motivated a wide body of 
research aimed at extending the LB method to 
non-uniform grids with boundary conditions 
capable of accommodating curved boundaries 
(Peng, 1998). Particularly interesting are 
recent attempts to formulate LB on fully 
unstructured grids using cell-vertex finite-
volume schemes (Ubertini et al. 2002, 2004). 
 
 

2. Formulation of the problem 
 
In most studies of haemodynamics, the arterial 
wall is generally assumed to be flat, and the 
wavy surface of the endothelium is neglected: 
this does not imply a significant variation in 
the flow field, but it can be relevant in 
computing WSS, which is constant in a flat-
walled artery. Indeed, the internal surface of 
the vessel wall is covered by endothelial cells 
that form a continuous, wavy layer. We 
assume that the endothelial cell membrane is 
solid-like, so the cells keep their shape while 
subjected to the shear stress due to the blood 
stream. 
An endothelial cell (EC) has been estimated to 
be about 15 mμ  long by 0.5 mμ high (Reichlin 
et al., 2005, see Fig. 1). We consider a two-
dimensional channel flow between two 
boundary surfaces located at , with 
the x-axis in the direction of the flow. The 
shape of the each internal wall appears as a 
smoothly corrugated surface: the channel 
semi-width is obtained as a perturbation 
around a reference value H: 

( )y h x= ±

( ) ( ) (1 )h x H x Hδ ε= ± = ± with
H
δε =  the 

corrugation degree. 
Although the wall surface is constituted by an 
irregular (randomly rough) sequence of  EC's, 
for simplicity we assume that they are 
regularly lined and equally distributed over the 
top and the bottom walls, and their size 
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independent of the channel height H. For all H, 
the aspect ratio of the channel has been fixed 
at 3. 
The aim of this study is to investigate the 
dependence and the sensitivity of the WSS to 
the wall roughness, to the degree of 
corrugation and to quantify the WSS 
differences with the variation of vessel 
diameter or flow rates. Assuming 
axisymmetry, we limit our study to a two-
dimensional straight channel, where a 
Newtonian fluid of viscosity μ and density ρ 
flows, being driven by a constant volumetric 
force. The fluid dynamics predictions are 
based on a steady flow, on the assumption that 
the mean flow in pulsatile conditions is similar 
to steady flow with the same time averaged 
velocity.   
 
 
3. Lattice Boltzmann methodology 
 
Let us consider the classical differential form 
of the single-time relaxation Lattice 
Boltzmann equation: 
 
 ( ) /eq

t i i i i i if c f f f Fλ∂ + ⋅∇ = − − +           (1) 
 
The above equation models hydrodynamic 
fluid flow by tracking the time-evolution of 
the density distribution function of pseudo-
particles (or populations), defined as 

( , ) ( , , ) i if x t f x v c t≡ = , where if  is the 
probability of finding a particle  at site x , at 
time t moving along the lattice direction 
defined by the discrete speed . In eqn. (1) Fic i 
represents the effect of external/internal 
sources of mass/momentum/energy. 
The left-hand side of equation (1) represents 
the particle free-streaming, whereas the right-
hand side represents molecular collisions via a 
single-time relaxation towards local 
equilibrium eq

if  on a typical timescale λ 
(Benzi et al., 1992). 
The local equilibrium is the Maxwell-
Boltzmann distribution function expanded 
second order in the local Mach number: 

2
2 21 (

2
eq

i i i i )f w u u uβρ β
⎡ ⎤

= + + −⎢ ⎥
⎣ ⎦

         (2) 

where 21 / scβ = , being sc  the lattice sound 
speed, i

i
fρ =∑ the fluid density,  

/i i
i

u c f ρ=∑  is the fluid speed and are 

weight coefficients (normalized to unity) 
associated with zero-flow global equilibria. 

iw

In the limit of weak departures from local 
equilibrium, i.e. small Knudsen numbers, it 
can be shown through a Chapman-Enskog 
analysis that the discrete LB recovers the 
dynamic behaviour of a fluid with pressure 

2
sp cρ= and kinematic viscosity 

2 (sc k )tν λ= + Δ , where k is a numerical 
coefficient depending on the specific time-
marching scheme (k=0 in the continuum time 
limit, and k=-1/2 for the standard lattice 
Boltzmann equation on uniform Cartesian 
grids) (Benzi et al, 1992).  
In order to recover the correct fluid dynamic 
equations in the macroscopic limit, the set of 
discrete speeds must satisfy mass, momentum 
and energy conservation, as well as rotational 
symmetry. It should be noted that only a 
limited class of lattices exhibits the right 
symmetry to ensure the conservation 
constraints. In the present work we shall refer 
to the two-dimensional nine-speed model 
(known as D2Q9) defined by the following set 
of discrete speeds: 
 

0 1 2

3 4 5

6 7 8

(0,0),    (1,0),    (0,1),
( 1,0),  (0, 1),  (1,1),
( 1,1),  ( 1, 1),   (1, 1).

c c c
c c c
c c c

= = =
= − = − =
= − = − − = −

 

 
with weights w0 = 4/9, w1-4 = 1/9, w5-8 = 1/36 in 
eqn. (2). The aforementioned low-Mach 
number expansion restricts the use of the 
discrete Boltzmann equation to quasi-
incompressible flows, with negligible space-
time variation of the fluid density. On the 
other hand, since the discrete LB fluid obeys 
an ideal equation of state, significant pressure 
drops can only be sustained by 
supplementing/replacing the pressure gradient 
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with an external body force (force per unit 
volume) .  F
 In a steady plane-channel flow, the magnitude 
of the body force is determined by imposing 
an exact balance with dissipative effects, 
i.e.  yy xF uμ= ∂ .  This delivers: 

max
2

2 UF
H
μ

= .  

This approach is equivalent to assign a 

pressure gradient max
2

2 UG
H
μ

=  along the 

channel length. The effect of the body force on 
the discrete populations in eqn.  (1) is given 
by: 

2
i

i
s

w F cF
c
⋅

= i which finally results in the 

following forcing term: 
 

max
2

2
i

UF
H
λ

=                              (3) 

 
Boundary conditions are no-slip at top/bottom 
walls and periodic at inlet/outlet. 
 
 
4. LB over unstructured grids 
 
The presented standard LB method is 
macroscopically similar to a uniform 
Cartesian-grid solver, and this represents a 
severe limitation for solving complex 
geometries typical of haemodynamic flows. To 
overcome this drawback, the classical LB 
method has been extended to use irregular 
grids. This approach is based on a finite-
volume scheme of the cell-vertex type 
consisting of a tessellation based on triangular 
elements. The use of unstructured grids with 
control volumes of arbitrary polygonal shape 
allows local grid refinements not possible with 
the standard LB. To solve eqn. (1), the nine 
discrete populations ( )if x t,  associated to 
each node P of the discrete grid (Fig. 2) 
represent the unknowns of the problem. The 
finite volume over which eq. (1) is integrated 
is defined by means of the set of K  triangles, 
which share  as a common vertex. Since the 
discrete grid is unstructured, each node is 

identified by its coordinates and the 
connectivity (

P

1k kP P P, , + ) is free to change 
from node to node. As shown in Fig.2, the 
portion of the control volume 

[ ]1k k k kC E P E +Ω = , , ,  that refers to the k-th 
triangular element is built through the union of 
the two sub-grid triangles  
and 

[ ]k kP E C−Ω = , , k

1[ ]k k kP C E+
+Ω = , , , where  is the centre 

of the grid element and  and  are the 
midpoints of the edges that share  as a 
common vertex. Populations at off-grid points 

 and  are calculated with standard linear 
interpolations. Application of the Gauss 
theorem to each finite volume portion yields 
the following set of ordinary differential 
equations:  

kC

kE 1kE +
P

kE kC

 1( ) (t i ik ik
kP

f P t
V

)∂ , = Φ −Ξ∑  (4) 

where the sum 0k K= ,  runs over the control 
volume P k kΩ = ∪ Ω  obtained by joining the 
centres  with edge midpoints , kC kE PV  is 
the volume of PΩ  and the index 0k =  
denotes the pivotal point . Finally, P ikΦ  
denote the fluxes associated with streaming 
operator and ikΞ  the integral of the collision 
operators of the i -th population at the -th 
node, respectively. The detailed expressions of 
the streaming and collision matrices  and 

, give the following general form of 

k

ikS

ikC

 
 
Fig. 2: The cell-vertex finite-volume discretisation 
around a grid point P. 
 
the Unstructured Lattice Boltzmann Equation 

- 4 - 



2nd Micro and Nano Flows Conference 
West London, UK, 1-2 September 2009 

(ULBE):  

 0

0

( ) ( )

1 [ ( ) ( )]

K

t i ik i k
k

K
eq

ik i k i k
k

f P t S f P t

C f P t f P t
λ

=

=

∂ , = , −

, − ,

∑

∑
  

By definition the following sum rules apply:  
 

  
0 0

0
K K

ik ik
k k

S C
= =

= , = , ∀∑ ∑ 1 i

 
It is readily checked that the stress tensor αβΠ  
is related to the non-equilibrium component of 
the momentum flux tensor by the following 
local expression:  
 ( )eq

i ii i
i

f f c cαβ α β= −Π ∑   

where α β,  run over spatial dimensions.  
 
 
5. The Finite Volume Method 
 
In the CFD calculations a standard FVM was 
applied. As in the LBM model the fluid flow 
was treated as steady, incompressible, 
isothermal and Newtonian. The governing 
equations (continuity and momentum 
equations) were solved on a 2D, non-
orthogonal grid using the finite volume code 
Ansys-CFX4. The pressure was obtained using 
the SIMPLE algorithm. The differencing 
schemes used were central differencing for 
pressure and hybrid differencing for the 
velocity variables. Appropriate scaling was 
achieved by applying dimensional analysis in 
order to achieve good convergence. 
 
 
6. Computational results 
 
First of all, a benchmark test was intended to 
assess the efficacy of the ULBE methodology 
on a flat-walled artery fully developed flow 
model. 
We considered a uniform unstructured 
automatically generated grid on a 2D channel  
[ 3 ,3 ] [ , ]H H H H− × − , consisting of 5634 
equidistributed elements, and the simulations 
were performed for a wide range of Reynolds 

numbers. Comparison of ULBE solution with 
the Poiseuille velocity profile: 

2

max 2( ) 1 yu y U
H

⎛ ⎞
= −⎜

⎝ ⎠
⎟                (5)  

exhibit a maximum error , while the 
discrepancy with the wall shear stress  

510E −

max4  U
D

μτ =       (6) 

results of 410E − .  
Typical values for arterioles (microcirculation) 
are: 

3

max

1 /     =0.027 P         
D=25  150 m     U 1 40 /

g cm
cm s

ρ μ
μ

=
÷ = ÷

 

that combine in a range of 
maxRe 0.1 10.DUρ

μ
= ÷ Although these 

values can be larger than those pertaining to 
the arterioles, this numerical study is aimed to 
understand the flow dependence on the 
geometrical-physical parameters on a wider 
range and, in particular, the sensitivity of the 
solution on the degree of corrugation ε and on 
the Reynolds number. 
 

 
 
Fig. 3: The scaled 2D arterial segment covered by 
a refined triangular mesh.  
 
The COMSOL package was used to generate 
the grid, with a mesh refinement near the wall 
to suit the wavy profile. For this case, the grid 
size ranges from 3830 (D=25) to 7960 
(D=150) triangular elements. The grid is 
refined near the wall to suit the wavy 
endothelial surface (Fig. 3). The channel 
maximum semi-width is normalized to H=1.  
The time step tΔ  is chosen in relation to the 
smallest grid size (which typically reduces as 
H increases) in order to satisfy the CFL 
condition.  
At such small flow rates, the velocity profiles 
preserve the parabolic shape (Fig. 4), but the 
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wall corrugation causes a local change of the 
velocity derivative and hence an oscillation on 
the WSS values. As a matter of fact, the stress 
has a linear rise in the transversal direction, 
except near the wall, where the varying cross 
section width generates a substantial local 
difference in the shear rates and stresses. 
Figure 5 shows that the consequence is a local 
variation of these quantities in a boundary 
layer close to the wall and an oscillation of the 
shear rates and WSS along the endothelium. 
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Fig. 4: Parabolic velocity profiles (x 100) along the 
wavy-walled channel (U=40, D=50). 
 
 

 
 
Fig. 5: Cross-stream variation of shear stress: 
Continuous line – peak of EC, dashed line – valley 
of EC (LB units). 
 
A linear rising of the τ+  with U is found, 
while an inversely linear dependence on D, as 
depicted in Fig. 6, describing essentially the 
trend of eqn. (6). A similar behaviour holds for 

τ− . As a consequence, WSS oscillates between 
a minimum τ− and maximumτ+  values, which 
basically trace the undulation of the wall, 
where the minimum and maximum of τ 
correspond to the maximum and minimum 
diameters, respectively.  
 
Table 1: The ratio τ-/τ+ at different velocities 
(cm/s) and diameters (μm). The corresponding 
Reynolds numbers are bracketed. 
 
 D=25 D=50 D=100 D=150 
U=1 0.55 

(0.09) 
0.54-0.55 
(0.18) 

0.55-0.56 
(0.37) 

0.55-0.57 
(0.55) 

U=20 0.55 
(1.85) 

0.54-0.55 
(3.7) 

0.55-0.56 
(7.4) 

0.55-0.57 
(11.11) 

U=40 0.55 
 (3.7) 

0.54-0.55 
(7.4) 

0.55-0.56 
(14.81) 

0.55-0.57 
(22.22) 
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Fig. 6: Variation of the maximum wall shear stress 
profile for varying diameter for various maximum 
inlet velocities (cm/s). Stars indicate results from 
simulations, continuous lines are fitting curves.  
 
 
Their values depends on the diameter and flow 
rate, but their ratio /τ τ− +  remains constant 
(Table 1).  Some numerical ‘wiggles’ due to 
the grid discreteness are present in the WSS 
values. These minor oscillations are found to 
remain within a few percentage and do not 
play any significant role on the overall 
physical picture.   
It is also recognized that the amplitude of the 
oscillating WSS can play a relevant role in the 
formation and development of atherosclerotic 
diseases. A further analysis is carried out in 
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this respect. In fig. 7, the linear trend of τ+ and 
τ−  is shown. It is commonly accepted that 
critical wall shear stress levels may be those 
below 1Pa or above 4Pa (Atherton, 2009). 
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Fig. 7:  The linear rise of τ− and τ+ with the 
corrugation degreeε  in the case of Umax = 1cm/s. 
The shaded area depicts the safe region for 
corrugation degree/WSS. 
 
Whereas FVM (König et al., 1996) produced a 
τ+ of 0.618 Pa (compared to a τ* of 0.5184 Pa 
for straight walls) for the D = 25 μm case with 
Uin = 0.08 cm/s, the LBM method resulted in a 
τ+ value of 4.864Pa, which puts both results 
just outside the optimal range from either end. 
However, this discrepancy is likely to be the 
result of the slightly different boundary 
conditions applied to the models. Whereas the 
FVM had a straight inlet velocity profile with 
a long entry length and an array of 40 ECs, the 
LBM model used a parabolic profile on a 
much shorter EC array and periodic boundary 
conditions. However, the results agreed 
favourably when the τ-/τ+ ratios were 
compared with the FVM ones being 
approximately 7 % lower. 
Tables 2-3 show the amplitude of the 
oscillation Δτ/2 = ( ) / 2τ τ+ −−  and demonstrate 
the (almost) linear increasing with D. The ratio 
of the amplitude over the straight wall value τ* 
is nearly 25% in all cases. The results show a 
marked variation of τ  with the diameter, 
which increases for smaller sized arteries. 

Although the wall corrugation does not 
influence the flow pattern notably, it induces a 
large variation in τ. 
 
 
Table 2: The amplitude of oscillation of τ and its 
ratio to the corresponding flat-walled value τ* at 
Umax= 1 cm/s and at several diameters.  
 

D (μm) ε = δ/D Δτ /2 (dyne/cm2) Δτ /τ*

∞ 0 0 - 
150 0.0067 1.77 0.24 
100 0.01 2.72 0.25 
50 0.02 5.76 0.26 
25 0.04 11.52 0.26 

 
 
Table 3: The amplitude of oscillation of τ and its 
ratio to the corresponding flat-walled value τ* at 
Umax= 20 cm/s and at several diameters. 
 

D (μm) ε = δ/D Δτ /2 (dyne/cm2) Δτ /τ*

∞ 0 0 - 
150 0.0067 37.33 0.25 
100 0.01 55.2 0.25 
50 0.02 112 0.25 
25 0.04 217.6 0.25 

 
 
7. Conclusion 
 
The high sensitivity to the wall undulation  
supports the hypothesis for the likely onset of 
atheroma in small arteries. This may occur 
particularly in the progressed disease stages 
when the protective layer of the glycocalyx 
has been damaged or is no longer present and 
therefore the endothelium becomes directly 
exposed to the flow. 
Due to some differences in the boundary 
conditions an explicit comparison between the 
LBM and FVM data is still outstanding. 
Further work is being developed to allow also 
for the comparison of 3D cases and non-
Newtonian flow models. 
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