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Abstract An analytic mode-matching method suitable for the solution of problems in-

volving scattering in three-dimensional waveguides with flexible walls is presented. Prereq-

uisite to the development of such methods is knowledge of closed form analytic expressions

for the natural fluid-structure coupled waveforms that propagate in each duct section and

the corresponding orthogonality relations. In this article recent theory [Lawrie, Proc. R.

Soc. A. 465, 2347-2367 (2009)] is extended to construct the non-separable eigenfunctions

for acoustic propagation in a three-dimensional rectangular duct with four flexible walls.

For the special case in which the duct cross-section is square, the symmetrical nature

of the eigenfunctions enables the eigenmodes for a right-angled, isosceles triangular duct

with flexible hypotenuse to be deduced. The partial orthogonality relation together with

other important properties of the triangular modes are discussed. A mode-matching so-

lution to the scattering of a fluid-structure coupled wave at the junction of two identical

semi-infinite ducts of triangular cross-section is demonstrated for two different sets of

“junction” conditions.

Keywords Three dimensional duct; flexible walls; elastic plate; triangular cross-section;

mode-matching; acoustic propagation

1 Introduction

The scattering of waves in ducts or channels has long been of interest to scientists and

engineers. Analytic mode-matching provides an appealing approach to the solution of

many such problems. Traditionally the method has been restricted to canonical geometries

in which the boundary value problems involve a governing equation such Laplace’s or

Helmholtz’s and in which the duct/channel walls are described by simple conditions (soft,

hard or impedance). The underlying eigen-systems for such boundary value problems

are Sturm-Liouville in type and thus have well defined orthogonality properties. For
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more complicated geometries and/or ducts bounded by surfaces described by high-order

conditions (such as the thin plate equation) alternative solution methods were necessary

[1]-[3]. The past decade has seen a dramatic change in this situation. Hybrid mode-

matching methods have been devised to deal with more complicated geometries [4]-[9]

and the theory underpinning wave propagation in two-dimensional (2D) ducts with high

order boundary conditions has been extensively developed [10, 11].

Problems involving wave propagation in three dimensional (3D) ducts or channels with

flexible walls remain, however, both challenging and of considerable interest to engineers

[12]-[17]. Although mode-matching methods generally neglect the effects of break-out,

they do enable physical insight into the underlying scattering processes and also provide

benchmark solutions for fully numerical approaches. Thus, the development of a hybrid

analytic-numerical mode-matching method to address this class of problem would be a

significant asset to the scientific community. Recent advances in this respect have been

forged by Lawrie [18] who established much of the mathematical theory underlying acous-

tic propagation in a 3D rectangular duct with one flexible wall. A second article extends

the theory to ducts with porous linings, internal structures or orthotropic boundaries,

[19]. For each of the ducts considered in [18]-[19], the “corner conditions” applied along

the length of the duct where the flexible wall meets the adjacent rigid wall dictate that the

eigenmodes are non-separable in form. As a result only a “partial” orthogonality relation

can be constructed and this, of course, complicates the mode-matching procedure. In con-

trast, Mondal et al [20] consider a 3D problem involving the scattering of flexural gravity

waves in a rectangular channel due to a crack in a floating ice sheet. In this case, as in

[21], the nature of the “corner conditions” are such that the 3D eigenmodes are separable

and, thus, the (generalised) orthogonality relation (OR) is more straightforward to apply.

The aim of this article is to develop a mode-matching approach for 3D ducts with

flexible walls and in which the eigenfunctions are non-separable. In section 2, the theory

established in [18]-[19] is extended to a rectangular duct in which all four walls are flexible.

Symmetry is then used to construct, in section 3, the eigenmodes corresponding to acoustic

propagation in a right angled, isosceles triangle in which the hypotenuse comprises a thin

elastic plate whilst the other two walls are rigid. The (partial) orthogonality relation and

other relevant properties of the eigenmodes are stated. In section 4, a typical problem

involving the scattering of an incident fluid-structural mode at the junction two identical

semi-infinite ducts of triangular cross-section is considered. The solution to this problem

is crucially dependent on the edge conditions applied at the junction of the two plates. It

is demonstrated that an analytic mode-matching scheme can be constructed by which to

determine the scattered field for two distinct sets of junction conditions. A comprehensive

discussion of the method is presented in section 5.
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2 Propagation in a 3D duct with four flexible walls

A 3D duct of rectangular cross-section occupies the region −∞ < x̄ < ∞, −ā ≤ ȳ ≤ ā,

−b̄ ≤ z̄ ≤ b̄ where (x̄, ȳ, z̄) are dimensional Cartesian coordinates. The interior region

of the duct contains a compressible fluid, of density ρ and sound speed c, whilst the

region exterior to the duct is in vacuo. Each wall of the duct is flexible and thus able to

move/vibrate in response to acoustic excitation. Under the assumption of harmonic time

dependence, e−iωt̄, the fluid velocity potential is expressed in terms of the time independent

potential by Φ̄(x̄, ȳ, z̄, t̄) = φ̄(x̄, ȳ, z̄)e−iωt̄. It is convenient to non-dimensionalise the

boundary value problem with respect to length and time scales k−1 and ω−1 respectively,

where ω = ck and k is the fluid wavenumber. Thus, non-dimensional co-ordinates are

defined by x = kx̄ etc. Similarly, φ̄ = ωφ/k2 etc.

y

z

a) b)

y

z0

Figure 1: a) the rectangular 3D duct and b) its yz-cross-section for y ≥ 0, z ≥ 0.

Due to coupling between the fluid and wall motions, the natural waves that travel

within the duct are, in general, not separable with respect to y and z. It can, however,

be assumed that they propagate in the positive x direction. The non-dimensional, time-

independent velocity potential then assumes the form

φ(x, y, z) =
∞∑

n=0

BnΨn(y, z)eisnx, x > 0 (1)

where Bn is the amplitude of the nth travelling wave, sn is the non-dimensional axial

wavenumber (assumed to be either positive real or have positive imaginary part) and the

nonseparable eigenmodes Ψn(y, z), n = 0, 1, 2, . . . are to be determined.

The modes of propagation can be symmetric with respect to both y and z, anti-

symmetric with respect to both y and z or a combination of symmetric in y (or z) and

anti-symmetric in the other co-ordinate. For the sake of brevity, only fully symmetric

modes will be discussed and the reader is referred to [19] where anti-symmetric modes for

a duct of this class are discussed.
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For modes that are symmetric with respect to both y and z, the eigensystem can be

simplified. In this case, it is appropriate to consider wave propagation in a duct comprising

two rigid walls, lying along y = 0, 0 ≤ z ≤ b, and z = 0, 0 ≤ y ≤ a and two thin elastic

plates lying along y = a, 0 ≤ z ≤ b, and z = b, 0 ≤ y ≤ a (see figure 1b). It is convenient

to treat the wavenumber as a continuous variable s rather than a discrete set of values, sn.

Thus, Ψn(y, z) = Ψ(sn, y, z) and the potential Ψ(s, y, z) satisfies reduced wave equation:

{
∂2

∂y2
+

∂2

∂z2
+ 1− s2

}
Ψ(s, y, z) = 0 (2)

where 0 ≤ y < a, 0 ≤ z ≤ b. The normal component of fluid velocity vanishes at the rigid

walls which implies:

∂Ψ

∂y
= 0, y = 0, 0 ≤ z ≤ b, (3)

∂Ψ

∂z
= 0, z = 0, 0 ≤ y ≤ a. (4)

The plate motion is modelled using Kirchhoff theory which is valid provided kh̄ << 1

where h̄ is the dimensional plate thickness. (For thicker plates an appropriate theory is

given in [22].) Thus, the boundary condition that describes the deflections of the thin

elastic plate bounding the top of the duct is

{(
∂2

∂z2
− s2

)2

− µ4

}
Ψy − αΨ = 0, y = a, 0 ≤ z ≤ b, (5)

whereas for the side wall
{(

∂2

∂y2
− s2

)2

− µ4

}
Ψz − αΨ =

2

α
δ(y − a), z = b, 0 ≤ y ≤ a (6)

where δ(y − a) is the Dirac delta function (the presence of which is explained in section

2.2, just below equation (18)), µ is the in vacuo plate wavenumber and α a fluid-loading

parameter. These quantities are defined by

µ4 =
12(1− ν2)c2ρp

k2h̄2E
; α =

12(1− ν2)c2ρ

k3h̄3E
(7)

in which E is Young’s modulus, ρ is the density of the plate and ν is Poisson’s ratio.

Although attention is restricted to the situation in which the two plates are of identical

material and thickness, the analysis presented herein is easily extended to the case in

which the two plates have different properties.

The two elastic plates meet along the edge y = a, z = b, −∞ < x < ∞. Thus,

in addition, to the governing equation and boundary conditions outlined above, it is

necessary to apply “corner conditions” to describe how the plates are connected. It is
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assumed that the two plates are clamped to a rigid sub-frame along the edge. Thus, the

appropriate corner conditions are

∂Ψ

∂y
=

∂Ψ

∂z
=

∂2Ψ

∂y∂z
= 0, y = a, z = b. (8)

Following [18] and [19], an appropriate ansatz for Ψ(s, y, z), can be formulated using the

eigenfunctions Ym(y), m = 0, 1, 2, . . . appropriate for wave propagation in the 2D duct

corresponding to the xy-cross-section of the 3D duct. Thus,

Ψ(s, y, z) =
∞∑

m=0

Em(s)Ym(y) cosh[τm(s)z] (9)

where the as yet unspecified quantities Em(s) and τm(s), m = 0, 1, 2, . . . depend on the

parameter s.

2.1 The eigensystem corresponding to the xy-cross-section

Since (9) comprises an infinite sum over the functions Ym(y), m = 0, 1, 2, . . ., it is ex-

pedient to define these functions and summarise their properties. These eigenfunctions

characterise 2D acoustic propagation in a waveguide in which the upper boundary (y = a,

−∞ < x < ∞) comprises a thin elastic plate whilst the base, lying along y = 0,

−∞ < x < ∞, is rigid (see figure 2). Thus, the velocity potential satisfies the 2D

Helmholtz’s equation, with unit non-dimensional wavenumber, and the upper boundary

is described by the 2D plate equation (that is (5) but with ∂
∂z

= 0).

Compressible fluid

0

a

x

y

Rigid plate

Elastic plate

Figure 2: The xy-cross-section of the 3D duct.

Disturbances comprising fluid-structural waves propagating in the positive x-direction

may be expressed in the form:

φ(x, y) =
∞∑

n=0

AnYn(y)eiζnx, x > 0 (10)
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where Yn(y) = cosh(γny), An is the modal amplitude, ζn =
√

γ2
n + 1 and is defined to

be positive real or have positive imaginary part. On substituting Y (y) = cosh(γy) where

γ = (ζ2 − 1)1/2, γ(0) = −i, into the plate equation, it is found that the eigenvalues γn,

n = 0, 1, 2, . . . are the roots of K(γ, a) = 0 where

K(γ, a) = {(γ2 + 1)2 − µ4}γ sinh(γa)− α cosh(γa). (11)

Here µ and α are the in vacuo plate wavenumber and fluid-loading parameter defined

in equation (7) above. The roots of K(γ, a) = 0 have the following properties: i) they

occur in pairs, ±γn; ii) there is a finite number of real roots; iii) there are infinitely many

imaginary roots; iv) complex roots, ±γc and ±γ∗c occur for some frequency ranges. The

convention adopted here is that the +γn roots are either positive real or have positive

imaginary part. They are ordered sequentially, real roots first and then by increasing

imaginary part. Thus, γ0 is always the largest real root. It is assumed that no root is

repeated. (This system of ordering is also used for the wavenumbers sn, n = 0, 1, 2, . . . in

later sections.)

The eigenfunctions Ym(y), m = 0, 1, 2, . . . belong to a well studied class of function

[23]. They satisfy the generalised orthogonality relation (OR):

α

∫ a

0

Ym(y)Yj(y)dy = Cjδjm − (γ2
m + γ2

j + 2)Y ′
j (a)Y ′

m(a) (12)

where δjm is the Kronecker delta and Cm is given by

Cm =
Y ′

m(a)

2γm

d

dγ
K(γ, a)

∣∣∣
γ=γm

(13)

in which the prime indicates differentiation with respect to y. They also satisfy the

identities:

∞∑
n=0

[Y ′
n(a)]2

Cn

= 0,
∞∑

n=0

γ2
n [Y ′

n(a)]2

Cn

= 1,
∞∑

n=0

γ4
n [Y ′

n(a)]2

Cn

= −2 (14)

and are linearly dependent for 0 ≤ y ≤ a:

∞∑
n=0

Y ′
n(a)Yn(y)

Cn

=
∞∑

n=0

γ2
nY

′
n(a)Yn(y)

Cn

= 0. (15)

In addition, a Green’s function can be constructed:

α

∞∑
n=0

Yn(v)Yn(y)

Cn

= δ(y − v) + δ(y + v) + δ(y + v − 2a), 0 ≤ v, y ≤ a (16)

where δ(y) is the Dirac delta function. Properties (15) and (16) prove to be very important

in terms of constructing the quantity Em(s) of (9), as is explained in the next section.
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2.2 The 3D eigenfunctions

It is clear that ansatz (9) satisfies the two rigid wall conditions and (5). On substituting

(9) into the homogeneous form of (6) and bearing in mind that the 2D eigenfunctions are

linearly dependent (15), it is seen that two eigensolutions may be constructed:

ψ1(s, y, z) =
∞∑

m=0

Y ′
m(a)Ym(y) cosh[τm(s)z]

CmK[τm(s), b]
(17)

and

ψ2(s, y, z) =
∞∑

m=0

γ2
mY ′

m(a)Ym(y) cosh[τm(s)z]

CmK[τm(s), b]
(18)

where γ2
m + τ 2

m(s) − s2 + 1 = 0 and K[τ(s), b] is obtained from (11) on replacing γ with

τm(s) and a with b. On recollecting that three corner conditions must be applied (8), it

is clear that one more such solution is necessary. This is constructed by introducing a

point force, in the form of a delta function, to one of the plate equations. In principle,

this could be added to the right hand side of either plate equation, however, since (9) is

expressed in terms of Ym(y), m = 0, 1, 2, . . ., it is expedient, in view of (16), to add it to

(6). Thus, on using (16) with v = a, the third eigensolution is found to be

χ(s, y, z) =
∞∑

m=0

Ym(a)Ym(y) cosh[τm(s)z]

CmK[τm(s), b]
. (19)

Thus, a solution to the eigensystem (2)-(6) is

Ψ(s, y, z) = ψ1(s, y, z) + P (s)ψ2(s, y, z) + Q(s)χ(s, y, z) (20)

where P (s) and Q(s) are arbitrary. It remains to determine P (s), Q(s) and the (non-

dimensional) admissible wavenumbers sn, n = 0, 1, 2, . . .. On applying the corner condi-

tions (8), it is found that admissible wavenumbers are given by

|M(s)| =

∣∣∣∣∣∣∣∣

ψ1y(s, a, b) ψ2y(s, a, b) χy(s, a, b)

ψ1z(s, a, b) ψ2z(s, a, b) χz(s, a, b)

ψ1yz(s, a, b) ψ2yz(s, a, b) χyz(s, a, b)

∣∣∣∣∣∣∣∣
= 0 (21)

in which the subscripts y and/or z indicate differentiation with respect to these variables.

Figure 3 shows the phase speeds of the unattenuated symmetric modes as defined by

(21) for the frequency range 0-1200 Hz. In order that a comparison can be made with the

phase speeds of the propagating modes in a 3D rectangular duct with one flexible wall,

the same parameters are used as in [13, 19]. Thus, the duct has dimensions ā = 0.09m

and b̄ = 0.053m, and the plates are chosen to be aluminium, of thickness h̄ = 0.0006m and

of density ρ=2700 kg m−3. In addition, Young’s modulus and Poisson’s ratio are given by
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Figure 3: The phase speeds cn = c/sn of the unattenuated symmetric waves.

E = 7.2×1010Nm−2 and ν = 0.34; whilst c and ρ are taken to be 344ms−1 and 1.2 kg m−3

respectively. It is clear that, for the duct considered here, there are more modes cut-on

in the frequency range 0-1200 Hz (four as opposed to two) and that the phase speed of

fundamental mode is significantly lower than for the duct comprising three rigid walls and

one flexible surface [13, 19].

A partial orthogonality relation, similar to that presented in [18], can be constructed

for the eigenmodes described above. In order to do so, however, it is necessary to specify

the dispersion function in terms of the corner conditions. Here and henceforth, it is

assumed that the following two corner conditions

∂Ψ

∂z
=

∂2Ψ

∂y∂z
= 0, y = a, z = b (22)

are enforced first, thereby permitting explicit forms for P (s) and Q(s) to be obtained. A

natural consequence is that

∂

∂s

(
∂Ψ

∂z

)
=

∂

∂s

(
∂2Ψ

∂y∂z

)
= 0, y = a, z = b; (23)

this result holding for all s. It then follows that admissible wavenumbers are the solutions

to function, L(s) = 0 where, on applying the third corner condition:

L(s) = Ψy(s, a, b). (24)

The reader is reminded that, once the admissible wavenumbers are determined, the eigen-

modes are given by Ψn(y, z) = Ψ(sn, y, z). The partial OR is derived in Appendix A and

8



is stated here as:

α

∫ b

0

∫ a

0

Ψn(y, z)Ψ`(y, z) dy dz = D`δ`n (25)

−
∫ b

0

{Ψnyyy(a, z)Ψ`y(a, z) + Ψny(a, z)Ψ`yyy(a, z) + 2Ψny(a, z)Ψ`y(a, z)}dz

−
∫ a

0

{Ψnzzz(y, b)Ψ`z(y, b) + Ψnz(y, b)Ψ`zzz(y, b) + 2Ψnz(y, b)Ψ`z(y, b)}dy

where Dn = Ψnyzzz(a, b)L′(sn)/(2sn) with the prime indicating differentiation with respect

to the argument.

It is worthwhile commenting that the eigenmodes defined by (20) are valid only for the

case in which the adjacent flexible duct walls are clamped to a rigid sub-frame. In this

configuration only three corner conditions are necessary. Were the pin-jointed (simply

supported) case to be considered it would be necessary to add a further eigenfunction

to (20). In principle this could be constructed, in a similar manner to (19), by adding a

second delta function to the right hand side of (6). Bearing in mind that the eigenfunction

must be symmetric with respect to y, δ′(y − a) is inappropriate. On the other hand, if

δ′′(y − a) is used then Ψyzz(y, b) ∼ δ(y − a), y → a which is incompatible with the pin-

jointed corner conditions. It is thus not clear how to extend the general approach to case of

pin-jointed corners. As will be demonstrated in section 3, for the case of symmetry about

y = z only two corner conditions are needed. Hence, for a triangular duct, eigenfunctions

can be constructed for clamped, pin-jointed or indeed other corner constraints.

3 Propagation in a triangular duct

As discussed in [19], two equivalent expressions for the symmetric eigenfunction, Ψ(s, y, z),

can be formulated. The first (presented above) is dependent on the eigenfunctions appro-

priate for wave propagation in the 2D duct corresponding to the xy-cross-section of the 3D

duct. The alternative is similarly dependent on the eigenvalues/eigenfunctions for wave

propagation in the 2D duct corresponding to the xz-cross-section. A small modification

to the boundary value problem is necessary. On replacing (5) with
{(

∂2

∂z2
− s2

)2

− µ4

}
Ψy − αΨ =

2

α
δ(z − b), y = a, 0 ≤ z ≤ b, (26)

and (6) with its homogeneous form, the solution equivalent to (20) is

Ψ(s, y, z) = ψ̃1(s, y, z) + P̃ (s)ψ̃2(s, y, z) + Q̃(s)χ̃(s, y, z) (27)

where

ψ̃1(s, y, z) =
∞∑

m=0

Z ′
m(b)Zm(z) cosh[νm(s)y]

DmK[νm(s), a]
, (28)
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ψ̃2(s, y, z) =
∞∑

m=0

λ2
mZ ′

m(b)Zm(z) cosh[νm(s)y]

DmK[νm(s), a]
, (29)

χ̃(s, y, z) =
∞∑

m=0

Zm(b)Zm(z) cosh[νm(s)y]

DmK[νm(s), a]
(30)

with λ2
m + ν2

m(s)− s2 + 1 = 0. Here Zm(z) = cosh(λmz) with λm, m = 0, 1, 2, . . . defined

by K(λ, b) = 0 where K(λ, b) is obtained from (11) on replacing γ with λ and a with

b; K[νm(s), a] is similarly defined. This set of functions have properties analogous to

(12)-(16). For example,

∞∑
n=0

Z ′
n(b)Zn(z)

Dn

=
∞∑

n=0

λ2
nZ

′
n(b)Zn(z)

Dn

= 0, (31)

where

Dm =
Z ′

m(b)

2λm

d

dλ
K(λ, b)

∣∣∣
λ=λm

. (32)

The two solutions (20) and (27) are entirely equivalent. In fact, it can be shown (see

Appendix B) that the functions ψ̃1(s, y, z), ψ̃2(s, y, z) and χ̃(s, y, z) can each be expressed

as a linear combination of the functions ψ1(s, y, z), ψ2(s, y, z) and χ(s, y, z). That is:

ψ̃1(s, y, z) = ψ1(s, y, z), (33)

ψ̃2(s, y, z) = (s2 − 1)ψ1(s, y, z)− ψ2(s, y, z), (34)

χ̃(s, y, z) = χ(s, y, z) +
(s4 − 1)

α
ψ1(s, y, z)− 2(s2 + 1)

α
ψ2(s, y, z). (35)

For the case a = b, a solution which is symmetric about y = z can be constructed

using (33)-(35). This enables the determination of admissible wavenumbers for acoustic

propagation in an infinite duct of triangular cross-section and having one flexible wall

(see figure 4). Symmetry about z = 0 is assumed; thus the modes presented below also

correspond to propagation in the triangular duct lying in z ≥ 0 formed by placing a rigid

wall at z = 0, 0 ≤ y ≤ a.

a−a
z

y
a

Figure 4: The yz-cross-section of the triangular 3-D duct.

10



First it is noted that for a = b the eigenvalues γm and λm, m = 0, 1, 2, . . . are equal so

that τm(s) = νm(s) and Cm = Dm, m = 0, 1, 2, . . .. Then, using (33),

ψ1(s, y, z) =
1

2

(
ψ1(s, y, z) + ψ̃1(s, y, z)

)
=

1

2

∞∑
m=0

Y ′
m(a)Jm(s, y, z)

CmK[τm(s), a]
(36)

where

Jm(s, y, z) = cosh(γmy) cosh[τm(s)z] + cosh(γmz) cosh[τm(s)y]. (37)

It is immediately apparent that 5ψ1(s, y, z).n = 0 on y = z where 5 denotes the gradient

operator and n is the unit normal to the surface y = z, −∞ < x < ∞. Likewise,

χ(s, y, z) + χ̃(s, y, z) =
∞∑

m=0

Ym(a)Jm(s, y, z)

CmK[τm(s), a]
(38)

from which, using (35), it is apparent that 5σ(s, y, z).n = 0 on y = z where

σ(s, y, z) = χ(s, y, z)− (s2 + 1)

α
ψ2(s, y, z). (39)

Thus, the general solution for symmetric acoustic propagation in a right angled, isosceles

triangle in which the hypotenuse comprises a thin elastic plate and the other two walls

are rigid is given by

Ψ(s, y, z) = ψ1(s, y, z) + T (s)σ(s, y, z). (40)

The coefficient T (s) and the admissible wavenumbers sn, n = 0, 1, 2, . . . are determined

by applying two corner conditions: in this case either clamped or pin-jointed conditions

are appropriate. It transpires that for clamped corners the admissible wavenumbers are

defined by Lc(s) = 0 where

Lc(s) = ψ1y(s, a, a)− ψ1yz(s, a, a)

σyz(s, a, a)
σy(s, a, a) (41)

and for pin-jointed corners they are given by Lp(s) = 0 where

Lp(s) = ψ1y(s, a, a)− ψ1yzz(s, a, a)

σyzz(s, a, a)
σy(s, a, a). (42)

In (41) and (42) above the subscripts y and z indicate differentiation with respect to those

variables. Bearing in mind both the symmetry about y = z and that Ψn(a, z) = Ψn(z, a),

the partial OR (25) reduces to

D`δ`n = α

∫ a

0

∫ a

z

Ψn(y, z)Ψ`(y, z) dy dz + (43)

∫ a

0

{Ψnyyy(a, z)Ψ`y(a, z) + Ψny(a, z)Ψ`yyy(a, z) + 2Ψny(a, z)Ψ`y(a, z)}dz
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where Dn = Ψnyzzz(a, a)Lc ′(sn)/(2sn) for clamped corners and Dn = [Ψnyzzz(a, a) −
s2

nΨnyz(a, a)]Lp ′(sn)/(2sn) for the pin-jointed case. In addition to satisfying the above

relation, the eigenfunctions are linearly independent:

∞∑
n=0

Ψny(a, w)Ψn(y, z)

Dn

=
∞∑

n=0

Ψnyyy(a, w)Ψn(y, z)

Dn

= 0, 0 ≤ y, z ≤ a (44)

and a Green’s function exists:

α

∞∑
n=0

Ψn(y, z)Ψn(v, w)

Dn

= {δ(v − y) + δ(v + y) + δ(v + y − 2a)} (45)

× {δ(w + z − 2a) + δ(z + w) + δ(w − z)},
0 ≤ v, y, w, z ≤ a.

Equation (43) is a “partial” orthogonality relation in the sense that its application will

not fully isolate the coefficients of an eigenfunction expansion. An integral over z will

remain and each term of the integrand corresponds to a viable eigensolution. The ana-

lytic properties of Ψny(a, z) and Ψnyyy(a, z) ensure that a unique solution is obtained via

application of suitable edge conditions. The appropriate properties are

∞∑
n=0

Ψny(a, w)Ψny(a, z)

Dn

= 0, 0 ≤ w, z ≤ a, (46)

and ∞∑
n=0

Ψnyyy(a, w)Ψny(a, z)

Dn

= δ(w + z − 2a) + δ(−z − w) + δ(w − z). (47)

Properties (44)-(47) have been rigorously proved for the eigenfunctions corresponding to

acoustic propagation in a 3D duct with three rigid walls and one flexible boundary [18];

it is anticipated that the proofs for the triangular modes considered herein would closely

follow those presented in that article. For the sake of brevity the proofs are not presented

here, instead the reader is offered a numerical verification of (47). Since (47) is a divergent

series representing a generalised function, this cannot be performed directly. However, on

multiplying both sides of (47) by f(z) and integrating with respect to z, the following

identity is obtained:

f(w) =

∫ a

0

{
f(z)

∞∑
n=0

Ψnyyy(a, w)Ψny(a, z)

Dn

}
dz. (48)

As discussed in [18], the function f(z) must be even, differentiable and satisfy f(a) =

f ′(a) = 0. The eigenfunctions corresponding to clamped corners are used, thus Ψn(y, z)

is given by (40) with T (s) = ψ1yz(s, a, a)/σyz(s, a, a) and the admissible wavenumbers are

defined by Lc(s) = 0 where this quantity is given in (41). In order to verify (47) the

12



left hand side and the real part of the right hand sides of (48) are plotted in figure 5 for

a) f1(z) = (z2/a2 − 1)2 cos(πz/a) and b) f2(z) = z sin(πz/a). (The imaginary part of

the right hand side is very small, o(10−7).) It is clear that the two sides of the identity

are in significantly better agreement in a) than b). This is because the function plotted

in b) does not satisfy the correct conditions at z = a. Forty terms have been used in

a) b)f1

z0

f2

z0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

-0.05

0.05

0.1

0.15

Figure 5: Numerical verification of equation (48).

the summation; increasing the number of terms will improve the accuracy of both plots,

however, the discrepancy between the two curves in the vicinity of z = a shown in plot b)

will persist. The frequency used for figure 5 is 130Hz and the plate/duct parameters are

stated in the next section where the use of the partial OR is demonstrated for a typical

scattering problem.

4 Scattering at the junction of two duct sections

Two identical semi-infinite ducts of triangular cross-section lie in the regions x < 0 and

x > 0 respectively. It is assumed that the elastic plates comprising the upper surfaces

are clamped to the two rigid side walls of the triangular ducts along the corners y = a,

z = ±b, −∞ < x ≤ 0 and 0 ≤ x < ∞. Hence, Ψn(y, z) is given by (40) with T (s) =

ψ1yz(s, a, a)/σyz(s, a, a). The fundamental structural mode with unit amplitude is incident

through the left-hand duct (x < 0) towards x = 0 and is scattered at the junction between

the two elastic plates. There are three steps to obtaining a unique solution: first the fluid

velocity potentials, φ1(x, y, z) for x < 0 and φ2(x, y, z) for x > 0, must be expressed as

eigenfunction expansions in which the modal amplitudes are unknown; then the conditions

of continuity of pressure and normal velocity must be imposed at the matching interface;

finally suitable edge conditions must be applied at the plate junction, i.e. along the line

segment x = 0, y = a, 0 ≤ z ≤ a. The latter two steps are achieved by using the OR (43).

Detailed summaries of the sets of edge conditions that can appropriately be applied at

such a junction can be found in [24, 25, 26, 27]. Two sets are considered herein: the first
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set models the situation in which the plates are pivoted at x = 0; the second corresponds

to the situation in which the plates are clamped.

It is important to note that, due to the form of the partial OR (43), only cer-

tain edge constraints are easy to apply. For example, it would be straight forward

(if non-physical) to apply the condition φ1y(0, a, z) = φ1yyy(0, a, z) = 0 together with

φ2yx(0, a, z) = φ2xyyy(0, a, z) = 0. This is because, on applying continuity of pressure and

normal velocity, these quantities arise naturally in the right hand integral of (43) and can

therefore be specified as zero. It is not so easy to apply the conditions corresponding to

pivoted plates since these involve combinations of derivatives which do not necessarily

correspond to those present in (43). A clamped junction also presents a challenge since

the OR is not able to distinguish between, for example, φ1y(0, a, z) = φ2y(0, a, z) and

φ1y(0, a, z) = φ2y(0, a, z) = 0. Thus, following [18, 27], spring-like conditions are used to

impose an approximation to zero displacement and/or gradient as necessary.

The velocity potential for the fluid within the left hand duct is:

φ1(x, y, z) = Ψ0(y, z)eis0x +
∞∑

n=0

AnΨn(y, z)e−isnx, x < 0 (49)

where the coefficients An, n = 0, 1, 2, . . ., represent the amplitudes of the waves comprising

the scattered field. Likewise, that for the right hand duct is

φ2(x, y, z) =
∞∑

n=0

BnΨn(y, z)eisnx, x > 0. (50)

The fluid pressure and normal velocity are both continuous at the fluid interface between

the two duct sections. Continuity of pressure is expressed in terms of the modal expansions

as ∞∑
n=0

(An −Bn + δ0n)Ψn(y, z) = 0, z ≤ y ≤ a, 0 ≤ z ≤ a. (51)

On multiplying (51) by Ψ`(y, z) and integrating with respect to y and z it is found that:

∞∑
n=0

(An −Bn + δ0n)

∫ a

0

∫ a

z

Ψ`(y, z)Ψn(y, z) dydz = 0 (52)

which, on using (43), implies that

(A` −B` + δ0`)D` =
∞∑

n=0

(An −Bn + δ0n)

∫ a

0

{Ψnyyy(a, z)Ψ`y(a, z)

+ Ψny(a, z)Ψ`yyy(a, z) +2Ψny(a, z)Ψ`y(a, z)} dz. (53)

A similar procedure is followed for the equation expressing continuity of normal veloc-

ity. This is expressed in terms of the modal expansions as
∞∑

n=0

(An + Bn − δ0n)snΨn(y, z) = 0, z ≤ y ≤ a, 0 ≤ z ≤ a. (54)
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Thus, on multiplying (54) by Ψ`(y, z) and integrating with respect to y and z it is found

that: ∞∑
n=0

(An + Bn − δ0n)sn

∫ a

0

∫ a

z

Ψ`(y, z)Ψn(y, z) dydz = 0 (55)

which, on using (43) implies that

(A` + B` − δ0`)s`D` =
∞∑

n=0

(An + Bn − δ0n)sn

∫ a

0

{Ψnyyy(a, z)Ψ`y(a, z)

+ Ψny(a, z)Ψ`yyy(a, z) + 2Ψny(a, z)Ψ`y(a, z)} dz. (56)

As discussed above, the edge conditions are now used to simplify equations (53) and (56).

4.1 Pivoted junction

In this section the first of the two sets of edge conditions mentioned above is considered.

That is, the two plates are pivoted along x = 0, y = a, 0 ≤ z ≤ b. The appropriate edge

conditions are zero displacement for the left hand plate:

φ1y(0, a, z) = 0, 0 ≤ z ≤ b; (57)

together with continuous gradient:

φ1yx(0, a, z) = φ2yx(0, a, z), 0 ≤ z ≤ b. (58)

In addition, the bending moment is continuous:

φ1yxx(0, a, z) + νφ1yzz(0, a, z) = φ2yxx(0, a, z) + νφ2yzz(0, a, z), 0 ≤ z ≤ b (59)

and a vertical spring condition is applied to the right-hand plate

φ2yxxx(0, a, z) + (2− ν)φ2xyzz + βφ2y(0, a, z) = 0, 0 ≤ z ≤ a. (60)

Bearing in mind (57) and that φj(x, y, z), j = 1, 2 and its first derivatives satisfy the the

3D Helmholtz equation with unit wavenumber, (59) may be written as:

φ1yyy(0, a, z)− φ2yyy(0, a, z) = (1− ν)φ2yzz(0, a, z) + φ2y(0, a, z), 0 ≤ z ≤ b (61)

whilst the spring condition can be similarly rearranged as

φ2yxyy(0, a, z)− (1− ν)φ2xyzz + φ2yx = βφ2y(0, a, z), 0 ≤ z ≤ a. (62)

Note that, as β →∞ (62) tends to the required zero displacement condition.
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On using the condition of zero displacement for the left hand plate, the pressure

condition (53) reduces to

A` = −δ0` + B` − 1

D`

∞∑
n=0

Bn[U`n + 2Vn`] (63)

+
1

D`

∞∑
n=0

(An −Bn + δ0n)

∫ a

0

Ψnyyy(a, z)Ψ`y(a, z) dz.

Equation (61) can be cast in modal form as:

∞∑
n=0

(An−Bn + δ0n)Ψnyyy(a, z) =
∞∑

n=0

Bn[(1− ν)Ψnyzz(a, z) + Ψny(a, z)], 0 ≤ z ≤ b (64)

and thus (63) reduces to:

A` = −δ0` + B` +
1

D`

∞∑
n=0

Bn[(1− ν)Wn` − Vn` − U`n], (65)

where

Un` =

∫ a

0

Ψnyyy(a, z)Ψ`y(a, z)dz, (66)

Vn` =

∫ a

0

Ψny(a, z)Ψ`y(a, z)dz, (67)

Wn` =

∫ a

0

Ψnyzz(a, z)Ψ`y(a, z)dz = (s2
n − 1)Vn` − Un`. (68)

In a similar manner, continuity of plate gradient at x = 0 reduces (56) to

B` = δ0` − A` +
1

s`D`

∞∑
n=0

(An + Bn − δ0n)sn

∫ a

0

Ψnyyy(a, z)Ψ`y(a, z) dz. (69)

It remains to enforce the spring condition. This may be expressed as

∞∑
n=0

BnsnΨnyyy(a, z) =
∞∑

n=0

Bnsn[(1− ν)Ψnyzz(a, z)−Ψny(a, z)]− iβ

∞∑
n=0

BnΨny(a, z) (70)

and , on substituting (70) into (69), it is found that

B` = δ0` − A` +
1

s`D`

∞∑
n=0

(An − δ0n)snUn` (71)

+
1

s`D`

∞∑
n=0

Bnsn[(1− ν)Wn` − Vn`]− iβ

s`D`

∞∑
n=0

BnVn`.

Thus, the coefficients A` and B` are determined by numerically solving (65) together with

(71).
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Figure 6 shows the real and imaginary parts of the scaled dimensional plate displace-

ment η̄(x̄, z̄)/4 where η̄(x̄, z̄) = ik−1φy(x̄, ā, z̄), at a frequency of 130Hz (for which the

dispersion relation has one real root) and with β = 30000000. (A high value of β has been

chosen to ensure that the right hand plate (x > 0) displacement is effectively zero.) The

dimension height of the duct at its vertex is ā = 0.12 m whilst the total plate width is

2ā = 0.24 m. The plate is aluminium, of thickness h̄ = 0.0006 m and of density ρ = 2700

kg m−3. In addition, Young’s modulus and Poisson’s ratio are given by E = 7.2 × 1010

Nm−2 and ν = 0.34; whilst c and ρ are taken to be 344 ms−1 and 1.2 kg m−3 respectively.

The reader is reminded that the plate displacement displayed herein, although scaled by

a factor of 0.25, is grossly exaggerated - the forcing amplitude would, in reality, be very

small. It is clear that the incoming wave undergoes both reflection and transmission at

the plate junction (x̄ = 0). Some transmission is to be expected since, although both

plate displacements are zero (or near zero), the plate gradient is non-zero and continuous.

Thus, the motion on the right hand plate arises both due to fluid-structure interaction

and the continuity of plate gradient. Two (unscaled) plate sections are shown for z̄ = ā/2,

−0.1 ≤ x̄ ≤ 0.1. These are included as a pictorial verification that the edge conditions on

each plate have been satisfied.
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ȳ
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Figure 6: Pivoted junction: plate displacement at 130Hz; a) and b) real and imaginary

parts, −0.5 ≤ x̄ ≤ 0.5; c) and d) cross-section of real and imaginary parts at z̄ = ā/2,

−0.1 ≤ x̄ ≤ 0.1.
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4.2 Clamped junction

As mentioned above, the OR is unable to distinguish between continuous edge conditions

φ1y(0, a, z) = φ2y(0, a, z) and zero edge conditions φ1y(0, a, z) = φ2y(0, a, z) = 0. Thus,

approximate conditions, which tend to the required conditions in a specified limit, are

used. It follows that the edge conditions for the left hand plate are zero displacement

φ1y(0, a, z) = 0, 0 ≤ z ≤ a; (72)

and a condition which closely corresponds [27] to a rotational spring

φ1yxx(0, a, z) + νφ1yzz(0, a, z) + β1φ1yx = 0, 0 ≤ z ≤ a. (73)

On noting (72) and using Helmholtz’s equation, this reduces to:

φ1yyy(0, a, z) = β1φ1yx, 0 ≤ z ≤ a. (74)

For the right hand plate the appropriate conditions are zero gradient

φ2yx(0, a, z) = 0, 0 ≤ z ≤ a (75)

and the vertical spring condition which, on using (75) in (62), is

φ2yxyy(0, a, z)− (1− ν)φ2xyzz = β2φ2y(0, a, z), 0 ≤ z ≤ a. (76)

The rotational spring condition for the left hand plate implies

∞∑
n=0

(An + δ0n)Ψnyyy(a, z) = −iβ1

∞∑
n=0

(An − δ0n)snΨny(a, z). (77)

On applying zero plate displacement (72) and (77) the right hand side of (53) simplifies

and it is found that

A` = −δ0` + B` − 1

D`

∞∑
n=0

BnRn` − iβ1

D`

∞∑
n=0

(An − δ0n)snVn` (78)

where

Rn` = 2Vn` + Un` + U`n. (79)

On applying the zero gradient condition (75) together with the vertical spring condition

(56) reduces to

B` = δ0` − A` +
1

s`D`

∞∑
n=0

(An − δ0n)snRn` (80)

+
(1− ν)

s`D`

∞∑
n=0

BnsnWn` − iβ2

s`D`

∞∑
n=0

BnVn`.
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Thus, the coefficients A` and B` are determined by numerically solving (78) together with

(80).

Figure 7 shows the real and imaginary parts of the scaled dimensional plate dis-

placement η̄(x̄, z̄)/4 where η̄(x̄, z̄) = ik−1φy(x̄, ā, z̄), at a frequency of 130Hz and with

β1 = β2 = 30000000. (High values have been chosen to ensure that the both plates are

effectively clamped.) It is clear that the incoming wave is largely reflected at the plate

junction (x̄ = 0) - arguably more so than for the pivoted junction. This is to be expected

since the edge conditions dictate that both plate displacements and gradients are zero (or

near zero). Thus, the motion on the right hand plate arises primarily due to fluid-structure

interaction. Two (unscaled) plate sections are shown for z̄ = ā/2, −0.1 ≤ x̄ ≤ 0.1; these

verify that the edge conditions on each plate have been satisfied.

-0.5

0

ȳ
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Figure 7: Clamped junction: plate displacement at 130Hz; a) and b) real and imaginary

parts, −0.5 ≤ x̄ ≤ 0.5; c) and d) cross-section of real and imaginary parts at z̄ = ā/2,

−0.1 ≤ x̄ ≤ 0.1.

5 Discussion

The eigenfunctions for acoustic propagation in a rectangular duct with four flexible walls

have been presented. Two equivalent forms for these eigenmodes were derived: the first

is dependent on the eigenvalues for the underlying 2D problem corresponding to the
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xy-cross-section of the 3D duct; the second is analogously dependent on those for the

xz-cross-section. Knowledge of these two forms enables the construction of the eigen-

modes for a right-angled, isosceles triangular duct in which the hypotenuse is flexible.

The properties of the triangular modes have been discussed and used to develop an an-

alytic mode-matching method appropriate for problems involving the scattering of fluid-

structural coupled waves in 3D ducts with flexible walls. Mode-matching solutions for a

typical scattering problem have been presented for two distinct sets of junction conditions.

The eigenmodes, (20) and (40), considered herein comprise a number of infinite sums

and, as mentioned above, each of these involves the eigenvalues corresponding to prop-

agation in the underlying 2D duct which must be determined numerically. Due to the

presence of the quantity K[τm(s), b] in the denominator, each sum is highly convergent

and can be truncated after relatively few terms. For example, the phase speeds presented

in figure 3 were computed using 35 terms in the expressions for ψ1(s, y, z), ψ2(s, y, z),

χ(s, y, z) etc. and for the numerical results of section 4 these sums were evaluated using

58 terms. However, an undesirable consequence of the presence of K[τm(s), b] in the de-

nominator of the sums is that Ψn(y, z) → 0 and Dn → 0 as n →∞. For this reason, the

triangular eigenfunctions were rescaled before numerical implementation. A factor of s4

was removed from the term K[τm(s), a] in the denominator, after which Ψn(y, z)/
√

Dn was

used as opposed to Ψn(y, z). This rescaling offers two advantages: firstly it reduces the

problems associated with computing very small numbers; secondly, it provides a means of

assessing the accuracy to which Ψn(y, z)/
√

Dn is calculated. That is, since the left hand

side of (43) is rescaled simply to δn`, any significant deviation of the right hand side from

one when n = ` suggests that accuracy is a problem.

Another potential source of error is, of course, the root-finding. Two sets of roots

must be found: the 2D eigenvalues γn, n = 0, 1, 2, . . . and the 3D wavenumbers, sn,

n = 0, 1, 2, . . .. Fortunately, the argument principle provides a relatively simple check

by which to confirm that all the required the 2D eigenvalues have been found and this

set of roots seldom presents a problem. With regard to the 3D characteristic equations,

the presence of poles as well as zeros means that the argument principle is less helpful.

Furthermore, the zeros often lie very close to the poles - a point which is discussed more

fully in [19]. The identity (48) is, however, very sensitive to missing roots and, when used

at a single point, provides a suitable check for the 3D wavenumbers. Nevertheless, should

a large number of roots be required, the root-finding process can prove time consuming.

The analytic mode-matching scheme developed herein was used to derive two infinite

systems of linear equations, (65) together with (71) and (78) together with (80), corre-

sponding to the solution of a typical scattering problem for two different sets of “junction”

conditions. These were truncated and solved numerically. The “acid-test” of any mode-
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matching scheme is the accuracy to which the continuity conditions are satisfied at the

matching interface. In order gain an idea as to how well the left and right hand normal

velocities agree these quantities (calculated using (49) and (50)) were compared along a

number arbitrary horizontal lines (y = 2a/3, y = a/2, y = a/3) within the matching

interface. For both the clamped and pivoted junctions, at 130Hz and using 40 terms, the

relative error was consistently less than 2% - although did this did tend to increase for

values of y closer to the right angled corner. It is worth noting that the edge conditions

used in section 5.2 correspond to a clamped junction as β1, β2 → ∞ but in the limit

β1 → 0, β2 →∞ they correspond to a junction in which the left hand plate is pin-jointed

(simply supported) and the right hand plate is clamped. It was found that, although

the edge conditions were well satisfied, the normal velocities exhibited a higher relative

error for the pin-jointed/clamped junction. The significant difference here is that the

plate gradients are not continuous/zero. It appears that the system of equations is slower

to converge in such cases. In all cases, however, the pressures and velocity fluxes are in

excellent agreement.

As far as the author is aware, the analytic mode-matching scheme presented herein

is the first available for ducts with flexible walls and non-separable eigenfunctions. The

approach is equally appropriate for the triangular duct considered in sections 3 and 4 or

for rectangular ducts with four flexible walls, although in the latter case the appropriate

partial OR is (25). It is worth noting that the method also has application in the field of

hydrodynamics. For example, when the effects of surface tension are included, the free-

surface boundary conditions are of high order (equivalent to a membrane) and thus non-

separable waveforms for a 3D wave-maker of triangular cross-section can be formulated

in an analogous manner to those presented in section 3. Another potential application

is the study of wave propagation in ice-covered channels of triangular cross-section. In

these contexts the fluid-wall or ice-wall contact conditions replace the corner conditions

relevant to this study. Although some contact conditions lead to separable eigenfunctions

[20, 21] others will give rise to non-separable modes. The article by Harter et al.[28]

contains a good discussion of some plausible contact conditions which could, in principle,

be incorporated into the theory in a similar manner to the clamped or pin-jointed corner

constraints discussed herein.
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A Derivation of the partial orthogonality relation

In this appendix the partial orthogonality relation (25) is derived using equations (2)-(6).

From (3) and (5) it may be seen that
[{(

∂2

∂z2
− s2

)2

− µ4

}
ΨnyΨ`y − αΨnΨ`y

]y=a

y=0

= 0. (A.81)

On interchanging the subscripts ` and n and subtracting the resulting expression from

(A.81), it is found that

α

∫ a

0

(ΨnΨ`yy −Ψ`Ψnyy) dy −
[
G`n(y, z)

]y=a

y=0
= 0 (A.82)

where

G`n(y, z) = ΨnyzzzzΨ`y −Ψ`yzzzzΨny − 2s2
nΨnyzzΨ`y + 2s2

`Ψ`yzzΨny

+ (s4
n − s4

`)ΨnyΨ`y. (A.83)

A similar expression can be constructed using (4) and (6), that is

α

∫ b

0

(ΨnΨ`zz −Ψ`Ψnzz) dz −
[
F`n(y, z)

]z=b

z=0
= 0 (A.84)

where

F`n(y, z) = ΨnzyyyyΨ`z −Ψ`zyyyyΨnz − 2s2
nΨnzyyΨ`z + 2s2

`Ψ`zyyΨnz

+ (s4
n − s4

`)ΨnzΨ`z − 2

α
δ(y − a)(Ψ`z −Ψnz). (A.85)

On integrating (A.82) with respect to z, 0 ≤ z ≤ b and (A.84) with respect to y, 0 ≤ y ≤ a;

adding the two results together and then using (2) to simplify the integrand, it is found

that

α

∫ b

0

∫ a

0

Ψn(y, z)Ψ`(y, z)dy dz =
1

(s2
` − s2

n)

{∫ b

0

G`n(a, z) dz +

∫ a

0

F`n(y, b) dy

}
. (A.86)

For the case ` 6= n repeated integration by parts yields
∫ b

0

G`n(a, z) dz = −(s2
` − s2

n)

∫ b

0

[
2Ψnyz(a, z)Ψ`yz(a, z)

+ (s2
n + s2

`)Ψny(a, z)Ψ`y(a, z)
]
dz. (A.87)

A similar expression is obtained for the integral on the right hand side of (A.86) containing

F`n(y, b). Hence, for m 6= n

α

∫ b

0

∫ a

0

Ψn(y, z)Ψ`(y, z)dy dz = (A.88)

−
∫ b

0

[
2Ψnyz(a, z)Ψ`yz(a, z) + (s2

n + s2
`)Ψny(a, z)Ψ`y(a, z)

]
dz

−
∫ a

0

[
2Ψnyz(y, b)Ψ`yz(y, b) + (s2

n + s2
`)Ψnz(y, b)Ψ`z(y, b)

]
dy.

22



For ` = n it is necessary to interpret the right hand side of (A.86) carefully. The first step

to to replace G`n(a, z) and F`n(y, b) with Gn(s, a, z) and Fn(s, y, b) respectively, where the

latter quantities are obtained on replacing every occurrence of Ψ`(y, z) (and its derivatives)

with Ψ(s, y, z) (and the appropriate derivatives). Note, that Ψn(y, z) and its derivatives

are not altered. Then,

α

∫ b

0

∫ a

0

Ψn(y, z)Ψn(y, z) dydz = (A.89)

lim
s→sn

1

2s

{∫ b

0

∂

∂s
Gn(s, a, z) dz +

∫ a

0

∂

∂s
Fn(s, y, b) dy

}
.

On differentiating with respect to s and taking the limit s → sn, it is found that

1

2sn

∫ b

0

∂

∂s
Gn(s, a, z)

∣∣∣
s=sn

dz = (A.90)

−2

∫ b

0

[
Ψnyz(a, z)Ψnyz(a, z) + s2

nΨny(a, z)Ψny(a, z)
]

dz

+
1

2sn

[
[Ψnyzzz − 2s2

nΨnyz)]
∂

∂s
Ψy(s) − Ψnyzz

∂

∂s
Ψyz(s) + Ψnyz

∂

∂s
Ψyzz(s)

]

s=sn

where the s dependence is shown but it is understood that the functions are evaluated at

y = a, z = b. A similar expression is obtained for the last term of (A.89) and on recalling

(23), it is deduced that

α

∫ b

0

∫ a

0

Ψn(y, z)Ψ`(y, z)dy dz = D`δ`n (A.91)

−
∫ b

0

[
2Ψnyz(a, z)Ψ`yz(a, z) + (s2

n + s2
`)Ψny(a, z)Ψ`y(a, z)

]
dz

−
∫ a

0

[
2Ψnyz(y, b)Ψ`yz(y, b) + (s2

n + s2
`)Ψnz(y, b)Ψ`z(y, b)

]
dy

where for clamped corners Dn = Ψnyzzz(a, b)L′(sn)/(2sn) with the prime indicating differ-

entiation with respect to the argument, whilst for pin-jointed corners Dn = [Ψnyzzz(a, b)−
2s2

nΨnyz(a, b)]L′(sn)/(2sn). Finally, on integrating by parts and using (2) to rearrange the

integrand, expression (25) is obtained.

B Proof of expression (35)

Result (35) is proved by examining the families of poles arising in the integrand of I(s) = 0

where

I(s, y, z) = lim
T →∞

1

2πi

∫ T

−T

cosh(λb) cosh(λz) cosh[ν(s)y] dλ

K(λ, b)K[ν(s), a] sinh(λb)
. (B.92)

Here ν(s) = (s2 − 1 − λ2)1/2 and the path of integration lies along the real axis and is

indented above(below) any singularities on the negative(positive) section. There is one
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pole at λ = 0 and the residue contribution from this is interpreted in the spirit of a

Cauchy principal value integral. That is, the average of the values that would be obtained

on taking the contour to lie a) above and b) below this point is taken - this amounts to half

the usual residue contribution. There are three families of poles; the residue contributions

arising due to these are denoted by Rj(s, y, z), j = 1, 2, 3. Then, on deforming the path

of integration onto a semi-circular arc of radius T in the upper half plane and noting that

there is no contribution from the arc as T → ∞, Cauchy’s residue theorem gives

R1(s, y, z) + R2(s, y, z) + R3(s, yz) = 0 (B.93)

where the residue contributions from each infinite set of poles are discussed below.

The first set of poles is defined by K(λ, b) = 0. Thus λ = λm, m = 0, 1, 2, . . .. On

using (32), the residue contributions can be expressed as

R1(s, y, z) =
∞∑

m=0

cosh(λmb) cosh(λmz) cosh[ν(s)y]
d
dλ

K(λ, b)|λ=λmK[νm(s), a] sinh(λmb)
=

1

2
χ̃(s, y, z). (B.94)

The second family of poles corresponds to K[ν(s), a] = 0. Thus, they occur when

ν(s) = γm and λ = τm(s), m = 0, 1, 2, . . . and it follows that

R2(s, y, z) =
∞∑

m=0

coth[τm(s)b] cosh(γmy) cosh[τm(s)z]

K[τm(s), b] d
dλ

K[νm(s), a]|λ=τm(s)

. (B.95)

It is easily confirmed that

d

dλ
K[νm(s), a]

∣∣∣
λ=τm(s)

= −τm(s)

γm

d

dγ
K(γ, a)

∣∣∣
γ=γm

(B.96)

and so, on using (13):

R2(s, y, z) = −1

2

∞∑
m=0

Y ′
m(a)Ym(y) cosh[τm(s)z]

τm(s) tanh[τm(s)b]K[τm(s), b]Cm

. (B.97)

This expression is then rearranged in two steps: first (11) is used to express

1/(τm(s) tanh[τm(s)b]) in terms of K[τm(s), b]; then the quantity γ4
m− µ4 (which arises as

a result of step one) is eliminated by noting that K(γm, a) = 0 (again see (11)). It thus

transpires that

R2(s, y, z) = −1

2
χ(s, y, z)− (s4 − 1)

2α
ψ1(s, y, z) +

(s2 + 1)

α
ψ2(s, y, z)

+
1

2α

∞∑
m=0

Y ′
m(a)Ym(y) cosh[τm(s)z]

τm(s) sinh[τm(s)b]Cm

. (B.98)

The final set of poles is given by λ sinh(λb) = 0 and thus occur when λ = imπ/b,

m = 0, 1, 2, . . .. It is found that

R3(s, y, z) = − 1

αb

∞∑
m=0

(−1)m cosh[νm(s)y] cos(mπz/b)

εnK[νm(s), a]
(B.99)
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where εn = 2 if n = 0 and 1 otherwise. The presence of this quantity in the denominator

of (B.99) arises, as discussed above, due to the fact that the first residue in this family is

located at λ = 0.

On substituting (B.94), (B.98) and (B.99) into (B.93), it is found

0 =
1

2
χ̃(s, y, z)− 1

2
χ(s, y, z)− (s4 − 1)

2α
ψ1(s, y, z) +

(s2 + 1)

2α
ψ2(s, y, z)

+
1

2α

∞∑
m=0

Y ′
m(a)Ym(y) cosh[τm(s)z)]

τm(s) sinh[τm(s)b]Cm

− 1

αb

∞∑
m=0

(−1)m cosh[νm(s)y] cos(mπz/b)

εnK[νm(s), a]
. (B.100)

The last two terms comprise two different representations of the same eigenfunction (that

for acoustic propagation in a 3D rectangular duct with one flexible wall) and thus cancel.

This point is discussed in [19] and may also be proved using a similar analysis to that

above. Hence, (B.100) reduces to (35). Results (33) and (34) can be proved using the

same approach.
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