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Abstract 

We estimate a flexible model of the behaviour of UK monetary policymakers in the era of 

inflation targeting based on a new representation of policymaker’s preferences. This enables 

us to address a range of issues that are beyond the scope of the existing literature.  We find a 

complex relationship between interest rates and inflation: interest rates are passive when 

inflation is close to the target but there is an increasingly vigorous response as inflation 

deviates further from the target.  We also find that the response to the output gap is linear and 

find no evidence of a nonlinear Phillips curve. 
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1) Introduction 

The inflation targeting policy framework that has been used in the UK since 

late 1992 permits limited fluctuations of inflation around the inflation target.  

The toleration of small deviations of inflation from the target suggests that 

policymakers may exhibit “zone-like” behaviour by responding aggressively to 

inflation when inflation is some way from the target but by responding more 

passively when inflation is in a zone around the inflation target.   In addition, it 

has been suggested that policymakers may exhibit “asymmetric” behaviour by 

responding more vigorously when inflation is above the target than when 

below. 

Analysis of the behaviour of policymakers therefore requires a model of 

monetary policy that allows for zone-like and asymmetric behaviour.  In this 

paper we derive and estimate a nonlinear optimal monetary policy rule that 

does this. In doing so, we build on earlier work.  Many models of monetary 

policy use the Taylor rule (Taylor, 1993).  This assumes a constant 

proportional response of interest rates to inflation and the output gap and thus 

has neither zone-like nor asymmetric behaviour. Asymmetric behaviour can 

be derived from models in which the preferences of policymaker’s are 

described by the linear exponential (linex) function or from models in which 

the aggregate supply function is convex (eg Chadha and Schellekens, 1998, 

Schaling, 1999, Ruge-Murcia, 2003, Kim, Osborn and Sensier, 2005, Dolado, 

Maria-Dolores and Ruge-Murcia 2004, Surico, 2003 and Nobay and Peel, 

2003).  However these models do not imply zone-like behaviour.  Zone-like 

behaviour can be derived from models in which policymakers have zone-

quadratic preferences, being indifferent to inflation in a zone around the 



inflation target but having quadratic preferences outside the zone (Orphanides 

and Weiland, 2000).  This model, however, does not imply asymmetric 

behaviour.  

We propose a new representation of policymaker’s preferences, based 

on a simple generalisation of the Linex function.  We combine this with a 

convex aggregate supply curve and a conventional linear model of aggregate 

demand to derive a flexible nonlinear model of optimal monetary policy that 

allows for both zone-like and asymmetric behaviour.   Estimating our model 

using data for the UK since 1992, we find strong evidence of zone-like 

behaviour but weaker evidence of asymmetric behaviour. Estimates of our 

preferred model imply that there is essentially no response of interest rates to 

inflation when inflation is between 2.3%-2.7% and that the Taylor principle 

that real interest rates should increase when inflation rises is only satisfied 

when inflation is less than 2.1% or more than 2.9%. Larger deviations of 

inflation lead to an increasingly vigorous response as policymakers seek to 

defend the boundaries of the inflation target. In contrast to this complex 

response to inflation, we find that the response to the output gap is linear.  We 

also find no evidence of a convex supply curve. 

 The remainder of the paper is structured as follows.  We discuss our 

model of policymakers’ preferences in section 2); we derive our model of 

optimal monetary policy in section 3), discuss our empirical methodology in 

section 4), present our estimates in section 5) and offer conclusions in section 

6). 



 

2) Policymakers’ Preferences 

We model the preferences of policy makers using the loss function 
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where π is the inflation rate, π* is the inflation target (we refer to π-π* as the 

inflation gap), y is the output gap,   i is the nominal interest rate and i* is the 

equilibrium interest rate; λ  is the relative weight on output and µ  is the 

relative weight on the interest rate.  This is a flexible loss function that can 

exhibit different combinations of asymmetric and zone-like preferences 

depending on the values of απ , αy , πβ  and yβ .  πβ  and yβ  are integers that 

determine the asymmetry and zone-like properties of the loss function while 

απ  and αy  are parameters that affect the slope of the loss function and the 

sign of any asymmetry.   

This loss function generalises the familiar quadratic loss function, 

which is obtained when 0πα → , 0yα →  and 1yπβ β= = .  The function also 

generalises the asymmetric Linex loss function, which is obtained when 1πβ =  

and 1yβ = .  The degree of asymmetry in this case is captured by α , where 

0πα >  ( 0yα > ) implies that policymakers are more sensitive to a positive 

inflation gap (output gap).  This is illustrated in figure 1a). 



 If 1πβ > , there are zone-like preferences over the inflation gap 

while 1yβ >  implies zone-like preferences over the output gap. There is very 

little loss from values of the inflation or output gaps that lie within a zone, the 

width of which is an increasing function of πβ  or yβ , with increasing loss 

outside the zone.  The loss function outside the zone is symmetric if the β  

parameters are even numbers ( , 2, 4,6,....)yπβ β = .  In this case, the slope of 

the loss function is an increasing function of the α  parameters.  The loss 

function outside the zone is asymmetric if the β  parameters are odd numbers 

greater than 1 ( , 3,5,7,....)yπβ β = .  If so, the α  parameters affect both the 

slope of the loss function and the sign of the asymmetry as there is greater 

loss for positive values of the inflation or output gaps if 0πα >  or 0yα > .  

Figures 1b) and 1c) illustrate zone-symmetric and zone-asymmetric 

preferences.  Of course, there is no reason why πβ  should equal yβ , so the 

response to the inflation and output gaps may have different functional forms.  

Table 1 summarises the possible configurations of the loss function.  

 

3) Optimal Monetary Policy 

We assume that aggregate demand is given by  

 

(3) ( )1 1    ρ π ε+ += − − + + d
t t t t t t ty i E E y  

 

whereε d
t is an i.i.d demand shock. This is a standard forward-looking demand 

relationship (which can be derived from an Euler equation for consumption, 



McCallum and Nelson, 1999) in which the output gap is a decreasing function 

of the real interest rate.  Aggregate supply is  
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where s
tε is an i.i.d supply shock.  If 0τ =  this is a standard New-Keynesian 

aggregate supply relationship (Clarida et al, 1999) that can be derived, for 

example, from the Calvo (1983) model of staggered price adjustment.   If 

0τ > , the aggregate supply relationship is convex, so inflation is more 

sensitive to the output gap when the output gap is higher (Schaling, 1999, 

Dolado et al 2004). 

We assume that monetary policymakers choose interest rates at the 

beginning of each period, before the realisation of the shocks. Their 

optimisation problem is therefore 
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subject to (3) and (4) and where δ  is the discount factor.  Assuming that 

policymakers cannot commit to future values of the interest rate, optimal 

policy under discretion simplifies to a sequence of static optimisation 

problems.  At each period, therefore, policymakers chooses the interest rate 

to minimise  
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this and assuming, for tractability (following Surico, 2004), that expectations 

are exogenous, the optimal monetary policy rule is 
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where î  is the optimal interest rate.  This is a general nonlinear monetary 

policy rule that exhibits both asymmetric and zone-like responses to the 

inflation and output gaps.   



There are a number of interesting special cases of (9).  When y= =1πβ β  

and ,  yπα α andτ  all tend to zero, the policy rule collapses to a linear Taylor 

rule (Taylor, 1993) 
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When y= =1πβ β , πα  and  yα tend to zero and we approximate around 0τ =  

we obtain  
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which is similar to models that allow for a nonlinear Phillips curve that have 

been estimated by Kim, Osborn and Sensier (2005), Dolado, Maria-Dolores 

and Ruge-Murcia (2004) and Dolado, Maria-Dolores and Naveira (2005). 

 The response of monetary policy to the inflation gap is asymmetric if 

1πβ =  and the response to the output gap is asymmetric if 1yβ = .  However 

there is no zone-like behaviour.  Figure 2a) shows this case.  There is a 

stronger response to positive values of the gaps if πα  or yα  is positive.  If  

0πα > , for example, interest rates are increasingly responsive to inflation 

if *π π>  but not if *π π< , since policymakers are sensitive to high inflation but 

relatively indifferent to low inflation.  Although this case does not seem well 

suited to the UK case where policymakers must ensure inflation cannot rise 

too high or fall too low, it may be appropriate for one-sided inflation targets 



that only prescribe an upper bound for inflation.  The situation is reversed 

if 0πα < , where a greater sensitivity to low inflation implies a stronger 

response if *π π< .     

Figure 2b) depicts the policy rule if 2πβ =  or 2yβ = .  There is zone-like 

behaviour but no asymmetry.  There is a zone within which interest rates do 

not respond to non-zero values of the inflation or output gaps, so 

policymakers tolerate small deviations from the inflation or output targets, but 

there is an increasingly aggressive response to larger misalignments.    The 

response of interest rates outside the zone is symmetric and is stronger for 

larger (absolute) values of α .  Figure 2c) depicts the monetary policy rule 

when 3πβ =  or 3yβ = .  In this case there is both asymmetry and zone-like 

behaviour.  There is again a zone within which interest rates are unresponsive 

and an increasingly aggressive response outside the zone.  However in this 

case, the response outside the zone is asymmetric and displays a stronger 

response to positive values of the gap if πα  or yα  are positive.  The policy rule 

if 4πβ =  or 4yβ =  is similar to that for 2πβ =  or 2yβ =  but in this case the 

zone is wider and the response of interest rates outside the zone is stronger.  

Similarly, the policy rule if 5πβ =  or 5yβ =  is similar to that for 3πβ =  or 3yβ =  

but with a wider zone and a stronger response outside the zone. 

 This model allows us to test for zone-like and asymmetric behaviour.  A 

zone-like response to inflation implies 1πβ > , while an asymmetric response 

implies πβ  is an odd number.  In this case 0πα >  would indicate a greater 

aversion to inflation being above rather than below the target.  The imperative 

of keeping inflation within the target range suggests that πα  might be 



relatively large (in absolute value), since this implies a stronger response to 

inflation close to the boundaries of the inflation target.   We can also examine 

the response to the output gap.  Zone-like behaviour would imply 1yβ >  while 

asymmetry implies yβ  is an odd number with 0yα >  indicating a greater 

aversion to positive output gaps.  A convex supply curve implies 0τ > 1.   

 

4) Empirical Methodology 

To transform our optimal monetary policy rule into an empirical model, we 

approximate (9) by means of a second-order Taylor series expansion around 

0yπα α τ= = =  (following, eg,  Ruge-Murcia, 2003).  Doing so, we find   
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which can be expressed as  

 

                                                 
1 In the model, optimal monetary policy rules are asymmetric if policymakers have 

asymmetric preferences or if the aggregate supply curve is asymmetric, while policy 

rules exhibit zone-like behaviour only if policymakers have zone-like preferences.  

Although we might conjecture that zone-like behaviour might also arise if the 

aggregate supply curve has zone-like features, the literature on this is not sufficiently 

developed for this to be incorporated into our model. 
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where 1 2 3,  ,  k kρ λρω ω ω τ
µ µ

= = =  and where the error term is defined as 
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The error term is a linear combination of forecast errors and therefore is 

orthogonal to any variable in the information set available at time 1t − . 

 In common with much of the literature (eg Clarida et al, 2000), we allow 

for interest rate persistence by adding an ad-hoc partial adjustment 

mechanism to our model, so  
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where ti  is the observed nominal interest rate and ( )ρ L is a polynomial in the 

lag operator, L.  This yields   
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We estimate equation (15) using a variety of values for the integer parameters 

πβ  and yβ , evaluating a range of alternative models of monetary policy.   We 

assume that the inflation target, *π , equals 2.5%, but we also experiment 

with other values.  Alternatively, we could have followed much of the literature 

(eg Clarida et al, 1999) in assuming that the inflation target equals the 

average observed inflation rate.  This would not have much effect on our 

estimates as the average inflation rate in our sample is close to 2.5%.  

 

5) Results 

We use quarterly data for the UK for 1992Q4-2003Q1.  The interest rate is the 

3-month treasury bill rate, inflation is the annual change in the retail price 

index and output is real GDP.  We model the output gap as the difference 

between output and a Hodrick-Prescott trend.  We find that inflation and the 

output gap are stationary but that the order of integration of the interest rate is 

more ambiguous; we assume that all variables are stationary (see also 

Dolado et al, 2004 and Clarida et al, 2000, for a discussion of similar issues).    

For both the inflation and output gaps, we considered four cases: linear 

( 1; 0)β α= → , asymmetric ( 1; 0)β α= ≠ , zone symmetric ( 2β = ) and zone 

asymmetric ( 3)β = .  We estimated models with both linear and nonlinear 

Philips curves (this latter assuming 3 0ω = ). This gives a total of 32 estimated 



models 2.  Values of the estimated standard errors for models with a nonlinear 

Philips Curve are presented in table 2a) and those for models with a linear 

Philips Curve are presented in table 2b).  The lowest standard errors are 

obtained for models with a linear Phillips Curve.  In addition, the only model 

with a nonlinear Philips Curve with a significant estimate of 3ω  (that for 

3; 2yπβ β= = ) has an insignificant estimate of 1ω , suggesting, implausibly, 

that interest rates do not respond to the inflation gap3. Taken together, this 

evidence suggests that the Phillips Curve is linear and we therefore focus on 

this case in the remainder of the paper. 

Considering the estimates in table 2b), models with 1πβ =  or 4πβ =  

perform poorly as do models with yβ = 2, 3 or 4.  Two models clearly 

dominate, those for ( 2; 1; 0yπβ β α= = → ) and ( 3; 1; 0yπβ β α= = → ).  

Estimates of these models are presented in columns (i) and (ii) of table 3), 

while column (iii) presents estimates of the linear Taylor rule in (10), which 

serves as a benchmark.  We note that the estimates in columns (i) and (ii) are 

quite similar, that the estimates of 0ω  and the ρ  parameters are similar 

across table 3, and that the estimates of Taylor rule are similar to others in the 

literature (see Nelson, 2003, Martin and Milas, 2004 and Adam et al, 2003, for 

estimates  on UK data).  The estimates of 2ω  and 1ω  imply that the ratio of λ  

to κ is less than 0.1. Since κ  is unlikely to be much greater than unity, this 

                                                 
2 We also estimated models for larger values of πβ  and yβ .  None of these models were 

superior to those reported in Table 2).  We should note that the model becomes increasingly 

nonlinear as β  increases and that estimates of some models failed to converge.  
3 Estimates for these and other models that are not reported in the paper are available from 

the authors.  



suggests that λ  is small.  The loss function of policymakers seems, therefore, 

to put little weight on the output gap. This is consistent with a policy regime 

that specifies a target for inflation but not for output.  We also investigated 

different values of the inflation target *π , considering values of *π  ranging 

from 1.5% to 3.0%.  Doing so, we obtained the best model when 3πβ = , 

1yβ =  and * 2.55%π = .  Estimates of this model are presented in column (iv) 

of table 3 and are similar to those in column (i).  

These estimates provide clear evidence of a zone-like response to 

inflation.  The zone asymmetric model is slightly superior to the zone 

symmetric model in terms of statistical criteria, suggesting that there is some, 

albeit not strong, evidence of asymmetry.  We estimate 0πα <  in column (i), 

implying, perhaps surprisingly, a stronger response to lower rates of inflation.  

By contrast, we find a simple, linear response to the output gap.   

Figure 3) plots the implied optimal monetary policy rules, obtained by 

substituting the estimates in table 3) into (9).  Compared to the linear 

response in column (iii), where a 1% increase in the inflation gap is always 

met by a 1.7% increase in the interest rate, the nonlinear reaction functions 

implied by the estimates in columns (i) and (ii) are more subtle and arguably 

more plausible.  Considering the zone asymmetric model in column (i), there 

is a negligible response to inflation when inflation is between 2.3%-2.7%.  The 

Taylor principle that real interest rates should increase when inflation rises is 

satisfied when the inflation gap exceeds 0.56% or is less than 0.52%. The 

response to inflation is stronger than in the Taylor rule when inflation is above 

3.14% or below 1.92%.  The effect of the requirement that inflation not differ 

from the target by more than 1% is clear. Interest rates are increased by 6% 



above the equilibrium when inflation equals the upper threshold of 3.5%; since 

we estimate that the equilibrium rate is around 5.8%, this suggests that 

policymakers will set interest rates at nearly 12% in order to protect the 

inflation target4.   Policymakers also act to defend the lower bound to the 

inflation target as interest rates are cut aggressively once inflation falls below 

2% (we do not consider the zero lower bound to nominal interest rates as this 

is beyond the scope of the paper; this may moderate the response 

somewhat).   The zone symmetric reaction function has a somewhat narrower 

zone, reflecting the lower value of πβ , and a slightly flatter slope, reflecting the 

slightly smaller (absolute) value of πα .   Despite this, the estimated reaction 

functions are quite similar, suggesting that the effects of asymmetry are quite 

weak. 

 

 

6) Conclusions 

This paper has developed a flexible nonlinear model of monetary policy 

behaviour based on a new representation of policymaker’s preferences and 

incorporating a convex supply curve.  The model has allowed us to address a 

range of issues that are beyond the scope of the existing literature since the 

model allows there to be little or no response when inflation is close to the 

target or output is close to equilibrium but an increasingly aggressive 

                                                 
4 However we would stress that there are few observations for which inflation is close to 

1.5%, the lowest permissible rate of inflation in the inflation targeting regime, none for which 

inflation is close to 3.5%, the highest permissible rate and none for which inflation is outside 

these bounds.  Therefore our conclusions about the behaviour of policymakers at these 

extremes must necessarily be tenuous.   



response when these variables move away from their desired levels.  The 

model also allows for asymmetric responses to output and inflation. 

 We have found a subtle nonlinear response to inflation in which there is 

almost no response when inflation is 0.2% of the target, the Taylor principle is 

only satisfied when inflation deviates from the target by almost 0.5%, but that 

interest rates are raised by almost 6% above equilibrium to defend the 

boundaries of the inflation target.  The response to the output gap is linear 

and we find no evidence of a nonlinear Philips curve. 

Our work can be extended in a number of ways.  This approach can be 

applied to other countries in order to see whether the finding of a nonlinear 

response of interest rates to inflation is robust. It would also be interesting to 

extend our analysis to allow for responses to other macroeconomic variables 

such as exchange rates and house prices. We hope to address these issues 

in future work. 

 

 

 

 



Table 1 
Forms of the Loss Function 
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Table 2 
Estimated standard error for various values of πβ  and yβ  

 
a) Nonlinear Philips Curve 
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Note: (*) indicates that 3ω  is significant at the 5% level  
 

b) Linear Philips Curve 
 

 INFLATION GAP EFFECT 

 Quadratic 

 
1;
0

π

π

β
α

=
→

 

Asymmetric 
1;
0

π

π

β
α

=
≠

 

Zone 
symmetric 

2πβ =  

Zone 
asymmetric

3πβ =  

Quadratic 

 
1;

0
y

y

β
α

=

→
 

0.392  0.463  0.351  0.348 

Asymmetric 
1;

0
y

y

β
α

=

≠
 

0.386  0.449  0.487  0.499 

Zone 
symmetric 

2yβ =  

0.551  0.545  0.404  0.472 O
U

TP
U

T 
G

P 
EF

FE
C

T 

Zone 
asymmetric

3yβ =  

0.804  0.712 0.455  0.539 

 



Table 3 
 

GMM Estimates of Nonlinear Monetary Policy Rules 1992Q4-2003Q 
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πα    -1.518 (0.089)  -1.622 (0.108)    -1.920 (0.177) 

ω0
   5.743 (0.171)  5.758 (0.43)   5.451 (0.114)   5.937 (0.184) 

ω1
  12.227(2.084)  9.769 (1.677)   1.713 (0.365)  13.768 (3.334) 

ω2
   0.495  (0.222)  0.726  (0.174)   1.147 (0.216)   0.431  (0.281) 

ρ1
   1.360 (0.046)  1.291 (0.056)   1.134 (0.120)   1.371 (0.051) 

ρ2
 -0.596 (0.055) -0.567 (0.051)  -0.499 (0.079) -0.557 (0.056) 

     
R2  0.895  0.893  0.862  0.896 
s.e.  0.348  0.351  0.392  0.346 
J statistic  0.091  0.095  0.122  0.072 
 

 



Figure 1 

The Loss Function 

 

a) asymmetric ( 1)β =  

 

b) symmetric zone  ( 2, 4,6,..)β =  

 

c) asymmetric zone  ( 3,5,7,..)β =  

 



Figure 2  
Optimal Monetary Policy Rules 

a) asymmetric ( 1)β =  

b)  

 

b) symmetric zone  ( 2, 4,6,..)β =  

 

c) asymmetric zone  ( 3,5,7,..)β =  

 

note: The figure depicts the gap between the steady-state and equilibrium interest rates, 

denoted by igap, calculated using (9) 



 

Figure 3 

Estimated Optimal Monetary Policy Response to Inflation 

 

 

 

note: The figure depicts the gap between the steady-state and equilibrium interest rates, 

denoted by igap, that is implied by our estimates.  It is obtained by substituting the estimates 

in table 3) into (9) 
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