
Location based mobile computing - A

tuplespace perspective

Anders Fongen (Corresponding author)∗, Christian Larsen

The Norwegian School of Information Technology, Oslo, Norway

Gheorghita Ghinea, Simon J E Taylor, Tacha Serif

Brunel University, Uxbridge, UK

April 11, 2006

Abstract

Location based or “context aware” computing is becoming increasingly

recognized as a vital part of a mobile computing environment. As a conse-

quence, the need for location-management middleware is widely recognized

and actively researched.

Location-management is frequently offered to the application through a

“location API” (e.g. JSR 179) where the mobile unit can find out its own

location as coordinates or as “building, floor, room” values. It is then up

∗E-mail address: anders@fongen.no, Tel:+4792018988

1



to the application to map the coordinates into a set of localized variables,

e.g. direction to the nearest bookshop or the local timezone. It is the opin-

ion of the authors that a localization API should be more transparent and

more integrated: The localized values should be handed to the application

directly, and the API for doing so should be the same as the general storage

mechanisms.

Our proposed middleware for location and context management is built

on top of Mobispace. Mobispace is a distributed tuplespace made for mobile

units (J2me) where replication between local replicas takes place with a cen-

tral server (over GPRS) or with other mobile units (using Bluetooth). Since

a Bluetooth connection indicates physical proximity to another node, a set of

stationary nodes may distribute locality information over Bluetooth connec-

tions, and this information may be retrieved through the ordinary tuplespace

API.

Besides the integration with the general framework for communication

and coordination the middleware offers straightforward answers to questions

like: Where is node X located? Which nodes are near me? What is the trace

of node Y?

Keywords: Distributed tuplespace, location based, context aware, J2me

1 Introduction

The term Location based computing referes to mobile programs that allows the

current location to influence on its execution. A typical example is that the pro-

2



gram need localized information like distance and direction to the nearest hospital,

the name of local currency and a map of the neigbourhood.

Middleware for location based computing is typically found behind location

APIs like JSR-1791, through which the client program can inquire about its own

position. It is then the responsibility of the application to retrieve the necessary

localized information. This operation may possibly involve transformation of co-

ordinates to retrieval parameters which potentially is a complicated process.

A more straightforward approach to the retrieval of localized information is

needed. In this paper, a location middleware is offered as an integral part of a

distributed tuplespace system. Localized tuples (i.e. tuples containing localized

information) are retrieved from the tuplespace as any other tuple, using special

data types in the template.

The proposed implementation of the location service is based on a distributed

tuplespace for J2me (Java 2 Micro Edition) called Mobispace[6], in which mobile

nodes update each others local store over a Bluetooth connection. It is thus pos-

sible to configure “stable” nodes with a Bluetooth adapter working as a “beacon”

so that any other node within radio range of the beacon will know the name of

the “area” it is in, and on the basis of this information fetch localized tuples from

the local store. The focus of this paper is to provide detailed information on the

principles of this mechanism.

The rest of the paper is organized as follows: In Section 2 and 3 we present

the underlying Mobispace system and discuss a few principles of tuplespace pro-

1http://www.jcp.org/en/jsr/detail?id=179

3



gramming. In Section 4 the the principles of a distributed tuplespace are presented

and discussed. Section 5 gives an overview of the Mobispaced-based location

management system and constitues the core of the paper. Sections 6-9 provide

a detailed presentation of the underlying replication protocols and a proof on the

associated ordering semantics. Section 10 concludes the work and suggests fu-

ture research on this topic. Readers who are only interested in a brief overview

of the location management mechanisms can skip to Section 5 and read the other

sections as needed.

2 An overview of Mobispace

Mobispace is an implementation of the tuplespace model for coordination, com-

munication and storage, also known as “Linda” [8]. A large body of knowledge

has been established on how to design distributed applications over the tuplespace

abstraction (e.g. [2]).

For a tuplespace to be working in a mobile and distributed application, it

should be memory-efficient and able to work in an occationally-connected envi-

ronment. It should also be reasonably network-efficient since a mobile unit (using

GPRS and Bluetooth connection) have scarce communication resources.

The Mobispace system is designed for mobile applications. It utilizes the

scarce set of resources present in a mobile unit and is designed for connection

interruption of unknown length. For portability reasons, the Java 2 Micro Edition

(J2me) platform has been chosen for the implementation for portability reasons.

4



The typical communication facilities for a J2me device is a GPRS/GSM ser-

vice which offers HTTP connections through the Internet, and/or a Bluetooth de-

vice offering short-distance communication with other mobile units (or possibly

a larger computer). MobiSpace uses a distributed and replicated tuplespace em-

ploying replication methods that exploits a combination of these communication

facilities.

The attractiveness of the Mobispace is that it offers a familiar and flexible

programming model with a high abstraction level to developers of mobile sys-

tems. The loosely coupled coordination and indirect interactions offered by the

tuplespace model fits well with the dynamic environment of mobile systems.

MobiSpace supports:

• Primary-based replication based on a central server connected to secondary

(J2me) nodes through a GPRS/GSM service (or any service that can offer

an Internet connection)

• p2p-based replication between secondary nodes based on Bluetooth com-

munication

• Secondary nodes express their tuplet selection criteria during replication

through a set of templates called an interest profile

• Open protocols (XML, HTTP, RFCOMM) for interoperability with non-

J2me agents. Secondary nodes can run on any platform and in any language

• Unknown and dynamic number of secondary nodes

5



• Straightforward ordering and synchronization semantics

3 The principles of tuplespace programming

The programming model known as “tuplespace” was proposed by Gelernter in

1985 [8] as a combination of an associative shared storage mechanism and syn-

chronized retrieval operations in a model called Linda. Today there are two major

implementations of tuplespace in a Java environment: JavaSpaces from Sun Mi-

crosystems [12, 7] and IBM TSpaces [10].

The basic data structure used in the tuplespace is the tuple, which is an ordered

set of fields. Tuples may be written to the tuplespace, after which they are avail-

able for retrieval by any client of the tuplespace. The original tuplespace model

makes a clear distinction between consuming and non-consuming retrieval opera-

tions: A consuming retrieval operation is an atomic read-delete operation, so that

it guarantees that only one client retrieves the tuple. A non-consuming retrieval

operation returns a tuple without affecting its existence. Tuples are immutable,

which means that they never change once they are added to a tuplespace. “Updat-

ing a tuple” is done by replacing it with a new tuple in tuplespace. A tuple does

not need to have any unique fields in the sense of a primary key.

Retrieval of tuplets is done through the use of a template parameter. The re-

trieval operation selects a set of tuples matching the template, and one or all of

the matching tuples are returned to the caller. A template resembles a tuple by its

ordered set of fields, but some of the fields may be “wildcards” i.e. they have no

6



defined value. A tuple matches a template if all these conditions are met:

• they have the same arity (number of fields),

• the fields of the template and the tuple have pair-wise the same value and

type. Wildcard fields in the template matches any field value (and type) in

the tuple.

Formally, a match operation where a template t1 is applied to a tuplespace T re-

sulting in a set of tuples V can be expressed as follows:

V = match(t1,T) (1)

The original Linda model [8] uses typeless wildcards, and the JavaSpaces imple-

mentation follows this principle. IBM’s TSpaces, on the other hand, uses typed

wildcards, in which the type of the wildcard is checked against the type of the

tuple field in an object-oriented fashion.

The result of a retrieval operation is any tuple that matches the template, and

neither the Linda model nor JavaSpaces offer any defined order of retrieved tu-

plets. TSpaces, on the other hand, offers ’FIFO’ ordering as a configuration op-

tion. In JavaSpaces, any ordering requirements is left to the application which

must implement a sequence number scheme in the tuple design.

7



4 Distributed tuplespaces

Both JavaSpaces and TSpaces implement their services based on a central server.

A central server facilitates consistency and transactional semantics while at the

same time creating a scalability bottleneck and a single point of failure. Also, a

central server most often requires permanent connectivity between the client and

the server. Therefore, several distributed tuplespaces have been proposed: Pat-

terson [15] has presented a fault-tolerant distributed design which requires high

availability of network resources. The LIME system (Linda in a Mobile Envi-

ronment) [16] offers a platform for mobile agents which bring a small tuplespace

with them as they migrate and make them accessible to other agents residing on

the same host. The SwarmLinda system [5] offers a mechanism for distributed

clustering of tuples in a p2p environment and claims to be highly scalable. No dis-

tributed tuplespace implementation for the J2me environment has been reported.

In order to conserve the transactional semantics of a tuplespace system the

clients need (in practice) to be permanently connected to the server, so the state-

oriented operations between the nodes can be effectively conducted. A consuming

read, for instance, will require a lock on the same tuple in all replica in order to

provide a guarrantee that the tuple is taken by only one client, and such a stateful

distributed operation requires high availability of network resources.

A distributed tuplespace designed for an occationally-connected environment,

where it can be weeks and months between network connections requires a re-

formulation of the transactional semantics. A scheme that allows for relaxed co-

8



ordination between nodes is required. Ordering semantics combined with lazy

replication appear to be useful concepts in such a scheme.

4.1 Ordering and consistency semantics

The correctness of a replicated storage system relies on the ordering of write op-

erations being passed across the network. If two replica receive write operations

in different order, they may end up in different (inconsistent) states.

A system where all replica receive the results of write operations in the same

order is called sequentially consistent. A more relaxed requirement is that all

nodes should receive causally related write operations in the same order, in which

case the system is causally consistent. The corresponding ordering requirement is

called causal ordering. Mobispace offers causal ordering semantics.

When applied to a tuplespace system, the consistency requirements need to be

slightly reformulated, since clients do not neccesarily retrieve the same tuples. Re-

trieval operations select tuples on the basis of a template parameter, so two clients

will possibly retrieve different sequences of tuples. The reformulated requirement

reads:

If one tuplespace client retrieves two causally related tuples match-

ing the same template in the order (a,b), then no other client should

retrieve them in the order (b,a).

Although considerable effort have gone into semantic definitions of tuplespace-

based coordination models, e.g. [14], there have been no reports on the semantics

9



of tuple ordering.

The details of the Mobispace architecture and the replication protocols are

given in Section 6 onwards. The text will now proceed with a presentation of how

the Bluetooth technology can be used for location management purposes.

5 Bluetooth as a basis for location management

On top of the current Mobispace configuration, location management comes al-

most for free. A secondary node must for this purpose be equipped with a Blue-

tooth adapter. Two Bluetooth units can “discover” each other and inquire about

the other node’s name and available sevices, and then connect for transport of

data.

A stable (non-moving) secondary node can be configured to act as a beacon,

and the area within radio range of its Bluetooth adapter is called a zone. Other

nodes within radio range will pick up its “friendly name” as a designation of its

location. The “zone designator” is used as a field to construct the template being

used for retrieval of localized tuples i.e. tuples which are valid only in this zone.

Several research projects attempt to utilize Bluetooth hardware for purposes of

location management [9, 3, 13, 1, 4]. Although not designed with instant device

discovery in mind, Bluetooth is widely deployed in mobile units (mostly with

other applications in mind) and can be used through well-established APIs.

Figure 1 shows an example on how a Mobispace network can be configured

for location management purposes. Three secondary nodes are deployed as bea-

10



BEACON−Cafeteria

BEACON−Auditorium

BEACON−MainLobby

A

E

D

C

B

Figure 1: Configuration and position of localization hardware

cons on ordinary PCs representing the three zones “MainLobby”, “Cafeteria” and

“Auditorium”. They are identified as beacons by other nodes by naming conven-

tion.

The mobile nodes that are within radio range of one beacon (nodes A, B and

D) will have discovered the beacon and set up their tuplespace retrieval templates

accordingly. The mobile nodes C and E have recently moved as shown with solid-

line arrows on the figure. Node E is now outside the range of all beacons, but

retain its association with the zone “Cafeteria” until it eventually moves within

radio range of another beacon. Node C has moved within radio range of the

beacon representing the zone “Auditorium”, but since it still hears the old beacon

(“MainLobby”) it will still be associated with this zone.

11



The dashed-line arrows show a selection of secondary replication links. They

are included to show that the seoncdary replication takes place fully independent

of the associations of nodes to zones: B and A replicate while in different zones,

and C replicates with a beacon which it is not associated with.

Although not shown on the figure, secondary nodes (mobile and beacons) are

optionally conducting primary replication with the primary server; beacons are

likely to use wired connections for this purpose, whilst mobile nodes would e.g.

use GPRS.

The selection of localized tuples represents a process independent from the

replication strategy. In other words, the localized tuples are not actively fetched

from a server when a new zone designator is discovered. The localized tuples are

replicated between the nodes in the same fashion as any other tuple. Which means

that the interest profile (See Section 6.2) must be set accordingly for the mobile

node to receive localized tuples.

5.1 The Design of a localized tuple

A new field data type has been introduced for the purpose of location management,

the Location. Due to the type matching of templates and tuples, no localized tuple

will be returned to a client unless the template has a field of this data type. A dis-

tinct data type for this purpose thus strengthens the separation between localized

and ordinary tuples.

For the current state of this project, localized tuples are in the form of (key,value)

12



pairs. A localized tuple has the following design:

localizedTuple = {Location(zone),String(key),String(value)} (2)

which means that it contains of three fields, the first one being of type Location,

the two following of type String. The value of the first field indicates the zone

designation that the tuple belongs to.

The retrieval of localized tuples which belong to a particular zone will use the

zone designation and value key as fields in the template parameter:

localizedTemplate = {Location(zone),String(key),String(null)} (3)

The management of localized tuples (creation and deletions) may be given to

any node in the system, but the best solution would be to leave this task to the

beacons itself or a central coordinator.

5.2 User-centric localized tuples

In addition to these “zone-centric” localized tuples there exist also localized tuples

that do not describe properties of locations, but of users. User-centric localized tu-

ples are used to describe the whereabouts of user/nodes2 so that questions like: “In

which zone is Christian?” or “Who is in the Cafeteria zone?” may be answered.

The design of a user-centric localized tuple involves the same structure as

2We assume that a node represents a user, and thus the location of nodes reveals the location
of a person.

13



before but involves a “wildcard” zone designation which indicates its special role

in locating and listing users of the location-aware application:

localizedUserTuple = {Location(wilcard),String(user),String(zone)} (4)

The management of user-centric localized tuples is done automatically by the Mo-

bispace middleware. As soon as a node comes within radio range of a beacon and

establishes a link with it, the Mobispace software of the mobile node will remove

the tuple containing its former location and replace it with an updated value (with

the designation of the new zone). This information (both the tuple deletion and

the new tuple) will eventually propagate to all nodes through replication sessions.

The retrieval of localized tuples which describe the location of a particular

user will use a template like:

localizedUserTemplate = {Location(wildcard),String(user),String(null)}

(5)

The question “who is in my zone” may be answered by a retrieval operation

based on this tuple: The retrieval of localized tuples which belongs to a partic-

ular zone will use the zone designation and value key as fields in the template

parameter:

localizedZoneTemplate = {Location(wilcard),String(null),String(zone)} (6)

Likewise, questions like “who is in zone Y” or “who is in all zones” is answered

14



by applying the appropriate template to a retrieval operation.

5.3 Zones larger than the radio range

A mobile node picks up the zone designation as it discovers a beacon, and keeps

that designation as “its” until another beacon is heard. Consequently, a node be-

longs to a zone from the moment it discovers one beacon until it discovers the next

(as indicated on Figure 1). This condition of the system can be exploited in order

to have zones which are larger than the radio range of a small Bluetooth beacon:

A beacon may be placed e.g. in the entrance of a building in order to have one

zone for the entire building, since every mobile node present in the building has

had to pass the beacon in the entrance. Efficient physical placement of beacons

should therefore not only consider the propagation of radio waves, but also the

movement patterns of the users.

5.4 Scaleability and responsiveness

The described form of location management depends on the responsiveness of the

underlying communication services. The example just mentioned with a beacon in

the entrance of the building requires that a node quickly detects a that a beacon has

come inside radio range and quickly establishes the identity of the new zone. Also

for application where it is necessary to keep a trace of movements in the form of

a sequence of zone designations, it is important that this process completes before

the user moves out of radio range again. In other words, the size of the Bluetooth

15



“cell” should be large enough so that even a user in constant movement should be

able to establish the zone identity before it moves on. It also becomes necessary

to consider scaleability issues: There is an upper limit on how many mobile nodes

that can enter the building at the same time so that everyone discovers the beacon.

Bluetooth technology is not particulary designed for quick link establishment.

Bruno and Delmastro [3] show how the discovery time (equivalent to “link setup”)

forms a two-lobed probability distribution with peaks at approx. 0.5 sec and 3.0

sec. The two-lobed distribution is due to the random selection of frequency se-

quences in the bluetooth nodes. Their report also shows that in piconets with 7

nodes or less, half of the nodes will be found within 0.8 sec. After 3.3 sec all

nodes are found by the inquiring master, even in configurations with as many as

15 nodes.

After a device discovery phase, the inquiring node will normally initiate a

Service Discovery phase in order to find out if the detected nodes belong to the

same application. The outcome of a Service Discovery is a URL which can be

used to connect to the announced service in another node.

Whereas the Device Discovery phase is mandatory in order to establish a Blue-

tooth link between two nodes, the Service Discovery phase can be bypassed if one

happens to know the associated URL through other means (caching, lookup etc.)

Despite the fact that other technologies would be better suited for fast device

discovery (e.g. RFID), the availability and deployment scale of Bluetooth makes

it the chosen technology for this research effort, which also includes studies of

different optimization techniques in order to bypass the Service Discovery phase

16



where possible:

• Bypass the Service Discovery Protocol (SDP). One purpose of the SDP is

to determine the URL necessary to connect to a particular service of a Blue-

tooth node. This URL will change each time the node restarts its service.

Our choice has been to put the URL as a tuple in tuplespace when the service

is started, so that a client may look for the URL in tuplespace rather than

doing a SDP inquiry. It there is no URL in tuplespace, or the given URL

does not work, the node initiates a SDP inquiry. Experimental evaluation

estimates the effect of this technique to be approximately 1.1 second.

• Don’t let beacons do Device Discovery (DD). During Device Discovery a

node cannot be discovered or receive connections from others, so a beacon

increases its availability to others if it refrains from DD. Mobile nodes will

know that this is a beacon (by convention in its Friendly name) and connect

to it. Since two beacons are never expected to connect to each other, this

scheme works without problems.

To improve the reliability of zone detection, a “diffusion” technique has been

considered, but not tested in practice. A node that for some reason has not de-

tected the present zone may be informed about the zone from another mobile

node. This technique may increase the number of nodes that gets informed about

the present zone, possibly on the expense of accuracy, since mobile node may dif-

fuse inaccurate information under some circumstances. The diffusion technique

17



Secondary
replication
(XML, RFCOMM)

Primary replication (HTTP, XML)

Primary replica

Secondary replica

Secondary replica

TSpaces

Figure 2: Architecture overview of the distributed store

is thoroughly presented by Spratt in [17] and is adopted by the Bluetooth Local

Positioning Working Group as its positioning algorithm.

6 Mobispace system overview

The system diagram is shown on Figure 2. As seen on this figure, node types

are either primary or secondary, which imposes different roles on them, and the

replication sessions between them are different.

18



6.1 Primary-based replication

The presented approach to a distributed tuplespace uses a “primary server”, i.e.

a computer with enough resources to keep all the data in the tuplespace. Mobile

J2me units serve as “secondary servers” (or simply “secondaries”) which keep

a selection of the tuplespace on behalf of local clients, but they are also able to

exchange tuples without primary server involvement.

The approach where secondaries can exchange information directly makes this

system different from ordinary primary-based replication system [18, pp.337–

341], since the primary does not necessarily have the most current state of the

system; new tuples may be created in a secondary and passed on to other secon-

daries before they eventually become known to the primary server.

6.2 The interest profile

Secondaries are (for resource reasons) not expected to keep the entire tuplespace,

but a selection of tuples from it. A secondary A expresses its selection criteria as

a set of templates called an interest profile, IP[A]. Tuples not matching any of the

templates in the interest profile will never be delivered to the secondary and thus

remain unknown to the clients of this secondary.

6.3 UUID, Local Timestamps and Deatch Certificates

During operation, a node A maintains a logical clock, LC[A] which is a counter

that is incremented by every event in the node. Every time a message is sent

19



or a tuple is created, the clock is incremented. All created tuples are assigned a

globally unique id, t.uuid , formed by appending a large random number at the

end of the logical clock value 3. During replication, the two nodes exchange their

logical clock value, and the clocks are adjusted to the highest of the two values.

This arrangement, known as Lamport timestamps [11], ensures that for every pair

a,b of tuples in the entire system, where a → b (meaning that a causally precedes

b):

(a → b) ⇒ a.uuid < b.uuid (7)

I.e. any tuple that causally precedes another will have a lower UUID value in the

entire system.

The uuid value remains constant during the lifetime of the tuple, also during

replication. The tuple will have an additional local timestamp which is simply the

value of the logical clock when the tuple was created or received. The role of the

local timestamp is to assist in the tuple selection during replication sessions. The

local timestamp t.ts, is causally ordered within the scope of a tuplespace node.

For all tuples stored in the same node, the following is true:

(a → b) ⇒ a.ts < b.ts (8)

When tuples are deleted, they are replaced by Death Certificates (DC) which will

inhibit the tuple to “ressurrect” during replication. In principle, the DCs must be

kept forever since the population of secondaries are unknown and that they repli-

3Other source of unique numbers, like MAC- or Bluetooth addresses, may be used as well

20



cate with unknown time intervals, but a design choice has been made to delete

the DCs in node A that are older (have a UUID value less than) the variable

T Sodc[A] 4. The consequence is that a secondary A cannot accept tuples with

t.uuid < T Sodc[A], i.e. older than the oldest Death Certificate (but can accept DCs

of any age). When a tuplet is deleted, it is actually converted to a DC by marking

it as “dead”. It retains all its original field values, but is given a new t.ts value.

7 Replication sessions

There are two distinct replication sessions in this system: Replication of data be-

tween a primary server and a secondary (called primary replication) and between

two secondaries (called secondary replication). Primary replication will typically

use a connection over a GSM/GPRS service, a wired network (cradle or Ethernet)

or even a Bluetooth connection to a combined GPRS/Bluetooth unit acting as a

connection proxy.

Secondary replication happens between secondaries over a Bluetooth connec-

tion. The Bluetooth technology offers excellent services for ad-hoc connections,

since discovery of devices and services is an integral part of the protocol stack.

The units will therefore spontaneously connect to other devices within radio range.

4More correctly, T Sodc is compared to the LC that can be extracted from the UUID (the leftmost
digits).

21



7.1 Primary replication

The secondary A keeps a record of the locical clock value at the end of the last

primary replication, T Spr[A]. It connects to the primary server P (through a HTTP

connection), and sends to P a message with the following content:

1. All tuples (including DCs) with t.ts > T Spr[A]

2. Its interest profile, IP[A]

3. Its T Spr[A]

4. The value of its logical clock, LC[A].

The primary server will enter the received tuples into its tuplespace (existing tu-

ples already received from elsewhere are ignored). Received DCs will replace

tuples with the same t.uuid. The primary server will now select every tuple t

from the entire tuple collection T that matches the secondary’s interest profile

match(IP[A],T) and has a t.ts > T Spr[A]. The response message back to the pri-

mary will contain these elements:

1. All selected tuples

2. Value of the logical clock, LC[P]

The secondary A accepts a received tuple t if t.uuid > T Sodc[A] and the tuple does

not already exist in the node (but assigns t.ts = LC[A]), and stores the received

value of LC[P] into T Spr[A]. After a complete replication, the secondary can

choose to delete some of the oldest Death Certificates and advance the T Sods[A]

accordingly.

22



7.2 Secondary replication

The secondary replication is more “symmetric” than the primary replication, al-

though the parts must take on different roles, which we will call S1 and S2. Each

node S will keep a vector T Ssr[N,S] containing the timestamp of the previous

secondary replication with the secondary named N. In case no data about N is

available, the value of T Sodc[S] is used.

7.2.1 Template requirements

In order to maintain causal consistency during secondary replication, the sender

and the receiver must have “equal” templates in their interest profiles. If a sender

S will send a tuple t from its collection T[S] to receiver N because the receiver has

presented a template r in its interest profile IP[N] and t ∈ match(r,T), it must be

sure that all causally preceding tuples ever to be received by N is present in T[S].

Otherwise, tuples preceding t may later be received by N from other nodes, which

would violate causal consistency.

Therefore, S will only send tuples to N that match those templates in IP[N]

for which S has an equal template in IP[S]. Two equal templates have the same

number of fields, and each pair of field has the same type and value (regarding

“wildcard” as a value).

When S receives IP[N] during secondary replication, it will “prune” the tem-

plates in it and remove those templates for which S does not have an equal tem-

plate in IP[S]. The resulting interest profile is denoted as IPp[N]. We will re-visit

23



the causal consistency issues in the next section.

7.2.2 Secondary replication protocol

The role of S1 (the “client”):

1. Send the interest profile IP[S1], the value of T Ssr[S2,S1], and the current

value of LC[S1]

2. Receive the tuples selected according to T Ssr[S2,S1] and the pruned interest

profile IPp[S1]. Accept those “new” tuples that have t.uuid > T S odc[S1]. In

the same message, receive the interest profile IP[S2] and T Ssr[S1,S2] and

LC[S2] from S2.

3. Select the tuples that matches IPp[S2] and t.uuid > T Ssr[S1,S2], and send

these together with the current value of LC[S1].

4. The value of LC[S2] received in message 2 is stored as the new value of

T Ssr[S2,S1]

The role of S2 (the “server”) is simply the opposite: It receives a message contain-

ing IP[S1] and T Ssr[S2,S1], selects relevant tuples and returns them to S1 together

with its IP[S2] and T Ssr[S1,S2]. It then receives the tuples that S1 has selected and

LC[S1].

8 Why is this causally consistent?

Tuples are causally ordered from the following reasons:

24



• During retrieval operations, tuples are ordered by their local timestamp t.ts,

i.e. when more than one tuple match a template, the tuple with the lowest

timestamp value is returned.

• A created tuple t will be assigned a local timestamp value higher than any

other tuples in this node (since the local clock is ever-increasing). No other

tuples than the locally stored tuples can causally precede t. Therefore, a

collection of tuples all created locally will have a causal ordering on local

timestamp values.

• During replication sessions, tuples are exported by S to another node R in

increasing timestamp order. Therefore, if t.ts < u.ts, then t will be sent

before u and have the lowest timestamp value assigned by R. Thus, the same

relation between the two tuple timestamps holds after replication. If t and u

are causally related, they are (by the definition in Section 4.1) matching the

same template tmpl:

(t → u) ⇒ (t,u) ∈ match(tmpl,T[S]) (9)

And, since S and R have equal templates in their interest profiles, all causally

related tuples in S will be sent to R during a secondary replication session.

• Causal consistency during primary replication is maintained since tuples

accepted from a secondary S are either tuples created in S or tuples re-

ceived from another secondary with an equal template, and in both cases

25



are causally related tuples received by the primary in causal order. Causally

related tuples will therefore always have a local timestamp value according

to Equation 8

9 Mobispace implementation discussion

The design which has been presented in this paper has been implemented in Java.

The code for maintaining the secondary replica has been programmed on the Java

2 Micro Edition API, and the primary server has been programmed as a Java

servlet. The primary server uses the TSpaces system as its “storage engine”, as

indicated on Figure 2. This section will provide a few remarks to the implemen-

tation efforts.

9.1 Take/delete semantics

The system offers a comsuming retrieve operations, take, which in ordinary tu-

plespace implementations acts like an atomic read-delete operation which guar-

rantees that the tuple is retrieved by one and only one client. This form for coor-

dination is infeasible in a distributed and occationally-connected environment, so

the take operation has been interpreted to affect only other clients on the same

node. The tuplet is replicated to other nodes (even after it has been taken) and

may be retrieved elsewhere. The take-operation does not delete the tuplet, it only

makes it invisible from clients on the same node.

The delete operation has a different semantics, since it convert the given

26



tuple to a Death Certificate, and the DC will be subject to replication and cause the

tuplet to be deleted in other replica as well. Since causal consistency is ensured,

the DC will never be replicated before the tuplet in question, so a tuplet replace

operation (add new tuplet - delete the old) is safe and will be executed in the

correct order everywhere.

9.2 Synchronization - multituples

There are blocking variants of the retrieval operations, called waitToTake and

waitToRead. There are also operations that retrieve all matching tuples (in the

correct order) and returns them in a vector.

9.3 Persistence management

The implementation offers persistent storage of tuples and all state information so

that a unit can be switched off and on again and continue the expected service.

The storage system resident in J2me systems has been used for this purpose. The

persistence service can be set up so that it saves “checkpoints” of the system state

at regular intervals, and the system will automatically perform as if it had been

“rolled back” if it restarts after a crash.

9.4 Resource management

The semantics of the take operation raise a concern that need to be solved by

the programmer: Two threads on different nodes may enter a producer/consumer

27



relationship where one thread (the producer) is doing a series of write operations

and another (the consumer) a series of take operations. In our system, this would

normally fill up the producer’s node with a growing collection of written tuples.

They are taken on another node, which does not affect the producer’s storage.

On the expense of transparency a send operation has therefore been introduced:

It works like write, but leaves the tuple in an invisible state after the next primary

replication. The send may be used under the condition mentioned above: The

tuple is supposed to be consumed by clients on other nodes and is not of interest

to clients on this node.

Invisible tuples will be treated like Death Certificates. They are deleted after

an aging period.

9.5 Bluetooth operation

There exists a standard API, JSR-82 5, for operating a Bluetooth device in a J2me

unit. This API is implemented on a growing number of J2me-enabled mobile

phones, and is offered as additional software on handheld units using Palm OS

and Windows Mobile. The JSR-82 provides access to the Device and Service

Discovery functions, and communication over the L2CAP and RFCOMM proto-

cols.

Secondary replication over a Bluetooth connection is free, fast, and is designed

to offer the secondary replicas the “latest news” and more up-to-date information

without the cost of GSM/GPRS based communication.
5http://www.jcp.org/en/jsr/detail?id=82

28



10 Conclusion and future work

This paper has discussed the Mobispace middleware in the context of location-

aware distributed applications. The research effort has exploited a middleware for

distributed tuplespace and the short range of Bluetooth tranceivers for location

management purposes.

Although Bluetooth discovery mechanisms are not ideally suited for applica-

tions that require fast discovery of a large number of mobile units, the deployment

scale of Bluetooth-equipped units make them interesting alternatives for location-

aware mobile applications.

The research presented in this paper offers an integrated approach to tuplespace-

based distributed systems and location management, in the sense that the the tu-

plespace offers the client location-sensitive tuples which are transparently repre-

senting properties associated with the current location of the mobile client. It also

offers eay access to other location management information like who is in a given

location (zone) and where a particular node is located.

The project is in its early stage, and only simple experimenting has been done

as a proof of concept. Future experimenting will address reliability and scal-

ability issues. Besides, the JSR-82 implementation are often to be buggy and

incompletely implemented.

The website www.mobispace.org offers updated information about the project

and downloadable source code.

29



References

[1] L. Aalto, N. Göthlin, J. Korhonen, and T. Ojala. Bluetooth and wap push

based location-aware mobile advertising system. In MobiSys ’04: Proceed-

ings of the 2nd international conference on Mobile systems, applications,

and services, pages 49–58, New York, NY, USA, 2004. ACM Press.

[2] P. Bishop and N. Warren. JavaSpaces in practice. Addison Wesley Longman

Inc., 2003.

[3] R. Bruno and F. Delmastro. Design and analysis of a bluetooth-based indoor

localization system. In Personal Wireless Communications, IFIP-TC6 8th

International Conference, PWC 2003, Venice, Italy, September 23-25, 2003,

Proceedings, pages 711–725, 2003.

[4] A. T. S. Chan, H. V. Leong, J. Chan, A. Hon, L. Lau, and L. Li. Bluepoint: a

bluetooth-based architecture for location-positioning services. In SAC ’03:

Proceedings of the 2003 ACM symposium on Applied computing, pages 990–

995, New York, NY, USA, 2003. ACM Press.

[5] A. Charles, R. Menezes, and R. Tolksdorf. On the implementation of swarm-

linda. In ACM Southeastern Conference (ACM-SE), Huntsville, AL, 2004.

[6] A. Fongen and S. Taylor. A distributed tuplespace for j2me environments.

In 16th IASTED International Conference on Parallel and Distributed Com-

puting and Systems, Phoenix, AZ, 2005.

30



[7] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns and

Practice. Addison Wesley Longman Inc., Essex, UK, UK, 1999.

[8] D. Gelernter. Generative communication in linda. ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985.

[9] A. Göker, S. Watt, H. I. Myrhaug, N. Whitehead, M. Yakici, R. Bierig, S. K.

Nuti, and H. Cumming. An ambient, personalised, and context-sensitive

information system for mobile users. In EUSAI ’04: Proceedings of the

2nd European Union symposium on Ambient intelligence, pages 19–24, New

York, NY, USA, 2004. ACM Press.

[10] IBM. Tspaces. Available from: http://www.almaden.ibm.com/cs/TSpaces/

[Jun 20, 2005].

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[12] S. Microsystems. Javaspaces. Available from:

http://www.sun.com/software/jini/specs/jini1.2html/js-title.html [Jun

21, 2005].

[13] M. Nilsson, J. Hallberg, and K. Synnes. Bluetooth positioning. In CSEE

2002, 2002.

[14] A. Omicini. On the semantics of tuple-based coordination models. In SAC

’99: Proceedings of the 1999 ACM symposium on Applied computing, pages

175–182, New York, NY, USA, 1999. ACM Press.

31



[15] L. I. Patterson, R. S. Turner, and R. M. Hyatt. Construction of a fault-tolerant

distributed tuple-space. In SAC ’93: Proceedings of the 1993 ACM/SIGAPP

symposium on Applied computing, pages 279–285, New York, NY, USA,

1993. ACM Press.

[16] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda meets mobility.

In ICSE ’99: Proceedings of the 21st international conference on Software

engineering, pages 368–377, Los Alamitos, CA, USA, 1999. IEEE Com-

puter Society Press.

[17] M. Spratt. An overview of positioning by diffusion. Wirel. Netw., 9(6):565–

574, 2003.

[18] A. S. Tanenbaum and M. v. Steen. Distributed Systems. Principles and

Paradigms. Prentice Hall, 2002.

32


