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Abstract 
 

Background: Transferring cost-effectiveness information between geographic 

domains offers the potential for more efficient use of analytical resources. 

However, it is difficult for decision-makers to know when they can rely on cost-

effectiveness evidence produced for another context. Objectives: This thesis 

explores the transferability of economic evaluation results produced for one 

geographic area to another location of interest, and develops an approach to 

identify factors to predict when this is appropriate. Methods: Multilevel statistical 

models were developed for the integration of published international cost-

effectiveness data to assess the impact of contextual effects on country-level; whilst 

controlling for baseline characteristics within, and across, a set of economic 

evaluation studies. Explanatory variables were derived from a list of factors 

suggested in the literature as possible constraints on the transferability of cost-

effectiveness evidence. The approach was illustrated using published estimates of 

the cost-effectiveness of statins for the primary and secondary prevention of 

cardiovascular disease from 67 studies and related to 23 geographic domains, 

together with covariates on data, study and country-level. Results: The proportion 

of variation at the country-level observed depends on the appropriate multilevel 

model structure and never exceeds 15% for incremental effects and 21% for 

incremental cost. Key sources of variability are patient and disease characteristics, 

intervention cost and a number of methodological characteristics defined on the 

data-level. There were fewer significant covariates on the study and country-levels. 

Conclusions: Analysis suggests that variability in cost-effectiveness data is primarily 

due to differences between studies, not countries. Further, comparing different 

models suggests that data from multinational studies severely underestimates 

country-level variability. Additional research is needed to test the robustness of 

these conclusions on other sets of cost-effectiveness data, to further explore the 

appropriate set of covariates, and to foster the development of multilevel statistical 

modelling for economic evaluation data in health.  
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1. Introduction 
 

 

To get the most benefit from healthcare resources available, we ought to know 

which technologies provide the best value given a restricted healthcare budget. 

Therefore, health economists conduct economic evaluation studies in order to 

compare different options to spend the limited resources available. Such 

economic evaluation studies may be defined as ‘comparative analyses of 

alternative courses of action in terms of both their costs and consequences’ 

(Drummond et al., 2005a). Hence, ‘for a meaningful comparison, it is necessary 

to examine the additional costs that one health care intervention imposes over 

another, compared to the additional benefits, or utilities it delivers’ (Drummond 

et al., 2005a).  

 

Decision makers from an increasing number of countries require such cost-

effectiveness data to inform the provision and reimbursement of new health 

technologies (Drummond et al., 2009). If a new health technology is to be 

launched in a specific country, manufacturers may therefore need to provide 

evidence not just of safety and clinical efficiency, but also of cost-effectiveness in 

the context of a particular healthcare market. However, this absorbs analytical 

resources, which are scarce and expensive. If economic evaluation results could 

be reliably transferred from one geographic domain to another, this would free 

analysts to study other important questions (Steuten et al., 2008). Therefore, it 

would be helpful to ‘provide evidence for decision makers to establish the 

relevance or to adjust the results of a specific study to their location of interest’ 

(Sculpher et al., 2004).  

 

A key barrier to transferability of economic evaluation results is a lack of 

understanding on the causes of variability in measures of cost-effectiveness. 

There is a plethora of literature discussing potential causes of variability 

(Sculpher et al., 2004; Goeree et al., 2007), but many of the suggested variability 

factors are fuzzy, hard or impossible to measure, and dependent on the health 

technology under consideration. Little is known about the relative impact of such 
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variability factors on measures of cost-effectiveness. For instance, Goeree et al. 

(2007) state that ‘there is a lack of empirical studies which prevents stronger 

conclusions regarding which transferability factors are most important to 

consider and under which circumstances.’ In addition to that, Sculpher et al. 

(2004) highlight that ‘research is required to identify (higher-level) covariates 

which are empirically useful [...] in terms of explaining differences in efficiency 

between locations and useful for policy-making purposes’. This opinion is also 

being shared by Drummond et al. (2009) who suggest that ‘more research should 

be undertaken into those sources of local differences that affect economic data 

transferability. This would help justify jurisdiction-specific data requirements and 

inform the selection of jurisdiction-level covariates in statistical models.’  

 

 

 

1.1. Aims and objectives  

 

To fill this research gap, this thesis aims to assess the impact of variability factors 

within and between economic evaluation studies and, ultimately, between 

geographic domains. In order to do so, a quantitative method is required to 

integrate international cost-effectiveness data elicited from published economic 

evaluation studies, which allows for the inclusion of covariates encoding 

variability factors working within and between studies and, ultimately, between 

countries represented in the data. Identifying such a method constitutes the first 

objective of this exercise, and it is argued in this thesis that multilevel statistical 

modelling (MLM) provides this methodological framework.  

 

 

Having identified MLM as an appropriate method for the integration of 

international cost-effectiveness data from published economic evaluation 

studies, the second objective is to develop models which appropriately reflect 

the complex structures which are likely to be present in the data. These models 

need to take into account that cost-effectiveness data is grouped both in the 

studies which it was elicited from, and the countries which this data applies to. In 

addition, some studies provide data for more than one country, and sensible 
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assumptions regarding dependencies within this data are required to develop 

models which are suitable for the empirical analysis.  

 

 

Once the appropriate multilevel model structure has been determined, the third 

objective is to control for variability factors working within and between studies 

represented in the data, which may also disclose further variability on country-

level. For this reason, covariates which were drawn from a long list of variability 

factors as previously discussed in the relevant literature (Sculpher et al., 2004; 

Goeree et al., 2007) are being tested systematically within the multilevel models 

developed for the purposes of this project.  

 

 

Only after controlling for factors causing variability in measures of cost-

effectiveness within and between studies, can we appropriately assess the 

impact of country-level covariates. The reason is that variability caused by lower-

level factors may feed through to higher levels. Hence, after controlling for such 

‘lower-level’ covariates, the fourth objective of this project is to investigate 

causes of country-level variability within the MLM framework. As a result, a 

number of country-level covariates may be identified which explain differences 

in incremental net monetary benefits (INMBs) as well as the stochastic 

components of the INMB statistic, i.e. incremental cost (∆C) and incremental 

effects (∆E) respectively. If variability in measures of cost-effectiveness turns out 

to be low between countries, an alternative objective is to assess reasons for a 

lack of country-level variation in international cost-effectiveness data.  

 

 

Finally, the MLM framework offers a number of interesting analytical features, 

which have not yet been applied to the academic domain of economic evaluation 

in health. In particular, MLM allows modelling variation in the response variable 

directly as a function of explanatory variables (e.g. Steele, 2008). This concept of 

the ‘variance function’ could be useful to show how variability in measures of 

cost-effectiveness between studies, or countries, changes as a function of 

explanatory variables. This may help identifying key areas within which 

disagreement between studies, or countries, is particularly high, and hence, the 

transfer of existing data to other geographic domains discouraged. As a result, 
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research resources may be focused on areas of high variability in existing 

international cost-effectiveness data, whilst the transfer of information may be 

rather indicated for situations where variability in existing cost-effectiveness 

evidence is low. For this reason, the final objective of this thesis is to explore 

analytic features of the MLM framework which may allow further insights into 

the geographic transferability of economic evaluation data in health.  

 

 

The remainder of this introductory section provides a brief overview of the 

individual chapters of this thesis.  

 

 

 

1.2. Overview of this thesis 

 

The primary aim of this project is to address the transferability problem of 

economic evaluation in health by analysing what causes variability in measures 

of cost-effectiveness within and between studies, and ultimately, between 

geographic domains. For this reason, the literature concerned with the 

transferability and generalisability of economic evaluation in health is reviewed 

first in Section 2.1, confirming that ‘the methods that have been proposed to 

address the transferability issue have often been relatively ad hoc, with the 

obvious consequence that the methodological literature in this area has evolved 

somewhat nonlinearly over time’ (Manca, 2009). The available literature also 

confirms that ‘there is a lack of empirical studies which prevents stronger 

conclusions regarding which transferability factors are most important to 

consider and under which circumstances’ (Goeree et al., 2007). As a 

consequence, an analytic strategy for the purposes of this project is developed in 

Chapter 2.2, identifying MLM as a promising method for analysing factors 

causing variability in measures of cost-effectiveness.  

 

 

The use of MLM for analysing variability factors for measures of cost-

effectiveness is also in accord with the theoretical framework for the transfer of 

evidence between geographic domains developed in Chapter 2.3. In this section, 
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the transferability problem is described as an ‘analogical inference’, where a 

mapping of relevant attributes between a source domain, about which more is 

apparently known, and a, less studied, target domain is produced to infer 

whether the information of interest may also hold in the target setting (Gentner 

& Markman, 1997; Forbus, 2001; French, 2002). This theoretical framework is 

then linked to the statistical concept of ‘exchangeability’, which forms the 

conceptual basis of MLM. Multilevel modelling makes explicit the 

exchangeability assumption and allows for the assessment of variability factors 

for cost-effectiveness data within studies, between studies, and ultimately, 

between countries through the assumption of conditional independence 

(Drummond et al., 2009). Chapter 2 therefore concludes with systematically 

reviewing the use and applications of MLM in the area of economic evaluation in 

health, and shows that all applications of MLM in this area focus on the analysis 

of individual patient data from multicentre trials or observational studies, within 

which a strict two-level hierarchical data structure is commonly assumed.   

 

 

Hence, using MLM as a mode for meta-regressing secondary cost-effectiveness 

data from published economic evaluation studies, as it is aimed in this project, is 

a novelty in this area, which is why Chapter 3 is dedicated to developing and 

testing methods to integrate cost-effectiveness data from different studies and 

applicable to different geographic domains. Starting with a simple ordinary least 

squares (OLS) regression equation, this chapter introduces, step by step, the 

features required to model complex data structures and (partial) exchangeability 

not just between studies, but also the geographic domains represented in the 

dataset. Within this process, a number of strictly hierarchical as well as cross-

classified models are developed both within a univariate framework, with INMBs 

as single response variable, and a bivariate framework, with the stochastic 

components of the INMB statistics (∆C and ∆E) as a vector of response variables.  

 

 

Models are subsequently tested within a pilot study reported in Chapter 3.4 

using a subset of cost-effectiveness data on statins for the primary and 

secondary prevention of cardiovascular disease (CVD). This intervention was 

chosen as it has been extensively researched in the past, suggesting that data 

from a sufficient number of includable studies and geographic locations will 
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justify the assumption of random parameters on study and country-level 

(Snijders, 2005). Results from the pilot show that the use of MLM for secondary 

data integration is promising and in line with Gelman et al. (2004), who state that 

‘the valid concern is not about exchangeability, but encoding relevant knowledge 

as explanatory variables where possible.’ However, the pilot study also shows the 

importance of making appropriate assumptions about (in-) dependencies in the 

data, especially with respect to measures of cost-effectiveness on country-level 

elicited from multinational economic evaluation studies.  

 

 

A systematic literature review and data abstraction exercise is then reported in 

Chapter 4, which has the aim of populating a dataset with incremental cost, 

incremental effects and INMBs on statins for the primary and secondary 

prevention of CVD; together with additional data encoding potential variability 

factors for measures of cost-effectiveness. In total, 67 relevant studies were 

includable in this empirical exercise, reporting 2094 cost-effectiveness estimates 

applicable to 23 geographic domains. Covariates were derived from a long list of 

potential variability factors as previously reported in the literature (Sculpher et 

al., 2004; Goeree et al., 2007). Results of most studies refer to one geographic 

domain only, whilst six studies are multinational in nature.  

 

 

When carrying out the systematic literature review and abstracting data from 

studies includable in this empirical exercise, it was apparent that some studies 

related to each other, for instance, through common authorship, the use of 

identical data sources, reuse of a previously published decision analytic model 

(DAM), or simply a common source of funding. This may violate the 

independence assumption between studies, which is necessary to fit the MLMs 

developed in Chapter 3. Therefore, Chapter 4 also looks into the ‘genealogy’ of 

economic evaluation studies on the cost-effectiveness of statins in the primary 

and secondary prevention of CVD. Multiple correspondence analysis is used to 

ascertain whether studies are similar with respect to key study characteristics, 

and once a ‘phenotypic’ similarity is disclosed, a ‘genotypic’ relationship between 

studies is aimed to be established. This exercise resulted in some relationships 

being disclosed amongst the studies included in the dataset; however, the 

method does not (yet) prove sensitive or specific enough to justify alternative 
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MLM structures. Rather, a number of explanatory variables are derived with the 

aim of encoding existing relationships between studies, and it is concluded that 

this exploratory task into the genealogy of economic evaluation studies should 

be followed up further in future research.   

 

 

Chapter 5 is concerned with the main empirical analysis of this project, and this 

analysis is partitioned in accord with the objectives outlined above. The first 

objective, assessed in Section 5.1, is to determine the appropriate MLM structure 

for this empirical analysis. This assessment is not just concerned with testing 

which MLM previously developed works well on the data collected, but also 

whether assumptions made in these models are justified for the data. In 

particular, this section shows that appropriate assumptions regarding (in-) 

dependencies are crucial for making correct inferences when analysing 

secondary cost-effectiveness data. For instance, if data from multinational 

studies shows much lower country-level variability, the independence 

assumption between countries may not be justified for this data.  

 

 

The analysis in Section 5.1 also demonstrates the benefits of decomposing the 

INMB statistic into its components ∆C and ∆E in the bivariate framework and 

shows that part of the variability in international cost-effectiveness data on 

statins ‘disappears’ when combining ∆C and ∆E to the INMB statistic. This very 

interesting finding is also subject to further analysis in Section 5.3, which is 

concerned with country-level variability, or the lack thereof, both within the 

univariate and bivariate MLM framework. Finally, Section 5.1 assesses, in depth, 

whether ‘empirical Bayes shrinkage estimation’ may be regarded as appropriate 

in a model which attempts to integrate secondary data from published economic 

evaluation studies, where the weight of a particular study does not depend on 

individual patients considered, but rather on the extent to which subgroup and 

sensitivity analyses have been reported. It is shown that, due to high between 

group variability in the data, shrinkage factors are very high, which means that 

shrinkage is, at most, moderate. More importantly, however, this section argues 

that the impact of shrinkage on study means in this exercise depends not just on 

the respective number of data points from each study, but also on the within and 
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between group variability and the location of each study mean relative to the 

overall regression mean.  

 

 

Section 5.2 is concerned with covariate adjustment on data and study-level, and 

to disclose the maximum amount of variability on country-level through 

controlling for multiple variability factors working within and between studies in 

the dataset. Covariates are drawn from a long list of variability factors as 

obtained from the literature (Sculpher et al., 2004; Goeree et al., 2007) and 

abstracted from the studies included in the systematic literature review reported 

in Chapter 4. Results show, for instance, that the effect of lower-level variability 

factors feeds through to higher levels so that the actual amount of country-level 

variability may only be unravelled by including relevant covariates both on data 

and study-level. The analysis also shows that country-level variability is 

increasing with the inclusion of lower-level covariates in the bivariate model, 

which may allow assessment of covariates on country-level in the bivariate 

framework. However, a different conclusion applies to the univariate framework, 

where country-level variability remains negligible throughout the course of this 

exercise. Section 5.2 also provides a number of interesting findings with respect 

to individual covariates tested on data and study-level, which are also discussed 

in depth in Chapter 6.  

 

 

Section 5.3 is concerned with variability in measures of cost-effectiveness 

between countries and this analysis consists of two parts. Part one analyses 

potential causes for a lack of country-level variability in the univariate MLM with 

INMBs as single response variable. In part two, country-level covariates are 

tested in the bivariate framework, within which considerably more country-level 

variability was identified. To analyse potential causes for a lack of country-level 

variation in the univariate MLM, forest plots with country means and their 

respective confidence intervals are presented for each response variable (INMB, 

∆C and ∆E). In addition, Pearson correlations for mean ∆C and ∆E are highly 

significant and close to unity, indicating that the lack of country-level variability 

in INMBs results from combining ∆C’s and ∆E’s which have similar patterns of 

variability - meaning that variability in one component of the INMB statistic is 

partly being offset by variability in the other component. Testing country-level 
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covariates in the bivariate model show small but significant coefficients for a 

number of explanatory variables and results are subsequently discussed in 

Chapter 6.  

 

 

The final Section 5.4 of the empirical chapter is concerned with additional 

methodological features of the MLM framework which may be beneficial for 

addressing the transferability problem of economic evaluation data in health. 

Random slopes are fitted to covariates in the model and variation in 

international cost-effectiveness data is modelled directly as a function of 

explanatory variables. In this section, it is argued that the concept of the 

‘variance function’ relates to the transferability problem as it may be used to 

determine which of the available cost-effectiveness information is rather 

transferable to the target country, and where to prioritize research resources to 

generate new target specific cost-effectiveness evidence. Results show, for 

instance, that variability between studies is constantly increasing for the 

relationship between INMBs and total cholesterol (TCL) and ∆E’s and TCL 

respectively; so that results may be less transferable the higher the total 

cholesterol level of the target population.  

 

 

A number of issues are identified with respect to the variance function, which 

are discussed in far more detail in the discussion Chapter 6. For instance, can we 

determine a ‘threshold value’ for study-level variability which may be helpful to 

guide the decision on whether or not to transfer existing evidence to the target 

country? Also, are there additional application areas where modelling the 

variance function may be useful, for instance within the context of international 

multicentre trials. Apart from that, Chapter 6 provides a thorough discussion on 

other findings of this project, policy implications, strength and weaknesses of the 

empirical analysis, and suggested areas for further research.  
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2. Background 
 

 

This chapter provides the necessary background and develops a research 

strategy for this project. The economic evaluation literature on the transferability 

/generalisability of measures of cost-effectiveness is reviewed, identifying a 

number of general ‘research themes’ within this topic. Based on this summary of 

the relevant literature, a research strategy is developed. Third, to provide a solid 

theoretical basis for this thesis, a theoretical framework is developed for the 

transfer of evidence between geographic domains. The transferability problem 

may best be described as an ‘analogical inference’, where a mapping of relevant 

attributes between a source domain, about which more is apparently known, 

and a, less studied, target domain is produced to infer whether the information 

of interest may also hold in the target setting (Gentner & Markman, 1997; 

Forbus, 2001; French, 2002). This theoretical framework of analogical reasoning 

is then linked to the statistical concept of ‘exchangeability’, which forms the 

conceptual basis of the empirical work of this project.  

 

As a result, multilevel statistical modelling, as previously identified by Rice & 

Jones (1997), Sculpher et al. (2004), Drummond et al. (2009) and others is used 

in this thesis to analyse factors causing variability in measures of cost-

effectiveness. MLM explicitly models the exchangeability assumption and, by 

relaxing this assumption, allows for the assessment of variability factors of 

measures of cost-effectiveness within studies, between studies, and ultimately, 

between geographic domains through the assumption of conditional 

independence (Drummond et al., 2009). The final section of this chapter 

therefore reviews the use and applications of MLM in the area of economic 

evaluation in health, before Chapter 3 reports in detail on the MLM methods 

developed for the purposes of this project and a pilot study to test these 

methods. 
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2.1. Existing literature on the transferability/ 

generalisability of economic evaluation in health  

 

There is a considerable body of literature concerned with the transferability / 

generalisability of economic evaluation data and Manca (2009) states that ‘the 

methods that have been proposed to address the transferability issue have often 

been relatively ad hoc, with the obvious consequence that the methodological 

literature in this area has evolved somewhat nonlinearly over time’. This section 

therefore aims to bring some order into this body of literature. Though it was 

intended to thoroughly discuss relevant publications, this literature review may 

not be labelled as ‘systematic’. The ‘nonlinear’ development of this field of 

research led to a large number of potential search words which also appear very 

regularly in unrelated publications. This makes it difficult defining a sufficiently 

‘sensitive’ search strategy which is also ‘specific’ enough to obtain a manageable 

number of potentially relevant hits from searching scientific databases. On the 

other hand, however, a number of fairly recent key publications exist which draw 

together part of the relevant literature. Therefore, a rather ‘organic’ search 

strategy was applied, starting off from some key publications in the area (for 

instance, Sculpher et al., 2004; Goeree et al., 2007 & 2011; Drummond et al., 

2009) and then systematically following up papers which cited, or were cited, in 

these publications.  

 

One of the first papers focussing on the transferability problem was written by 

Bernie O’Brien (1997). ‘Because replication of trials is an expensive and inefficient 

undertaking’, he argued, ‘analysts need to determine the validity of transferring 

cost-effectiveness data from one country to another’. He further identified six 

‘threats’ to the transferability of economic evaluation data, namely 1) 

demography and epidemiology, 2) clinical practice and conventions, 3) incentives 

and regulations for healthcare providers, 4) relative price levels, 5) consumer 

preferences and 6) opportunity cost of resources. Much of the subsequent work 

on the transferability problem in general, but also on factors causing variability in 

measures of cost-effectiveness in particular (e.g. Drummond & Pang, 2001; 

Sculpher et al., 2004; Goeree et al., 2007) builds upon O’Brien (1997). Barbieri et 

al. (2005), for instance, systematically reviewed the literature to identify 
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economic evaluation studies conducted for two or more countries in order to 

assess their level of variability in measures of cost-effectiveness and the main 

causes of this variation (i.e. variability factors). It was also assessed whether 

differences in results would lead to different decisions in different countries. 

Results suggested that the type of economic evaluation study (i.e. trial based or 

decision analytic modelling based) had some impact on variability, but that the 

‘most important factor was the extent of variation across countries in 

effectiveness, resource use or unit costs, allowed by the researchers chosen 

methodology’. The authors also devised a classification of studies with respect to 

their likely degree of variability in measures of cost-effectiveness.  

 

Another body of literature emerged with respect to critical appraisal methods for 

the transferability potential of economic evaluation in health. In 1999, Späth et 

al. published a paper which aimed to define a method for assessing the eligibility 

of published economic evaluation studies for transfer to various settings in a 

given healthcare system. They built up from work undertaken by Heyland et al. 

(1996), who developed a basic ‘transferability checklist’ to critically appraise the 

potential of transferring economic evaluation data from one context to another. 

Subsequently, a whole body of literature emerged concerning transferability 

checklists, decision charts, or indices, some of the most prominent examples 

were provided by Welte et al. (2004), Boulenger et al. (2005) the EUnetHTA 

adaption toolkit (Turner et al., 2009), EURONHEED (Nixon et al., 2004; Nixon et 

al., 2009) or Antonanzas et al. (2009). Work was also undertaken to validate or 

empirically apply transferability checklists (e.g. Knies et al., 2009; Essers et al., 

2010; Wolfenstetter & Wenig, 2010), and a systematic review on critical 

appraisal tools was recently published by Goeree et al. (2011).  

 

Meanwhile, other researchers looked at the transferability problem from a 

different angle. Their approach was to increase the generalisability of economic 

evaluation data by harmonizing HTA and economic evaluation methods across 

HTA agencies and geographic jurisdictions (e.g. Hjelmgrien et al, 2001). Sculpher 

& Drummond (2006) state that ‘decision makers and analysts need to work 

together and where possible harmonize guidelines on methods for economic 

evaluations whilst recognising legitimate variation in the needs of different 
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healthcare systems.’ However, Birch & Gafni argued already in 2003, that ‘the 

ICER associated with maximising health benefits for the community cannot be 

determined in isolation of the community context.’ Further, ‘the validity of the 

method of valuation cannot be established independent of the setting in which it 

is to be used’ and finally, even if the methods of valuation are valid in each 

setting, the authors pose the questions of whether this implies that ‘numbers 

produced by application of the methods are generalisable across individuals and 

settings.’ Birch & Gafni (2003) conclude that the ‘generalisability of the validity of 

a method of valuation does not imply generalisability of the resulting valuations’ 

and with respect to the transferability problem in general, they conclude that 

‘the economic question of whether an activity adds more to well-being than the 

alternative uses of the same resources in a particular community cannot be 

answered by reference to the costs and consequences of the same activity in a 

different community’. A similar opinion is shared by Vale (2010), who argues that 

‘despite common principles, the process of HTA, and more particularly its 

economic evaluation component, needs to take a national approach toward 

evaluation.’ Nevertheless, significant research into the harmonization of HTA 

guidelines and methods for economic evaluation in health has been carried out, 

for instance within the EUnetHTA WP 4, developing the ‘CORE HTA Model’ 

(EUnetHTA, 2008) or WHO work on ‘generalised cost-effectiveness analysis’, 

which may also be subsumed under this category (Murray et al., 2000; Tan-

Torres Edejer, 2003).  

 

 

Apart from the general research themes as outlined above, authors addressed 

transferability issues of particular relevance for decision analytic modelling 

studies on the one hand, and trial based analysis of individual patient data on the 

other. In 2004, Sculpher et al. published a landmark study on the generalisability 

of economic evaluation in health. In their work, which formed part of the NHS 

R&D HTA programme, they first conducted a number of systematic reviews on:  

 

• Factors causing variability in economic evaluation studies  

• Methods used to assess variability and enhance generalisability  

o in decision analytic modelling based economic evaluations 

o in trial based economic evaluations 
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• A systematic review on economic evaluations undertaken alongside 

multicentre randomised controlled trials and  

• A structured review on model based economic evaluation studies in 

osteoporosis (results of this review were also published separately in 

‘Pharmacoeconomics’ (Urdahl et al., 2006)).  

 

Further to that, Sculpher et al. (2004) produced two case studies, one on 

assessing generalisability in trial based economic evaluations using MLM, and 

another one on making economic evaluation more location specific using 

decision analytic modelling. With respect to DAM, Sculpher et al. (2004) mention 

that ‘it facilitates the synthesis of data from several sources’. As such, decision 

analytic models may be used for instance to: 

 

• adjust trial results to reflect routine practice  

• extend trial results to non-trial locations 

• substitute input parameters with location specific data or 

• build generic models which are then tailored to specific locations.  

 

With respect to trial based economic evaluations, Sculpher et al. (2004) identify 

methods for increasing generalisabiliy relating to a) study design and b) data 

analysis. In terms of the design of studies, methods identified relate to cost 

estimation, currency conversion, centre selection, randomisation, data collection 

and adjustments to bridge data generated under artificial trial conditions to 

routine practice. With respect to the analysis of IPD from trial based economic 

evaluation studies, Sculpher et al. (2004) highlight the paramount importance of 

making explicit assumptions of (partial) exchangeability of economic evaluation 

data between centres and countries represented in multinational RCTs. 

Assuming exchangeability means that there are no a priori reasons to expect 

more or less favourable estimates of cost-effectiveness between centres or 

locations represented in the data (Drummond et al., 2009). According to 

Sculpher et al. (2004), one method to explore issues of (partial) exchangeability 

in economic evaluations alongside RCTs is the use of MLM to ‘analyse data that 

fall naturally into hierarchical structures consisting of multiple macro units 

(contexts) and multiple micro units within each macro unit’ (Rice & Jones, 1997 

cited from Sculpher et al., 2004)  
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With respect to MLM, Sculpher et al. (2004) conclude that further research 

should relate to 1) the overall specification of models, 2) the selection of patient 

and location specific covariates and the specification of their interaction with 

treatment, 3) the appropriate MLM approach when there are a number of levels 

in the data hierarchy (e.g. patients, surgeons, centres, countries), 4) appropriate 

methods when there are few locations in a trial, and 5) the use of Bayesian 

approaches to MLM. Furthermore, the ‘assessment of alternative approaches to 

specifying multilevel models to the analysis of cost-effectiveness data alongside 

multilocation randomised trials’ and the ‘identification of a range of appropriate 

covariates relating to locations (e.g. hospitals) in multilevel models’ were 

identified as overall priorities for further research with respect to the 

transferability / generalisability of economic evaluation in health (Note that the 

MLM literature related to health economic evaluation is also subject of a 

systematic literature review further below in this chapter). 

 

 

The recommendations of Sculpher et al. (2004) with respect to both trial based 

and DAM based economic evaluations were subsequently drawn together and 

published by Drummond et al. (2005). Meanwhile, the transferability literature 

on both trial based and model based economic evaluations developed further. 

Manca & Willan (2006) proposed an algorithm to assist the choice of the 

appropriate analytical strategy when facing transferability issues in practice. 

Different scenarios were considered based on a) whether a country of interest 

participated in a trial and b) whether individual patient level data is available for 

that trial. This work differs from transferability checklists as it assists in 

determining the appropriate method to assess or enhance transferability, not to 

assess the transferability potential of the data itself. Again, the use of MLM was 

proposed as it mediates between the two extreme assumptions of either 

‘pooling’ or ‘splitting’ the data from multinational trials. In addition, the potential 

of assessing both patient and country-level covariates within the MLM 

framework was highlighted as a particular advantage of this analytic approach 

(Manca & Willan, 2006). In the meantime, Mason & Mason (2006) reviewed the 

literature on the generalisability and transferability of economic evaluation in 

health and identified current issues within this area of research, one of which 

being, again, the use of MLM to assess the transferability of findings from trial 

based economic evaluations.  
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Another key paper was recently published by Drummond et al. (2009), which 

addresses issues falling into almost all of the research themes outlined above. 

Based on work by the ISPOR Good Research Practices Task Force, Drummond et 

al. first review what national economic evaluation guidelines suggest with 

respect to the transferability problem, discuss elements which may be deemed 

transferable, and make good research practices recommendations for both trial 

based and decision analytic modelling based economic evaluations. According to 

Drummond et al. (2009), most guidelines recognise the potential for differences 

in effectiveness data and suggest the transferability of relative risk reduction, 

whilst baseline risks should be context specific. With respect to health state 

valuations, only 8 of 21 methods guidelines make any recommendations in terms 

of the transferability of such data. For resource use and unit cost estimates, most 

guidelines agree that both should be reported separately, and all guidelines 

specify that unit cost shall be location specific.  

 

 

Secondly, Drummond et al. (2009) propose an algorithm to determine whether 

simple or more elaborate methods are required for adjusting study results to the 

location of interest. This algorithm consists of four general steps and is partly 

based on Welte’s decision chart for the transferability of economic evaluation 

data. The first step determines whether cost-effectiveness information is 

available, the second step specifies whether this data may be relevant to the 

decision problem and whether the methodology is deemed appropriate (this 

step is based on criteria proposed by Welte et al., 2004). The third step considers 

whether treatment patterns are comparable between the existing data and the 

location of interest, and the final step considers whether the cost-effectiveness 

data is based on a multilocation trial which includes the location of interest.  

 

 

The remainder of the paper published by Drummond et al. (2009) is concerned 

with specific transferability/ generalisability issues with respect to either trial 

based or model based economic evaluation studies. In terms of DAM based 

studies, the authors identify situations when this may be the preferred vehicle 

for economic evaluation in health. Precisely, if: 
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• trials were undertaken wholly outside the jurisdiction of interest and 

one or more components of evidence cannot be generalised across 

jurisdictions 

• to synthesize data from multiple sources of evidence relating to any 

aspect of the analysis 

• To adjust aspects of the trial (e.g. time horizon) to what is considered 

relevant and appropriate in the location of interest  

• To adapt a DAM developed for another country to the country of 

interest 

 

Further issues relating to the geographic transferability of DAM based economic 

evaluation were mentioned, for instance determining the model structure, 

parameter estimation, or analysis as ‘different jurisdictions require different 

analytical methods’.  

 

 

Finally, with respect to IPD analysis from randomised controlled trials, 

Drummond et al. (2009), state that ‘with respect to transferability, analytic 

approaches address two sets of objectives. The first is to evaluate whether there 

is evidence of heterogeneity in patterns of resource use, costs, survival, and / or 

utilities and to explore potential sources of heterogeneity. The second objective is 

to obtain estimates of incremental resource use, cost, and/ or cost-effectiveness 

that are appropriate for decision making within particular jurisdictions that may 

or may not have been included in the trial.’ Accordingly, Drummond et al. (2009) 

identify three categories of statistical methods for analysis of IPD data, namely 1) 

the detection of heterogeneity, 2) fixed effects models and 3) multilevel or 

hierarchical models. With respect to MLM, the authors state that they: 

 

• ‘can appropriately handle the hierarchical nature of the data that 

manifests itself as a lack of independence of the errors between the 

observations’ 

• ‘provide the formal means of estimating jurisdiction specific measures of 

cost-effectiveness’ 

• ‘provide a pooled, random effects estimate across all jurisdictions, 

equivalent to a random effects summary estimate from meta-analysis’  
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• model partial exchangeability through the inclusion of covariates on each 

level of the modelled data hierarchy.  

 

With respect to covariates, the authors mention that ‘currently, evidence is 

lacking as to what types of higher-level covariates may be useful in this regard, 

but candidate variables may include those that are indicative of macroeconomic 

characteristics (e.g. gross national product), capacity constraints (e.g. limited 

availability of intensive care beds), economic incentives (e.g. pressure to minimise 

length of stay), or financing characteristics (e.g. global budgets vs. fee for service 

reimbursement).’ Finally, the authors highlight that the body of literature on 

MLM within economic evaluation is currently evolving so that it may be 

premature to comment on best practices or to suggest situations where 

multilevel modelling may offer advantages over simpler analytic approaches.  

 

Table 2.1 General research themes emerging from the available literature 

1. Assessing factors causing variability in measures of cost-effectiveness 

2. Standardising economic evaluation methodology across HTA bodies and countries to 

increase the generalisability of findings 

3. Developing or testing methods for the critical appraisal of economic evaluation in health 

resulting in transferability checklists, decision charts and indices 

4. Using decision analytic modelling 

a. to adjust trial results to reflect routine practice (though this particular topic 

relates to another ‘facet’ of generalisability which is not the focus here)  

b. to extend trial results to non-trial locations 

c. To apply decision models for one particular location to another or 

d. to build generic models which may then be tailored to specific locations of 

interest 

5. Issues relating to economic evaluation alongside randomised controlled trials 

a. with respect to the design of economic evaluations conducted alongside 

multinational randomised controlled trials and  

b. with respect to developing methods of data analysis which appropriately reflect 

the assumption of (partial) exchangeability between locations, in particular the 

use of multilevel statistical modelling 

 

 

This section aimed to provide an overview of the available literature on the 

transferability / generalisability of economic evaluation in health and identified a 

number of research ‘themes’ to be followed up further within this thesis These 
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themes are also summarized in Table 2.1 above. In addition, MLM has already 

been identified as a promising method to address the transferability problem by 

a number of authors. The following section aims to describe the process within 

which the actual research strategy for this project evolved out of the themes 

identified above.   

 

 

2.2. Development of a research strategy based on the 

available literature 

 

Some of the research themes mentioned in Table 2.1 were dropped early from 

further consideration within the process of determining an appropriate research 

strategy for this project. This holds specifically for research into the 

standardisation of international HTA and economic evaluation methods. For 

instance, at the time the author of this thesis looked into potential areas for 

further research within this project (October 2008 to June 2009) considerable 

work was already in progress with respect to the CORE-HTA model (EunetHTA, 

2008). This model is ‘an attempt to define and standardise elements of an HTA’. 

(EUnetHTA, 2008). It does so by dividing relevant information on the technology 

under assessment ‘into standardised pieces, each of which describing one or 

more aspects of the technology that is likely to be useful when considering the 

adoption or rejection of the technology. (…)  The elements that are most likely 

useful for international sharing of information are defined as core elements.’ 

(EUnetHTA, 2008). The CORE HTA model has since been adapted to two clinical 

intervention areas (one for medical and surgical interventions and one for 

diagnostic technologies) and research into the CORE-HTA model is still going on 

to date (EUnetHTA-web-link). As a result, trying to contribute to this growing 

research area would also mean to compete with at least one large scale 

multinational research collaboration which already builds up from years of 

experience. Findings within this thesis would probably quickly become outdated, 

or even contradicted from newly emerging evidence within this subject.  
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Conducting empirical work concerned with critical appraisal methods for the 

transferability potential of economic evaluation data (i.e. checklists, decision 

charts and indices) was rejected for another reason. Over the years, a number of 

tools emerged within this area (Goeree et al., 2011), and any work related to this 

subject would most likely end up with either empirically testing developed 

methods or contributing towards the development of another transferability 

checklist. Some work has been carried out already to test or empirically apply 

transferability checklists (e.g. Knies et al., 2009; Essers et al., 2010; Wolfenstetter 

& Wenig, 2010), and in the light of a vast number of checklists existing already, it 

was not deemed a high research priority to dedicate this project to the 

development of (yet another) tool for critically appraising the transferability 

potential of economic evaluation in health.  

 

With respect to factors causing variability in measures of cost-effectiveness, a 

different conclusion was reached. Sculpher et al. (2004) systematically reviewed 

the economic evaluation literature to ascertain such variability factors. Both 

conceptual papers discussing variability factors as well as empirical papers trying 

to estimate the variability in cost-effectiveness results were considered. As a 

result, they compiled a list of 27 unique factors suspected to cause variability in 

measures of cost-effectiveness (Table 2.2), and these factors were grouped in 

characteristics of a) the patient, b) the clinician, c) the healthcare system and d) 

wider socioeconomic factors. Sculpher et al. (2004) also reviewed studies which 

empirically tried to assess sources of variation in cost-effectiveness data. 

According to the authors, both decision analytic models and studies based on 

individual patient data have been used to estimate variability between 

geographic locations. In both cases, the most common way to estimate 

variability by location was to substitute location specific unit cost data and 

thereby increasing the applicability of results to the respective target location. 

Apart from unit cost estimates, variation with respect to resource use patterns 

was quite commonly subject of analysis. However, Sculpher et al. (2004) state 

that most studies reviewed were standard economic evaluations with the aim to 

provide results for a number of geographic locations. Only very few studies set 

out with the specific aim to measure variation between locations, and these 

studies were ‘rather descriptive than evaluative’ in nature.  
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Table 2.2: Variability factors reported by Sculpher et al (2004)  

Factor Definition 

Absolute / relative costs Unit costs/prices of inputs into healthcare 

Artificial study conditions Research environment versus routine practice 

Capacity utilisation Level of utilisation of inputs into healthcare 

Case mix Clinical and socio-demographic characteristics of patients undergoing 
treatment 

Clinical practice variation Variation in how healthcare is delivered 

Compliance Adherence to treatment regimen 

Culture / attitudes As affecting clinical practice 

Demography Patient non-clinical characteristics, e.g. sex, age 

Disease Interaction Association of primary disease with risk factors, other morbidity/mortality 

Economies of Scale Greater levels of ‘production’ leads to lower costs 

Epidemiology Incidence/prevalence of disease 

Exchange Rates Conversion rate of different currencies 

Geographical Setting Location such as country, type of facility 

Health State valuations Individuals’ preferences for particular levels of health 

Healthcare resources Inputs into health delivery, e.g. personnel, equipment 

Healthcare system Regulatory and organisational infrastructure 

Historical differences History of organisation/practice 

Incentives Financial and other factors which affect individuals and organisational 
behaviour 

Industry-related bias Sponsor influence on study results 

Joint production Inputs into healthcare delivery are shared between different 
units/departments 

Opportunity cost Health benefits forgone by use of a resource in a particular way 

Perspective Viewpoint of economic analysis 

Skills / Experience Level of training and experience of health  professional 

Technological Innovation Advancement of technology/practice 

Timing of evaluation Stage of conduct of study in the development of  the technology 

Treatment comparators Available treatment options 

 

Following the work of Sculpher et al. (2004), only one further study was found 

which aimed to assess variability in economic evaluation data (Barbieri et al., 

2005). In their work, the authors systematically reviewed the literature to 

identify economic evaluation studies conducted for two or more countries in 

order to assess their level of variability in measures of cost-effectiveness and the 

main causes of this variation (i.e. variability factors). It was also assessed whether 

differences in results would lead to different decisions in different countries. 

Results suggested that the type of economic evaluation study (i.e. trial based or 

DAM based) had some impact on variability, but that the ‘most important factor 

was the extent of variation across countries in effectiveness, resource use or unit 

costs, allowed by the researchers chosen methodology’. The authors rightly claim 
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that - up to this point - their work constitutes ‘the most comprehensive analysis 

of the variation in the results of cost-effectiveness studies, of drugs, in Europe’.  

 

 

Table 2.3: Variability factors reported by Goeree et al. (2007)  

 

Patient Characteristics 

- Demographics (age, gender, race), education, socio-economic status 
- Risk factors, medical history, genetic factors 
- Lifestyle, environmental factors 
- Mortality rates, life expectancy 
- Attitudes toward treatment, culture, religion, hygiene, nutrition 
- Compliance and adherence rates, ethical standards 
- Population values (utilities) 
- Population density, immigration, emigration, travelling patterns 
- Income, employment rates, productivity, work loss time, friction time 
- Type of insurance coverage, user fees, co-payments, deductables 
- Incentives for patients 

 
Disease Characteristics 

- Epidemiology (incidence/prevalence, disease progression, spread) 
- Disease severity, case mix 
- Disease interaction, co-morbidity, concurrent medications 
- Mortality due to disease 

 
Provider Characteristics 

- Clinical practice, conventions, guidelines, norms 
- Experience, education, training, skills, learning curve position 
- quality of care provided 
- Method of remuneration (supplier induced demand) 
- Patient identification 
- Cultural attitudes 
- Incentives for providers, liability 

 
Health care system characteristics  

- Absolute or relative prices 
- Available resources (staff, facilities, equipment), programs, services 
- Organisation of delivery system, structure, level of competition 
- Level of technological advancement, innovation and availability 
- Available treatment options (comparators) 
- Capacity utilisation, economies of scale, technical efficiency 
- Input mix (personnel, equipment), specialisation of labour, joint production 
- Access to programs and services, gatekeepers, historical differences 
- Waiting lists, referral patterns  
- Regulatory and organisational infrastructure, licensing of products 
- Availability of generics or substitutes 
- Market form of suppliers, payment of suppliers, supplier incentives 
- Incentives from institutions 

 
Methodological characteristics 

- Costing methodology, estimation procedures (e.g. productivity cost) 
- Study perspective 
- Study factors (artificial trial conditions, industry related bias) 
- Timing of the economic evaluation 
- Clinical endpoints/outcome measures 
- Discount rates 
- Exchange rates, purchasing power parities 
- Opportunity cost (foregone benefits) 
- Affordability (CE thresholds)  
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Later, Goeree et al. (2007) provided a second systematic review on factors 

causing variability in measures of cost-effectiveness. With their work, they 

basically confirm the results previously published by Sculpher et al. (2004) and 

expand upon the list of factors potentially causing variability in measures of cost-

effectiveness. In total, 77 unique transferability factors were found which were 

grouped by the authors in characteristics of a) the patient, b) the disease, c) the 

provider, d) the healthcare system and e) methodological factors causing 

variability in measures of cost-effectiveness (Table 2.3 above). Most importantly, 

Goeree et al. (2007) confirm what has been identified as a potential gap in 

research before. In their review, the authors clearly state that ‘there is a lack of 

empirical studies which prevents stronger conclusions regarding which 

transferability factors are most important to consider and under which 

circumstances’  

 

 

Hence, for this thesis, it was concluded that a systematic assessment of factors 

causing variability in measures of cost-effectiveness constitutes an important 

research theme to consider. At this point, however, there was no clear strategy 

in terms of how to conceptualise such an assessment. On the highest level, this 

issue relates to a ‘false dichotomy’ (Drummond et al., 2009) namely the question 

of whether to work within the context of individual patient data analysis from 

randomised controlled trials, or within the framework of decision analytic 

modelling to assess the cost-effectiveness of healthcare technologies.  

 

 

With respect to the transferability problem, DAM has been previously used 

mainly to a) adjust trial results to reflect routine practice, b) to extend trial 

results to non-trial locations, c) to adapt decision models for one particular 

country to another or d) to build generic models which are then tailored to 

specific locations of interest (Sculpher et al, 2004; Drummond et al, 2009). 

Clearly, one may reasonably argue that adjusting trial results to routine practice 

(and with it the assessment of relating variability factors) does not closely relate 

to the aim of this project, which is rather concerned with the geographic 

transferability of economic evaluation data. Secondly, it was deemed highly 

unlikely to obtain access to IPD from one or more randomized controlled trials, 

which would be a pre-requisite to carry out work in this area going beyond 
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purely theoretical or conceptual/methodological contributions. Though the 

second subtheme (extending trial results to non-trial locations) falls much more 

into the scope of this thesis, the same problem regarding data availability 

applies, which ruled out this option for the purposes of this project.  

 

 

As a result, considerable time was devoted to explore strategies to analyse 

variability factors using DAM either in terms of making a general model location 

specific or in terms of adapting a model from one jurisdiction to another. With 

each step of adjustment, one may measure the variability in cost-effectiveness 

estimates, thereby analysing the factors which cause this variability in 

international cost-effectiveness data. Though this idea looked appealing at first, 

serious limitations led to the decision of not following up this strategy any 

further. In particular, both the ‘baseline model’ as well as adjustments to the 

model to transfer it to another jurisdiction would be subject to choices and 

assumptions made by the author of this thesis. This obviously bears the risk of 

bias as having influence on the study protocol at any time of the process might 

influence the results towards ‘what someone seeks to show’. This limitation was 

perceived as too strong so that it constituted a knock out criterion for this 

analysis strategy.  

 

 

Having ruled out DAM, multilevel modelling was considered for the assessment 

of factors causing variability in measures of cost-effectiveness. MLM allows 

reflecting complex data structures which arise from non-independence of error 

terms within groups like centres or countries reflected in the dataset (e.g. 

Sculpher et al., 2004), it also allows for the inclusion of covariates at any level of 

the data hierarchy through the assumption of conditional independence 

(Drummond et al., 2009). Variability factors may hence be assessed as covariates 

on different levels of the data hierarchy. However, this method has been 

identified within the context of IPD analysis, and it was deemed unlikely to 

obtain access to such data within this project. Therefore, the work by Barbieri et 

al. (2005), which was summarised above, demonstrated a promising alternative 

solution. Instead of IPD from multinational trials, one may use secondary data 

from published economic evaluation studies to populate a dataset for the 
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assessment of factors causing variability in measures of cost-effectiveness using 

MLM. This approach offers several advantages, for instance: 

 

• Access to secondary cost-effectiveness data from published economic 

evaluation studies is unproblematic. Hence, a systematic literature review 

on a particular healthcare intervention could be carried out to populate a 

dataset with secondary cost-effectiveness data as well as additional 

variables for covariate adjustment on each hierarchical level within the 

MLM framework 

 

• Secondly, despite technical challenges which are addressed in more detail 

in Chapters 3 and 5, the approach of integrating secondary data from 

published studies constitutes a more appropriate basis for the 

assessment of variability factors than the use of IPD from multinational 

trials. Trials usually implement strict protocols which may be identical 

across centres and geographic domains (Ramsey et al., 2005). These 

protocols, though crucial to ensure internal validity of the trial results, 

artificially reduce the variability which is likely to exist between centres 

and countries under real world conditions (Ramsey et al., 2005). 

Secondary data from published economic evaluation studies, which are 

usually designed to inform decisions under real world conditions, may 

better reflect this variability and therefore constitute a more appropriate 

basis for the systematic assessment of variability factors for measures of 

cost-effectiveness. Furthermore, utilising IPD from one trial may not 

allow for the assessment of methodological factors causing variability in 

measures of cost-effectiveness between studies, which has been 

identified as an important source of variability in cost-effectiveness data 

by Barbieri et al (2005).  

 

• With respect to the analytic technique, MLM makes explicit the 

exchangeability assumption, which ‘mediates’ between assumptions of 

either identical (pooling) or independent (splitting) parameters (e.g. 

Spiegelhalter et al., 2000 & 2004). This assumption of exchangeability 

(between studies and countries) may allow for the integration of 

secondary cost-effectiveness data from different studies and different 

geographic domains without ignoring the fact that study and country 
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residuals are not independent. Subsequent chapters may show whether 

this hypothesized advantage may also hold in practice.  

 

• Further, through the assumption of conditional independence (or partial 

exchangeability) one may assess the impact of variability factors 

modelled as covariates on each level of the data hierarchy. As Gelman et 

al. (2004) put it ‘In this way exchangeable models become almost 

universally applicable, because any information to distinguish different 

units should be encoded.’ (Gelman et al., 2004 cited from Manca et al., 

2007).  

 

• If ‘the analyst has identified the appropriate set of covariates for the 

exchangeability assumption to hold; and the characteristics of the country 

of interest are represented appropriately by countries in the dataset’ 

(Drummond et al., 2009), one may then extrapolate from existing data to 

domains for which cost-effectiveness information is currently missing. 

 

• By expansion, one may turn the MLM into a bivariate framework, hence 

allowing for the simultaneous assessment of costs and effects as a vector 

of response variables (Bartholomew, 2008).  

 

• Specific features of the MLM framework may even allow to explicitly 

model the variability in measures of cost-effectiveness as a function of 

explanatory variables (e.g. Rasbash et al., 2009).  

 

 

As a result, it was decided to dedicate the empirical work within this project to 

the analysis of factors causing variability in international cost-effectiveness data 

from published economic evaluation studies using MLM. The following section 

aims to provide a theoretical basis for this research strategy.  
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2.3. Theoretical framework  

 

This section aims to provide a theoretical basis for the use of MLM for the 

analysis of factors causing variability in international cost-effectiveness data from 

published economic evaluation studies. In addition, a working definition for the 

‘geographic transferability’ of economic evaluation data is provided.  

 

 

As with any representation of the real world, a health economic evaluation, 

whether trial-based or model-based, is only useful to ‘the degree to which it 

captures the reality as observed within the original setting’ (Sleigh, 1997). 

Therefore, establishing the relevance of economic evaluation results to any 

setting - including the one for which it was originally designed for - is a process 

within which we need to test whether the characteristics of that setting are 

appropriately reflected in the evaluation. We thus need to establish a 

correspondence between characteristics of the economic evaluation and the 

characteristics of the setting of interest. This is an argument by analogy (Juthe, 

2005; Steel, 2008).  

 

 

Analogical reasoning involves a mapping of attributes between a base domain, 

about which more is apparently known, and a, less studied, target domain 

(Gentner & Markman, 1997; Forbus, 2001; French, 2002). Then, the additional 

information about the base domain is hypothesized to hold in the target by 

virtue of the correspondences of those attributes which determine the 

information of interest (Juthe, 2005; Forbus, 2001; Klix, 2004). Hence, through 

the mapping of attributes we explicitly model our a priori belief that domains are 

similar in aspects which determine the information to be transferred. To 

estimate the attributes of interest for this mapping we need to know a) what 

causes variability in cost-effectiveness data and b) how to quantify the relative 

impact of such factors on measures of cost-effectiveness. There are numerous 

publications speculating about possible variability factors (Sculpher et al., 2004; 

Goeree et al., 2007), but little is known about the quantitative impact of such 

factors. This requires a simultaneous analysis of a number of cost-effectiveness 

studies across geographic domains. However, variability factors do not only 
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impact between geographic domains– there is also variation between studies 

within domains. When focussing on the ‘higher-level variability’, it is hence 

necessary to control for any variability introduced on lower levels.  

 

 

In conclusion, we need a statistical approach which explicitly and simultaneously 

models and tests the a priori belief of similarity between a) cost-effectiveness 

studies, and b) geographic domains. To identify such a quantitative technique, 

we need to define more precisely what we mean by an ‘a priori belief of 

similarity’. This definition is provided by the statistical concept of 

‘exchangeability’ (Spiegelhalter et al., 2000 & 2004).  

 

 

The concept of exchangeability goes back to Bruno de Finetti and has been 

extensively discussed in Bernardo and Smith (1994). It means, in our context, 

that the joint probability distribution of the output parameters for each cost-

effectiveness study is the same for all studies (Bernardo & Smith, 1994; Jeffrey, 

2002). Likewise, without having any additional information on each geographic 

setting, we would not have any expectation of more, or less, favourable 

estimates of cost-effectiveness (Drummond et al., 2009). Hence, we assume that 

each set of cost-effectiveness measures available represents a ‘random sample’ 

of some (hypothetical) population of measures of cost-effectiveness for that 

technology. This is also the standard assumption for random-effects meta-

analysis (Greenland, 2000; Spiegelhalter et al., 2004). Spiegelhalter et al. (2004) 

further state that ‘if a prior assumption of exchangeability is considered 

reasonable, a Bayesian approach to multiplicity is thus to integrate all the units 

into a single model, in which it is assumed that study parameters are drawn from 

some common prior distribution whose parameters are unknown: this is known 

as a hierarchical or multilevel model’ (Spiegelhalter et al., 2004).  

 

 

This class of models is referred to as ‘multilevel’, as allowing study and country 

parameters to vary randomly enables us to fit models for these parameters 

‘above’ the model for the actual cost-effectiveness data (Jackman, 2008). Hence, 

the overall model structure can follow the way the data is ‘clustered’ within 

studies and geographic domains. Note that this, as this thesis will show, 
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constitutes a key challenge when fitting multilevel models to existing cost-

effectiveness data from different geographic domains as we cannot establish a 

strict hierarchical structure between the study and the country-levels in the 

presence of data from multinational studies. This issue of ‘cross-classified data 

structures’ is addressed in more detail in Chapters 3 and 5.  

 

 

Within this multilevel framework, we can model exchangeability whilst also 

controlling for variability factors working within studies, between studies and 

between geographic domains, by allowing for covariate adjustment through the 

assumption of conditional independence (Gelman et al., 2004; Manca et al., 

2007; Drummond et al, 2009). This should enable us to integrate cost-

effectiveness data, and to quantify the impact of variability factors on data, 

study, and country-level. If we are successful in this endeavour, we could then 

extrapolate from existing data to domains for which cost-effectiveness 

information is currently missing. This can be achieved within the proposed 

framework and in accord with the principles of analogical reasoning if and only if 

‘the analyst has identified the appropriate set of covariates for the 

exchangeability assumption to hold; and that the characteristics of the country of 

interest are represented appropriately by countries in the dataset’ (Drummond et 

al., 2009). In this way, as Gelman et al. (2004) points out, ‘exchangeable models 

become almost universally applicable, because any information to distinguish 

different units should be encoded.’ (Gelman et al., 2004, cited from Manca et al., 

2007) 

 

 

Before concluding this chapter with a review on the use of multilevel statistical 

modelling within the area of economic evaluation in health, it may be useful to 

provide a working definition for the ‘geographic transferability’ of economic 

evaluation data, which, so far, has been used more or less interchangeably with 

the term ‘generalisability’. In fact, there may be some confusion around these 

terms, and different authors may provide differing definitions for both concepts. 

This is also summarized in Table 2.4 below. Therefore, based on the theoretical 

framework of analogical reasoning, an alternative working definition for the 

‘geographic transferability’ of economic evaluation data is provided below.  
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Table 2.4: ‘Generalisability’ and ‘transferability’ as defined by health 

economists 

Author 

(year) 

Term defined Definition 

Willke et 
al., 2003 

Generalisability 
and 
transferability 

‘generalisability’ has often been used to refer to the problem of 

whether one can apply or extrapolate results obtained in one 

setting or population to another. Though this includes 

geographic settings, it can include demographic groups and 

various treatment settings, as well as extrapolating from trials 

to general populations. The term ‘transferability has been used 

more specifically in reference to comparing results across 

countries’ 

Drummond 
&Pang 
(2001) 

Generalisability generalisability refers to the extent to which the results of a 

study, as they apply to a particular patient population and/or a 

specific context, hold true for another population and/or in a 

different context 

Sculpher et 
al. (2004)  

Generalisability Adapt the same definition as Drummond and Pang (2001): 

‘generalisability refers to the extent to which the results of a 

study, as they apply to a particular patient population and/or a 

specific context, hold true for another population and/or in a 

different context’  

Drummond 
et al. 
(2005) 

Generalisability Are the results of an HTA undertaken in one country relevant to 

another? Also, within a large country, do the results of a given 

HTA apply in all regions? 

Boulenger 
et al. 
(2005)  

Transferability 
and 
generalisability 

Generalisability is de fined as: the degree to which 

the results of an observation hold true in other settings (‘will a 

specific treatment produce the same results in a different 

location?’).  

 

By adapting a definition by Späth et al (1999), transferability is 

defined as: the data, methods and results of a given study are 

transfer able if (a) potential users can assess their applicability 

to their setting and (b) they are applicable to that setting. 

Mason & 
Mason 
(2006) 

Transferability 
and 
generalisability 

Mason and Mason (2006) define the term ‘generalisability’ as 

consisting of three elements: 1) technical quality, which refers 

to the robustness of the study methodology, 2) applicability, 

which refers to the extrapolation of the original setting of the 

clinical trial, i.e. whether the trial has adequate pragmatic 

qualities to be useful in its original setting and 3) 

transferability, which is the capacity to directly use the 

complete results of the economic evaluation in a setting 

different from the original one in which the technology was 

assessed. 

Manca et 
al.  (2007) 

Transferability 
and 
generalisability 

The authors state that the terms transferability and 

generalisability are used interchangeably. Strictly speaking, the 

former should be interpreted as ‘‘the extent to which results 

from a given setting also apply to other settings,’’ whereas the 

term generalisability should be used to indicate 

the extent to which results can be adapted to apply in other 

settings or can be interpreted for other settings 

Drummond 
et al (2009) 

Transferability 
and 
generalisability 

The Task Force’s working definitions were that economic 

evaluations were generalisable if they applied, without 

adjustment, to other settings. On the other hand, data were 

transferable if they could be adapted to apply to other settings 
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The use of the term ‘generalisability’ for applying economic evaluation evidence 

from one particular context to another is being avoided in this thesis as this term 

may be confused with the statistical concept of ‘generalisability’, which is 

entirely based on inductive reasoning. Induction, in its strict logical sense, is ‘an 

argument that employs premises containing information about some members of 

a class in order to support a generalisation about the whole class’ (Blaug, 1980). 

Hence it is a reasoning process from particular instances, say the participants of a 

trial, to general conclusions, as for example the cost-effectiveness of a new 

health technology compared to current practice in the population from which 

trial participants were originally recruited from. Though inductive reasoning is an 

inference from observed instances to unobserved instances, it is hence essential 

that all instances, the observed ones and the unobserved ones, belong to the 

same class (Steel, 2008). This definition would be very restrictive and only allows 

applying economic evaluation evidence to settings where a relationship between 

the studied sample and the target population can be established.  

 

 

A more practicable definition for the purposes of this thesis would also 

incorporate situations where decisions need to be based on evidence which 

stems from an entirely different context. In the absence of country-specific cost-

effectiveness data, it is common practice that decision makers in one country 

may allocate healthcare resources based on economic evaluation evidence 

originally generated in other countries (Goeree et al., 2007), and inductive 

reasoning, which assumes relatedness between the observed instances and the 

unobserved ones, does obviously not apply in this situation (Steel, 2008). Rather, 

the problem of ‘transferring’ evidence from other contexts may best be 

described as an ‘analogical inference’, where a mapping of relevant attributes 

between a source domain, about which more is apparently known and a, less 

studied, target domain is produced to infer whether the information of interest 

may also hold in the target setting (Gentner & Markman, 1997; Forbus, 2001; 

French, 2002). In order to make inferences about the target setting, researchers 

may therefore look at characteristics of the existing evidence and the target 

context and thereby establish a relationship between the data and the context of 

interest (Juthe, 2005; Forbus, 2001; Klix, 2004, Steel, 2008). If this ‘context’ is a 

geographic entity (for instance another country) we may refer to this process as 
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the assessment of the ‘geographic transferability’ of economic evaluation in 

health.  

 

 

The final section of this chapter reports on a systematic literature review on the 

use of MLM within economic evaluation in health.  

 

 

 

2.4. Systematic literature review on the use of multilevel 

statistical modelling in economic evaluation in health 

 

This systematic literature review on the use of MLM in economic evaluation in 

health was undertaken to inform the current state of research, major application 

areas of the method within this scientific domain, technical features which may 

be of interest for the empirical exercise within this project, as well as trends for 

further research. As the relevant body of literature relates strongly to general 

research on the transferability of health economic evaluation, is relatively small 

and very well cross-referenced, the author of this thesis was aware of many of 

the relevant papers even before the conduct of this systematic review exercise. 

However, to ensure that no important studies are missing from review, 

systematic database searches were conducted both in August 2010 (when 

developing and testing multilevel methods for the purposes of this project), as 

well as in May 2012 (when writing up for submitting this thesis). The following 

subsection reports on the search methods, inclusion and exclusion criteria as 

well as search results. Findings from analysing relevant papers are reported 

thereafter, with particular emphasis on conceptual or methodological features 

which may be relevant for the integration of international cost-effectiveness 

data from existing economic evaluation studies and the analysis of factors 

causing variability in this data.  
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2.4.1. Review methodology 

 

As mentioned, prior to this systematic review, the author was already aware of a 

large proportion of relevant studies. In particular, important papers were already 

under review when looking into the transferability of economic evaluation data 

in general (e.g. Rice & Jones, 1997;  Sculpher et al., 2005;  Manca et al., 2005; 

Drummond et al., 2005; Willan et al., 2005;  Grieve et al., 2007; Manca et al., 

2007; Drummond et al., 2009). Even before searching databases, these studies 

were systematically hand searched for further relevant references and SCOPUS 

was used to check whether subsequent studies citing these papers may be 

includable in this review. However, to ensure that no important papers are 

missing from this review, a systematic database search was also conducted.  The 

databases searched were SCOPUS (Medline, Embase and Science direct), Web of 

Knowledge (Web of Science, Biosis Previews) and HEED, and search strategies for 

individual databases may be obtainable from Appendix 2.  

 

 

Literature searches were performed in August 2010 (when the multilevel 

methodology for this thesis was developed and tested), and repeated in May 

2012 (when writing up the results of this thesis for submission). No country, 

time, or language restriction was initially applied to the literature search. Studies 

concerned with economic evaluation in health which conceptualized, developed, 

empirically tested, or discussed the use of MLM were considered. In turn, this 

means that studies were not includable if they were a) not health related, b) not 

concerned with economic evaluation, and c) multilevel modelling methods were 

neither conceptualized, developed, applied, or discussed.  

 

 

Figure 2.1 below shows the search algorithm for this systematic review. Eight 

papers were initially available from reviewing the general literature on the 

transferability of economic evaluation in health. These papers were first hand-

searched for relevant references and SCOPUS citations, resulting in 20 papers 

eligible for full text review. With respect to database searches, 611 references 

were initially imported to the reference managing software Refworks. 

Subsequently, search results were de-duplicated, resulting in 425 hits remaining 
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in the database. These references were screened by titles and abstracts, 

resulting in 21 papers eligible for full text review.  

 

Figure 2.1: Search Algorithm 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of all papers reviewed in full text, a further 13 were dropped. Five papers 

obtained from searching databases were not concerned with multilevel 

modelling. A further eight studies (two from database searches and six from 

hand search) relate to multilevel modelling within health economics in general, 

but did not relate to health economic evaluation defined as comparative analysis 
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of competing healthcare interventions in particular (Duncan et al., 1996; Duncan 

et al., 1998, Scott & Shiell, 1998; Burgess et al., 2000; Carey, 2000; Or et al., 

2005; Morelle et al., 2009; Lee et al., 2010). Nine papers meeting all inclusion 

criteria were identified both from hand searching references as well as searching 

databases. A further five papers were only obtained through hand search, and 

five papers were only identified from searching databases respectively. Hence, 

19 papers met all inclusion criteria and are analysed below with respect to 

concepts, applications, and / or discussions of MLM in the context of economic 

evaluation in health.  

 

 

2.4.2. Results 

 

Three of 19 papers meeting the final inclusion criteria were conceptual in nature 

(Rice & Jones, 1997; Spiegelhalter et al., 2000; Drummond et al., 2009), and one 

very recent paper critically appraises the use of hierarchical modelling 

techniques to analyse multinational cost-effectiveness data (Manca et al., 2010). 

An ‘introductory account’ of multilevel models within the area of health 

economics has been provided by Rice & Jones (1997), who describe areas within 

this field of research that may benefit from the use of MLM. The authors 

explicitly discuss the use of MLM in economic evaluation alongside multinational 

RCTs and mention that ‘the approach allows exploration of variation arising at 

different levels of the hierarchy and modelling of the correlation structure 

inherent in such data sets and leads to efficient parameter estimates.’  

 

 

In 2000, Spiegelhalter et al. published a review on Bayesian methods in health 

technology assessment within the NHS R&D HTA programme. Within this study, 

Spiegelhalter et al. (2000) explain the concept of exchangeability in the context 

of hierarchical models and state that ‘the general Bayesian approach to 

multiplicity involves specifying a common prior distribution for the substudies 

that expresses a belief in the expected ‘similarity’ of all the individual unknown 

quantities being estimated. This produces a degree of pooling, in which an 

individual study’s results tend to be ‘shrunk’ towards the average result by an 

amount depending on the variability between studies and the precision of the 
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individual study. (….) This is essentially a random effect approach, often labelled 

as ‘empirical Bayes’ or ‘multilevel’ modelling’ The authors further state that  ‘If 

there are known reasons to suspect specific units are systematically different, 

then those reasons need to be modelled.’  

 

 

About the exchangeability assumption between geographic domains in the 

context of cost-effectiveness analysis, Drummond et al. (2009) state ‘the term 

“exchangeable” means that there are no other a priori reasons why one 

jurisdiction may have more or less favourable measures of cost-effectiveness than 

another.’ However, in accord with what has been mentioned by Spiegelhalter et 

al. (2000) above, the authors further state that, ‘making an a priori assumption 

that one does not expect differences in jurisdiction-specific measures of cost-

effectiveness may be unreasonable when the question we are trying to answer is 

whether or not such differences exist.’ To address this issue, Drummond et al. 

(2009) suggest the use of covariates on centre and / or country-level and state 

that ‘currently, evidence is lacking as to what types of higher-level covariates may 

be useful in this regard’. As potential candidates they suggest macroeconomic 

characteristics (e.g. gross national product), capacity constraints (e.g. limited 

availability of intensive care beds), economic incentives (e.g. pressure to 

minimise length of stay), or financing characteristics (e.g. global budgets vs. fee 

for service reimbursement). Drummond et al. (2009) conclude that ‘if the analyst 

has identified the appropriate set of higher-level covariates for the 

exchangeability assumption to hold and that the characteristics of the country of 

interest are reflected appropriately by countries participating in a trial’ one may 

even transfer cost-effectiveness results to centres or countries that did not 

participate in the trial.  

 

 

The vast majority of papers includable in this systematic review exercise develop 

a MLM for the analysis of individual patient cost-effectiveness data and test their 

approach within a case study (for a summary of review results and references of 

respective studies the reader is refereed to Table 2.5 below).  
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Table 2.5: Review Results 

General 

Aim Explaining a concept  
Developing a method + case study 
Empirical application 
Critical appraisal 

3 
13 
2 
1 

1, 2, 16 
3, 4 – 12, 14, 15, 18 
13, 19 
17 

Data source RCT 
Observational data  
Cluster randomized trial  
n.a. (conceptual, review paper) 

8 
4 
3 
4 

3, 5 - 8, 10, 14, 15,  
4, 9, 11, 19 
12, 13, 18 
1, 2, 16, 17 

Multinational data Yes 
No 
n.a. (conceptual, review paper) 

8 
7 
4 

4, 5, 8 – 11, 14, 19 
3, 6, 7, 12, 13, 15, 18 
1, 2, 16, 17 

Transferability explicitly 

addressed through MLM 

Yes 
No  

12 
7 

1, 3 – 11, 16, 17 
2, 12 – 15, 18, 19  

Model specifications in methodological / empirical papers 

Nr of levels Two 15 3 – 15, 18, 19 

Hierarchy modelled Patients in centres 
Patients in clusters (CRTs design) 
Patients in countries 

8 
3 
4 

3, 4, 6, 7, 9, 11, 15, 19 
12, 13, 18 
5, 8, 10, 14 

Vector of response variables Univariate 
Bivariate 
Both univariate and bivariate 
Unclear 

6 
5 
2 
2 

3 – 6, 9, 15 
7, 8, 10, 14, 18 
11, 12 
13, 19 

Response variables modelled  NMB  
Patient cost 
Resource use 
Bivariate: patient cost / effects 
Unclear 

4 
4 
1 
7 
2 

3, 6, 11, 12 
4, 5, 9, 15 
4 
7, 8, 10 – 12, 14, 18 
13, 19 

Other model features in methodological / empirical papers 

Random slopes Yes  
No  

4 
11 

3, 6, 9, 12 
4, 5, 7-8, 10-11, 13-15, 18, 19 

Random slope on which 

variables? 

Treatm. effect varies across centres 
Incontinence status 
n.a.  

3 
1 
11 

3, 6, 12 
 9 
4-5, 7-8, 10-11, 13-15, 18-19 

Variance function modelled? No  15 3 – 15, 18, 19 

Gamma distributions for cost 

data 

Yes 
No 

7 
8 

4, 7, 9, 12, 14, 15, 18 
3, 5, 6, 8, 10, 11, 13, 19 

Multiplicative effects of 

covariates on outcomes 

Yes 
No 
n.a. (conceptual, review paper) 

1 
14 
4 

9 
3-8, 10-15, 18, 19 
1, 2, 16, 17 

Model implementation in methodological / empirical papers 

Software used MLwiN 
WinBugs 
Stata  
R 
Unclear 

5 
8 
3 
1 
2 

3, 4, 6, 11, 13,  
4, 7, 9, 10-12, 14, 18 
12, 15, 19 
15 
5, 8 

Estimation method IGLS / RIGLS 
MCMC 
Unclear 

1 
9 
6 

4,  
3, 4, 6, 7, 10-12, 14, 18 
5, 8, 9, 13, 15, 19 

Covariates suggested / tested  

Patient covariates  

(covariates tested in bold/ italic 

with reference in brackets)  

baseline clinical and  socio-demographic characteristics / age (4, 15, 19) / gender (4, 15) / 
smoking status / pre-stroke living conditions (4) / stroke severity measures (4) / stroke subtype 

(4) / incontinence status (4, 9, 11) / paralysis at admission (4, 9) / presence of diabetes (15) / 

hypertension (15) / previous occurrence of AMI (15) / ‘Karnofsky score’ (19) / predicted 

mortality (19) / referral site (19) / Type of referral (19) indication for referral (19)  

Centre covariates  

(covariates tested in bold/ italic 

with reference in brackets)  

patient throughput / experience of clinical staff / hospital type (teaching vs. non-teaching) / 
financing characteristics (e.g. global budgets vs. fee for service reimbursement (4) / coronary 

angioplasty unit (15) / number of  MIs (15) number of beds in cardiology (15)  

Country covariates  

(covariates tested in bold/ italic 

with reference in brackets)  

GDP / % GDP spent on HC (4, 9, 10, 11) / capacity constraints (e.g. limited availability of intensive 
care beds) / economic incentives (e.g. pressure to minimise length of stay) / dummy for low, 
middle, high income countries / patient co-payment for acute care (4) / country mean life 

expectancy at birth (10) /   

 

 

(1) Rice & Jones (1997) (6)   Manca et al. (2005) (11)  Grieve et al. (2007)        (16)  Drummond et al. (2009) 

(2) Spiegelhalter et al. (2000) (7)   Nixon et al. (2005) (12)  Bachmann et al. (2007) (17)  Manca et al. (2010) 

(3) Sculpher et al. (2004) (8)   Pinto et al. (2005)  (13)  Coupe et al. (2007)         (18)  Grieve et al. (2010) 

(4) Grieve et al. (2005) (9)  Thompson et al. (2006) (14)  Willan et al. (2008)         (19)  Edbrooke et al. (2011) 

(5) Willan et al. (2005) (10) Manca et al. (2007) (15)  Petrinco et al. (2009)            
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Most case studies utilise data from RCTs, whilst three papers focus on the 

analysis of observational data, and two studies develop MLM methods for cost-

effectiveness analysis alongside cluster-randomised trials. Further to that, data 

from a cluster randomized trial is also being analysed in one paper which 

empirically applies MLM for cost-effectiveness analysis, whilst another empirical 

application utilises data from a multinational observational study.  

 

 

Of the 15 papers which either develop and test or empirically apply MLM 

methods, seven studies utilise data collected within one or maximum two 

countries, whilst multinational trials provide the data basis for the remaining 

eight studies under review. The transferability problem of economic evaluation 

data (either between centres, populations, settings or regions within one country 

or between countries) was specifically mentioned as one (though potentially not 

the sole) motivation for considering MLM techniques in 12 of the 19 papers, 

whilst ‘accounting for clustering’, ‘appropriately reflecting the hierarchical data 

structure’ and thereby ‘obtaining more appropriate regression outcomes’ 

appeared to be the main motivation for the use of MLM in the remaining papers 

under review.  

 

 

When moving on to model specifications within methodological or empirical 

papers, it gets obvious that all studies without exception apply a strictly 

hierarchical two-level structure to their respective datasets. Within this two-level 

structure, individual patients are always modelled at level one, whilst level two 

may represent centres (eight studies), clusters (which may coincide with centres) 

as in cluster randomised trials (three studies), or countries (four studies). With 

respect to the response variable, six studies develop a univariate model, whilst a 

bivariate framework was developed in five studies. Two studies apply both, a 

univariate and a bivariate model. The two empirical applications (Coupe et al., 

2007; Edbrooke et al., 2011) are ambiguous in most respects of the MLM 

specification, including the vector of response variables. If a univariate 

framework was applied, the response variable was patient cost (four studies), 

resource use (one study), or net monetary benefit (four studies). If net monetary 

benefit was the response variable, the respective MLM may be classified as a 

multilevel application of Hoch’s net benefit regression framework which models 
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NMB as response variable and uses a treatment dummy to discriminate between 

patients in the respective trial arms, thereby modelling incremental net 

monetary benefit (Hoch et al., 2002)  

 

 

The bivariate models which were developed in seven of the 19 papers under 

review represent a further expansion from this net benefit regression 

framework, within which patient cost and outcomes are decomposed and 

modelled as a vector of response variables. Again, a treatment dummy may 

discriminate between patients in the respective trial arms and thereby allow 

estimation of incremental cost and incremental effects within one model. With 

respect to such bivariate models, Manca et al. (2007) state that ‘this (bivariate) 

approach has three main advantages. First, it facilitates explicit modelling of both 

costs and effects while allowing the inclusion of a set of covariates. Second, it 

exploits the existence of correlation, at the patient level, between costs and 

effects, thereby improving the efficiency of the estimation process when this 

correlation is different from zero. Third, unlike the standard (univariate) net 

benefit regression it does not require a new regression to be estimated for every 

value of the cost-effectiveness threshold.’  

 

 

Further features of the multilevel models developed in the relevant body of 

literature include random slopes (four studies), gamma distributions for cost 

data (seven studies) and multiplicative effects of covariates on outcomes. With 

respect to random slopes, three studies allowed the treatment effect to be 

different across centres, whilst one study (Thompson et al., 2006), allowed for 

heterogeneity of the patient-level variable ‘incontinence status’ on centre level, 

thereby allowing mean costs to vary across centres with respect to whether 

patients are incontinent following the experience of a stroke or not. Fitting a 

random slope to this variable on centre level significantly improved the fit of the 

model. Even though some studies allowed for random slopes of covariates, none 

of them considered the explicit modelling of variation in the outcome variable as 

a function of explanatory variables, hence estimating a ‘variance function’ within 

the multilevel modelling framework.  
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(Thompson et al., 2006) also modelled a multiplicative rather than an additive 

effect of covariates on outcomes. Again focussing on incontinence status as a 

patient covariate, the assumption was that the effect of incontinence may 

multiply the costs by a certain factor rather than adding to costs in each centre. 

Again, model fit improved with this assumption. Furthermore, to better reflect 

the fact that cost data is usually skewed to the right, seven papers modelled 

gamma distributions instead of normal distributions to cost data, and all studies 

observed an improved model fit from doing so.  

 

 

Moving on to covariates assessed within the MLM studies under review, it gets 

apparent that, though it has been suggested as an important area for further 

research already in 2004 (Sculpher et al., 2004), no systematic assessment has 

yet been carried out to analyse covariates on each level of the data hierarchy. 

The inclusion of covariates served, at most, the purpose of testing a concept. 

Further, patient level variables under assessment are usually very disease and 

intervention specific, whilst only very few centre and country variables were 

considered at all; amongst them the percentage of GDP spent on healthcare, 

patient co-payments for acute care and life expectancy at birth within countries. 

As all multilevel models were applied within the context of IPD analysis from one 

single trial or observational study, methodological study characteristics, which 

were previously highlighted as important variability factors (e.g. Barbieri et al., 

2005; Goeree et al., 2007), are identical across observations within trials and 

were therefore never subject to analysis within any of the studies under review.  

 

 

 

2.5. Summary and conclusions 

 

This chapter was concerned with providing the background and developing a 

research strategy for this project. Reviewing the economic evaluation literature 

on the transferability / generalisability of measures of cost-effectiveness showed 

that there is a need to systematically assess factors causing variability in 

international cost-effectiveness data. To do so, the analysis of secondary data 

abstracted from published economic evaluation studies has been proposed. This 

is justified from a pragmatic point of view as it would be highly unlikely to obtain 
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access to IPD within the scope of this project. However, integrating secondary 

data from published economic evaluation studies also allows the assessment of 

variability factors which may not be present in individual patient data from single 

trials or observational studies, especially with respect to methodological 

characteristics of health economic evaluation studies.  

 

 

To facilitate this assessment, MLM was identified as a promising method. A 

systematic literature review on economic evaluation studies proposing or 

applying MLM methods showed that this technique has been considered with 

the particular aim to address the transferability problem of measures of cost-

effectiveness. However, all applications of MLM in economic evaluation in health 

thus far relate to IPD from multicentre studies which may or may not be 

multinational in nature. Accordingly, model hierarchies always consist of two 

levels; more complex data structures, as they may appear when integrating 

secondary cost-effectiveness data (for instance cross-classifications), have not 

yet been proposed. Furthermore, existing studies consider covariates on 

different hierarchical levels only to demonstrate the concept. Accordingly, there 

is still a need to systematically assess covariates on all hierarchical levels 

encoding variability factors for measures of cost-effectiveness.  

 

 

The following Chapter 3 aims to develop MLM methods appropriate for the 

integration of secondary cost-effectiveness data abstracted from international 

economic evaluation studies. This model development builds up from a basic 

ordinary least squares (OLS) regression model and, step by step, introduces the 

features necessary to integrate cost-effectiveness data from different studies 

which are also applicable to different geographic domains. The MLM methods 

developed are subsequently tested in a pilot study utilizing data from 16 

international cost-effectiveness studies on statins in the primary and secondary 

prevention of CVD, before Chapter 4 reports on a systematic literature review 

and data abstraction exercise to populate a dataset for the main empirical 

analysis reported in Chapter 5.   
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3. Multilevel model methodology 
 

 

The previous chapter began by summarizing the literature on the transferability 

and generalisability of economic evaluation in health and a research strategy was 

developed for the purposes of this project. Subsequently, a theoretical 

framework for the use of MLM to analyse variability factors for measures of cost-

effectiveness was also developed, and the health economic evaluation literature 

concerned with MLM was systematically reviewed. As a result, MLM was 

identified as a promising strategy for the integration of international cost-

effectiveness data from existing economic evaluation studies and the assessment 

of factors causing variability in measures of cost-effectiveness.  

 

 

This chapter is concerned with the development of a number of MLMs for the 

purpose of secondary data-integration and the analysis of variability factors 

within this framework. It starts off with a simple OLS regression equation and 

then, step by step, introduces additional features to model complex data 

structures and (partial) exchangeability not just between studies, but also 

geographic domains. The final Section 3.4 of this chapter reports on a pilot study 

using a set of data collected from the health economic literature which entails 

cost-effectiveness information on one health intervention which was measured 

in different studies within, and across, geographic domains. The area of statins 

for the primary and secondary prevention of CVD was chosen for this pilot.  

 

 

The chapter is organised as follows: It first elaborates on the exchangeability 

assumption of international cost-effectiveness data to derive a model suitable 

for secondary data integration in Section 3.1. It then shows how the assumption 

of exchangeability of cost-effectiveness data allows modelling complex data 

structures in a MLM framework. Next, this section expands upon this framework 

to include explanatory variables on each level of the data hierarchy. It then 

elaborates on even more complex data structures, including cross-classification 

of higher levels. Finally, slopes of regression coefficients are allowed to vary 

randomly across higher-level units.  
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As Section 3.1 predominantly concentrates on the right hand side of the 

regression equation and the appropriate hierarchical structure of the model, 

Section 3.2 elaborates on the question of how the dependent variable, i.e. 

‘measures of cost-effectiveness’ of a healthcare technology, ought to be 

expressed. The advantages and disadvantages of the incremental cost-

effectiveness ratio (ICER) and the incremental net monetary benefit (INMB) 

approaches are discussed. Following from that, the net benefit regression 

framework proposed by Hoch et al (2002) is considered for the purposes of this 

exercise. Subsequently, this framework, which was originally developed for the 

analysis of RCT data, is developed into a model which is more suitable for the 

integration of secondary cost-effectiveness data. Net monetary benefits are 

being decomposed and, in accordance with what has been proposed by other 

researchers in the field (Nixon et al., 2005; Pinto et al., 2005; Manca et al., 2007; 

Grieve et al., 2007; Bachmann et al., 2007; Willan et al., 2008; Grieve et al., 

2010), a bivariate model is developed which enables inclusion of incremental 

costs and incremental effects separately as response variables in one regression 

equation.  

 

 

In Section 3.3, the models derived in Sections 3.1 and 3.2 are combined, leading 

to a ‘bivariate multilevel model for secondary data integration’. This model is 

tested in the pilot study in Section 3.4 of this chapter, together with a number of 

two-level specifications and, for comparative purposes, an OLS regression model.  
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3.1. Modelling complex data structures within secondary 

cost-effectiveness data 

 

Suppose we are interested in the cost-effectiveness of a certain healthcare 

technology and we find that this was measured in a number of cost-effectiveness 

studies available from the literature. There is an explicit theory on how the cost-

effectiveness of a healthcare technology ought to be measured, and several 

authors suggest the use of incremental net monetary benefits (INMB’s) as most 

suitable for econometric analysis (e.g. Claxton & Posnett, 1996; Stinnet & 

Mullahy, 1998; Briggs & Fenn, 1998; Tambour et al., 1998; Hoch et al., 2002). 

This theory is addressed in Section 3.2. However, let us leave this theory aside 

for the moment to concentrate on the complex data structures in international 

cost-effectiveness data only. To do so, denote a single cost-effectiveness 

estimate, however it may be measured, with ‘Yi‘(with i=1,....,n). This could be, for 

example, a cost-effectiveness estimate applicable to one particular subgroup of 

patients. In addition, economic evaluation studies frequently report more than 

one single estimate of cost-effectiveness of a particular healthcare technology; 

usually, results are reported for different patient subgroups, and different 

assumptions tested in sensitivity or scenario analyses.  
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Figure 3.1: Example dataset and single level OLS regression 

without explanatory variables
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Now, consider the following hypothetical situation: after conducting a literature 

review on the cost-effectiveness of a certain healthcare technology, we found 

four includable papers, reporting n= 21 cost-effectiveness estimates in total. The 

resulting dataset with sample data is plotted above in Figure 3.1. The easiest 

solution in this case is to treat parameters from all four studies as ‘identical’ 

(Spiegelhalter et al., 2000, Spiegelhalter et al., 2004; Willan et al. 2005). In this 

situation, all observations of ‘Y’ may be pooled and we completely ignore that 

they stem from different studies available in the literature. Hence, we do not 

reflect the fact that cost-effectiveness estimates are ‘nested’ within studies and 

regard all ‘Yi‘ as if they were obtained from the same source, irrespective from 

the fact that different studies may have employed different methods, 

assumptions, patient groups etc., which most likely causes dependency of cost-

effectiveness results within each study. A very basic econometric model, which is 

also referred to as ordinary least squares (OLS) regression model, simply draws a 

line ‘β0’ through the dataset which minimises its squared distance to each cost-

effectiveness estimate ‘yi‘ (e.g. Maddala, 2001; Grieve et al., 2005). This may be 

expressed as:  

 

 

ii
ey +=

0
β   with   e�~N(0, σ	)             (1) 

 

 

Model (1) is also called an ‘empty’, or ‘intercept only model’ as it does not carry 

an explanatory variable which may explain variation in cost-effectiveness 

estimates (Hox, 2010). Such an explanatory variable will be introduced later. In 

the case of this empty model shown in equation (1), the estimator of ‘
0
β ’ is 

simply the mean cost-effectiveness observed across all four studies (Maddala, 

2001). Whereas ‘ ‘ is the so called deterministic component of model (1), ‘ei’ is 

also referred to as the ‘random’, or ‘stochastic’ component of the regression 

equation (Maddala, 2001). The assumptions about ‘ei’ are (Maddala, 2001):  

 

• a mean of zero, i.e. 
(��
 = 0 

• a common variance (homoscedasticity), i.e. ���(��
 = �	   

• the errors, or residuals ‘ei’ are mutually independent and  

• errors are normally distributed  

 

0
β
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As mentioned, whilst assuming that parameters of the four studies are 

‘identical’, we can simply apply equation (1) to the data pooled across all four 

studies. Needless to say that complex data structures cannot simply be ignored 

without risking to overestimate accuracy, or to make plainly wrong inferences 

(Manca et al., 2005, Rasbash, 2008, Bartholomew et al, 2008; Hox, 2010).  

 

 

 

Now, rather than simply assuming that studies are ‘identical’ in order to pool the 

data, we may have another look at this dataset first. Figure 3.2 shows the same 

dataset as before, but cost-effectiveness estimates from each study are now 

shown in different colours and shapes. From this illustration it gets immediately 

clear that studies may not be regarded as identical. Studies employ different 

methods and assumptions, rely on different patient groups and apply to different 

geographic settings, etc. Therefore, cost-effectiveness estimates obtained from 

one study may be more similar to each other than they are to estimates from 

other studies. This, however, violates one of the assumptions introduced above, 

namely that the errors ei are ‘mutually independent’ (e.g. Rasbash, 2008). As a 

result, we cannot simply pool the data, but may have to fit a model for each of 

the resulting groups of cost-effectiveness-data separately. Hence, we treat our 

observations of ‘Y’ within each study as completely unrelated from the other 

studies available. In other words, we assume ‘independence’ between studies 

(Spiegelhalter et al., 2000; Spiegelhalter et al, 2004; Willan et al. 2005). To 
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Figure 3.2: Example dataset of 21 cost- effectiveness 

estimates, grouped in studies

study 1 study 2 study 3 study 4



 

47 
 

estimate a model for each study, equation (1) may be re-written after 

introducing additional subscripts to make clear that the dataset consists of cost-

effectiveness estimates obtained from more than one single source. Instead of 

using ‘i’ as subscript for all cost-effectiveness estimates in the dataset as before, 

‘i’ is now used as subscript for cost-effectiveness estimates within one single 

study with (i=1,....,ni) and j as subscript for studies with (j=1,...,J), so that Yij 

denotes the ith cost-effectiveness estimate in the jth study. Rewriting equation (1) 

leads to:  

 

ijij ey +=
0

β     with  e��~N(0, σ	
            (2) 

 

 

The corresponding least squares lines are illustrated in Figure 3.2. Of course, 

assuming ‘independence’ may not be correct either as studies often do have 

things in common. For instance, they often rely on the same sources of 

effectiveness data, or they share methodological standards, etc. Most 

importantly, however, this assumption would preclude the chance of integrating 

secondary cost-effectiveness data from different published studies, which is the 

aim of this exercise. Hence, just like assuming study parameters to be ‘identical’ 

to allow complete pooling may be regarded as somewhat too crude, one can 

conversely argue that assuming complete ‘independence’ is too restrictive, as 

there must be some similarities between studies which, in theory, allows at least 

some sort of data integration (e.g. Spiegelhalter, 2000)  

 

 

In conclusion, assuming either ‘identical’ or ‘independent’ parameters are two 

extreme assumptions about the data, and it would be much more sensible to 

assume that the data from different sources can be somehow pooled together, 

but without completely ignoring that cost-effectiveness estimates do stem from 

different studies indeed. This may be achieved through the assumption of 

‘exchangeability’ (e.g. Spiegelhalter et al., 2000, Spiegelhalter et al., 2004, 

Sculpher et al., 2004; Manca et al., 2005; Drummond et al., 2009). 

Exchangeability is a concept which goes back to Bruno de Finetti and it has been 

extensively discussed in Bernardo & Smith (1994). Essentially, it means that the 

joint probability distribution of the parameters ‘Ɵ’ (i.e. study mean and variance) 

observed in each of the ‘j’ studies available is the same for any permutation of 
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the index of studies ‘j’ (Bernardo & Smith, 1994; Jeffrey, 2002). In other words, 

without having any additional information on each of the ‘j’ studies, we would 

not have any expectation of more, or less, favourable estimates of cost-

effectiveness to be found in each of the studies (Drummond et al., 2009). In this 

sense, exchangeability is, like Greenland (2000) puts it, a ‘much weaker 

assumption than that studies really are equal; it only says that, without seeing 

the data, we can’t yet tell how they might differ’. Further, exchangeability is 

‘essentially an uncertain and qualitative prior guess about the similarity’ of the 

studies available (Greenland, 2000) 

 

 

Spiegelhalter et al. (2000 & 2004) state that ‘if a prior assumption of 

exchangeability is considered reasonable, a Bayesian approach to multiplicity is 

thus to integrate all the units into a single model, in which it is assumed that 

study parameters Ɵ1, . . . , Ɵj are drawn from some common prior distribution 

whose parameters are unknown: this is known as a hierarchical, or multilevel, 

model’. In other words, we assume that each of the ‘j’ studies available 

represents a ‘random sample’ of some (hypothetical) population of cost-

effectiveness studies for that technology. This is also the standard assumption in 

a traditional random-effects meta-analysis (Spiegelhalter et al., 2000 & 2004). 

The class of models which may be built upon this assumption is called 

hierarchical, or multilevel, because assuming exchangeability enables study 

parameters to vary randomly, and this allows building a model for the study 

parameters on top of the model for the actual cost-effectiveness data (Jackman, 

2008).  

 

 

To sum up, through the assumption of exchangeability we may allow study 

parameters to vary randomly between studies, and this allows building a 

hierarchical model which mediates between the two extreme assumptions of 

either independent or identical parameters. What is important now is to 

translate these findings into a quantitative model for data integration which 

makes explicit the assumption of exchangeability of cost-effectiveness data 

across studies and geographic domains.  
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3.1.1. Modelling exchangeability – ‘empirical Bayes shrinkage 

estimation’  

 

 

Recall model (2) 

 

ijij ey +=
0

β     with  e��~N(0, σ	
      (2; repeated) 

 

This model is a single level-model of cost-effectiveness estimates obtained from 

each of the ‘j’ studies. It is also an ‘empty model’ as it does not carry explanatory 

variables on the right hand side of the equation. The subscripts indicate that a 

separate model may be fitted to each study independently. The stochastic 

component ‘e��’ allows the cost-effectiveness estimates ‘
ijy ‘ within each study to 

vary randomly, assuming a normal distribution of the error term. This is 

illustrated in Figure 3.2 above, where one regression line, representing mean 

cost-effectiveness, is fitted for each study separately assuming independence of 

data across studies.  

 

 

However, we learned that modelling exchangeability allows study parameters 

(i.e. study mean and variance) to vary randomly between studies too. We also 

learned that this allows placing a model for the study parameters above the 
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model for the cost-effectiveness data (Jackman, 2008); which is also illustrated in 

Figure 3.3 above. The black line represents the overall mean regression line; one 

could say the pooled effect over all four studies in the dataset (e.g. Drummond et 

al., 2009). The distance between this pooled effect and the study regression lines 

represents the random variation of the study means from the overall mean 

effect just as the distance between the data and the study regression lines 

represent the random variation of cost-effectiveness data from the individual 

study means (Bickel, 2007; Bartholomew et al., 2008; Steele, 2008; Hox, 2010). 

As this random variation of the data within each study is captured with the 

stochastic error term′	e��′, a second error term is needed which encapsulates the 

random variation between the overall mean cost-effectiveness, captured by ‘
0
β ‘, 

and the corresponding study means (Bickel, 2007; Bartholomew et al., 2008; 

Steele, 2008; Hox, 2010). This error term is labelled with ′u�′. Just like it was 

assumed that the ′e��′ are normally distributed with zero mean and variance ′��	’, 

an analogous assumption can be made for ′u�′ (Bartholomew et al., 2008; Steele, 

2008; Hox, 2010). Hence, through the inclusion of this second error term ′u�′, 
model (2) may be turned into a basic MLM of the form:  

 

 ���~�(��, �
                 (3) ��� = �� + !� + ���  with  

!�~�(0, �"	
 ���~�(0, ��	
 
 

Model (3) is a ‘variance components model’, the simplest form of MLM 

(Bartholomew et al., 2008; Steele, 2008; Hox, 2010). As mentioned, ′��′ is the 

overall mean for ′���′ (across all studies), ′�� + !�′ is the mean cost-effectiveness 

within each study, ′!�′ is the difference between a studies mean cost-

effectiveness and the overall mean, and ′���′ is the difference between the ′���′ 
for the ith measurement and the group mean of that study, i.e. ′��� = ��� − (�� +!�
′ (Steele, 2008). The statement ′���~�(��, �
′ makes clear that we assume 

the response variable ′���′ to be normally distributed (Rasbash et al., 2009). ‘XB’ 

is the fixed part of the model, whereas ′�′ denotes the random part over all the 

levels of the data (Rasbash et al., 2009). In the case of model (3), it simply 
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denotes the variances at both the data and the study-level (Rasbash et al., 2009). 

Through the assumption that both error terms ‘!�′ and ‘��� 	′ are normally 

distributed with zero mean and variance ‘�"	′ and ′��	′ respectively, the total 

variance can be written as (Steele, 2008; Rasbash et al., 2009):  

 $%$�&	'��(�)*� = �"	 + ��	 (4) 

 

This also allows calculating the proportion of the total variance which can be 

attributed to differences between studies, which is referred to as the ‘variance 

partition coefficient’ (VPC) (Steele, 2008; Rasbash et al., 2009) 

 �+, = -./-./0-1/ (5) 

 

From equation (5) it can be seen that the VPC tends towards zero if ′σ2	′	 is large 

in comparison to ′σ3	′, meaning that there would be little variation from ‘study 

effects’ in the data (Steele, 2008; Rasbash et al., 2009). On the other hand, if ′σ3	′ 
is large in comparison to ′σ2	′	, then the VPC tends towards one; and we learn 

that there is little variation from ‘within-study differences’ in the data as most 

variation stems from differences between studies (Steele, 2008; Rasbash et al., 

2009). A further assumption of model (3) is that the residuals at the same level 

are uncorrelated with one another, that is: ′cov7u�8, u�	9 = 0′	 for different 

studies and ′cov7e�8:8, e�	:	9 = 0′	for different cost-effectiveness values 

obtained from different studies (Rasbash et al., 2009). Finally, it is assumed that 

the residuals at different levels are uncorrelated with one another, that is: 

‘cov7e�:8, u:	9 = 0′ for the same or different groups (Rasbash et al., 2009).  

 

To sum up, due to assuming exchangeability we may regard the study 

parameters to be random draws from some prior distribution which allows fitting 

a model for the overall mean cost-effectiveness above the models for the study 

means (e.g. Spiegelhalter et al, 2000 & 2004; Jackman, 2008). We also assumed 

error terms ′!�′ and ′���′	 to be normally distributed with zero mean and variance ′�"	′ and ′��	′ respectively (Steele, 2008; Rasbash et al., 2009). The VPC is a 

measure which tells us how much of the total variation in the data may be 
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attributed to the data-level or to the study-level respectively (Steele, 2008; 

Rasbash et al., 2009). However, model (3) needs to be specified further. 

Assuming exchangeability is supposed to ‘mediate’ between the two extreme 

viewpoints of either identical or independent study parameters in the sense that 

it allows for some sort of pooling, but without ignoring the fact that the data 

stems from different studies indeed. As Jackman (2008) puts it, hierarchical 

models help us to find the ‘sweet spot’ between the assumptions of identical 

parameters on the one hand and independent parameters on the other. To be 

able to make comparisons between studies, the study residual ‘!�′ needs to be 

estimated (Rasbash et al., 2009). An estimate of ′!�′ may be derived by 

calculating the ‘mean raw residual’, that is: (Rasbash et al., 2009).  

 

�̅� = �<� − �=�  (6) 

 

Where ′�<�′ is the mean of cost-effectiveness in study ‘j’, and ′�>�′ is an estimator 

of the overall mean cost-effectiveness (Rasbash et al., 2009). This raw residual is 

then multiplied by a so called shrinkage factor ‘S’ (Steele, 2008; Rasbash et al., 

2009):  

 !?� = @�̅�      where 									@ = -A./-A./0(BA1/CD
  (7) 

 

‘)�′ is the sample size in study ‘j’, hence the number of cost-effectiveness 

estimates reported in, and abstracted from, that study. ′�>�	’ and ′�>"	′ are 

estimates of the variances of the within-study and between-study error terms 

respectively (Steele, 2008; Rasbash et al., 2009) 

 

 

Now it can be illustrated why the assumption of exchangeability of study 

parameters mediates between the two extremes of either identical or 

independent parameters obtained from different cost-effectiveness studies. If 

the between study variance ′�"	’ is assumed to be zero, then this is equal to say 

that all variation in the reported cost-effectiveness measures stems from ‘within-
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study’ variability, hence, the mean study effects are ‘identical’ between studies 

(Steele, 2008; Rasbash et al., 2009). This would mean that there are no 

differences between studies and all cost-effectiveness estimates may be safely 

pooled together. If, on the other hand, ′�"	 → ∞′, then the study effects are 

regarded to be independent, meaning that data from different sources may not 

be pooled together (Steele, 2008; Rasbash et al., 2009). Assuming 

exchangeability allows to model that the ‘reality’ might be somewhere in 

between those extreme viewpoints (e.g. Spiegelhalter et al., 2000 & 2004; Willan 

et al., 2005; Manca et al., 2007; Drummond et al., 2009)  

 

 

From what was stated above, it can be seen that ′	�"	 → 0′ is the special case 

where the shrinkage factor ′@′ tends towards zero and the study effects are 

completely shrunken towards the overall mean cost-effectiveness estimate ′��’ 

(Steele, 2008; Rasbash et al., 2009). If, however, ′	�"	′ is high, then the shrinkage 

factor		′@′ tends towards one, meaning that the between study variance is high 

and shrinkage of the study effects towards the overall mean ′��′ is small (Steele, 

2008; Rasbash et al., 2009). It is important to note, however, that the extent of 

shrinkage does not only depend on the amount of between study variability	′�"	′. 
The higher the number of cost-effectiveness estimates provided by one single 

study ()�
, the more information is provided by that particular study to the 

overall model, and the less will the study mean be shrunken towards the overall 

mean (e.g. Steele, 2008; Rasbash et al., 2009; Drummond et al., 2009). On the 

other hand, if a study provides only few estimates of cost-effectiveness, then 

shrinkage is high as this study ‘borrows’ a lot of information from all other 

studies available (Steele, 2008; Rasbash et al., 2009; Drummond et al., 2009).  

 

 

The mechanism explained above is what the literature refers to as ‘empirical 

Bayes shrinkage estimation’, or ‘empirical Bayes’ (e.g. Spiegelhalter, 2000; Willan 

et al., 2005; Steele, 2008). This process makes explicit the assumption of 

exchangeability between studies, and, by extending the basic model shown in 

equation (3), will also provide a means to model exchangeability between 

geographic domains and to assess variability factors on each level of the data 

hierarchy. The next section expands upon model (3) to: 
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• introduce slope parameters to model dependency of ‘Y’ upon some 

vector of explanatory variables (random intercepts model) 

• adding a third level to the model to simultaneously assess variability in 

cost-effectiveness estimates on data, study and country-level whilst 

dealing with the problem of ‘cross-classification’ of data from 

multinational studies, and finally,  

• assuming both slopes and intercepts of the regression line to vary 

randomly (random-slopes model) 

 

In Section 3.2, the question of how to measure the cost-effectiveness of a 

healthcare technology as a dependent variable within the MLM framework is 

discussed. Finally, before actually testing models in a pilot study which is 

reported on in Section 3.4 of this chapter, the MLMs derived in this section are 

combined with the regression model derived in Section 3.2, resulting in a 

‘bivariate multilevel model for secondary data integration’ with incremental costs 

(∆,) and incremental effects (∆
) as response variables nested in studies and 

geographic domains. However, for now, let us turn back to the variance 

components model illustrated in equation (3) and extend upon it to make it 

more suitable for the purposes of this thesis.   

 

 

 

3.1.2. Extending the basic multilevel model 

 

 

This section expands upon the variance components model shown in equation 

(3) to make it more suitable for the assessment of variability in secondary cost-

effectiveness data between studies and geographic domains. The first step is to 

introduce ‘slope parameters’ to model dependency of ‘Y’ upon some vector of 

explanatory variables. This results in a so called ‘random intercepts model’.  
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3.1.2.1. The random intercepts model 

 

 

Recall model (3):  

 ���~�(��, �
 (3; repeated) 

��� = �� + !� + ���  with 

!�~�(0, �"	
 ���~�(0, ��	
 
 

This ‘variance components model’ essentially tells whether differences in cost-

effectiveness data exist between studies, which studies have higher, or lower, 

mean cost-effectiveness estimates, and how much of the variation in cost-

effectiveness is attributable to each level of the data hierarchy. Here, a ‘slope 

parameter’, or ‘explanatory variable’, on data-level is being introduced. Consider 

Figure 3.5 below which displays the same sample dataset as before; however, 

the ordering of the data has changed. In the previous section, cost-effectiveness 

estimates from different studies were in no particular order, hence, leaving the 

horizontal axis in the diagram without a meaning. Now, the horizontal axis 

captures additional information, for instance patient characteristics like mean 

age or mean body mass index (BMI). As the variance components model does 

not carry an explanatory variable, we would fail to capture this additional 

information when using model (3). This situation is also illustrated in Figure 3.4 

below, where the slopes of the regression lines are ‘flat’. Now, to capture this 

additional information on the x-axis, we need to introduce a parameter which 

captures the slope of the regression lines (Bickel, 2007; Steele, 2008, Rasbash et 

al., 2009, Hox, 2010). This will then allow explaining some of the variability 

between cost-effectiveness estimates. It will also tell us how much variability will 

remain on both levels (data and study) after controlling for a particular covariate 

(Steele, 2008; Bartholomew et al., 2008, Rasbash et al., 2009, Hox, 2010).  
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Introducing an explanatory variable on the data-level turns model (3) into 

(Steele, 2008, Rasbash et al., 2009):  

 ���~�(��, �
 (8) 

��� = �� + �8H�� + !� + ���  with !�~�(0, �"	
 ���~�(0, ��	
 
 

Unlike the variance components model shown in equation (3), this ‘random 

intercepts model’ allows taking a look at, and control for, characteristics of cost-

effectiveness estimates collected from the available literature. The fixed part of 

the model is now given by, ′�� + �8H��′ whereas the random part ‘!� + ���′ 
remains unchanged (Steele, 2008, Rasbash et al., 2009). ′�� + �8H��’ is also the 

equation for the pooled regression line, with ′��′ being the intercept and ′�8H��′ 
being the slope of that regression line (Steele, 2008, Rasbash et al., 2009). 

Analogously to the variance components model, the intercepts of the individual 

study regression lines are given by ′�� + !�’, so that the individual lines are still 

located parallel around the pooled regression line (Steele, 2008, Rasbash et al., 

2009). As the distance between the intercepts of each individual study regression 

line to the pooled regression line is encapsulated in the random component		′!�′, 
this class of models is referred to as ‘random intercepts models’ (Steele, 2008, 

Bartholomew et al., 2008, Rasbash et al., 2009) 
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As within the variance components model above, a) residuals for different levels, 

b) residuals at level two for different groups, and c) level one residuals for 

different observations, are uncorrelated, that is (Goldstein, 1999; Steele, 2008; 

Rasbash et al.; 2008, Hox; 2010; CMM-workshops/random intercepts):  

 

a) cov7u�8, e�8�89 = 0 b) cov(u�8, e�	
 = 0 c) cov7e�8�8, e�	�89 = 0 

 cov7u�8, e�8�	9 = 0    cov7e�8�8, e�	�	9 = 0 

 

In addition, we assume the residuals and the covariates to be uncorrelated 

within the random intercepts model, that is (Goldstein, 1999; Steele, 2008; 

Rasbash et al.; 2008, Hox; 2010; CMM-workshops/random intercepts):  

 cov7u�, x��9 = 0 cov7e��, x��9 = 0 

 

This leaves us with a ‘block-diagonal’ correlation matrix as shown in Figure 3.6 

below, where all cost-effectiveness measurements within the same study are 

correlated, but all measurements from different studies are uncorrelated 

(Goldstein, 1999; CMM-workshops/random intercepts). ‘P’ is simply the variance 

partitioning coefficient shown in equation (5) above (Goldstein, 1999; CMM-

workshops/random intercepts).  

 

Figure 3.6: Covariance matrix in a two-level hierarchical model 

Study  1 1 1 2 2 2 2 3 3 

 data 1 2 3 1 2 3 4 1 2 

1 1 1 p p 0 0 0 0 0 0 

1 2 p 1 p 0 0 0 0 0 0 

1 3 p p 1 0 0 0 0 0 0 

2 1 0 0 0 1 p p p 0 0 

2 2 0 0 0 p 1 p p 0 0 

2 3 0 0 0 p p 1 p 0 0 

2 4 0 0 0 p p p 1 0 0 

3 1 0 0 0 0 0 0 0 1 p 

3 2 0 0 0 0 0 0 0 P 1 

 

Of course, we may add more than just one explanatory variable, as well as 

interaction terms. However, thus far, the class of explanatory variables 
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introduced relates to the data-level only. Hence, this model may help explaining 

differences which exist, for instance, between different patient subgroups 

assessed within different studies. However, it may not yet be able to capture 

differences between studies, like the timing of an economic evaluation study, or 

the general study design (RCT or decision analytic model). These differences 

relate to level-two of the data-hierarchy. Furthermore, once adding a third level 

to the model which captures geographic domains, we may want to assess what 

explains differences in cost-effectiveness data between countries. This requires 

the inclusion of country-level covariates; hence, we need to add higher-level 

covariates to the model.  

 

 

To provide another justification, Drummond et al. (2009) state: ‘the term 

‘exchangeable’ means that there are no other a priori reasons why one 

jurisdiction may have more or less favourable measures of costs or cost-

effectiveness than another. Making an a priori assumption that one does not 

expect differences in jurisdiction-specific measures of cost-effectiveness may be 

unreasonable when the question we are trying to answer is whether or not such 

differences exist.’ (Drummond et al., 2009). Hence, it is necessary to relax the 

initial assumption of exchangeability of study and country parameters to allow 

for some sort of differences between studies, or countries, which may account 

for more, or less favourable cost-effectiveness estimates of a healthcare 

technology. 

 

There are strong reasons to suggest that the exchangeability assumption does, in 

fact, not hold between geographic domains. For example, as Grieve et al. (2007) 

puts it: ‘in multinational CEA a priori reasoning would suggest that if the 

countries included [...] are at different stages of economic development then 

systematic variations in the relative cost-effectiveness of health care 

interventions would be anticipated. In this context the exchangeability 

assumption would be implausible and a multilevel model that assumed 

exchangeability would be inappropriate.’ Analogously, the same holds between 

studies within one geographic domain. For example, if two studies were 

exchangeable in terms of the health technology under assessment, the 

comparator, and the general study design, but would differ with respect to the 
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elicitation of utility estimates and timing, then the exchangeability assumption 

may be violated in these aspects. Hence, what is needed is a model which ‘avoids 

making such stringent exchangeability assumptions’ (Grieve et al., 2007), and 

rather permits the adjustment of the dependent variable with respect to factors 

which are anticipated to be responsible for more or less favourable cost-

effectiveness estimates between studies and countries. Such models rely on the 

assumption of ‘partial exchangeability’, that is, we assume that the ‘mean 

estimates of cost-effectiveness are exchangeable, but only after covariate 

adjustment.’ (Grieve et al., 2007). Hence, including covariates on both levels of 

the model developed thus far will turn the random intercepts model in equation 

(8) into:  

 

���~�(��, �
 (9) 

��� = �� + �8H�� + �	H� + !� + ���  with !�~�(0, �"	
 ���~�(0, ��	
 
 

Note that this model only consists of a data and a study-level, and therefore does 

not yet carry country-level covariates. Country-level covariates may be 

considered further below once a country-level has been added to the model. It is 

also important to note that the study-level covariate in equation (9) does not 

carry a ‘i’- subscript as it does not vary within, but only between studies in the 

dataset (e.g. Steele, 2008; Rasbash et al; 2009). This specification enables 

exploring the impact of study-level effects while simultaneously controlling for 

factors on data-level and allowing for the fact that the cost-effectiveness of a 

healthcare technology measured in different studies may be influenced by 

variability factors within and between studies in the dataset. Further, as Steele 

(2008) states, if contextual effects are of interest, then a multilevel approach is 

vital as ‘the standard errors of coefficients of higher-level variables may be 

severely underestimated when a single level model is used’.  

 

Analogously to single level multiple regression analysis, we may also model that 

the effect of one explanatory variable on cost-effectiveness depends on the 
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value of another explanatory variable through interaction effects and interaction 

effects may be included between any set of explanatory variables (Steele, 2008). 

If explanatory variables belong to different levels, corresponding interaction 

terms are referred to as ‘cross-level interactions’ (Steele, 2008). With such cross-

level interactions, we could examine, for instance, the relationship between 

timing of an economic evaluation on study-level and the cost of the intervention 

on data-level. The idea is that intervention cost would change over time and this 

should be reflected in the data elicited from different economic evaluation 

studies which differ, amongst other things, by their respective timing. A random 

intercepts model with a cross-level interaction between data and study-level 

variables is presented in equation (10):   

 

���~�(��, �
 (10) 

��� = �� + �8H�� + �	H� + �JH��H� + !� + ���    with !�~�(0, �"	
 ���~�(0, ��	
 
 

Again, everything mentioned in this section also holds for covariates relating to 

differences between countries which are considered below once a country-level 

has been added to the model. This will ultimately allow simultaneous assessment 

of variability factors on data-, study- and country-level. As Gelman (2004) puts it, 

‘the valid concern is not about exchangeability, but encoding relevant knowledge 

as explanatory variables where possible. In essence, ‘the usual way to model 

exchangeability with covariates is through conditional independence. In this way 

exchangeable models become almost universally applicable, because any 

information to distinguish different units should be encoded.’ (Gelman (2004), 

cited from Manca et al., 2007). With respect to differences between geographic 

domains, Drummond et al. (2009) state, assuming that ‘if the analyst has 

identified the appropriate set of higher-level covariates for the exchangeability 

assumption to hold; and that the characteristics of the country of interest are 

represented appropriately by countries in the dataset’, the inclusion of higher-

level covariates allows estimation of cost-effectiveness for geographic domains 

which are not included in the dataset. The next section is concerned with adding 

a country-level to the model, which also allows including such higher-level 

covariates encoding differences between geographic domains.  
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However, before moving on to model the country-level within the multilevel 

framework, an important question remains: If our interest is to analyse 

contextual effects between countries, why do we control for variables on lower 

levels of the data hierarchy. The answer is that the variation on higher levels 

depends on what happens on lower levels of the model (Hox, 2010). In a single 

level model, the introduction of additional explanatory variables always 

decreases the variance of the error term or, at least, leaves it unchanged; but it 

never increases (Steele, 2008, Rasbash et al., 2009). However, in a MLM, the 

variance of the error term of the next level might stay unchanged, decrease, or 

even increase with the introduction of a lower-level covariate (Steele, 2008, 

Rasbash et al., 2009). Hence, without controlling for lower-level variables, we 

might get a distorted picture on what happens on study or country-level. Some 

contextual effects might be overestimated; others might be disguised by 

confounders on lower levels of the data hierarchy. For instance, in the case of 

statins for the primary and secondary prevention of CVD, not controlling for the 

annual drug cost on data-level may distort, or disguise the impact of GDP per 

capita on measures of cost-effectiveness on the country-level. To provide 

another example, Sculpher et al. (2004) state that patient factors constitute an 

important source of lower-level variability which potentially ‘feeds through to 

centre or country variations in cost-effectiveness if these subgroups of patients 

are not evenly distributed between locations’.  

 

 

In conclusion, we cannot simply leave all the variation on lower levels of the data 

hierarchy to the relating error term and then concentrate on contextual variables 

on country-level only; we need to investigate what explains variation on lower 

levels first before moving to the next higher level of the data hierarchy (e.g. Hox, 

2010). This has important implications for the design of the empirical analysis. 

With respect to data abstraction, for instance, it makes it necessary to put 

considerable effort into the collection of additional data from includable cost-

effectiveness studies to control for effects on data, and study-level; and this 

before even considering the analysis of contextual effects on country-level. In 

addition, data analysis within the empirical chapter may proceed from the lower 

level to the higher level, as the analysis of country-level covariates may only be 

valid once we appropriately controlled for variability factors on data and study-

level (Steele, 2008; Rasbash et al., 2009; Hox, 2010). Hence, within the empirical 
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exercise there is a strong focus on factors which may introduce variability in 

measures of cost-effectiveness on all levels of the data hierarchy. Fortunately, 

there is extensive literature on what may cause variability in cost-effectiveness 

estimates within and across studies as well as between geographic domains, 

which may also help determining a strategy for this empirical exercise (Sculper et 

al., 2004; Goeree et al., 2007).   

 

 

 

3.1.2.2. Adding a country-level to the multilevel model 

 

To this point, the methodological discussion was limited to a hierarchical model 

with two levels, namely, the data-level, with measures of cost-effectiveness 

collected within each study, and above that, the study-level, with studies 

included in the dataset. The hierarchical structure arises from cost-effectiveness 

estimates being nested within studies, and each estimate of cost-effectiveness 

nests in one study, the higher-level unit, only. The corresponding unit and 

classification diagrams for this situation are illustrated in Figure 3.7 (Rasbash, 

2008). If the problem was to integrate secondary cost-effectiveness data from 

different economic evaluation studies within one geographic domain, then this 

two-level model structure would probably be sufficient for that purpose.  

 

Figure 3.7: Unit and classification diagrams of a two-level hierarchical data 

structure 

Study 

CE-estimate 

Figure 3.7: Unit and classification diagrams of a two-level structure with 

cost-effectiveness estimates being nested in economic evaluation studies 

Classification 

diagram 

Unit diagram 

CE1 CE2 CE1 CE2 CE3 CE4 CE1 CE2 CE3 
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However, as the aim of this thesis is to assess the ‘geographic transferability’ of 

health economic evaluation data, there must be yet another hierarchical layer 

above the study-level (Figure 3.8), meaning that the two- level model discussed 

thus far may not be suitable to capture the full structure of our data. Hence, the 

first extension to the model to capture this additional layer is to add another 

level analogously to what has been done to move from the single level regression 

framework to the two-level model in Section 3.1.1.  

 

Figure 3.8: Unit and classification diagrams of a three-level hierarchical data 

structure 

 

To do so, reconsider the random intercepts model in equation (9):  

���~�(��, �
 (9, repeated) 

��� = �� + �8H�� + �	H� + !� + ���  with !�~�(0, �"	
 ���~�(0, ��	
 
 

Extending this model to turn it into a three-level hierarchical model is 

straightforward. We add another error term ‘'�K’ for the geographic location, 

and locations receive the subscript ‘k’ (with k=1,....,K countries) (e.g. Rasbash et 

al., 2009).  

 

Study 

CE-estimate 

Figure 3.8: Unit and classification diagrams of a three-level hierarchical 

structure with cost-effectiveness estimates being nested in economic 

evaluation studies and studies being nested in geographic domains 

Classification diagram Unit diagram 

CE1 CE2 CE1 CE2 CE3 CE4 CE1 CE2 CE3 

Study 1 Study 2 Study3 

Country Country 1 Country 2 
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���K~�(��, �
 (11) 

���K = �� + �8H��K + �	H�K + �JHK + '�K + !��K + ����K        with  

'�K~�(0, �L�	 
 !��K~�(0, �"�	 
 ����K~�(0, ���	 
 
 

With model (11) we have specified a full three-level hierarchical model with 

covariates on data-, study- and country-level. Unfortunately, however, this 

model does still not capture the full complexity of the data-structure which we 

aim to reflect. An additional problem arises as adding the country-level to the 

current two-level structure may not necessarily result in a strict hierarchy where 

each cost-effectiveness estimate belongs to one study only and each study nests 

in one particular geographic location. Sometimes, a study produces estimates of 

cost-effectiveness for more than one geographic location. For example, an 

economic evaluation conducted alongside a multinational RCT usually reports 

results for each participating jurisdiction. As a result, cost-effectiveness 

estimates for these ‘multinational studies’ are nested within studies, and they 

are also nested within geographic domains. However, studies are not nested 

within geographic domains, and geographic domains are not nested within 

studies. Rather, studies and geographic domains are ‘cross-classified’. To 

illustrate the problem of cross-classified data, consider Figure 3.9. The unit 

diagram shows how cost-effectiveness estimates obtained from specific studies 

may belong to different geographic domains. Figure 3.9 also contains the related 

classification diagram for this situation, which can be regarded as a more general 

case as the hierarchical structures in Figurers 3.7 and 3.8 (Rasbash, 2008). In fact, 

the hierarchical structure is only a special case of the cross-classified model, and 

the existence of these non-hierarchical structures justifies the use of the term 

‘multilevel models’ in preference to the more specific term ‘hierarchical models’ 

(Rasbash, 2008).  
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Figure 3.9: Unit and classification diagrams of a cross-classified data structure 

 

The question is how to expand upon the strictly hierarchical model introduced 

above to allow for cross-classified data. First, we do not longer talk about three 

‘levels’, as studies and countries become classifications on the same level 

(Rasbash et al., 2009). Hence, the model conceptually turns into a two-level, 

cross-classified structure (Goldstein & Sammons, 1997; Rasbash et al., 2009; Hox, 

2010). Next, unique classification identifiers are needed (Rasbash et al., 2009). 

Thus far, within the strictly hierarchical model, one subscript was used for each 

data-level with ‘yijk’ denoting the ith cost-effectiveness estimate from the jth study 

and kth country. As models with many classifications are possible, the use of 

subscripts may become bulky, which is why other notations exist (Rasbash et al., 

2009). However, in our model with two levels and only two classifications, we 

can comfortably carry on with using subscripts ‘i’, ‘j’ and ‘k’ and simply use 

parentheses to group together the subscripts ‘j’ and ‘k’ to express that studies 

and countries are cross-classified (Hox, 2010). Hence, the three-level random 

intercepts model introduced in equation (11) turns into a two-level cross-

classified model of the form:   

 

 

 

 

CE-

estimate 

Figure 3.9: Unit and classification diagrams of a cross-classified dataset with 

cost-effectiveness estimates classified in different studies and countries.  

Classification diagram Unit diagram 
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��(�K
~�(��, �
 (12) 

��(�K
 = �� + �8H�(�K
 + �	H� + �JHK + !�K + !�� + ���(�K
        with  

!�K~�(0, �"�K	 
 !��~�(0, �"��	 
 ���(�K
~�(0, ���	 
 
 

Note that the notation for the country and study error terms also changed 

(Rasbash et al., 2009). As we have now specified that both studies and countries 

are cross-classified on level two, we denote the error terms with ‘!K’ for country 

and ‘!� ’ for study rather than ′'K′ and ‘!�K′	 in the strictly hierarchical model.  

 

 

The estimation procedure is more complicated for the cross-classified model 

compared to its strictly hierarchical counterpart (Rasbash et al.; 2009, Hox, 

2010). Thus far, the hierarchical structure of the data permitted the structure of 

the covariance matrix to be ‘block-diagonal’ as it was shown in Figure 3.6 in 

Section 3.1.2.1. However, as Rasbash et al. (2009) make clear, the cross-classified 

model requires a non-block diagonal covariance structure. For this reason, to be 

able to estimate cross-classified effects between study and country using 

iterative generalised least squares (IGLS), a third ‘dummy-level’ needs to be 

introduced with one unit that spans the entire dataset (Rasbash et al.; 2009, Hox, 

2010). Then, dummy variables are created on the cost-effectiveness level with 

one dummy variable for each country (Rasbash et al.; 2009, Hox, 2010). Finally, 

coefficients of the dummy variables created are permitted to vary randomly at 

the country-level and, whilst covariances between dummies are assumed to be 

zero, their variances are assumed to be equal (Rasbash et al.; 2009, Hox, 2010). 

Hence, according to Hox (2010), we estimate one variance component for the 

countries to which cost-effectiveness estimates apply to, and by creating a 

separate level for countries, we make sure that the covariance between studies 

and countries is zero. Again, although technically this model uses three data-

levels, it is conceptually a two-level cross-classified model with studies and 

countries being cross-classified on the same level (Rasbash et al.; 2009, Hox, 

2010). As Hox (2010) further states, the third level is ‘just a computational device 

to allow estimation using standard multilevel software’. Therefore, we refer to it 

as ‘dummy-level’ (Hox, 2010). Note that an alternative procedure to estimate 
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cross-classified models in MLwiN, which is also used for the purposes of this 

thesis, is Markov Chain Monte Carlo (MCMC) estimation (Browne, 2012).  

 

 

Acknowledging cross-classification within multilevel models is not new, though, 

to the knowledge of the author, there has not yet been an application of a cross-

classified multilevel-model within the area of economic evaluation in health. 

Several authors used two-level models for the analysis of individual patient data 

collected alongside randomised controlled trials, cluster randomised trials, or 

observational studies (e.g. Grive et al., 2005; Willan et al., 2005; Manca et al., 

2005; Nixon et al., 2005; Pinto et al., 2005; Thompson et al., 2006; Manca et al., 

2007; Grieve et al., 2007; Bachmann et al., 2007; Coupe et al., 2007; Willan et al., 

2008; Petrinco et al., 2009; Grieve et al., 2010; Edbrooke et al., 2011) but 

datasets analysed in these studies were strictly hierarchical; hence, cross-

classification was not an issue. However, acknowledging cross-classification 

allows integrating secondary data of both single-country studies and multi-

country studies, as the latter cause the strict hierarchy between studies and 

countries to break down. The underlying assumption is that data within 

individual studies and countries is dependent, whilst independence is assumed 

between studies and between countries reflected in the dataset. However, there 

are reasons to be critical about the independency assumption of data for 

countries considered within multinational studies. Multinational studies may 

underestimate variability between countries because of, for instance, 

standardised trial protocols (e.g. Ramsey et al., 2005), the use of pooled 

effectiveness or resource use data (e.g. Barbieri et al., 2005), or methodological 

characteristics of the study which may cause cost-effectiveness estimates 

between countries to be more in the same range compared to evidence from 

single country-studies. As a result, underestimated country-level variability in 

multinational studies may affect the overall variability observed between 

countries in the cross-classified model.  

 

 

For this reason, Section 3.4 reports on a pilot study in which MLMs were tested 

before the main empirical analysis was carried out. If country-level variability is 

observed to be suspiciously low in the cross-classified model in the pilot study, 

this may be a reason to consider alternative assumptions regarding the 
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independence of data between countries from multinational studies. One 

alternative may be to fall back to a strictly hierarchical three-level model as 

reported in equation (11), where data from multinational studies are simply 

clustered in a separate group on country-level. However, for the purposes of the 

pilot, the cross-classified model (12) is the main model of interest, which is why 

the remainder of this chapter further elaborates on this particular framework. 

Nevertheless, everything mentioned in the remainder of this chapter holds just 

as much for a hierarchical three-level model. The pilot study in Section 3.4 and 

Chapter 5.1, which is concerned with determining the appropriate MLM 

structure for the main empirical analysis, further elaborate on this matter.  

 

Before moving on to the question of how the dependent variable may be defined 

within the MLM framework in Section 3.2 of this chapter, there is a third 

extension to the model developed thus far. The MLM framework offers the 

unique opportunity to model the variation in the response variable as a function 

of explanatory variables through the inclusion of random slopes to the model. 

This is considered next in Section 3.1.2.3.  

 

 

3.1.2.3. Random slopes and the variance function 

 

 

In the variance components model, the effect of explanatory variables on the 

cost-effectiveness of a healthcare technology is not considered. Therefore, the 

random intercepts model with explanatory variables on each level of the data 

hierarchy was introduced in Section 3.1.2.1. However, within that section, the 

effect of explanatory variables on cost-effectiveness estimates was assumed to 

be the same across all studies (and countries). Hence, all regression lines were 

placed parallel to each other with ′��′ being the intercept and ′�8H�(�K
′ being 

the slope of the overall regression line and ′�� + !�′ being the intercepts of the 

individual study regression lines. This was illustrated in Figure 3.5. However, the 

effect of explanatory variables may be different, for instance, for different 

studies in the dataset. In this case, the random intercepts model does not 

adequately capture the reality of such relationships. Therefore, a new class of 
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models is now being introduced, the ‘random slopes model’ (Steele, 2008; 

Bartholomew et al., 2008; Rasbash et al., 2009; Hox, 2010).  

 

 

In contrast to the random intercepts model, each regression line in the random 

slopes model has its individual intercept and slope (Steele, 2008; Bartholomew et 

al., 2008; Rasbash et al., 2009; Hox, 2010). This allows each explanatory variable 

to have an individual effect, for instance, on each study in the dataset, which is 

also illustrated in Figure 3.10. The question is how to expand the random 

intercepts specification to turn it into a random slopes model?  

 

Recall equation (12):  

 ��(�K
~�(��, �
 (12, repeated) 

��(�K
 = �� + �8H�(�K
 + �	H� + �JHK + !�K + !�� + ���(�K
        with  

!�K~�(0, �"�K	 
 !��~�(0, �"��	 
 ���(�K
~�(0, ���	 
 
 

We can turn this model into a random slopes model by adding a random term to 

any of the slope parameters on any level of the model (Steele, 2008; 

Bartholomew et al., 2008; Rasbash et al., 2009; Hox, 2010). For instance, if we 

would like the model to capture that the relationship between patient 
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Figure 3.10: Random slopes model
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characteristics on data-level and measures of cost-effectiveness may be different 

for different studies in the dataset, we add a random slope on level two for the 

respective patient covariate. The idea is that, just like the random term ′!��′ 
allows the intercepts of individual study regression lines to vary randomly, this 

additional random component ′!8�′	attached to the regression coefficient will 

allow its respective slope to vary randomly too (Steele, 2008; Bartholomew et al., 

2008; Rasbash et al., 2009; Hox, 2010).  

 

This turns model (12) into:  

 

��(�K
 = �� + (�8H�(�K
 + !8�
 + �	H� + �JHK + !�K + !�� + ���(�K
  (13) 

 

which can be rearranged so that:  

��(�K
~�(��, �
 (14) 

��(�K
 = �� + �8H�(�K
 + �	H� + �JHK + !�K + !�� + !8� + ���(�K
     with 

 

M!�KN~�(0, Ω"K
			 where  Ω"K = M�"�K	 N 
P!��!8�Q ~�(0, Ω"�
    where   Ω"� = R �"��	�"�8� �"8�	 S 
T���(�K
U~�(0, Ω�
			      where   Ω� = M���	 N 
 

 

As before in the random intercepts model, we can interpret the parameter ′��′ 
as the intercept and	′�8H8�(�K
′ as the slope of the pooled regression line (Steele, 

2008; Rasbash et al., 2009, CMM-workshops/random slopes). Also analogously 

to the random intercepts model, ′���	 ′ is the variance for the within-study error 

term		′���(�K
′ (Steele, 2008). However, in contrast to the random intercepts 

model, the slope is no longer identical between the pooled regression line and 

the individual study regression lines (Steele, 2008; Bartholomew et al., 2008; 

Rasbash et al., 2009; Hox, 2010). Hence, special attention needs to be placed on 
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the interpretation of ′Ω"� = R �"��	�"�8� �"8�	 S ′ in which ′�"8�	 ′ is the variance in 

slopes between studies, ′�"��	 ′ is the variance in intercepts between studies, and ′�"�8�′ is the covariance between intercepts and slopes between studies (Steele, 

2008; CMM-workshops/random slopes).  

 

 

Specifically, as there is no variation in a random intercepts model between 

slopes of the individual regression lines, the covariance for slopes and intercepts ′�"�8�′ is not defined (Steele, 2008; CMM-workshops/random slopes). However, 

in a random slopes model, both intercepts and slopes may vary randomly 

between studies included in the dataset, making ′�"�8�′ an important parameter 

(Steele, 2008). If the covariance between slopes and intercepts is positive, that 

means there is a pattern of regression lines over the range of the explanatory 

variable which is ‘fanning out’ (Steele, 2008; CMM-workshops/random slopes). 

This is, for example, the case in the sample dataset illustrated in Figure 3.10.  

Conversely, if the covariance ′�"�8�′	is negative, then the regression lines are 

‘fanning in’ (Steele, 2008; CMM-workshops/random slopes). Finally, if the 

covariance is zero, then there is no pattern in the variation of slopes over the 

range of the explanatory variable x (Steele, 2008).  
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Hence, the matrix ‘Ω"� = R�"��	��8� "8�	 S’ defines the relationship between the 

error terms of the intercepts ′!��′ and the error term of the slopes ′!8�′ (Steele, 

2008; CMM-workshops/ random slopes). It also turns out that through 

introducing random slopes, the value of the intercept depends on where we 

define the explanatory variable ‘x’ to be zero (Steele, 2008; CMM-workshops/ 

random slopes). Consider Figure 3.11: depending on where the y-axis cuts the x-

axis, we observe different values of the between group error term ′!��′, the 

variance of the intercepts between studies ′�"��	 ′ and the covariance between 

slopes and intercepts ‘�"�8�′ (Steele, 2008; CMM-workshops/ random slopes). 

Specifically, whilst the data-level and country-level variance terms remain 

unchanged with ′���	 ′ and ′�"�K	 ′	 respectively, we now have two random terms at 

the study-level, and the total level two variance may be expressed as a quadratic 

function of the explanatory variable (Steele, 2008; Rasbash, 2009; CMM-

workshops/ variance function): 

 

 ���7!�� + !8�H8��9 = �"��	 + 2�"�8�H8�� + �"8�	 H8��	          (15) 

 

Accordingly, the VPC may be expressed as (e.g. Steele, 2008):   

 

�+, = -.W/ 0	-.WXYXZD0-.X/ YXZD/-.W/ 0	-.WXYXZD0-.X/ YXZD/ 0-1W/                         (16) 

 

Now that a model has been specified which allows both intercepts and slopes to 

vary randomly across studies, the question is why this concept may be valuable 

for addressing the transferability problem of economic evaluation data. The 

answer is that equation (15) represents a ‘variance function’ which shows how 

study or country-level variance changes over the range of an explanatory 

variable (Steele, 2008; Rasbash et al., 2009; CMM-workshops/ variance function). 

Hence, random slopes models provide us with the opportunity to explicitly 

model variability in measures of cost-effectiveness across studies, or geographic 

domains, as a function of explanatory variables. This is also shown in Figures 3.12 

and 3.13 below. Figure 3.12 shows how the variance in cost-effectiveness data 

between study regression lines depends on the value of the explanatory variable, 
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and this variance between studies has been plotted in Figure 3.13. Being able to 

model means and variances simultaneously offers unique opportunities for 

addressing the transferability problem of health economic evaluation data. For 

instance, Sculpher et al. (2004) mentioned that patient characteristics in 

economic evaluation studies (like age, gender, risk factors, etc.) constitute critical 

variability factors which may feed through to higher levels of the model 

hierarchy.  

 

Modelling variability in measures of cost-effectiveness between economic 

evaluation studies from different geographic domains as a function of (lower-

level) patient characteristics, shows for which range of the respective patient 
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factor variability between studies and/or countries is lowest. In other words, we 

infer the range of values for the explanatory variable for which agreement in 

results between studies, or countries, is highest, and transferring evidence to the 

target domain may be most indicated. Conversely, for ranges of the explanatory 

variable for which variability between studies / countries is high, transferring 

evidence to the target domain may not be indicated and one may rather 

conclude commissioning a new study for the target country. In this respect, the 

variance function may be utilised to target research resources more efficiently to 

those study questions for which disagreement in existing international economic 

evaluation data is highest.  

 

For example, suppose the explanatory variable modelled in the sample dataset is 

the mean low density cholesterol level (LDL) of patient subgroups in each study 

and a random slope is specified on study-level, i.e. allowing that the effect of LDL 

on the cost-effectiveness of statins is different between studies. What we learn 

from Figure 3.13 is that the variability in cost-effectiveness estimates increases 

between studies with increasing LDL. Hence, we may be more inclined to transfer 

findings to a new setting for lower LDL patients, whilst suggesting additional 

evidence for the target domain for higher LDL patients. Although we do not have 

clear thresholds to either accept, or decline a given level of variability within the 

data, this approach could help setting more specific research priorities in the 

light of limited research resources; i.e., decision makers could invest research 

resources within one intervention area more targeted to cases of high variation 

in existing cost-effectiveness data, whilst relying on transferred evidence for 

cases which show comparatively low variation in cost-effectiveness estimates 

between studies and / or countries.  

 

Thus far, exchangeability of study parameters was assumed to allow for the 

integration of secondary cost-effectiveness data. This resulted in the variance 

components model introduced in Section 3.1.1. Subsequently, this model was 

extended to include explanatory variables on each level of the data hierarchy in 

Section 3.1.2.1, and more complex data structures were modelled including the 

cross-classification between studies and countries due to multinational study 

data in Section 3.1.2.2. In this particular section, random slopes and the 
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variability in measures of cost-effectiveness were modelled as a function of 

explanatory variables. However, the question of how to define the dependent 

variable in the model, i.e. how to express the cost-effectiveness of a healthcare 

technology as a response variable in a MLM for secondary data integration, 

needs to be addressed next. Section 3.2 elaborates on this question. Finally, in 

Section 3.3, models of both previous sections are combined, resulting in a 

‘bivariate multilevel model for secondary data integration’.   

 

 

3.2. Dependent variable in a model for secondary 

economic evaluation data integration  

 

As mentioned above, in order to develop a multilevel model for secondary data 

integration from international health economic evaluation studies, one has 

determine how to define the dependent variable in the model, i.e. how to 

express the ‘cost-effectiveness’ of a healthcare technology as a response variable 

in a MLM framework. There is an explicit theory on regression analytic modelling 

within health economic evaluation, and analysts suggest the use of the 

‘incremental net monetary benefit framework’ (INMB) as this has more 

favourable statistical properties than other, non-linear, measures of cost-

effectiveness (Claxton & Posnett, 1996; Stinnet & Mullahy, 1998, Briggs & Fenn, 

1998; Tambour et al., 1998). In addition, bivariate modelling has been suggested 

to include measures of incremental costs and incremental effects separately in a 

vector of response variables in one regression framework (Nixon et al., 2005; 

Pinto et al., 2005; Manca et al., 2007; Grieve et al., 2007; Bachmann et al., 2007; 

Willan et al., 2008; Grieve et al., 2010). This section elaborates on how to define 

the response variable, or a vector thereof, within the MLM for secondary data 

integration.  
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3.2.1. Incremental Cost-Effectiveness Ratio (ICER) or Incremental 

Net Monetary Benefits (INMB) 

 

 

From standard health economics textbooks, we can learn that ‘for a meaningful 

comparison, it is necessary to examine the additional costs that one health care 

intervention imposes over another, compared to the additional benefits, or 

utilities it delivers’ (Drummond et al., 2005a). A commonly used summary 

measure for this ‘incremental’ approach is the so called ‘Incremental Cost-

Effectiveness Ratio’ (ICER), that is:  

 [,
\ = ]Z^]_`Z^`_ 	= ∆]∆`	               (17) ,�= (mean) cost of intervention ,a= (mean) cost of alternative 
�= (mean) effectiveness of intervention 
a= (mean) effectiveness of alternative 

 

The ratio can be interpreted as the additional financial resources which need to 

be invested in order to achieve a unit of health gain compared to an alternative 

strategy (Stinnet & Mullahy, 1998). However, there are several problems 

associated with the ICER as a summary statistic for the cost-effectiveness of a 

healthcare intervention which are well discussed in the relevant literature 

(Drummond et al., 2005a; Claxton & Posnett, 1996; Stinnet & Mullahy, 1998; 

Briggs & Fenn, 1998):  

 

• the ICER may entail information on the relative cost-effectiveness of a 

healthcare intervention, but it is not sufficient to decide upon whether or 

not to implement that healthcare technology. To make this decision, we 

need an external criterion, i.e. a threshold which represents the willingness 

to pay for the additional health outcome achieved. (Drummond et al., 

2005a) This threshold is denoted by (b
 and the decision rule is to adopt the 

technology if:  

 [,
\ = ]Z^]_`Z^`_ < b		               (18) 
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• The interpretation of ICERs, is not unambiguous without having additional 

information on the location of the new technology on a cost-effectiveness 

plane. In other words, the ICER of an intervention may be identical if it is less 

costly and more effective, or more costly and less effective. Without having 

additional information on the quadrant of the CE plane in which the ICER 

falls, there is no meaningful interpretation of this ratio-statistic (Stinnet & 

Mullahy, 1998). In addition, negative ICER’s are not defined, and hence, are 

not informative for decision making (Briggs & Fenn, 1998) 

 

• A statistical problem that follows from this ambiguity relates to the 

calculation of confidence intervals (CIs) for ICERs if there is a non-negligible 

chance that the ratio may be negative. As the probability distribution of the 

ICER does not carry any information regarding its location on the cost-

effectiveness plane, its distribution and hence the construction of CIs is 

ambiguous (Stinnet & Mullahy, 1998).   

 

• Also, if there is a non-negligible probability of the denominator taking values 

close to zero, then the quantification of sampling uncertainty becomes an 

issue as the moments of the sampling distribution may be undefined (Briggs 

& Fenn, 1998)  

 

Hence, though the ICER follows an incremental approach to cost-effectiveness 

analysis, which is advocated by the relevant literature (Drummond et al., 2005a), 

it possesses some qualities which cast into doubt its usefulness as a dependent 

variable within a regression analytic framework (Claxton & Posnett, 1996; Stinnet 

& Mullahy, 1998; Briggs & Fenn, 1998). To overcome the problems associated 

with ICERs, several health economists advocated the ‘incremental net monetary 

benefit approach’ (INMB) as an alternative (e.g. Stinnet & Mullahy, 1998; Briggs 

& Fenn, 1998; Tambour et al., 1998). INMBs may be calculated simply by 

rearranging equation (18). Recall that we decide to adopt a health technology if:  

 [,
\ = ]Z^]_`Z^`_ < b		          (18, repeated) 

 

Rearranging this equation leads to:  

 b ∗ (
� − 
a
 > ,� − ,a             (19) 



 

78 
 

And finally 

 b ∗ (
� − 
a
 − ,� − ,a > 0                          (20) 

 

or  

 ∆
 ∗ b − ∆, > 0  (INMB)             (21) 

 

As the INMB is not a ratio-statistic, it essentially solves the problems mentioned 

above. The INMB statistic is defined both for negative and positive values and 

there is no ambiguity in its interpretation with respect to its location on the cost-

effectiveness plane; i.e. a positive (negative) ICER always means that the new 

intervention is more (less) favourable than the comparator technology and, the 

higher the INMB value, the more favourable is the intervention under 

investigation (Stinnet & Mullahy). In other words, whereas ICERs do not obey to 

the law of transitivity, preferences are monotonic in INMBs (Stinnet & Mullahy, 

Hoch et al., 2002). In addition, the lineal form of the INMB statistic solves the 

statistical shortcomings of the ICER, making it more suitable when employing 

regression analytic methods (Hoch et al., 2002), which is the aim of this exercise.  

 

 

 

3.2.2. Net benefit regression for RCT data 

 

 

So far we have learned that the cost-effectiveness of a health care technology 

should be measured in terms of both its incremental costs and incremental 

health effects of one intervention compared to another. Secondly, because of its 

linear form, the INMB approach may be preferred over to the ICER statistic, 

which suffers from several shortcomings in terms of its interpretation and in 

terms of its statistical properties. However, the next task is to employ the INMB 

statistic within a regression analytic framework. We previously defined that: 

 

 ∆
 ∗ b − ∆, > 0  (INMB)       (21, repeated) 
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Hoch et al. (2002) transferred the INMB framework into a linear model suitable 

for net benefit regression in a randomised controlled trial. First, they estimated a 

net benefit value for each subject in a trial setting in the form of.  

 

 �f�� = b ∗ 
� − ,�   (22) 

 

 

where ′
�′and ′,�′ are the observed effects and cost for subject ‘i’ in the trial 

(Hoch et al., 2002). A simple linear regression model was then defined in the 

form of:  

 �f�� = �� + g$� + h�  (23) 

 

where, ‘��’ represents an intercept term, ‘t’ a treatment dummy taking the value 

zero for the standard treatment and the value one for the treatment under 

consideration, and ′hi	is the stochastic error term (Hoch et al., 2002). The 

coefficient ′g′ provides the estimate of the incremental net monetary benefit 

(INMBi = NMB1i – NMB0i) In an extension of model (23), Hoch et al. (2002) 

showed how this regression framework can be exploited to add explanatory 

variables to the regression equation, which then takes the following form:  

 �f�� = �� +j �kH�klkm8 + g$� + h�        (24) 

 

 

In this model, there are ‘p’ covariates and the INMB provided by ′g$�′ is 

estimated whilst taking into account the impact of these explanatory variables, 

which could be, for example, age, gender, or severity of disease of patients 

participating in the trial (Hoch et al., 2002).  

 

 

Hoch et al. (2002) made a very important contribution as they transferred the 

INMB-statistic into a regression framework. However, three important issues of 

dependency within (secondary) cost-effectiveness data need to be addressed to 

derive a model suitable for the purposes of this thesis. The three dependencies 

to be addressed are: 



 

80 
 

 

• no independence between intervention and control groups within a 

study if data is combined from different studies 

• no independence of costs and effects within each measure of cost-

effectiveness, and  

• Dependence of the INMB statistic on a (country specific) threshold 

value λ  

 

The following section addresses each of these issues showing that all of them can 

be considered appropriately within a ‘multivariate regression framework’. 

 

 

3.2.3. Decomposing the INMB statistic 

 

 

As mentioned above, there are several dependencies within secondary cost-

effectiveness data from different economic evaluation studies which the 

standard net benefit framework proposed by Hoch et al. (2002) does not 

adequately capture. First of all, as the net benefit regression framework was 

purposely developed for economic evaluations ‘within’ RCTs, it treats both costs 

and effects in the treatment and the control arm as independent. As shown in 

equation (24), the treatment dummy ′g$�′ is ‘1’ for the intervention and ‘0’ for 

the control group, assuming zero covariance between the interventions and the 

controls. Within the boundaries of a single RCT (for which the net benefit 

regression framework was developed), this is a perfectly reasonable assumption, 

as the trial protocol is supposed to eliminate dependencies between both 

groups. However, when the intension is to integrate evidence from different 

studies, then estimates from the same study suddenly become highly dependent.  

 

 

The second issue relates to the use of NMBs as dependent variable in the net 

benefit regression framework. In particular, using NMBs on the left hand side of 

the equation means combining estimates on both costs and effects in the 

dependent variable, so that the existence of correlation between the two 

components of the NMB statistic is not being made explicit (note again that in 

Hoch’s net benefit regression framework, NMBs constitute the dependent 
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variable, the incremental approach is introduced through the inclusion of the 

treatment dummy ′g$�′ (Hoch et al (2002)). However, each component of the 

NMB statistic is likely to contribute in different amounts to the overall variability 

in measures of cost-effectiveness, and explanatory variables are likely to have a 

differential effect on each of these components (e.g. Manca et al., 2007). Using 

NMB as outcome measure would hence preclude the chance of estimating the 

differential impact of covariates on both costs and effects of the healthcare 

intervention and its respective comparator. One could argue that fitting separate 

models may solve the problem. However, doing so would mean to model the 

opposite extreme, where the existence of correlation between the components 

of net monetary benefits is being ignored altogether. Therefore, several authors 

already suggested the use of bivariate models to overcome the problem of 

dependency between cost and effects of a healthcare technology (Nixon et al., 

2005; Pinto et al., 2005; Manca et al., 2007; Grieve et al., 2007; Bachmann et al., 

2007; Willan et al., 2008; Grieve et al., 2010).  

 

 

In addition to all of the above, the standard net benefit regression framework 

requires a new regression to be estimated for each value of ′b′ as different cost-

effectiveness thresholds might be applicable to different jurisdictions (e.g. 

Manca et al., 2007). A solution to all of these problems may exist in the form of 

multivariate models as they allow for correlation amongst a set of response 

variables. How to derive such a multivariate model is the question for the 

remainder of this section.  

 

 

First of all, instead of calculating the NMB for interventions and controls and 

using ′g$�′	 as a treatment dummy, we may first decompose the INMB 

framework, which provides four potential response variables for a multivariate 

model. These four response variables are the costs and effects of the 

intervention, and the costs and effects of the comparator respectively.  

 

 

Denote by ‘Ydi‘ the response on variable ‘d’ with (d=Cint, Eint, Ccomp, Ecomp,) for 

each estimate of INMB ‘I’ with (i=1,....,n).  Modelling costs and effects of both 

intervention and comparator simultaneously as response variables within one 
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regression equation makes explicit the correlation between all components of 

the INMB statistic. However, having more than one dependent variable on the 

left hand side of the equation requires making further adjustments to the overall 

regression equation, which is why response indicators ‘�n′ are introduced 

(Bartholomew et al., 2008). These response indicators are dummies being coded 

‘1’ for each observation on variable ‘d’ and ‘0’ otherwise (Bartholomew et al., 

2008). In the current example case, we have a dataset with ‘i=1,...,n’ 

observations of INMB, and ‘d=4’ response variables ′o8 = ,�pq′ , ′o	 = 
�pq′, ′oJ = ,rstk′ and ′ou = 
rstk′. The respective dataset may look like it is shown 

below in Table 3.1 (Bartholomew et al., 2008): 

 

Table 3.1: Multivariate data structure for two data-points 
 

i d Ydi r1 r2 r3 r4 

1 Cint Y11 1 0 0 0 

1 Eint Y21 0 1 0 0 

1 Ccomp Y31 0 0 1 0 

1 Ecomp Y41 0 0 0 1 

2 Cint Y12 1 0 0 0 

2 Eint Y22 0 1 0 0 

2 Ccomp Y32 0 0 1 0 

2 Ecomp Y42 0 0 0 1 

... ... ... ... ...   

 

 

For instance, as can be seen from Table 3.1, the response indicator ‘r1‘ is equal to 

‘1’ if the row in the dataset refers to the cost measured for the intervention, and 

‘0’ otherwise, and ‘r4‘ is ‘1’ if the row in the dataset refers to the effect of the 

comparator, and ‘0’ otherwise. We can now rewrite our model as:  

 

 

 

 

 

 

 

 



 

83 
 

�n�~f��(��, �
                           [25] vn� = ��n ∗ �n + !n� ∗ �n           

 

with  

M!n�N~f�� (0, Ω"
     where  Ω" = wxx
xy�"�	�"�8 �"8	�"�	 �"8	 �"		�"�J �"8J �"	J �"J	 z{{

{|
 

 

 

In a sense, response indicators take over the role of the treatment dummy ′g$�	′ 
in Hoch et al’s (2002) net benefit regression framework. However, In model (25), 

an error variance is assigned to each response variable (Bartholomew et al., 

2008) and the model allows the covariances between response variables within 

each measurement of INMB being different from zero as it is shown by the 

covariance matrix ′Ω"′ (Bartholomew et al., 2008). Hence, model (25) represents 

a very basic multivariate model, which takes into account the correlation 

between different components of the INMB statistic. An important advantage of 

this model is that by adding explanatory variables to the equation, one can infer 

differential effects of covariates on each response variable (Bartholomew et al., 

2008). Model (25) turns into:  

 �n�~f��(��, �
               [26] vn� = ��n�n + �8nH8��n + !n��n 

 

with  

M!n�N~f�� (0, Ω"
     where  Ω" = wxx
xy�"�	�"�8 �"8	�"�	 �"8	 �"		�"�J �"8J �"	J �"J	 z{{

{|
 

 

 

Because of the response indicator ′�n′ and the covariance matrix ′Ω"′, which 

entails a variance term for each response variable and also allows covariances 

between response variables to be different from zero, we can now fit a different 

intercept to each response variable, while the interactions between the 

explanatory variable ′H�′ and the response indicator ‘�n′ allow the effect of the 
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explanatory variable ′H�’ to differ between response variables (Bartholomew et 

al., 2008). The response variable specific residuals are fitted by permitting the 

intercept of the response indicator ′�n′	to vary randomly across the 

measurements of INMB (Bartholomew et al., 2008). Note that models (25) and 

(26) technically belong to the family of MLMs as the response variables are being 

‘nested’ within each estimate of INMB. However, there are important differences 

to standard multilevel models, which is why these models are being referred to 

as ‘simple multivariate models’ (Bartholomew et al., 2008). Acording to 

Bartholomew et al. (2008), these characteristics are: 

 

• the intercept term ′��n′ allows for different means of each response 

variable 

• As there is only one error term ‘!n� ′	 which is modelled on the level of the 

INMB-measure ‘udi’, this may be viewed as the INMB-specific residuals that 

have different variances for each response variable. In a standard MLM, 

there would be one error term on each level.  

• Finally, the model allows the error term to be correlated across responses. 

 

By modelling a vector of response variables for each component of the INMB 

statistic, the net benefit regression framework has been turned into a 

multivariate model which takes into account correlations between the 

components of INMBs. If published studies on the cost-effectiveness of a 

healthcare intervention would explicitly report data on costs and effects of both 

the intervention and the comparator, then this would be the appropriate model. 

However, a practical limitation lies in the reporting of cost-effectiveness 

evidence. Unfortunately, many publications report their cost-effectiveness 

results only in terms of ICERs or INMBs, without decomposing the measure of 

cost-effectiveness into its components. If this is the case, the study may not be 

includable in this empirical exercise. However, whilst information on cost and 

effects of both the intervention and comparator are almost never reported 

explicitly, quite a number of studies decompose measures of cost-effectiveness 

into incremental cost (∆C) and incremental effects (∆E) respectively.  

 

 

The implication is that the multivariate model with four response variables may 

not be practicable as only very few studies, if any at all, make explicit the 
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required information on all response variables to populate the dataset. If this is 

the case, the next best alternative is to include ∆C and ∆E as a vector of response 

variables in a bivariate regression framework. Though this does not take into 

account the differential impact of intervention and comparator on INMBs, it still 

decomposes the INMB statistic so that we may assess the differential impact of 

explanatory variables on incremental cost and incremental effects whilst taking 

into account the correlation between the two components of the INMB statistic. 

As a result, a simplified, bivariate model is proposed, in which the two response 

variables are ∆C and ∆E of a healthcare intervention. Hence, the vector of 

response variables (d=Cint, Eint, Ccomp, Ecomp,) is replaced by (d= ∆,, ∆
) and model 

(26) turns into:  

 

 }v8�v	�~ ~���(��, �
                           [27] 

 vn� = ��n�n + �8nH8��n + !n��n 

 

�8 = � 1	(�	∆	*%�$0	(�	∆	����*$�� �	 = 1 − �8																		with  

 

P!��!8�Q ~��� (0, Ω"
      where  Ω" = R�"�	�"�8 �"8	 S 
 

 

In this section, a bivariate model was developed which makes explicit the 

correlation between the two components of the INMB statistic ∆C and ∆E and 

also allows for differential effects of explanatory variables on each response 

variable. In addition, a MLM with data, study, and country-levels was developed 

in Section 3.1 of this chapter. The next section combines both models, ultimately 

deriving a multilevel model suitable for secondary data integration of 

international health economic evaluation studies.  
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3.3. Bivariate multilevel model for secondary data 

integration  

 

 

In Section 3.1, a MLM was developed which accommodates both a study and a 

country-level to allow integrating data from different studies applicable to 

different geographic domains. In addition, cross-classification was modelled as 

multinational studies provide cost-effectiveness data for more than one country, 

causing the strict hierarchy between data, study and country-level to break 

down. In Section 3.2, the measure of cost-effectiveness suitable for econometric 

analysis was determined. Following from Hoch’s net benefit regression 

framework, a bivariate model was developed with the two components of the 

INMB statistic (∆C and ∆E) as a vector of response variables. In this section, both 

models previously developed are being combined, resulting in a bivariate MLM 

suitable for secondary data integration of economic evaluation studies applicable 

to different geographic domains. To do so, reconsider the random intercepts 

model which makes explicit that data is grouped in studies and countries and 

also allows for cross-classified data structures due to multinational study data:  

 ��(�K
~�(��, �
 (12, repeated) 

 ��(�K
 = �� + �8H�(�K
 + �	H�+�JHK + !�K + !�� + ���(�K
        with !�K~�(0, �"�K	 
 !��~�(0, �"��	 
 ���(�K
~�(0, ���	 
 
 

Also, recall the bivariate model shown above in equation (27): 

 }v8�v	�~ ~���(��, �
         (27, repeated) 

 vn� = ��n�n + �8nH8��n + !n��n  
 �8 = � 1	(�	∆	*%�$0	(�	∆	����*$�� �	 = 1 − �8																				with  

 P!��!8�Q ~��� (0, Ω"
      where  Ω" = R�"�	�"�8 �"8	 S 
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To combine both models, we posit model (12) above model (27). As model (27) 

may be regarded as a two-level hierarchy with responses ‘∆C’ and ‘∆E’ grouped 

in individual observations, the resulting model technically consists of four levels. 

As mentioned, responses are modelled on the lowest level. Above that is the 

level of individual observations. The third and fourth levels are those of the study 

and the country. However, conceptually, we may still speak of a two-level model 

(Bartholomew et al., 2008). The reasons are that the lowest level is only 

introduced to model a vector of response variables and it does not carry its own 

residual term (Bartholomew et al., 2008). Secondly, studies and countries are 

assumed to be cross-classified on level two of the data hierarchy (Hox, 2010). To 

combine both models, each response variable has its own error variance on each 

level, and the model also allows the covariance between error terms of each 

response indicator to be different from zero on each level of the data hierarchy 

(Bartholomew et al., 2008). This results in the following model:  

 

 

Bivariate random intercepts model for secondary data integration 

 

}v8,�(�K
v	,�(�K
~~���(��, �
  (28) 

 �n,�(�K
 = (��n + �8nH�(�K
 + �	nH�+�JnHK + !�nK + !�n� + ��n�(�K

 ∗ �n,�(�K
  
 

�8,�(�K
 = � 1	(�	∆	*%�$0	(�	∆	����*$�� �	,�(�K
 = 1 − �8 

 

with:  

P!�,�,K!�,8,KQ~��� (0, Ω"
      where  Ω" = R�"�,�K	�"�,�8K �"�,8K	 S 
P!�,�,�!�,8,�Q ~��� (0, Ω"
      where  Ω" = R�"�,��	�"�,�8� �"�,8�	 S 
}��,�,�(�K
��,8,�(�K
~ ~��� (0, Ω"
      where  Ω� = R���,�	���,�8 ���,8	 S 
 

 

Now, consider we introduce a random slope on study-level to allow the effect of 

explanatory variables on each response variable to be different between 
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different studies included in the dataset. This means including an additional error 

term for the slope variance and that for each response variable, one has to 

consider not just their slope and intercept variances, but also their respective 

covariances. This results in a 4x4 covariance matrix on level two of the bivariate 

model. The respective model is shown below in equation (29).  

 

 

Bivariate random slopes model for secondary data integration 

 

}v8,�(�K
v	,�(�K
~~���(��, �
  (29) 

 �n,�(�K
 = (��n + �8nH�(�K
 + �	nH�+�JnHK + !�nK + !�n�+!8n� + ��n�(�K

 ∗�n,�(�K
  
 

�8,�(�K
 = � 1	(�	∆	*%�$0	(�	∆	����*$�� �	,�(�K
 = 1 − �8 

 

P!�,�,K!�,8,KQ~��� (0, Ω"
      where  Ω" = R�"�,�K	�"�,�8K �"�,8K	 S 
 

�!�,�,�!�,8,�!8,�,�!8,8,��~��� (0, Ω"
      where  Ω" =
wxx
xy �"�,��	�"��,�8� �"�,8�	�"�8,��� �"�8,8�� �"8,��	�"�8,�8� �"�8,88� �"88,�8� �"8,8�	 z{{

{|
 

 

}��,�,�(�K
��,8,�(�K
~ ~��� (0, Ω"
      where  Ω" = R���,�	���,�8 ���,8	 S 
 

 

The multilevel models for the purposes of this thesis have now been developed. 

However, before applying these models to the data in the main empirical 

exercise, it was decided to carry out a pilot study. The final Section 3.4 of this 

chapter reports on this pilot study and discusses its results in depth and with 

particular emphasis on the implications for the design and execution of the main 

empirical analysis, which is reported in Chapter 5.  
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3.4. Pilot Study  

 

 

In this section, the models developed above are applied to a set of secondary 

cost-effectiveness data from 16 international economic evaluation studies on the 

primary and secondary prevention of CVD. Starting off from an OLS regression 

equation, multilevel model features, as elaborated on in this chapter, are 

introduced step by step. This demonstrates the relative merits of the MLM 

framework for the integration of international economic evaluation data and 

also gives valuable insights for the design and execution of the main empirical 

analysis. This main empirical analysis, which is reported in Chapter 5, also begins 

with an exercise to determine the appropriate MLM structure for analysing data 

abstracted from 67 international cost-effectiveness studies on statins for the 

primary and secondary prevention of CVD. The design of this exercise was based 

to a large extend on the experiences from this pilot study.  

 

 

The pilot study is organised as follows: Section 3.4.1 states the aim and 

objectives of this pilot. Then, in Section 3.4.2, the methods of analysis are 

explained before the data is introduced in Section 3.4.3. Results are reported in 

Section 3.4.4. Finally, the discussion, which focuses on the implications of pilot 

study findings on the design and execution of the main empirical analysis, are 

reported in Section 3.4.5.  

 

 

3.4.1. Aim and objectives of the pilot study 

 

The primary aim of this pilot is to inform the design and execution of the main 

empirical analysis, which is reported in Chapter 5. This empirical analysis may be 

described as a secondary data integration exercise, based on a systematic 

literature review on the cost-effectiveness of statins in the primary and 

secondary prevention of CVD (details on the systematic literature review and 

data abstraction are available from Chapter 4). Within this exercise, it is aimed to 

apply MLM methods to analyse factors causing variability in international cost-

effectiveness data on each level of the data hierarchy. For this purpose, a 
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multilevel model structure needs to be developed which is suitable for the data 

available. The first part of the main empirical analysis reported in Chapter 5.1 is 

therefore concerned with determining this multilevel model structure. However, 

for the appropriate design of this exercise it was crucial to carry out this pilot 

study. Accordingly, three main objectives are specified for this pilot.  

 

• First, it is important to test the models developed theoretically in Sections 

3.1 to 3.3 of this chapter using real world data. For this reason, the pilot 

study builds up a MLM in the same sequence as it was developed above, 

starting off from an OLS regression equation and subsequently 

elaborating on this model.     

 

• Secondly, as the literature on secondary data integration of economic 

evaluation data is scarce, and some concerns exists over the overall 

validity of such an exercise due to enormous variability, especially in 

socioeconomic data (e.g. Jefferson et al, 1996), it was intended to obtain 

input from the wider health economics and multilevel modelling 

communities. For this reason, a paper on this pilot study has been 

presented at various conferences, including the winter meeting of the 

Health Economists Study Group (HESG) in January 2011 in York, UK, and a 

MLM session at the conference of the European Society of Survey 

Research (ESRA) in July 2011 in Lausanne, Switzerland. The feedback 

obtained from these conferences significantly influenced the design of 

the main empirical analysis and is discussed later in this section.  

 

• Finally, the importance of appropriately controlling for variability on each 

level of the MLM has been stressed already. What follows is that data for 

covariates need to be obtained on each level of the model hierarchy. 

Therefore, a data abstraction form was developed based on the existing 

health economic literature on factors causing variability in economic 

evaluation data. This data abstraction form was tested, revised, and 

improved upon within this pilot study. Note, however, that specifics on 

this aspect of the pilot are reported in full detail in the subsequent 

Chapter 4, which is concerned with the systematic literature review and 

data abstraction exercise to obtain data for the main empirical analysis.   
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The next section introduces the methods of analysis to carry out the pilot study. 

The data for the pilot is summarized thereafter in Section 3.4.3.   

 

3.4.2. Methods of analysis 

 

The example of statins for the primary and secondary prevention of CVD was 

chosen as this is an extensively studied area, with many cost-effectiveness 

studies across many countries, hence allowing for the assumption of random 

parameters on study and country-level. At the time of the pilot study, a 

systematic literature review was not yet completed, so that the pilot uses a 

dataset with studies previously identified by Franco et al. (2005) (details about 

search strategy, study selection process, etc. can be obtained from this source). 

Only studies comparing statins with ‘doing nothing’ were included. Although 

some studies estimate QALYs, most do not, so for this exercise, life years saved 

(LYS) were used as the measure of effect. Studies not reporting incremental costs 

and incremental effects separately were also excluded, as INMB could not be 

calculated for these studies.  

 

As a result, from the 24 papers identified by Franco et al. (2005), a further 7 were 

dropped because of the additional exclusion criteria defined above (Goldman et 

al., 1991; Hay et al., 1991; Goldman et al., 1993; Riviere et al., 1997; Huse et al., 

1998; Pickin et al., 1999; Russel et al., 2001). One further study was not 

obtainable at the time the pilot study was carried out (Grover et al., 2001). From 

the remaining 16 papers, cost-effectiveness estimates were collected for the 

base case, as well as for subgroup analysis, and sensitivity analyses exploring 

variation by: efficacy of intervention, baseline risk, annual drug costs of statin 

therapy, duration of statin therapy in years, costs of CVD related events, and 

discount rates for costs and effects. These sensitivity analyses results were 

considered as they were usually reported in most studies included in this 

exercise, which allowed definition of covariates encoding differences between 

data points for multilevel analyses. However, a number of abstracted cost-

effectiveness estimates had to be dropped from the dataset as they referred to 

less frequently reported forms of sensitivity analyses, and could not be included 

in the multilevel analysis without losing large numbers of studies.  Excluding 
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these sensitivity analyses reduced the pilot study dataset by around 160 

datapoints (25% of all cost-effectiveness estimates abstracted from pilot study 

papers).  

 

If a data-point was considered includable, data on incremental cost and 

incremental effects were abstracted. If only ∆C or ∆E was explicitly reported in 

conjunction with a cost-effectiveness estimate, the missing component of the 

ICER or INMB statistic was calculated by rearranging the formula for ICERs or 

INMBs respectively. For instance, if a study reported an ICER of £16,000 and ∆E 

of 0.5 LYS, ∆C was calculated as ∆, = [,
\ ∗ ∆
 = £8,000. Or if an INMB of say 

£7,000 was reported at a given threshold value (say £30,000) and ∆E of 0.5, ∆C 

was calculated as ∆, = 	∆
 ∗ b − [�f� = £8,000. Problems did arise, for 

instance, if a study reported cost-effectiveness as ICERS, and the use of statins 

resulted in cost-savings. As studies rightly omitted negative ICERs, this meant, 

however, that ∆C and ∆E could not be calculated and the respective data point 

had to be dropped. This resulted in a loss of a further 36 data points within the 

pilot study dataset. The discussion in Chapter 6 will explicitly discuss potential 

reasons for bias that might arise from excluding certain data-points and studies 

from the dataset. In particular, there is a risk that such exclusions may result in a 

violation of the assumption of random parameters which is essential for fitting 

multilevel models.  

 

Abstracting data for the pilot study in this way resulted in a total of 464 data 

points, clustered in 16 studies, and applicable to 16 geographic domains. The fact 

that there were 16 studies and 16 countries included in the dataset was a 

coincidence as some studies were multinational in nature, hence, reporting data 

on more than one country and thereby introducing the cross-classification 

problem. Local currencies were transferred to Pound Sterling using Purchasing 

Power Parities (PPP) and updated to 2009 using country specific GDP deflators 

(Shemilt et al., 2008; OECD, 2010). For countries which adopted the Euro, historic 

currencies were first converted to Euros using irrevocable Euro conversion rates 

as adopted by the Council of the European Union on January 1, 1999 (IMF, 2010).  
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As a first step, models were fitted to the data without any covariates. 

Accordingly, the most fundamental model in this pilot study was an empty OLS 

regression equation. Building up from that, two-level hierarchical models were 

fitted with a) data clustered in countries only and b) data clustered in studies 

only. Finally, a cross-classified model, which accommodates both a study and 

country-level, was specified and fit to the pilot study data. All models were 

implemented in a univariate version with INMB as the only response variable and 

a bivariate version with ∆C and ∆E as a vector of response variables. For 

univariate models, a cost-effectiveness threshold level (λ) of £30,000 per LYS was 

assumed. This does not equate to £30,000 per QALY gained, as most additional 

years of life will be lived in less than perfect health states. Random slopes were 

not tested within this pilot study as, at the time it was carried out, the author 

was not yet successful in fitting them to the models of interest. Table 3.2 

provides an overview of the models tested within this pilot study.  

 

Table 3.2: Model specifications applied to the data within the pilot study 

 Univariate 

model with 

INMB as 

response 

variable 

Bivariate model 

with ∆C and ∆E 

as vector of 

response 

variables 

Variance 

components 

model 

without 

covariates 

Random 

intercepts 

model 

with 

covariates 

Random 

slopes 

model 

OLS regression model √ √ √ √ x 

Two-level hierarchical 

model with data and 

country-level 

√ √ √ √ x 

Two-level hierarchical 

model with data and study-

level 

√ √ √ √ x 

Cross-classified model with 

data, study and country-

level 

√ √ √ √ x 

 

After implementing models as variance components models without covariates, 

a set of explanatory variables was tested in each model. All continuous variables 

were centred around their mean values, which has the advantage that the 

intercept is easier to interpret as it represents the predicted INMB (∆C, ∆E) for 

average values for each explanatory variable (Steele, 2008; Rasbash et al., 2009; 

Hox, 2010). The set of potential explanatory variables within this pilot study 
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analysis was drawn from a long list of variability factors suggested by previous 

authors (Sculpher et al., 2004; Goeree et al., 2007). For this purpose, a data 

abstraction form was developed, tested and improved upon within this pilot 

study. However, the details on the development of the data abstraction form, 

which was one of the key objectives of this pilot study, are presented in Chapter 

4, which is concerned with a systematic literature review, data abstraction 

exercise, and genealogy study of cost-effectiveness papers on statins in the 

primary and secondary prevention of CVD.   

 

 

Within the boundaries of this pilot study, a much reduced dataset, with only a 

few covariates found to be significant when fitting multilevel models, was used. 

As a result, All models include three variables on data-level (mean pre-treatment 

total cholesterol level (TCL), age and percentage of females in the sample), and 

two variables on the country-level (GDP per capita and total life expectancy at 

birth). Although a range of study-level covariates was tested (e.g. general study 

design, timing, or the method of effect calculation, to name a few), the pilot 

study did not result in a set of study-level covariates which captured significant 

variation across the studies included in the dataset. Observations with missing 

values were generally rare for the explanatory variables included in this pilot, 

and listwise deletion was applied as a simple ad hoc strategy for dealing with 

missing values within this pilot study (note, however, that missing values were 

more of a concern in the main empirical analysis which is reported in Chapter 5. 

Therefore, to minimise the potential for bias and overestimated precision, a 

much more elaborated approach for dealing with missing values is applied in 

Section 5.2 of the empirical chapter, where the purpose is to test covariates 

within the MLM framework).  

 

 

All models were implemented in MLwiN using Markov Chain Monte Carlo 

(MCMC) estimation (Rasbash et al., 2009a; Browne, 2012). Though models could 

also be implemented using iterative generalised least squares (IGLS), it is a more 

complex procedure, which is why it has been strongly advocated to use MCMC 

for cross-classified and especially for bivariate models in MLwiN (Browne, 2012; 

and personal communication with Prof William Browne, CMM, Bristol). A 

detailed step by step guide on how to implement models in MLwiN can be found 
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in Appendix 3. The statistical software package MLwiN was chosen for this 

exercise as it is special MLM software with unique capacities to specify complex 

data structures (Rasbash et al., 2009a). Though it is acknowledged that there are 

other software applications allowing to fit multilevel models (e.g. HLM, STATA or 

R), the author found the features offered by MLwiN particularly useful. In 

addition, the Centre for Multilevel Modelling in Bristol, which developed the 

software package MLwiN, is sponsored through the Economics and Social Science 

Research Council (ESRC) which enables free access to an unrestricted version of 

MLwiN to all researchers based in a UK academic institution.  

 

 

Before reporting on the results of the pilot study, the dataset is introduced next 

in more detail, including descriptive statistics for the response variables and 

explanatory variables tested within this pilot.  

 

 

3.4.3. Pilot study data 

 

 

Table 3.3 provides details on the studies included in the dataset. Further 

information on the studies included may also be obtainable from Franco et al. 

(2005). Most studies were based on decision analytic modelling (DAM), although 

three (Caro et al., 1997; Jonsson et al., 1996; Jonsson et al., 1999) were directly 

based on clinical trial data. Studies included populations without any known 

history of CVD (primary prevention), those with at least one prior event of CVD 

(secondary prevention), or both. Subgroup analysis was usually performed with 

respect to age, gender, and pre-treatment cholesterol level. As can be seen in 

Table 3.3, when assuming a threshold value (λ) of £30,000, mean INMBs within 

each study range from £-2,670 (Pharoa et al., 1996) to over £48,660 (Grover et 

al., 1999), with an overall mean INMB of £11,632 across all studies included in 

the dataset.  
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Table 3.3: Study characteristics and descriptive statistics 

Study Nj* K** 
Study 
type+ 

Prev. 
cat.++ 

Age 
range 

Mean 
TCL 

mmol/L 

Mean 
∆C 

2009 
GBP 

Mean 
∆E LYS 

 

Mean INMB 
λ= £30.000, 
2009 GBP 

Ashraf et al., 1996  9 1 2 2 60 6.00 1228 0.157 3472 

Caro et al., 1997  1 1 1 1 45-64 7.01 2758 0.098 182 

Grover et al., 1999  48 1 2 2 40-70 6.50 16387 2.169 48669 

Grover et al., 2000  52 1 2 3 40-70 6.51 25874 1.73 26021 

Hamilton et al., 1995  20 1 2 1 30-70 7.22 19734 0.97 9396 

Johannesson et al.,1997 39 1 2 2 35-70 6.75 1120 0.22 5433 

Muls et al., 1998  15 1 2 2 60 6.00 1885 0.16 2815 

Perreault et al., 1998 36 1 2 1 44-57 8.14 18698 0.64 452 

Pharoah et al., 1996 46 1 2 3 45-64 7.10 5452 0.09 -2671 

Szucs et al., 1998 42 1 2 2 45-65 5.41 3575 0.29 5041 

Szucs et al., 2000 8 1 2 2 45-65 5.62 3588 0.41 8562 

Van Hout et al., 2001 5 1 2 3 25-75 ? 11524 0.93 16436 

Jonsson et al., 1996 18 10 1 2 35-70 6.74 1791 0.24 5409 

Jonsson et al., 1999 109 11 1 2 35-70 6.74 1342 0.30 7723 

Ganz et al., 2000 12 1 2 2 75-84 ? 3856 0.26 3794 

Martens et al., 1994 4 1 2 1 45 5.56 7223 0.19 -1485 

Sum: 464 16 Mean: 57.06 6.66 8678 0.677 11632 

* 
** 
+ 
 
++ 
 

Number of INMB estimates clustered within a study 
Number of countries included in that study 
1 = Primary modelling (directly based on observations from trial data) / 2 = Secondary modelling (studies 

based on any form of decision analytic model (DAM))  
Prevention category: 1 = primary prevention / 2 = secondary prevention /3 = both 
 

See also Franco et al (2005) for additional information on study characteristics [49] 

 

 

Table 3.4: Country characteristics 
 

Country Nk* J** 
GDP***+ 
per capita 

Health care 
spending***+ 

% of GDP 

Life exp. at 
birth***+ 

years 

Mean ∆C 
2009 
GBP 

Mean 
∆E 

 LYS 
 

Mean INMB 
λ=30.000, 
2009 GBP 

Australia 1 1 21541 8.0 77.83 1967 0.240 5233 

Belgium 23 3 22556 7.8 76.84 1855 0.201 4180 

Canada 160 5 22696 9.5 78.05 20179 1.483 24297 

Denmark 11 1 25259 8.0 75.95 854 0.305 8290 

Finland 11 1 20968 7.4 76.88 1687 0.305 7458 

France 8 2 21556 9.6 78.28 1101 0.285 7437 

Germany 62 4 23289 10.8 76.84 3137 0.305 6006 

Italy 12 2 22460 7.6 78.58 1092 0.299 7891 

Netherlands 5 1 26933 8.2 77.83 11524 0.932 16436 

New Zealand 1 1 17143 7.3 76.73 3012 0.240 4188 

Norway 8 2 27416 7.6 78.09 1371 0.285 7168 

Portugal 12 2 14324 7.9 75.39 2013 0.299 6970 

Spain 12 2 17554 7.4 78.55 1542 0.299 7441 

Sweden 58 3 22161 8.5 78.83 1127 0.238 6007 

UK 59 4 20241 6.9 76.91 4607 0.135 -562 

USA 21 2 29919 14.0 76.17 2730 0.213 3656 

Sum / mean 464 16 22473 9.05 77.58 8678 0.677 11632 

* 
** 
**** 
 
+ 

Number of INMB estimates clustered within a country 
Number of studies providing INMB estimates for that country 
As INMB measurements within one country may stem from several studies with differential timing, the values in 
these columns represent means across the years for which INMB values are reported 
Source: OECD Health Data, 1999 [69] 
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Table 3.4 provides some characteristics and summary statistics of the countries 

included. As INMB measurements within one country may stem from several 

studies with differential timing, values elicited on GDP per capita, healthcare 

spending as percentage of GDP and life expectancy at birth are presented as 

mean values across the years for which INMB measures were reported. Again, 

there is considerable spread in mean INMB’s across countries, ranging from £-

552 (UK) to £24,296 (Canada), assuming λ= £30,000. Looking at the third column 

in both tables, we can see that most studies (14 out of 16) report data applicable 

to one geographic domain only. However, two studies (Jonsson et al., 1996; 

Jonsson et al., 1999) report data which applies to several geographic domains, 

resulting in studies and countries being cross-classified. Further descriptive 

statistics of response variables and explanatory variables tested within this pilot 

study are available from Tables 3.5 and 3.6 below.  

 

 

Table 3.5: Descriptive statistics of continuous variables tested in the pilot 
 

Variable   

(in 2009 £-

Sterling) 

Level 

Obs. missing in % Min Max Mean Std. Dev. 

incr_cost response 464 0 0% 10.44 64259 8678 11231 

incr_effect response 464 0 0% .00885 5.4 0.677 0.944 

inmb response 464 0 0% -42959 140518 11632 23407 

age Data 448 16 3.45% 30 70 57.06 7.57 

gender Data 449 15 3.23% 0 1 32.03% 40.20% 

tcl Data 447 17 3.66% 5.4 9.9 6.66 0.942 

dr_cost Data 464 0 0% 0 10% 3.55% 1.77% 

dr_effect Data 464 0 0% 0 10% 3.17% 2.10% 

GDP/capita Country 16 0 0% 13071 31653 22473 2729 

total_hcs Country 16 0 0% 6.8 14.1 9.03 1.62 

public_hcs Country 16 0 0% 4.7 8.5 6.72 0.85 

le_birth Country 16 0 0% 75.06 79.20 77.57 0.92 

 

 

The mean age across all patient subgroups considered in the studies included 

was 57.06 (SD 7.57), and 32.03% (SD: 40.2%) of all patients considered were 

female. The overall mean TCL was 6.66 mmol/L (SD: 0.942), and the majority of 

patients already experienced at least one CVD event in the past (65.73%). The 

most common statin under assessment was simvastatin (57.76%), followed by 

pravastatin (19.83%) and lovastatin (12.28%). Moving on to methods applied in 

the studies, the mean discount rates were 3.55% for costs and 3.17% for effects 
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respectively. The time horizon was most commonly between 6 to 10 years 

(40.30%) or above 20 years (46.55%). Most studies were based on DAM (13 out 

of 16), and CVD risk reduction was the most common way to capture treatment 

effectiveness (11 out of 16 studies), whilst 5 studies measured the impact of 

statins on cholesterol levels and then extrapolated findings to life years saved 

using risk equations. Finally, 50% of all studies were industry funded, whilst the 

general funding source was unclear in 25% of the studies included in the dataset.  

 

Table 3.6: Descriptive statistics of categorical variables tested in the pilot 
 

Variable 

category 
Level Frequency In % cumulative 

Intervention 
- Pravastatin 
- Simvastatin 
- Lovastatin 
- Fluvastatin 
- unclear 

data 

 
92 

268 
57  
1 

46 

 
19.83% 
57.76% 
12.28% 
0.22% 
9.91% 

 
19.83% 
77.59% 
89.87% 
90.09% 
100% 

CHD history 

- no 
- yes 
- both 

data 

 
117 
305 
42 

 
25.22% 
65.73% 
9.05% 

 
25.22% 
90.95% 
100% 

Time horizon 

- 0 to 5 years 
- 6 to 10 years 
- 11 to 20 years 
- > 20 years 

data 

 
43 

187 
18 

216 

 
9.27% 

40.30% 
3.88% 

46.55% 

 
9.27% 

49.57% 
53.45% 
100% 

Funding 

- Government 
- Industry 
- University 
- Industry + Government 
- No funding source 
- unclear 

Study 

 
1 
8 
1 
1 
1 
4 

 
6.25% 
50% 

6.25% 
6.25% 
6.25% 
25% 

 
6.25% 

56.25% 
62.50% 
68.75% 
75.00% 
100% 

General study design 

- IPD 
- DAM 

Study 
 

3 
13 

 
18.75% 
81.25% 

 
18.75% 
100% 

Method of effect calculation 

- CVD risk reduction 
- Cholesterol reduction 

Study 
 

11 
5 

 
68.75% 
31.25% 

 
68.75% 
100% 

Timig 

- 1992 
- 1993 
- 1995 
- 1996 
- 1997 
- 1998 
- 1999 

Study 

 
1 
1 
6 
4 
1 
2 
1 

 
6.25% 
6.25% 

37.50% 
25.00% 
6.25% 

12.50% 
6.25% 

 
6.25% 

12.50% 
50.00% 
75.00% 
81.25% 
93.75% 
100% 
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3.4.4. Results 

 

 

Table 3.7 shows results for running variance components models without 

explanatory variables in a univariate framework with INMB as response variable; 

whilst Table 3.8 contains results of running the same models as bivariate models 

with ∆C and ∆E as a vector of response variables. Model 1 in each table 

represents an empty OLS regression model, where the intercept is simply the 

pooled mean INMB (∆C, ∆E) across all studies and countries. Models 2a and 2b 

are variance components models which take into account 2-level hierarchical 

data structures with data clustered in countries (model 2.a) or studies (model 

2.b) respectively. Model 3 is a cross-classified model which considers that data is 

grouped both in studies and countries simultaneously. Though theoretically 

irrelevant, MLwiN encounters problems if the discrepancy in the error variance 

of the response variables in the bivariate model is high, which is why ∆C was 

linearly transformed by dividing it by 100 (personal communication with R. 

Pillinger, CMM Bristol).  

 

 

Table 3.7: Univariate variance components models run on pilot study data 
 

 

Model 1 

 

(single level OLS) 

Model 2.a 

(2-level model with 

data clustered in 

countries only) 

Model 2.b 

(2-level model with 

data clustered in 

studies only) 

Model 3 

(Cross-classified 

model with data 

clustered in studies 

and countries) 

Fixed part: 

Intercept 

(λ=£30.000) 
£11629 £8224 £10209 £9581 

Random part: ����� 	(Study) -- -- 198216240 193738848 ����� 	(Country) -- 46423764 -- 341225 ���� 	(Data) 549323520 467745120 343737600 343655648 

VPC - study 

VPC – country 

VPC - data 

-- 

-- 

100% 

-- 

9.03% 

90.97% 

36.57% 

-- 

63.43% 

36.03% 

0.06% 

63.91% 

DIC 10654 10579 10436 10436 
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Table 3.8: Bivariate variance components models run on pilot study data 
 

 

Model 1 

(single level OLS) 

Model 2.a 

(2-level model with 

data clustered in 

countries) 

Model 2.b 

(2-level model with 

data clustered in 

studies) 

Model 3 

(Cross-classified model 

with data clustered in 

studies and countries) 

 
∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

Fixed part:  

Intercept  £87.66 0.685 £36.03 0.372 £73.34 0.510 £83.69 0.597 

Random part: ����� 	(Study) -- -- -- -- 10185 0.632 8629 0.558 ����� 	(Country) -- -- 3289 0.320 -- -- 43.37 0.005 ���� 	(Data) 13049 0.921 5824 0.575 5028 0.427 5057 0.429 

VPC - study 

VPC – country 

VPC - data 

-- 

-- 

100% 

-- 

-- 

100% 

-- 

36.09% 

63.91% 

-- 

35.75% 

64.25% 

66.95% 

-- 

33.05% 

59.68% 

-- 

40.32% 

62.85% 

0.32% 

36.83% 

56.25% 

0.5% 

43.25% 

DIC 6538 6130 5927 5928 

 

Model 2a in Table 3.7 shows that 9.03% of the total variation is attributable to 

differences between countries, and comparing models 1 and 2a using the 

deviance information criterion (DIC) (Browne, 2012) shows that model 2a is a 

better fit. However, moving on to model 2b, which also assumes a two-level 

hierarchy, but with INMB values clustered in studies rather than countries, we 

observe that there is much stronger variation between studies than between 

countries (36.57% as opposed to 9.03%), and that this model fits the data even 

better than model 2a. Moving on to the cross-classified model 3, where INMB 

values are clustered in both studies and countries, we see that the variation 

attributable to the country-level virtually disappears. However, the DIC indicates 

that model 3 is not a better fit than model 2b. Finally, moving on to the bivariate 

framework in Table 3.8, we observe a drastic improvement in the DIC statistic for 

all model specifications. As within the univariate framework, the study-level in 

model 2.b shows much more variability than the country-level in model 2.a. Also 

in accord with the univariate model in Table 3.7, we observe that the country-

level variability virtually disappears in the cross-classified framework. Moreover, 

the VPC for studies drastically increases, with a variance component of 62.85% 

and 56.25% on study-level for ∆C and ∆E respectively.  
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Figure 3.14 confirms the findings reported in Table 3.7. The two forest plots 

provide mean INMB values (assuming λ=£30,000) and their respective 95% 

confidence intervals. The pooled estimate presented at the bottom of Figure 

3.14 is the result obtained from the empty OLS-regression model in Table 3.7. 

The figure shows considerably more variation when sorting the data by studies 

rather than countries.   

 

Figure 3.14: Variation in INMB values on country and study-level 

 

 

 

Finally, a set of explanatory variables was tested in each model (Tables 3.9 and 

3.10). All models include three variables on the data-level (mean pre-treatment 

total cholesterol level (TCL), age and percentage of females in the sample), and 

two variables on the country-level (GDP per capita and total life expectancy at 

birth). Although a range of study-level variables were tested (e.g. general study 

design, timing, funding source, or the method of effect calculation), this pilot 

study did not result in a set of study-level covariates which captures some of the 

variation across the studies included in the dataset.  
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Table 3.9: Univariate random intercepts models run on pilot study data 
 

 

Model 1 
(single level OLS) 

Model 2.a 
(2-level model with data 
clustered in countries) 

Model 2.b 
(2-level model with data 

clustered in studies) 

Model 3 
(Cross-classified model 
with data clustered in 
studies and countries) 

Fixed part: 

Intercept  £12107 £9762 £8396 £8066 

TCL 
(SE) 

-1145 
(1139) 

-1675* 
(1137) 

4013*** 
(1119) 

4031*** 
(1114) 

Age 
(SE) 

-1045*** 
(138) 

-807*** 
(138) 

-974*** 
(116) 

-976*** 
(118) 

% women 
(SE) 

-11159*** 
(2587) 

-13346*** 
(2509) 

-13876*** 
(2112) 

-13904*** 
(2106) 

GDP 
(SE) 

1.48*** 
(0.46) 

1.63*** 
(0.66) 

0.12 
(0.45) 

0.13 
(0.46) 

Life exp. at 
birth (SE) 

5358*** 
(1155) 

648 
(2034) 

364 
(1278) 

356 
(1285) 

Random part: σ3��	 	(Study) -- 
 

210684928 279913696 σ3�:	 	(Country) -- 55614192 
 

413570 σ2�	 	(Data) 449880704 400137568 269516096 273600160 

VPC - study 
VPC – country 

VPC - data 

-- 
-- 
-- 

-- 
12.2% 

87.80% 

43.87% 
-- 

56.13% 

50.05% 
0.07% 

49.39% 

DIC 10175 10141 9986 9985 

* 
** 
*** 

Significant at the 10%-level 
Significant at the 5%-level 
Significant at the 1%-level 

 

 

Table 3.10: Bivariate random intercepts models run on pilot study data 
 

 

Model 1 
(single level OLS) 

Model 2.a 
(2-level model with data 
clustered in countries) 

Model 2.b 
(2-level model with data 

clustered in studies) 

Model 3 
(Cross-classified model 
with data clustered in 
studies and countries) 

 
∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

Fixed part:  

Intercept  £87.75 0.685 £52.18 £0.482 £66.44 0.451 £67.75 0.465 

TCL 
(SE) 

-7.63* 
(4.26) 

-0.063 
(0.041) 

-11.68*** 
(3.15) 

-0.091*** 
(0.035) 

-8.50*** 
(3.16) 

0.095*** 
(0.034) 

-8.70*** 
(3.20) 

0.097*** 
(0.034) 

Age 
(SE) 

-9.70*** 
(0.51) 

-0.067*** 
(0.005) 

-7.40*** 
(0.39) 

-0.052*** 
(0.004) 

-7.82*** 
(0.33) 

-0.058*** 
(0.004) 

-7.77*** 
(0.33) 

-0.058*** 
(0.003) 

% women 
(SE) 

58.77*** 
(9.70) 

-0.176* 
(0.093) 

35.69*** 
(7.07) 

-0.328*** 
(0.079) 

29.16*** 
(5.99) 

-0.377*** 
(0.063) 

28.97*** 
(5.92) 

-0.376*** 
(0.063) 

GDP 
(SE) 

0.01*** 
(0.002) 

0.000 
(0.000) 

0.009*** 
(0.003) 

0.000 
(0.000) 

-0.001 
(0.001) 

0.000 
0.000 

-0.001 
(0.001) 

0.000 
(0.000) 

Life exp. at 
birth (SE) 

12.77*** 
(3.75) 

0.220 
(0.042) 

11.29 
(10.65) 

0.311 
(0.131) 

-1.08 
(3.61) 

0.004 
(0.038) 

-1.02 
(3.84) 

0.001 
(0.041) 

Random part: ����� 	(Study) -- -- -- -- 6319 0.557 6859 0.628 ����� 	(Country) -- -- 3503 0.502 -- -- 12.24 0.003 ���� 	(Data) 6375 0.592 3082 0.391 2181 0.246 2174 0.245 

VPC - study 
VPC – country 

VPC - data 

-- 
-- 

100% 

-- 
-- 

100% 

-- 
53.19% 
46.81% 

-- 
56.22% 
43.78% 

74.34% 
-- 

25.66% 

69.37% 
-- 

30.63% 

75.82% 
0.14% 

24.04% 

71.69% 
0.35% 

27.96% 

DIC 6148.773 5706.022 5320.925 5321.919 

* 
** 
*** 

Significant at the 10%-level 
Significant at the 5%-level 
Significant at the 1%-level 
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As TCL is a risk factor for CVD, and as statins reduce TCL, one would expect a 

positive relationship between TCL and INMB as well as TCL and ∆E; and a 

negative relationship between TCL and ∆C due to cost of future CVD events 

avoided. For age, prediction is less straightforward. One may expect a positive 

relationship between age and INMB as older people have a higher risk of a CVD 

event. However, this relationship may also be negative beyond a certain age, as 

older patients may have less to gain from cholesterol reduction (Ward et al., 

2007). The effect of gender is clearer, as men are generally at higher risk and 

therefore likely to benefit more from statin therapy, especially in primary 

prevention (Ward et al., 2007). A positive relationship between the cost-

effectiveness of statins and GDP per capita was hypothesized, as a higher level of 

economic attainment may correlate with higher future healthcare costs 

potentially avoided through statin therapy. Likewise, a positive relationship 

between INMB and life expectancy at birth was expected, as avoiding a CVD 

event in societies with a higher life expectancy leads to more life years saved.  

 

We can see from Table 3.9 and 3.10 that the prediction for age and gender has 

been confirmed by each model. However, Models 1 and 2a in Table 3.9 show a 

non-significant negative relationship between the INMB for statins and TCL. 

Accordingly, the relationship between TCL and ∆E is negative for the bivariate 

versions of models 1 and 2.a in Table 3.10, and this negative relationship is even 

highly significant in model 2.a. The reason may be that, within the data, TCL has 

both an effect within, as well as between studies. Whilst the relationship 

between INMB and TCL may be positive within each study, it may be negative 

between studies. This could be the case, for instance, as studies which focus on 

high risk groups generally report lower INMB-values; although, within that study, 

the anticipated positive relationship between TCL and INMB still applies. Figure 

3.15 below illustrates what happens within and between studies by plotting 

INMB against TCL and highlighting the predictions for some of the studies in the 

dataset. Whilst the between study regression line is negative, the positive within 

study effect still applies. In conclusion, using a model which does not 

acknowledge that data is clustered in studies (models 1 and 2a) may simply lead 

to wrong inferences as these models do not make explicit the distinction 

between within and between study effects (Steele, 2008; Rasbash et al., 2009).  
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Another interesting finding relates to the country-level variables in the dataset. 

Using a single level OLS, one would infer that both GDP per capita and life 

expectancy at birth are positive and highly significant for INMB and ∆C, which 

accords expectations. However, in models 2b, and 3, neither GDP nor life 

expectancy at birth is significant. The reason may be that treating country-level 

variables as if they referred to the data-level spuriously inflates the amount of 

information they provide, and hence, overestimates precision (e.g. Steele, 2008). 

To obtain correct standard errors, one therefore needs to take into account the 

correct structure of the data.  

 

 

Finally, it can be seen that after covariate adjustment on data and country-level, 

about 50% of the overall variation in the data refers to the study-level in the 

univariate model 3 and country-level variation remains negligible. Even higher 

study-level variation is observed in the bivariate cross-classified model, with 

75.8% and 71.7% of the total variation attributable to differences between 

studies. Also, this model provides further insights into the differential impact of 

covariates on ∆C and ∆E. For instance, within models 2.b and 3, TCL is negatively 

related with ∆C, whilst the relationship to ∆E is positive. This accords 

expectations, as people with higher cholesterol levels have generally more to 
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gain from statin therapy which reduces ∆C through potential cost avoided and 

also increases life years saved. However, the DIC statistic does not improve 

between model 2b and 3 both in the univariate and bivariate framework.  

 

 

 

3.4.5. Discussion 

 

 

The primary aim of this pilot was to inform the design and execution of the main 

empirical analysis, which is reported in Chapter 5. The three main objectives of 

this pilot were i) to test the MLMs developed in this chapter, ii) to obtain 

feedback from the wider health economists and multilevel modeller’s 

communities, and iii) to inform the design of a data abstraction form which is 

used in a systematic literature review reported in the subsequent Chapter 4. 

Accordingly, this discussion starts off with general issues regarding the 

performance of the MLMs tested in this pilot study. Thereafter, the discussion 

addresses issues raised by participants of various conferences where this work 

was presented. This feedback proofed particularly helpful for the design and 

execution of the main empirical analysis, which is reported in Chapter 5.  

 

 

3.4.5.1. Discussing the results of this pilot study 

 

 

The analysis within this pilot study seems to confirm three key points. First, 

ignoring the clustering which occurs naturally when integrating secondary cost-

effectiveness data, induces the risk of overestimated precision and, potentially, 

wrong inferences about factors causing variability in measures of cost-

effectiveness (Steele, 2008; Rasbash et al., 2009, Hox, 2010). This can be seen by 

comparing the single level specification (model 1) with the more sophisticated 

multilevel models. Secondly, when the aim is to examine the exchangeability 

assumption between geographic domains by assessing country-level covariates, 

one cannot simply ignore the grouping which occurs naturally on study-level. 

This gets apparent from a comparison of models 2a and 2b. Finally, multinational 
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studies provide data on more than one geographic domain, which causes the 

strict hierarchy between studies and countries to break down. The cross-

classified model allows acknowledging that data is clustered in studies and 

countries simultaneously. However, the results of the two-level hierarchical 

model with measures of cost-effectiveness clustered in studies (model 2b) are 

similar to those of the cross-classified model 3, where negligible country-level 

variation and no improvement in the DIC statistic were observed. This indicates 

that the more elaborated cross-classified model is not an improvement in fit. 

Hence, particular emphasis needs to be placed on this matter to inform 

appropriate MLM structures for the main empirical analysis.  

 

 

There may be several potential causes for the observation that the cross-

classified model did not perform better than the two-level hierarchical model 

with data clustered in studies only. Some of those causes may be related to the 

pilot study data itself, others however, concern the assumptions made to fit a 

cross-classified model and may therefore lead to alternative model structures to 

be tested in the main empirical analysis. The key question is whether the explicit 

modelling of a country-level itself may proof redundant as differences between 

studies constitute an overriding source of variability in measures of cost-

effectiveness, or whether the issue of cross-classification and related 

assumptions about (in-)dependencies within the data may be responsible for the 

fact that model 3 failed to be an improvement in fit.   

 

 

A reason to defend the cross-classified model relates to the identification and 

use of appropriate covariates, especially on study-level. Whilst this pilot aimed to 

test the feasibility and potential of the analytical framework, there is 

considerable work to be done to find this set of covariates to control for 

variability in measures of cost-effectiveness. This holds especially true for study-

level covariates, as the pilot study clearly showed that this is a dominating source 

of variability in measures of cost-effectiveness. Furthermore, within the 

multilevel framework, controlling for variability on data and study-level may 

disclose further variability between countries, and hence, may constitute a pre-

requisite for making correct inferences for higher-level covariates (e.g. Sculpher 

et al., 2004; Steele, 2008; Hox, 2010). Therefore, within the main empirical 
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exercise, a much larger set of potential covariates on all levels may be tested, 

drawn from a long list of variability factors published in the relevant literature 

(Sculpher et al., 2004; Goeree et al., 2007). However, operationalizing these 

variability factors is not straightforward. There are challenges around defining, 

measuring and selecting covariates. These issues are considered in far more 

detail in the subsequent Chapter 4, which is concerned with a systematic 

literature review and data abstraction exercise to generate a dataset on the cost-

effectiveness of statins in the primary and secondary prevention of CVD.  

 

 

Secondly, as shown in Table 3.3, 14 out of 16 studies included in the pilot study 

are strictly hierarchical as they provide data on one geographic domain only. 

Only two studies (Jonsson et al., 1996; Jonsson et al., 1999) introduce the 

problem of cross-classification between studies and countries. As these two 

studies provide 127 data points (27.4% of the whole dataset), this provides 

strong justification for not simply dropping these studies and loosing valuable 

data. A second reason to defend model 3 originates from the two included cross-

classified studies themselves; though it also discloses a problem which needs to 

be addressed within the main empirical analysis. Having a closer look at these 

two studies (Jonsson et al., 1996; Jonsson et al., 1999) we learn that both 

originate from the same country, and that they use the same set of effectiveness 

and resource use data for all countries. Hence, adaptation of the cost-

effectiveness results to each jurisdiction was achieved only through the use of 

country-specific unit cost estimates. It is not uncommon in economic 

evaluations, both trial based and model based, to apply data collected in one 

country to other locations of interest, without appropriately recognizing or 

exploring issues of transferability (Barbieri et al., 2005). It is suggested that this 

may explain the lack of additional geographic variation found in the cross-

classified model. One way to address this problem in the main empirical analysis 

may be through a categorical variable capturing the degree of ‘context specificity’ 

of measures of cost-effectiveness, and the author identified a potentially 

appropriate system to classify data which has been previously developed by 

Barbieri et al. (2005). Again, further details on this matter are obtainable from 

the subsequent Chapter 4 as well as Section 5.2 of the empirical exercise, which 

is concerned with covariate adjustment on data and study-level.  
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However, if the same problem relating to the two affected studies in the pilot 

study dataset generally applies to multinational economic evaluation studies, 

this may cast into doubt key assumptions necessary to fit the cross-classified 

model. Precisely, the cross-classified model assumes dependency of data within 

studies and also within countries, whilst independence is assumed between 

studies and between countries represented in the dataset. The two multinational 

studies included in the pilot both originate from the same country, and 

adaptation of cost-effectiveness results to each jurisdiction was achieved only 

through the use of country-specific unit cost estimates; whilst all other input 

parameters were transferred from the primary target country. This practice, 

which has not been without criticism within the health economics literature 

(Barbieri et al., 2005) may lead to drastically underestimated variability in 

measures of cost-effectiveness between countries included in multinational 

studies, hence, casting into doubt the independence assumption of data for the 

countries modelled in those studies. This data may then ‘infect’ individual 

country-parameters in the cross-classified model as it is assigned to their 

respective target domains. In other words, measurements from multinational 

studies are being spread across the countries which they refer to and 

independence of data is assumed between those countries. As this data is, in 

fact, not independent, this may cause drastically underestimated country-level 

variability, and therefore redundancy of the country-level in the cross-classified 

model.  

 

 

In conclusion, an alternative model structure may be necessary which does not 

assume independence of data from multinational studies on country-level but 

still allows utilizing this data for the purposes of assessing variability factors on 

data and study-level. As mentioned, the cross-classified model assigns data from 

both single-country-studies and multinational studies to their respective study 

on study-level, hence assuming that this data is dependent within studies and 

independent between studies. Exactly the same is assumed on country-level 

though this assumption may not hold for multinational studies. Instead of simply 

dropping the affected data points which may result in a considerable loss of 

valuable data, the data from multinational studies may be ‘pooled’ in a distinct 

group on country-level, thereby removing its influence on other country-

parameters. Obviously, as some countries in the dataset are only considered 
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within those multinational studies, this would mean to lose some parameters on 

country-level. However, what is gained is the chance to analyse the full dataset 

with all studies originally includable in this exercise whilst still obtaining ‘clean’ 

country-level estimates from all the other studies in the dataset. Secondly, the 

problem of cross-classification in the data does no longer exist so that a strictly 

hierarchical three-level model with data being clustered in studies and studies 

being clustered in countries (as shown in equation (11) in Section 3.1.2.2), 

applies. However, most importantly this strategy addresses what has been 

discussed in the literature before (Ramsey et al., 2005; Barbieri et al., 2005), 

namely that multinational studies might not appropriately reflect country-level 

variability, which may also be the cause for (severely) underestimated country-

level variation observed in the cross-classified model in this pilot study.  

 

In conclusion, the main empirical analysis, which is reported in Chapter 5, starts 

off with an exercise on the appropriate MLM structure for analysing the data 

obtained from the systematic literature review and data abstraction exercise. 

One key aspect of this exercise is to investigate the appropriateness of the 

independency assumption of multinational study data on country-level, which 

leads to a direct comparison of the cross-classified model, and an alternative 

three-level hierarchical model structure which clusters multinational study data 

in a separate group on country-level.  

 

 

3.4.5.2. Feedback from presenting this pilot study to a wider health 

economics and multilevel modelling audience 

 

 

Next to testing the MLMs theoretically developed in this chapter, a second 

objective of this pilot study was to generate feedback on the proposed method 

of secondary data integration from published economic evaluation studies to 

analyse factors causing variability in international cost-effectiveness data from a 

wider health economics and multilevel modelling audience. For this reason, the 

pilot study was presented at a number of seminars and conferences. The 

remainder of this section discusses the invaluable feedback obtained.  
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One of the most valuable comments received relates to the above discussion 

regarding the appropriate MLM structure. In particular, a three-level hierarchical 

model was proposed instead of the cross-classified data-structure because of the 

negligible country-level variation in the cross-classified model and the suspicion 

that this might be due to inappropriate assumptions regarding the independence 

of data from multinational studies on country-level. At the time of carrying out 

the pilot study, the author was not clear on how to fit a three-level hierarchical 

model to the data without dropping measurements from multinational studies. 

However, before completing the systematic literature review and data 

abstraction exercise for the main empirical analysis, alternative model structures 

were developed which acknowledge that data from multinational studies is not 

independent on country-level. These data structures were subsequently tested 

and their performance compared to the cross-classified framework. Results are 

reported in great detail in Section 5.1 of the empirical chapter.  

 

 

The impact of shrinkage on study and country parameters may constitute an 

issue for the integration of secondary data from international economic 

evaluation studies. Shrinkage partly depends on the number of observations 

within a particular group, so that the ‘gravity’ of a study increases with the 

number of cost-effectiveness estimates provided to the overall dataset. If the 

unit of observation is an individual within a randomized controlled trial, this 

makes perfect sense as the weight of a study is proportional to the number of 

patients under assessment. However, as the data for this exercise stems in part 

from decision analytic modelling studies, the respective number of cost-

effectiveness estimates may only reflect the rigor with which subgroup and 

sensitivity analyses have been conducted and reported within a particular study. 

As a result, MLMs may bias towards those studies which report in greater detail 

on the results of subgroup or sensitivity analysis, irrespective of the quality of the 

particular study or the strength of evidence underlying the input data for 

decision analytic models. This important issue is addressed in great depth in 

Section 5.1.5 of the empirical chapter.  

 

 

As a further development of the MLMs tested within the pilot study, it was 

suggested to consider fitting random slopes to acknowledge that the relationship 
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between measures of cost-effectiveness and explanatory variables may be 

different for different studies (or countries) in the dataset. Moreover, fitting 

random slopes to the data allows modelling the variation in international cost-

effectiveness data directly as a function of explanatory variables. At the time of 

carrying out the pilot study, the author did not yet succeed in fitting random 

slopes models, however, this has been subsequently achieved within the main 

empirical analysis and details are reported in Section 5.4 of the empirical 

chapter.  

 

 

Finally, a number of comments received relate to the impact of particular 

variability factors on the results of economic evaluation studies. For instance, the 

impact of ‘time’ on the cost and efficiency of the intervention, differential 

discount rates, and further methodological characteristics of studies under 

assessment were mentioned. For this reason, the following Chapter 4, which is 

concerned with a systematic literature review and data abstraction exercise, 

reports on the development of a data abstraction form, which is based on a long 

list of potential variability factors as obtained from the relevant economic 

evaluation literature (Sculpher et al., 2004; Goeree et al., 2007). A key objective 

of the main empirical analysis in Chapter 5 is then to test these variability factors 

within the MLM framework and to ascertain a set of covariates which controls 

for part of the variability in measures of cost-effectiveness on each level of the 

model hierarchy.  

 

 

Further comments received from researchers involved with economic evaluation 

in health, MLM, or both, which are not particularly related to the design and 

execution of the main empirical analysis, may be discussed later in the overall 

discussion section in Chapter 6. The following chapter reports on a systematic 

literature review and data abstraction exercise to populate a dataset for the 

main empirical analysis. As the pilot study before, this exercise focusses on the 

cost-effectiveness of statins in the primary and secondary prevention of CVD. 
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4. Systematic literature review, data abstraction and 

‘genealogy’ study 
 

 

The previous chapter was concerned with the MLM methods relevant for the 

empirical exercise within this project. In Section 3.1 of Chapter 3, a number of 

MLM structures were theoretically developed, including a three-level hierarchical 

model with measures of cost-effectiveness clustered in studies and countries, as 

well as a two-level cross-classified model where the hierarchy between studies 

and countries breaks down due to data from multinational studies. Then, in 

Section 3.2., the dependent variable, or a vector thereof, was specified. INMBs 

were identified as the appropriate response variable in a univariate model, and 

the INMB statistic was decomposed into its stochastic components ∆C and ∆E in 

a bivariate MLM. Finally, the models developed in Chapter 3 were tested in a 

pilot study utilizing data from 16 international economic evaluation studies on 

the cost-effectiveness of statins in the primary and secondary prevention of CVD, 

and this was reported and discussed with particular emphasis on the design of 

the main empirical exercise in Section 3.4 of the previous chapter.  

 

 

In this chapter, the primary aim is to develop a dataset to carry out this empirical 

exercise. Specifically, the chapter begins with a systematic literature review on 

the cost-effectiveness of statins in the primary and secondary prevention of CVD. 

This intervention was chosen as it has been extensively researched in the past, 

meaning that a sufficient number of includable studies and geographic locations 

is hypothesized to be present in the data to justify the assumption of random 

parameters on study and country-level (Snijders, 2005). This assumption of 

random parameters on higher levels is crucial for fitting multilevel models 

(Snijders, 2005).  

 

 

After carrying out a systematic literature review, the second task to populate a 

dataset for the main empirical analysis is to develop a data abstraction form to 

collect data on the response variables as well as covariates to be tested on data 

and study-level. This process starts with reviewing the relevant literature to 

obtain a long list of factors potentially causing variability in international cost-
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effectiveness data. Subsequently, variability factors are operationalized and a 

data abstraction form is developed. This form, which was also extensively tested 

and improved upon during the pilot study reported in the previous chapter, is 

used to obtain data from the studies includable in this empirical exercise. Details 

on this process are reported in Section 4.2.  

 

 

Finally, the systematic literature review, which resulted in 67 studies includable 

in this empirical exercise, showed that there may be a number of potential 

relationships between published economic evaluation studies. Such relationships 

may relate to common authorship, partly or fully recycled models, or the use of 

identical data sources, to name a few. As a result, the independency assumption 

of data between studies may be violated analogously to the problems introduced 

by multinational study data on country-level as discussed within the pilot study. 

For this reason, an explorative analysis of the ‘genealogy’ of economic evaluation 

studies is reported to either inform alternative data structures, or at least, to 

derive further covariates encoding potential relationships between economic 

evaluation studies. This genealogy study differs from the other two sections of 

this chapter as it addresses an important research question in its own right 

rather than being a pure prerequisite for the main empirical analysis. Results of 

this explorative exercise into the genealogy of economic evaluation studies are 

reported in Section 4.3 of this chapter.  

 

 

 

4.1. Systematic literature review on the cost-effectiveness 

of statins for the primary and secondary prevention of 

CVD 

 

 

The primary aim of this systematic review is to populate a dataset for the 

empirical analysis. As the MLM methodology applied in the empirical exercise 

relies on the assumption of random parameters on study and country-level (e.g. 

Spiegelhalter et al., 2004), decisions were made in order to achieve sufficient 

numbers of higher-level units for this assumption to hold. First, with statins for 
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the primary and secondary prevention of CVD, the author chose an extensively 

studied intervention area for the purposes of this project. Secondly, a highly 

sensitive search strategy was developed to ensure sufficient numbers of 

includable studies applicable to as many countries as possible. However, this 

does not mean that any study concerned with the cost-effectiveness of statins in 

the primary and secondary prevention of CVD is includable in this systematic 

review. Rather, a number of strict inclusion and exclusion criteria were defined 

to ensure that only studies providing information in a format that is suitable for 

secondary data integration as laid out in the MLM methods Chapter 3 would 

enter this exercise. The following Section 4.1.1 outlines the search strategy as 

well as inclusion and exclusion criteria for this systematic review. Subsequently, 

search results are presented in Section 4.1.2. The second part of this chapter is 

concerned with the development of a data abstraction form to populate a 

dataset for the main empirical analysis within this project. As part of this section, 

descriptive statistics of studies included in this exercise are reported. The final 

Section 4.3 of this chapter focusses on the genealogy of economic evaluation 

studies.   

 

 

4.1.1. Review Methodology 

 

 

To devise a highly sensitive search strategy which identifies a large number of 

includable studies on the cost-effectiveness of statins in the primary and 

secondary prevention of CVD, a number of existing systematic review papers on 

this intervention area were consulted to learn about respective search strategies 

applied. Probably one of the most rigorous reviews within this area was 

undertaken by Ward et al. (2007), who aimed to ‘identify and evaluate studies 

exploring the cost-effectiveness of statins in primary and secondary prevention of 

CHD and CVD in the UK.’ Though the literature review in this thesis is not limited 

to a UK setting, some principles from Ward et al. (2007) were adapted and 

developed further for the purposes of this project.  
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Table 4.1: Databases searched 
 

Search 

Engine 
Databases searched Comments 

Ovid - British Nursing Index 
- Medline 

- Search performed April 15
th

, 
2011 

SCOPUS - Embase 
- Medline 
- Science Direct 

- Search performed April 16
th

, 
2011 

- Medline was not dropped from 
this search as the SCOPUS 
search engine differs from Ovid 
which may have led to 
differences in search results 

Ebsco Host - Academic Search Complete 
- Busines Source Premier 
- CINAHL 

- Search performed April 16
th

, 
2011 

HEED  - Search performed April 19
th

, 
2011 

CRD - Database of Abstracts of Reviews of Effects 
(DARE) 

- Health Technology Assessment Database 
(HTA) 

- NHS Economic Evaluation Database (NHS EED) 

- Search performed April 19
th

, 
2011 

Cochrane 

Library 

- Cochrane Database of Systematic Reviews 
(CDSR) 

- Cochrane Central Register of Controlled Trials 
- Cochrane Methodology Register 
- Database of Abstracts of Reviews of Effects 

(DARE) 
- Health Technology Assessment Database 

(HTA) 
- NHS Economic Evaluation Database (NHS EED) 

- Search performed April 21
th

, 
2011 

- Cochrane database of systematic 
reviews was searched as review 
papers were hand searched for 
relevant references 

- DARE, HTA and NHS EED were 
included as the Cochrane search 
engine differs from CRD, which 
may have led to differences in 
search results 

Pubmed  - Search performed April 19
th

, 
2011 

- Though Medline and Pubmed 
are essentially identical, a 
separate search was performed 
in PubMed as a different search 
engine applies which may have 
led to differences in search 
results 

Web of 

knowledge 

- Web of Science 
- Biosis Reviews 

- Search performed April 19
th

, 
2011 

JStor  - Search performed April 19
th

, 
2011 

- Search results subsequently 
dropped from further 
assessment 

Wiley  - Search performed April 20
th

, 
2011 

- Search results subsequently 
dropped from further 
assessment 

 

 

Literature searches were performed between April 15th and April 21st 2011 using 

the databases listed in Table 4.1 above. Some databases may have been 
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searched more than once as they form part of several search engines used. 

However, as search engines may differ, so may search results, which is why it 

was decided not to drop the respective search results but rather to deal with 

potential duplicates after exporting results to the reference managing software 

RefWorks. Two databases (Jstor and Wiley) were initially searched but search 

results were subsequently dropped from further analysis (more details on this 

matter are available in the next section). For Medline searched via OVID, the 

same search strategy as developed by Ward et al. (2007) was applied, though 

results were not limited by geographic setting or publication year. For other 

search engines, the search strategies are reported in Appendices 4.1 to 4.10.  

 

 

As mentioned above, no country or language restriction was initially applied to 

the literature search as it was aimed to represent as many geographic domains 

as possible in the resulting dataset. However, at a later stage, it was decided to 

drop papers which were not written in either English or German language as 

resources to translate studies written in other languages were not available. As 

with geographic origin, no time restriction was placed on the literature search as 

it was aimed to reflect the whole continuum of statin related cost-effectiveness 

literature in the dataset and as ‘timing’ may be one potential explanatory within 

the main empirical analysis.  

 

 

Only studies following an incremental approach were includable in this review 

exercise, and as comparator technology, only i) ‘doing nothing, ii) ‘other statin’ or 

iii) ‘same statin in different dosage’ were considered. Studies which compared 

the intervention to any combination of statins and other technologies (e.g. statin 

vs. statin plus dietary advice, statin vs. statin plus ACC, or statin vs. statin plus 

antihypertensive drug), were not includable as differences in combinations of 

therapies potentially introduce further variability in measures of cost-

effectiveness which cannot be easily controlled for through explanatory variables 

within the MLM framework.  

 

 

Even If the appropriate intervention and comparator technologies were 

considered, studies were only includable if the ICER or INMB statistic was 
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decomposed into its stochastic components ∆C and ∆E. Otherwise, it may not be 

possible to either re-combine ∆C and ∆E to INMBs with a common threshold 

value λ for the univariate multilevel model or to run a bivariate model with ∆C 

and ∆E as a vector of response variables. Further, studies were only includable if 

effectiveness was measured either in life years saved (LYS) or quality adjusted 

life years (QALYs). Hence, studies reporting intermediate outcomes such as 

cholesterol reduction or change in cardiovascular events due to statin prevention 

were not includable in this review exercise.  

 

 

Studies utilizing individual patient data and decision analytic modelling studies 

were suitable for this exercise. In addition, studies which adapted published 

results to other geographic settings were includable if results were not simply 

‘currency adjusted copies’ of the original data. Finally, only adult populations 

were considered for this systematic review. 

 

 

In contrast to other systematic reviews, this exercise did not a priori define a 

minimum set of methodological requirements. There were several reasons for 

this. First, methods standards may differ between geographic domains, so that it 

may be difficult to define a particular set of minimum requirements without 

biasing search results towards particular settings. Secondly, the main empirical 

exercise aims to control for variability factors on different levels of the data 

hierarchy through the assumption of conditional independence (e.g. Drummond 

et al., 2009). Hence, differences in study methods may be partly controlled for 

through the inclusion of appropriate covariates on data and study-level. Finally, it 

was aimed to explicitly rate study quality through the use of ‘QHES’, which is a 

validated quality checklist for economic evaluation studies in health (Ofman et 

al., 2003). The results of this quality assessment may then be used as a further 

explanatory in the MLM framework. More details on the use of QHES within this 

empirical exercise are available from Section 4.2 of this chapter, which is 

concerned with the development of an abstraction form to populate a dataset 

for the main empirical exercise of this project.  
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4.1.2. Search Results 

 

 

Figure 4.1 below shows the search algorithm applied in this systematic literature 

review. After searching individual databases, 4589 search results were exported 

to the reference managing software ‘RefWorks’. Though review papers, meta-

analyses, opinion pieces etc. are not includable in the empirical, they were not a 

priori excluded from electronic searches. Rather, the RefWorks search facility 

was used after importing results to filter out relating references. This resulted in 

788 hits. Secondly, titles and abstracts of these 788 references were screened 

and de-duplicated, resulting in a list of 33 highly relevant review papers or meta-

analyses. Finally, 28 review papers which were accessible via Brunel University 

subscriptions or inter library loans, were hand searched for potentially relevant 

references of original research articles on the cost-effectiveness of statins in the 

primary and secondary prevention of CVD (references of these 28 papers are 

available from Appendix 4.11). This resulted in a list of 90 references.  

 

 

One advantage of first hand searching systematic review papers for potentially 

relevant references is that one may use results to obtain an indication of 

‘sensitivity’ of the initial electronic search performed. If an electronic search picks 

up a high number of references also obtained from hand searching review 

papers, this search may be deemed as fairly sensitive. In total, 77 of 90 (85.56%) 

references obtained from hand searching relevant review papers were also 

picked up by electronic searches. However, some databases provided much 

better results than others, with the most successful searches performed in 

PubMed and OVID. Conversely, two databases (Jstor and Wiley) picked up less 

than 2% of references obtained from hand searching review papers. Hence, 

these databases may not focus on research in the relevant area, which is why the 

respective search results were dropped from further assessment and omitted in 

the search algorithm below.  
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Figure 4.1: Search Algorithm  

 

 

 

 

 

 

 

*    Without Medline   

**  England/Wales, Scotland, and UK as separate geographic entities  
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After screening out and hand searching relevant review papers, 3757 hits 

remained in the database. These search results were first de-duplicated, 

resulting in 1793 references. Secondly, titles and abstracts of these 1793 

references were screened twice. A first screening round reduced references to 

430, and a second - more thorough - screening of titles and abstracts reduced 

potentially relevant references to 143. Subsequently, a full text review was 

conducted of the 143 references from electronic searches plus the 90 references 

previously obtained from hand searching relevant systematic review papers, 

resulting in 233 references eligible for full text review. Of these 233 references, a 

further 166 were excluded. 96 papers were excluded as they did not constitute 

an original research article or report. Five papers did not perform a cost-

effectiveness or cost-utility analysis. A further 21 papers did not decompose the 

ICER or INMB into its components ∆C and ∆E, and twelve papers did not report 

health outcomes in terms of LYS or QALYs. 15 papers focused on the wrong 

population, intervention or comparator and seven papers were written in any 

other language than English or German. Finally, ten papers were excluded for 

other reasons, most commonly the fact that access was neither provided 

through Brunel University subscriptions nor inter library loans from the British 

Library. As a result, 67 studies were eligible for this empirical exercise, of which 

39 studies were initially obtained from hand searching systematic review papers 

for potentially relevant references, and a further 28 references from electronic 

searches. References of includable studies are available from Appendix 4.12.  

 

 

The 67 studies obtained were subsequently abstracted to populate a dataset for 

the main empirical analysis, which is reported in Chapter 5. To do so, a data 

abstraction form needed to be developed and tested which ascertains 

information on the response variables as well as potential variability factors for 

measures of cost-effectiveness on data and study-level. The development of this 

data abstraction form is reported next in Section 4.2 of this chapter, which also 

includes some key descriptive statistics of the studies included in this systematic 

review exercise. Finally, Section 4.3 of this chapter is concerned with an exercise 

into the ‘genealogy’ of international economic evaluation studies on the cost-

effectiveness of statins in the primary and secondary prevention of CVD.  
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4.2. Developing a data abstraction form and populating a 

dataset for the main empirical analysis 

 

 

The previous section described how studies includable in the empirical exercise 

were identified through a systematic literature review on the cost-effectiveness 

of statins in the primary and secondary prevention of CVD. This section describes 

how a data abstraction form to populate a dataset for the empirical analysis was 

developed. In general, this exercise began with screening the relevant literature 

for potential variability factors for measures of cost-effectiveness to obtain a 

long list of potential variables on the abstraction form. Secondly, the variability 

factors mentioned in the literature were operationalized so that data could be 

abstracted in a format which is suitable for quantitative analysis in the MLM 

framework. The third step was to test the resulting data abstraction form within 

the pilot study which was previously reported in Chapter 3.4. Experiences from 

the pilot study were then used to improve upon the data abstraction form. In 

some instances that meant to change the scale of a continuous variable, or to 

add or delete categories of categorical variables. In other cases, experiences 

from the pilot study led to dropping variables either because studies failed to 

report the relevant data or because responses would not vary within and 

between studies in the dataset. Finally, the resulting abstraction form was used 

to obtain data from the 67 studies includable in this empirical exercise.  

 

 

The following Section 4.2.1 reports on the development and use of the data 

abstraction form as it was outlined above. Subsequently, descriptive statistics of 

studies included in this empirical exercise are reported in Section 4.2.2. Finally, in 

Section 4.3, the data obtained is used within an empirical exercise on the 

‘genealogy’ of economic evaluation studies on the cost-effectiveness of statins in 

the primary and secondary prevention of CVD.  
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4.2.1. Development and use of a data abstraction form 

 

 

The development of a data abstraction form started off from a long list of factors 

potentially causing variability in measures of cost-effectiveness as previously 

discussed within the relevant literature. Two papers were of utmost relevance, 

namely Sculpher et al. (2004) and Goeree et al. (2007). Both papers 

systematically reviewed the economic evaluation literature in health to obtain 

factors which may be responsible for variation in international cost-effectiveness 

data. Sculpher et al. (2004) obtained a list of 27 variability factors relating to a) 

the patient, b) the clinician, c) the healthcare system or d) wider socioeconomic 

factors. Goeree et al. (2007) confirmed and updated the list of Sculpher et al. 

(2004). Their systematic literature review resulted in 77 unique variability factors 

based on characteristics of a) the patient, b) the disease, c) the provider, d) the 

healthcare system and e) methodology used in the analysis. The results of 

Goeree et al. (2007) constitute the ‘long list’ of potential variability factors on 

which the development of the data abstraction form is based upon. It is 

acknowledged that the ‘space of variability factors’ is generally unlimited, so that 

factors neither mentioned by Sculpher et al. (2004) nor by Goeree et al. (2007) 

may also be important. However, as their work is supposed to represent a 

comprehensive list of those factors which other health economists previously 

suspected to be responsible for variability in cost-effectiveness data, their results 

may be regarded as the most appropriate starting point for this analysis.   

 

 

Though Sculpher et al. (2004) and Goeree et al. (2007) made an invaluable 

contribution to the field, the variability factors mentioned in their papers needed 

further refinement to be practicable within this data abstraction exercise. Some 

factors mentioned are somewhat ‘fuzzy’, not measurable without further 

adjustment or simply not applicable to the intervention area of statins in the 

primary and secondary prevention of CVD. In addition, a number of variability 

factors specifically relate to variation between geographic domains. These 

factors are considered explicitly within Section 5.3 of the empirical chapter 

where country-level variability is assessed within the MLM framework. However, 

for the purposes of developing a data abstraction form for the studies included in 

this empirical exercise, country-level characteristics were not considered as the 
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relevant data may not be obtainable from the majority of studies but rather from 

alternative data sources like WHO, World Bank or OECD databases. In terms of 

the variability factors reviewed by Goeree et al. (2007), this relates specifically to 

the group of ‘healthcare system characteristics’ (see Figure 4.2 below).  

 

Figure 4.2: Flow chart showing how the data abstraction form was developed 
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Table 4.2: Response variables, ID-variables and covariates on data-level 
 

Variable 

name 

Description Level Nature of variable 

Response variables 

Incr_effect incremental effectiveness of intervention Dependent variable continuous 

Incr_cost incremental cost of intervention in 2010 £-Sterling Dependent variable continuous 

INMB INMB in 2010 £-Sterling Dependent variable continuous 

Level-IDs 

country_id Which country does the CE-estimate refer to? Level 3 ID (country) Level ID no covariate 

Study_id Which study does the CE-estimate refer to? Level 2 ID (study) Level ID no covariate 

Data_id Data-level identifier Level 1 ID (data) Level ID no covariate 

Group 1a  covariates: Patient and disease characteristics 

age_cat What was the age of the sub-population modelled Level 1 (data) ordered, categorical 

gender_cat 
What was the gender of the population (percentage of men in 

population) 
Level 1 (data) ordered, categorical 

CVD_hist What was the CHD related medical history Level 1 (data) unordered, categorical 

Tcl What was the total cholesterol level baseline Level 1 (data) Continuous 

Hdl What was the high density lipoprotein level at baseline Level 1 (data) Continuous 

Ldl What was the low density lipoprotein level Level 1 (data) Continuous 

Hypert What was the percentage of hypertensive people in the subsample Level 1 (data) Continuous 

Sbp What was the mean systolic blood pressure at baseline Level 1 (data) Continuous 

Diab What was the percentage of diabetic patients at baseline Level 1 (data) Continuous 

smokers What was the percentage of smokers at baseline Level 1 (data) Continuous 

risk_cat What was the risk category of the subsample Level 1 (data) ordered, categorical 

Group 1b covariates: Intervention and comparator 

intervention What was the brand name of the intervention drug? Level 1 (data) unordered, categorical 

comparator What was the brand name of the comparator drug? Level 1 (data) unordered, categorical 

act_comp Was the comparator no active intervention? Level 1 (data) unordered, binary 

tdd_int What was the total daily dose of the intervention Level 1 (data) ordered, categorical 

tdd_comp What was the total daily dose of the comparator Level 1 (data) ordered, categorical 

Cost-int What are the annual drug cost of the intervention in 2010 £-Sterling Level 1 (data) Continuous 

Unitcost_int What was the unit cost of the intervention Level 1 (data) Continuous 

Cost_comp What are the annual drug cost of the comparator in 2010 £-Sterling Level 1 (data) Continuous 

Unitcost_co

mp 
What was the unit cost of the comparator Level 1 (data) Continuous 

Incr_cost What was the incremental annual drug cost  of the intervention Level 1 (data) Continuous 

Group 1c covariates: Methodological characteristics on data-level 

outc_measu

re 
How was health outcome reported in the study Level 1 (data) unordered, binary 

elicitation If QALYS were used, what was the method of preference elicitation? Level 1 (data) unordered, categorical 

population 
If QALYS were used, what do the utility values reflect (patient / 

population values) 
Level 1 (data) unordered, categorical 

DRC What was the discount rate on costs  Level 1 (data) Continuous 

DRB What was the discount rate on benefits Level 1 (data) Continuous 

duration What was the treatment duration modelled Level 1 (data) ordered, categorical 

extrapol Was there any extrapolation beyond the latest follow up? Level 1 (data) unordered, binary 

horizon What was the time horizon? Level 1 (data) ordered, categorical 

hor_eq_dur Does the time horizon equal the treatment duration? Level 1 (data) unordered, binary 

Persp_rep 
What was the study perspective as reported by the authors of the 

article 
Level 1 (data) unordered, categorical 

Persp_cost_

concl 
What was the study perspective on costs as concluded by the reviewer Level 1 (data) unordered, categorical 

Persp_ben_c

oncl 

What was the study perspective on outcomes as concluded by the 

reviewer 
Level 1 (data) unordered, categorical 

data_class How was the datapoint classified Level 1 (data) unordered, categorical 

basecase Was the data point result of a base case or sensitivity analysis? Level 1 (data) unordered, binary 

source_effec

ts 

From which source (trial, meta-analysis) was effectiveness data taken 

from 
Level 1 (data) unordered, categorical 

Barbieri_sco

re_1 

How context specific is the CE estimate judged from the input 

parameters 
Level 1 (data) unordered, categorical 

Barbieri_sco

re_2 

How context specific is the CE estimate judged from the input 

parameters 
Level 1 (data) unordered, categorical 
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Table 4.3: Covariates on study-level 
  

Variable name Description Level Nature of variable 

Group 2a covariates: General Study characteristics 

language In which language was the paper written? Level 2 (study) unordered, binary 

paper_origin 

In which country was the paper written (if authors from 

several jurisdictions were involved, where is the lead author 

based? 

Level 2 (study) unordered, categorical 

Timing What is the timing of the economic evaluation Level 2 (study) unordered, categorical 

fund_inst What was the primary source of funding (institution) Level 2 (study) unordered, categorical 

fund_man 
If funding source was private, which manufacturer was 

involved? 
Level 2 (study) unordered, categorical 

Author_group

_long 

Variable which encodes relationships between published 

papers in terms of common authorship 
Level 2 (study) unordered, categorical 

Author_group

_short 

Variable which encodes relationships between published 

papers in terms of common authorship 
Level 2 (study) unordered, categorical 

Group 2b covariates: Methodological characteristics on study-level 

gen_des What was the general study design? Level 2 (study) unordered, categorical 

prim_des If primary modelling, what was the specific study design? Level 2 (study) unordered, categorical 

sec_des If secondary modelling, what was the specific study design Level 2 (study) unordered, categorical 

effect_calc Method of effect calculation Level 2 (study) unordered, categorical 

multinational Was the study multinational Level 2 (study) unordered, binary 

infl_adj Were cost estimates in the model adjusted for inflation? Level 2 (study) unordered, categorical 

adj_method 
If cost estimates were adjusted for inflation, what was the 

adjustment method 
Level 2 (study) unordered, categorical 

cur_conv Was currency converted Level 2 (study) unordered, binary 

conv_method 
If currency was converted, what was the conversion method 

used by the authors? 
Level 2 (study) unordered, categorical 

scope What was the scope of assessment Level 2 (study) unordered, categorical 

Group 2c covariates: Study Quality indicators 

qhes_cata 
What was the overall QHES category given a strict 

application of the QHES criteria 
Level 2 (study) ordered, categorical 

qhes_catb 
What was the overall QHES category given a pragmatic 

application of the QHES criteria 
Level 2 (study) ordered, categorical 

Qhes_conta 
What was the overall QHES score given a strict application of 

the QHES criteria? 
Level 2 (study) continuous 

Qhes_contb 
What was the overall QHES score given a practicable 

application of the QHES criteria? 
Level 2 (study) continuous 

 

 

Further, experiences from the pilot study showed that studies on the cost-

effectiveness of statins in the primary and secondary prevention of CVD usually 

do not explicitly report information on healthcare providers involved in 

delivering the intervention. At most, studies considered a fixed cost-component 

per annum for GP involvement in screening appropriate patients, titration and 

monitoring. In addition, some studies considered a lump sum for distributing 

statins through pharmacies. However, in both cases, this forms part of the 

annual cost of intervention, and is therefore considered as an ‘intervention 

characteristic’. Beyond this, provider characteristics were generally not reported 

and respective variability factors were therefore dropped from further 

consideration after carrying out the pilot study.  
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On the other hand, neither Sculpher et al. (2004) nor Goeree et al. (2007) 

consider a separate group of variability factors relating to the intervention and 

the comparator under assessment. However, even for a relative homogeneous 

group of agents as it may be the case for statins in the primary and secondary 

prevention of CVD, differences may exist which feed through to the cost and / or 

effectiveness of treatment. Additionally, total daily dosages may differ between 

patients, which again may cause variability in measures of cost-effectiveness. For 

these reasons, variables entered the abstraction form relating to the statins 

under assessment, total daily dosages, as well as unit cost and annual drug cost 

of both intervention and comparator.  

 

 

For the remaining variability factors mentioned by Goeree et al. (2007) relating 

to a) the patient, b) the disease and c) methods used in health economic 

evaluations, literature was consulted to define variables for the data abstraction 

form which are suitable for subsequent quantitative analysis within the MLM 

framework. Patient and disease characteristics potentially causing variability in 

the cost-effectiveness of statins were operationalized by consulting literature on 

CVD risk factors and risk estimation. There is a vast literature available on CVD 

risk factors and a number of validated tools are available to estimate patients 

CVD related risk over a certain time period. Probably the most prominent CVD 

risk estimation tool is the Framingham risk equation (Anderson et al., 1991). 

However, in recent years the Q-Risk tool (Hippisley-Cox et al., 2007; Hippisley-

Cox et al., 2008) has gained popularity (Cooper et al., 2008). Hence, risk 

equations were used to ascertain a long list of patient and disease characteristics 

potentially relevant for the cost-effectiveness of statins in the primary and 

secondary prevention of CVD. This long list of patient and disease characteristics 

was then tested in the pilot study, where data was abstracted from 16 studies 

previously identified by Franco et al. (2005). It turned out that some covariates 

included in risk equations are generally not (or at least not frequently) reported 

in the statins related cost-effectiveness literature. This holds, for instance, for 

left ventricular hypertrophy (Anderson et al., 1991), BMI (Hippisley-Cox et al., 

2008), Family history of CVD (Hippisley-Cox et al., 2007; Hippisley-Cox et al., 

2008), social status, social deprivation (Hippisley-Cox et al., 2007; Hippisley-Cox 

et al., 2008), a townsend deprivation score (Hippisley-Cox et al., 2008), ethnicity 

(Hippisley-Cox et al., 2007; Hippisley-Cox et al., 2008), as well as rheumatoid 
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arthritis, chronic renal disease and atrial fibrillation  (Hippisley-Cox et al., 2008). 

As a result, only those patient and disease characteristics listed in Figure 4.2 as 

well as Table 4.2 above remained part of the data abstraction form, whilst 

variables less frequently reported were dropped from further analysis. The final 

data abstraction form for this empirical exercise is provided in Appendix 4.13. 

 

 

The data collected on individual patient and disease characteristics of patient 

subgroups subsequently allowed applying the original Framingham risk equation 

(Anderson et al., 1991) to obtain an overall score on 10 year CVD related risk. 

Framingham was chosen as the risk equation is - in contrast to QRISK I and II - 

freely available so that a model could be set up in MS Excel and, secondly, as the 

pilot study showed good availability of data for most risk factors considered in 

this risk equation. In addition, Framingham is probably still the most prominent 

tool in the literature, and even though alternatives exist, its use is still 

recommended by NICE (Cooper et al., 2008). Initially, it was intended to use the 

resulting estimate of 10 year CVD risk as a further continuous explanatory within 

subsequent multilevel analysis. However, there were several obstacles:  

 

 

First, not all studies included in the systematic review report the data required to 

populate the Framingham equation. Hence, if data was not obtainable from a 

cost-effectiveness study included in the systematic review exercise, alternative 

data sources were considered to fill gaps in the dataset. For instance, literature 

on RCTs providing data to populate the economic model proved particularly 

helpful to obtain missing information on patient subgroups considered. 

However, if neither the study included in this review exercise nor accompanying 

literature provided the data required to apply the Framingham risk equation, 

assumptions had to be made about the data. For instance, if data on TCL, HDL 

and triglycerides was available, but authors did not report an estimate of pre-

treatment LDL, the ‘Friedewald Function’ (Friedewald et al., 1972) was used to fill 

this gap. Likewise, if only diastolic blood pressure (DBP) was reported, 

assumptions were made about systolic blood pressure (SBP). In particular, if DBP 

was elevated, it was assumed that the same holds for SBP and vice versa. If 

neither DBP nor SBP was reported, but a patient’s hypertension status was 

positive, an elevated SBP was assumed. Finally, diabetes, smoking and 
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hypertension status were considered as continuous variables capturing the 

proportion of patients being affected by any of the stated conditions. Further 

details on the variables considered in the data abstraction form and the way they 

were operationalized for the purposes of this empirical analysis are available 

from Tables 4.2 and 4.3 above and Appendix 4.13.  

 

 

After filling gaps in the data for patient and disease factors, the Framingham risk 

equation was used to estimate patient subgroups 10-year CVD related risk. 

However, the resulting score was not applicable to data points which referred to 

secondary prevention with statins as Framingham is only valid for patients who 

have not experienced a CVD event (Anderson et al., 1991). A previous CVD event 

drives the subsequent CVD risk so that results from the Framingham risk 

equation, which does not take into account CVD history, are invalid (Anderson et 

al., 1991). Unfortunately, this precludes the chance to use the resulting risk 

estimate as a continuous variable in the MLM framework. As an alternative, a 

categorical variable was defined with categories relating to a 10 year CVD risk of 

<10% (very low), 10% to <20% (low), 20% to <30% (medium), 30% to <40% 

(high), >40% (very high) and ‘secondary prevention’. The resulting variable ‘RISK-

CAT’ is tested as an explanatory in the MLM framework in Chapter 5.2. 

 

 

Finally, methodological characteristics as mentioned by Goeree et al. (2007) 

were operationalized using standard health economics textbooks and key 

publications on economic evaluation in health. One source which proved 

particularly useful was the ISPOR online tool which summarizes HTA guidelines 

around the world (ISPOR, 2011). Five key challenges relate to the variability in 

cost-effectiveness data as a result of differences in study methods. First, some 

methods may only change between studies included in the dataset (for instance 

the general study design), whilst other methodological characteristics may also 

change within one study (for instance the discount rate on costs and effects). The 

MLM framework offers an excellent opportunity to assess the impact of different 

methods on data and study-level on measures of cost-effectiveness as it allows 

inclusion of covariates on each hierarchical level. As a result, the data abstraction 

form contains methodological characteristics on data and study-level 

respectively (Figure 4.2 above and Appendix 4.13).  
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Secondly, it is perhaps impossible to encode all study characteristics potentially 

causing variability in measures of cost-effectiveness within and between studies 

in terms of covariates for quantitative analysis. As a result, the data abstraction 

form may be regarded as an attempt to capture the most important 

methodological characteristics based upon those variability factors which have 

been previously discussed by other researchers. Accordingly, the reader may 

think of further variability factors relating to study methodology for future 

analysis. Presenting pilot study results at various conferences and seminars 

helped to expand upon the list of potential explanatory variables to consider in 

the main empirical analysis. Hence, this exercise aims to reflect both those 

factors previously mentioned in the literature as well as the feedback received 

from presenting the pilot study at various conferences and seminars.  

 

 

The third challenge relates to the aim of incorporating study quality into the 

analysis. Study quality was frequently mentioned as a potential variability factor 

for measures of cost-effectiveness and fellow researchers highlighted that this 

exercise should not simply assign corresponding variability to the respective 

error term. Rather, one should aim to capture study quality somehow and 

include this information as a further covariate in the model. There are a number 

of quality checklists available within the economic evaluation literature and in a 

first attempt to capture study quality, the author considered the use of a 

checklist developed by Drummond & Jefferson (1996), which was developed with 

the aim to ‘improve the quality of submitted and published economic articles’ 

(Drummond & Jefferson, 1996). Hence, the pilot study data abstraction form 

initially included 35 yes/no items referring to the above named checklist. 

However, the checklist developed by Drummond & Jefferson (1996) proved to be 

rather related to the quality of reporting economic evaluation results, and not 

the methodological rigour with which the study was initially conducted. Though 

this critique may apply to some extend to any quality checklist for economic 

evaluations, it was decided to consider alternatives for the empirical analysis.  

 

 

The ‘Quality of health Economics Studies’ (QHES) instrument, developed by 

Ofman et al. (2003), was chosen for a number of reasons: First, the QHES 

instrument is the only quality checklist which provides individual scores for each 
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dimension considered. These scores were generated using ‘random-effects 

general least-squares regression based on a conjoint analysis of survey results 

from 120 international health economists’ (Ofman et al., 2003). Adding together 

individual scores for each item allows assigning an overall quality score to each 

study, with a perfect quality score of 100. This score may be used as an 

explanatory variable in the MLM analysis. Secondly, the QHES instrument was 

validated in a survey by 60 experts (30 clinicians and 30 health economists) in six 

disease categories. Third, QHES proved relatively straightforward to apply in this 

empirical exercise, with only 16 criteria to consider. However, there were also 

some problems associated with QHES. In particular, Ofman et al. (2003) designed 

some dimensions on their checklist with multiple subcategories. Hence, an 

individual study may score ‘yes’ in one subcategory but ‘no’ in others. For 

instance, consider question eight of the QHES checklist:  

 

‘Did the analytic horizon allow time for all relevant and important outcomes? 

Were benefits and costs that went beyond 1 year discounted (3% to 5%) and 

justification given for the discount rate?’ 

 

Unfortunately, the developers of QHES did not specify what to do if a study does, 

for instance, consider a sufficient analytic horizon, but discounted costs with 6% 

and effects with 1.5%. Or alternatively, if both analytic horizon and discount rate 

are appropriate, but no justification is given for the choice of the discount rate. 

As a result, some assumptions were made to apply QHES to the 67 studies 

included in this systematic review exercise and two QHES-scores were calculated 

for each study considered. First, criteria were applied in their strictest sense, 

meaning that a score of zero was assigned to a QHES dimension if any of the 

subcategories was answered with ‘no’. Secondly, however, the item score was 

divided by the number of subcategories, and a partial score was assigned for 

each of the subcategories answered with ‘yes’. Obviously, this less stringent 

application of the QHES instrument led to generally higher overall QHES scores.  

 

 

Nevertheless, the results of applying quality checklists should always be 

considered with highest caution. All checklists considered for this exercise rely on 

judgements which may sometimes bias results. In addition, there may always be 

the concern that not all important quality dimensions were considered or, in the 
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particular case of QHES, the weights reflected in individual item scores may not 

perfectly reflect the relative importance of individual criteria on the checklist. To 

take into account the resulting uncertainty in results, continuous QHES scores 

were also converted into categorical variables in this thesis, with five categories 

with increments of 20 QHES points ranging from  ‘0’ to ‘100’.  

 

 

The fourth challenge with respect to study methods relates to the geographic 

source of input parameters. Barbieri et al. (2005) grouped studies with respect to 

this source of variability. Accordingly, there may be differing degrees of ‘context 

specificity’ in measures of cost-effectiveness. To assess this potential source of 

variability, information was first collected from studies to record the geographic 

origin of the data used to populate the economic model. Hence, data was 

collected to record the geographic origin of a) resource use data, b) unit cost 

estimates, c) effectiveness data and d) utility values. Secondly, covariates were 

derived which group data with respect to its ‘geographic specificity’ of input 

parameters. For clarification, Table 4.4 relates the geographic source of the input 

data to the target country considered in the economic analysis. If all input 

parameters are taken from the target country, the highest context specificity is 

assumed. This context specificity decreases with an increasing number of input 

parameters obtained from other geographic domains.  

 

 

Table 4.4: Context specificity of Input parameters  

(adapted from Barbieri et al, 2005) 
 

 Context specificity of input parameters 

Group Utility weights Effectiveness Resource Use Unit cost 

Type 4 Yes Yes Yes Yes 

Type 3 No Yes Yes Yes 

Type 2 No No Yes Yes 

Type 1 No No No Yes 

 

 

As a result, variables entered the dataset which aim to encode the context 

specificity of input parameters. One variable (Barbierie_score_1) aims to reflect 

different combinations of input parameters being drawn directly from the target 

country, whilst another variable (Barbieri_score_2) counts the number of context 
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specific categories of input parameters, resulting in 4 categories according to 

what has been presented in Table 4.4 above. The raw data to derive such 

covariates has been omitted from further analysis.   

 

 

The final challenge with respect to methodological characteristics of studies 

included in this empirical exercise relates to the potential number of relevant 

methods characteristics to consider in the MLM framework. In other words, if a 

large number of methodological characteristics are abstracted from the relevant 

literature, it is questionable whether one can simultaneously accommodate all 

relevant variables in the MLM framework. Hence, what would be desirable is a 

summary measure which captures a ‘methodological profile’ of studies included 

in the dataset. For this reason, the use of multiple correspondence analysis was 

considered – the ‘categorical equivalent to principal component analysis’ (Le 

Roux & Rouanet, 2010) - to group together studies of similar methodological 

profile. Those studies may then be assigned a score which can be used as an 

explanatory variable in the MLM. This idea was subsequently developed further 

into a study on the ‘genealogy’ of economic evaluation studies, The underlying 

assumption is that studies which are ‘phenotypically’ similar may share a 

‘genotypic’ relationship, for instance in terms of common authorship, common 

funding source or reuse of a previously developed DAM. The importance of this 

question arises out of the assumption of independence between studies included 

in the dataset. This assumption, which is necessary between groups on study-

level in the multilevel framework, may be violated if studies are very similar, and 

this similarity is not simply a coincidence but rather the result of an existing 

relationship between the studies in question. Section 4.2.3 is concerned with this 

genealogy study.  

 

 

After deciding on the variables to collect data for, an abstraction form was 

implemented in MS Access for the purposes of the pilot study. However, one key 

advantage of MS Access, which is the possibility to link tables with subtables to 

create a data hierarchy, hence avoiding redundancies in datasets, turned out to 

be a disadvantage for this particular exercise. The reason is that MLwiN requires 

data for higher-level variables assigned to each data point, so that the above 

mentioned redundancies occur (Rasbash et al., 2009). Hence, for the main 
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empirical analysis, a data abstraction form was implemented in MS Excel so that 

data for higher-level covariates could simply be copied to each respective data 

point. This format allowed instant exporting of the resulting dataset to STATA 12 

and MLwiN. A word document containing the final data abstraction form is also 

available from Appendix 4.13.   

 

 

The following section summarizes some key descriptive statistics based on the 

data abstracted from the studies included in this empirical exercise. 

Subsequently, the genealogy study is reported in Section 4.3 of this chapter.  

 

 

 

4.2.2. Descriptive statistics of studies included in the empirical 

exercise 

 

 

The first section of this chapter reported on a systematic literature review to 

identify studies on the cost-effectiveness of statins in the primary and secondary 

prevention of CVD which meet the inclusion criteria for this empirical exercise. 

The second section was concerned with the development of a data abstraction 

form which was based on a long list of potential variability factors for measures 

of cost-effectiveness as previously discussed in the relevant literature. This 

section reports some descriptive statistics of studies included in this empirical 

exercise which are also relevant for the genealogy study reported further below. 

Note that Section 5.2.3 of the empirical chapter also reports on descriptive 

statistics, missing values and correlations between explanatory variables for all 

covariates in the dataset. Further, descriptive statistics for all covariates are 

available from Appendix 5.  

 

 

67 studies were includable in this systematic literature review. References of 

these 67 studies can be found in Appendix 4.12. In addition, Table 4.6 at the end 

of this section lists all 67 studies with key characteristics discussed in this section. 

61 studies are ‘single country’ studies, providing measures of cost-effectiveness 

for one geographic domain only. The remaining six studies (8.96%) are 
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multinational in nature, providing data on more than one geographic domain. 

The countries considered in these six multinational studies are Denmark, France, 

Italy, New Zealand, Norway and Portugal. Table 4.5 below shows the distribution 

of studies per country.  

 

Table 4.5: Distribution of studies per target country 
 

Country Frequency Percent Cummulative 

Australia 1 1.49% 1.49% 

Belgium 2 2.99% 4.48% 

Brazil 1 1.49% 5.97% 

Canada 12 17.91% 23.88% 

Finland 2 2.99% 26.87% 

Germany 5 7.46% 34.33% 

Hong Kong 1 1.49% 35.82% 

Hungary 1 1.49% 37.31% 

Japan 1 1.49% 38.81% 

Netherlands 3 4.48% 43.28% 

Spain 1 1.49% 44.78% 

Sweden 4 5.97% 50.75% 

Switzerland 1 1.49% 52.24% 

UK 7 10.45% 62.69% 

UK (Engl./Wales) 7 10.45% 73.13% 

UK (Scotland) 1 1.49% 74.63% 

USA 11 16.42% 91.04% 

Multinational* 6 8.96% 100% 

Total 67 100% -- 

*Denmark, France, Italy, New Zealand, Norway and Portugal 

 

 

Note that some studies provided data applicable to ‘England/Wales’, others 

provided data for ‘Scotland’ and finally, some studies referred to the ‘UK’ as a 

whole. Accordingly, three distinct geographic entities were defined. 61 out of 67 

studies were written in English language. The timing of studies (which is not the 

year of publication) ranges from 1988 to 2009, with two peaks between 1995 to 

1998 and 2005 to 2007 respectively (see Figure 4.3 below). Industry was involved 

in the funding of 39 publications (58.21%), whilst funding was unclear for a 

further 17 studies (25.37%). If industry funding was available, the manufacturers 

most commonly involved were Pfizer with 13 studies and Merck with 12 studies. 
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Figure 4.3: Timing of economic evaluation studies included in this empirical 

exercise 

 

 

Simvastatin was by far the most commonly assessed intervention, followed by 

pravastatin, atorvastatin, lovastatin, rosuvastatin and fluvastatin. In most 

studies, the intervention was compared to ‘doing nothing’ whilst 17 studies also 

considered other statins as comparator. The mean annual drug cost of the 

intervention (converted to £-Sterling using Purchasing Power Parities (PPP) and 

updated to 2010 using country specific GDP deflators (Shemilt et al., 2008; OECD, 

2010) is £521.59. The annual drug cost is highest for lovastatin at £932.14 (SD: 

515.14), followed by pravastatin at £858.00 (SD: 236.67), atorvastatin at £503.89 

(SD: 232.19), simvastatin at £477.70 (SD: 312.81), rosuvastatin at £337.28 (SD: 

247.16) and fluvastatin at £ 293.08 (SD: 103.10) respectively.  

 

 

Methods on study-level show that most studies (61; 91.04%) rely on secondary 

modelling, whilst only six studies (8.96%) made direct use of individual patient 

data. For secondary modelling, the most common model used was a Markov 

state transition model (41; 61.19%). Seven studies (10.45%) were based on 

decision trees, and other modelling approaches involved life tables, or discrete 

event simulation. An important question is how effectiveness was measured and 

modelled within a study, and there are two general approaches. Most studies 

(61.19%) modelled the reduction in risk of experiencing a CVD event in the future 

to estimate incremental effectiveness. 26 studies (38.81%), however, used the 

intermediate outcome of cholesterol reduction to approximate its impact on CVD 

1990 1995 2000 2005 2010

Timing of economic evaluation studies
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risk, which then resulted in an estimation of life years or QALYs saved. Moving on 

to the outcome measure itself, QALYs were considered in 32 (47.76%) out of the 

67 studies. If QALYs were considered, the utility weights represent population 

values in 15 studies (22.39%), patient values in 13 studies (19.40%), and in 4 

studies (5.97%) it was unclear whether utility weights represent patient or 

population preferences.  

 

 

The majority of 35 studies (52.24%) explicitly looked into the effect of statins on 

coronary heart disease (CHD) and cerebrovascular disease (CD), whilst 18 studies 

(26.87%) looked at CHD only. 11 studies (16.42%) looked at CHD, CD and 

peripheral arterial disease (PAD). Inflation adjustment of cost estimates to a 

common baseline year was explicitly reported in 18 studies (26.87%), whilst this 

was unclear in 35 cases (52.24%), If inflation adjustment was applied, the most 

common method was to use the healthcare component of the target countries 

consumer price index with 10 studies (14.93%). Currency conversion of any kind 

was applied in 15 studies (22.39%), and the most common method of currency 

conversion was the use of real exchange rates (11, 16.42%). In terms of context 

specificity, by far the most measures of cost-effectiveness (49.33%) where 

generated with unit cost and resource use data from the target country, whilst 

effectiveness estimates and utility weights were transferred from another 

jurisdiction. Only 56 data points (2.67%) were generated with all data sources 

from the target domain.  

 

 

Table 4.6 below summarizes some key characteristics of all 67 studies included in 

this empirical exercise. Full descriptive statistics as well as missing values analysis 

and analysis of correlations between explanatory variables are provided in 

Section 5.2.3 of the empirical chapter as well as in Appendix 5.  
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Table 4.6: Key study characteristics – summary table 
 

ID Authors  

(pub. year) 

Timing Multi-

country 

Target country Primary 

Modelling 

Outcome 

measure 

Industry 

Funding 

1 Ashraf et al. (1996)  1995 No USA No LYS Yes 

2 Caro et al. (1997) 1996 No UK (Scotland) Yes LYS Yes 

3 Grover et al. (1999) 1996 No Canada No LYS Unclear 

4 Grover et al. (2000) 1996 No Canada No LYS Yes 

5 Hamilton et al. (1995) 1992 No Canada No LYS Yes 

6 Johanneson et al. (1997) 1995 No Sweden No LYS Yes 

7 Muls et al. (1998) 1995 Yes Belgium  No LYS Yes 

8 Perreault et al. (1998) 1995 No Canada  No LYS No 

9 Pharoah et al. (1996) 1995 No UK (England/Wales) No LYS No 

10 Szucs et al. (1998) 1996 No Germany No LYS Unclear 

11 Szucs et al. (2000a) 1998 No Germany No LYS Unclear 

12 van Hout et al. (2001) 1999 No Netherlands No LYS Unclear 

13 Jönsson et al. (1996) 1995 Yes Multi-country Yes LYS Yes 

14 Jönsson et al. (1999) 1997 Yes Multi-country Yes LYS Yes 

15 Ganz et al. (2000) 1998 No USA No LYS / QALYs No 

16 Grover et al. (2001) 1998 Yes Multi-country No LYS Yes 

17 Martens et al. (1994) 1993 No Canada No LYS Yes 

18 Alonso et al. (2008) 2005 No Spain No LYS Yes 

19 Annemans et al. (2010) 2009 No Belgium  No LYS / QALYs Yes 

20 Araujo et al. (2007) 2007 No Brazil  No LYS Unclear 

21 Lindgren et al. (2010)  2007 No UK (England/Wales) No LYS / QALYs Yes 

22 Grover et al. (2008) 2002 No Canada No LYS Yes 

23 Franco et al. (2007) 2003 No Netherlands No LYS No 

24 Greving et al. (2011) 2008 No Netherlands No QALYs No 

25 HPS Group (2009) 2006 No USA No LYS / QALYs Yes 

26 Khoury et al. (2009) 2007 No Canada No LYS / QALYs Yes 

27 Kongnakorn et al. (2009) 2005 No USA No LYS / QALYs Yes 

28 Morris (1997) 1996 No UK No LYS Unclear 

29 Morris & Godber (1999) 1997 No Canada No LYS Yes 

30 Rosen (2010) 2007 No USA No LYS / QALYs Yes 

31 Scuffham et al. (2005) 2002 No UK No LYS / QALYs Yes 

32 Scuffham et al. (2006) 2005 No Hungary No LYS / QALYs Yes 

33 Tailor et al. (2009) 2005 Yes Multi-country No LYS / QALYs Unclear 

34 Tonkin et al. (2006) 1998 No Australia Yes LYS Yes 

35 Wagner et al. (2009a) 2007 No Canada No LYS / QALYs Yes 

36 Wagner et al. (2009b) 2006 No Canada No LYS / QALYs Yes 

37 Berger et al. (1997) 1996 No Germany No LYS Unclear 

38 Obermann et al. (1997) 1993 No Germany No LYS Yes 

39 Davies et al. (2006) 2005 No UK No QALYs Yes 

40 Spaans et al. (2003) 1996 No Canada No LYS Unclear 

41 Soini et al. (2010) 2007 No Finland No LYS / QALYs Yes 

42 Peura et al. (2008) 2006 No Finland No LYS / QALYs Yes 

43 Slejko et al. (2010) 2008 No USA No QALYs Unclear 

44 Nherera et al. (2010) 2009 No UK (England/Wales) No QALYs Unclear 

45 Szucs et al. (2000b) 1997 No Switzerland No LYS Unclear 

46 Sigvant et al. (2011) 2009 No Sweden No LYS / QALYs Yes 

47 Johannesson et al (1996) 1991 No Sweden Yes LYS Yes 

48 Troche et al. (1998) 1995 No Germany No LYS Unclear 

49 Szucs et al. (2004) 2003 Yes Multi-country No LYS Unclear 

50 Nagata et al. (2005) 2002 No Japan No QALYs Unclear 

51 Lindgren et al. (2007) 2005 Yes Multi-country No LYS / QALYs Yes 

52 HPS Group (2006) 2005 No UK No LYS / QALYs Yes 

53 Tsevat et al. (2001) 1996 No USA No QALYs Yes 

54 Raikou et al. (2007) 2004 No UK Yes LYS / QALYs Yes 

55 Ramsey et al. (2008) 2005 No USA No LYS / QALYs Yes 

56 Scuffham et al. (2004) 2002 No UK (England/Wales) No LYS / QALYs Yes 

57 Hjialte et al. (1989) 1988 No Sweden No LYS Unclear 

58 Caro et al. (2003) 1998 No USA No LYYS Yes 

59 CDC Group. (2002) 1997 No USA No LYS / QALYs No 

60 Chau et al. (2001) 1998 No Hong Kong No QALYs Yes 

61 Grover et al. (2003) 2000 No Canada No LYS Yes 

62 Glick et al. (1992) 1988 No UK No LYS Yes 

63 NICE (2008) 2007 No UK (England/Wales) No QALYs No 

64 Drummond et al. (1993) 1990 No UK No LYS No 

65 Chan et al. (2007) 2005 No USA No LYS / QALYs No 

66 Ward et al. (2007) 2004 No UK (England/Wales) No QALYs No 

67 Ara et al. (2009)     2008 No UK (England/Wales) No QALYs No 



138 
 

4.3. ‘Genealogy’ study of the statin related cost-

effectiveness literature  

 

 

When carrying out the systematic literature review and abstracting data from 

studies, it became apparent that some studies are related to each other, for 

instance, through common authorship, the use of identical data sources, reuse of 

a previously published DAM, or simply a common source of funding. This, 

however, may violate the independence assumption between studies, which is 

necessary to fit the MLMs developed in Chapter 3. If two studies are related, one 

may consider pooling them in one group on study-level rather than defining 

separate groups for each of the 67 studies included. Though this may reduce 

parameters on study-level, it may also be regarded as more appropriate to fit 

MLMs to the data, especially when two related studies are very similar in many 

aspects. Therefore, the aim of this final section of Chapter 4 is to look into the 

‘genealogy’ of economic evaluation studies on the cost-effectiveness of statins in 

the primary and secondary prevention of CVD. Though the motivation of this 

study arises out of the aim of critically appraising the independency assumption 

between studies in the MLM framework, this exploratory task into relationships 

and potential similarities between studies as a consequence of such relationships 

constitutes an interesting piece of original research in its own right, which could 

also be followed up further in future work.   

 

 

The aim of this exercise is to look into the genealogy of economic evaluation 

studies includable in this empirical exercise. There are two primary objectives: 

the first is to assess whether there may be alternative hierarchical structures to 

those assumed in the multilevel methods chapter and pilot Study which may fit 

the data better and hence would need to be acknowledged in the MLM. In other 

words, it is to consider whether modelling data clustered in published papers is 

the most reasonable hierarchical structure, or whether it is indicated to look into 

alternative data structures based on the relationships between published papers. 

This could lead, for instance, to studies which belong to one group (however this 

group may be defined) being aggregated on level two of the data hierarchy so 

that data is no longer clustered in papers, but rather in groups of papers. If it is 
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concluded that modelling data clustered in single papers remains the most 

appropriate hierarchical structure, the second objective is to derive covariates to 

capture some of the observed relationships between papers. Hence, instead of 

informing alternative model hierarchies, this exercise could lead to a number of 

covariates which encode relationships between papers and thereby allow their 

influence on the variability in measures of cost-effectiveness to be assessed.  

 

 

Both objectives relate back to an important issue in MLM, namely whether to 

capture something as a level or as a covariate (Rasbash et al., 2009). In 

conclusion, looking into the genealogy of studies, i.e. the relationships between 

papers which exist within the sample of papers included in this exercise, is a 

necessary step towards the theoretical validation of the model structure 

assumed in this study. This assessment, however, is explorative in nature, 

meaning that there is neither a strong body of literature to build upon nor is it 

clear whether this exercise may actually lead to results robust enough to inform 

alternative model structures. Nevertheless, beyond the primary objectives of this 

exercise, the issue of study genealogy constitutes an important research 

question in its own right, which deserved little attention thus far and should 

therefore also be considered in future research.  

 

 

 

4.3.1. Problem  

 

 

Relationships between published economic evaluation studies may exist on 

several dimensions like common authorship, recycling previously published 

DAMs, or using identical data sources, just to name a few. It is one thing to test 

the influence of such relationships on the response variable by including 

respective covariates into a MLM, but to inform an entire alternative model 

structure, one would have to establish not just an existing relationship, but also 

show that studies are similar in terms of characteristics determining the 

response variable so that one may group studies together on level two. For this 

reason, it is imperative not just to look into the ‘genotypic’ existence of 

relationships between published economic evaluation papers, but also to look at 
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the ‘phenotypic’ similarity in terms of study characteristics influencing the results 

of the affected studies. In very simple terms, things which are related (on one 

level) ought to look similar (on that level), if they don’t, we shall continue to treat 

them as independent! 

 

 

Only looking at differences in the response variable is not sufficient as results 

may appear unrelated due to differences on other levels, which would then draw 

a curtain over actual similarities of the affected studies. For instance, two studies 

could be absolutely identical in terms of the economic model applied and a 

number of key study methods which determine measures of cost-effectiveness, 

but differ with respect to the patient population under assessment - a data level 

characteristic. This patient characteristic, for example mean TCL, may cause 

substantial variability in measures of cost-effectiveness even though the two 

studies are almost identical. In conclusion, after controlling for TCL on data-level, 

one may regard study parameters to be identical, which would then justify 

pooling both studies in one group on study-level. Only looking at the response 

variable, i.e. the cost-effectiveness of the intervention, may not be sufficient as 

INMBs may differ sharply due to the difference in mean TCL amongst patient 

subgroups considered in both studies.  

 

 

Two papers in the dataset (Grover et al., 1999 and Grover et al., 2000) illustrate 

the above mentioned example. Though both papers are related through 

common authorship, and remarkably similar in terms of model structure, data 

sources and a number of additional study characteristics, their respective mean 

INMBs differ considerably (£47803 vs. £26230). A key difference likely to be 

responsible for this strong variation in mean INMBs between both papers is that 

one paper considers patients suffering from diabetes whilst the other paper does 

only consider patients without that condition. This difference, however, may not 

be captured on study-level, but rather on data-level so that one could regard 

parameters of both studies to be identical after controlling for diabetes status on 

data-level. Hence, one may argue in favour of pooling both studies in one group 

on study-level even though their respective mean INMBs differ considerably.  
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4.3.2. Method 

 

 

The question is then how to establish this similarity between related studies. It is 

difficult enough ascertaining simple relationships between published papers for 

covariate adjustment. However, performing a detailed assessment of similarity 

for 67 studies included in the dataset and also determining a ‘threshold’ above 

which we shall no longer consider two studies as independent but rather pool 

them on study-level, would lead into a study of considerable complexity and 

uncertain outcome in terms of its usefulness for informing alternative MLM 

structures. Though this appears to be a very important research question, it is 

questionable whether this project, which focusses on a different matter, can 

accommodate a case study of this magnitude with uncertain outcome.  

 

 

As an alternative to a full ‘qualitative’ assessment of relationships and resulting 

similarities between published economic evaluation studies, this exercise 

therefore looks into methods which may be used to build upon the existing 

dataset. In other words, if a quantitative method existed which is capable of 

disclosing patterns in the existing data which may then show whether economic 

evaluation studies can be pooled on study-level, this could then be used as a less 

time consuming alternative. After studying techniques for the analysis of 

multivariate data, several candidate methods were considered.  

 

 

One multivariate method often used to assess patterns in data is factor analysis 

(FA). According to Acock (2011), FA is a collection of methods that does 

exploratory analysis to ascertain whether there are items that may be clustered 

in particular groups. In this form of analysis, the observed variables are 

presented in terms of ‘linear combinations of a few random variables, called 

factors’ (Rencher, 2002). As Rencher (2002) further states, ‘the goal of factor 

analysis is to reduce the redundancy among the variables by using a smaller 

number of factors.’ These factors are, unlike the observations, unobserved and 

therefore also referred to as ‘latent variables’. Factor analysis may be used to 

assess patterns in the observed data and to reduce the complexity in a dataset 

by presenting groups of correlated variables in a smaller number of uncorrelated 
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factors (Acook, 2011). A related method to this is principal component analysis 

(PCA), which is also used to assess patterns in the data and to reduce the 

complexity of the dataset (Rencher, 2002). However, there are differences 

between both methods: Most importantly, ‘principal components are defined as 

linear combinations of the original variables, whilst in factor analysis, original 

variables are expressed as linear combinations of the factors’ and secondly ‘PCA 

explains large part of the total variance of the variables whilst in FA, we seek to 

account for the covariances or correlations among the variables.’ (Rencher, 

2002).  

 

 

It is important to note that there is considerable confusion around the 

terminology of these methods. What is referred to as PCA in one textbook, may 

be labelled as principal components factor analysis (PCF) in another one. 

Accordingly, software packages are not consistently using the same terminology 

for the same methods as STATA, for example, labels as PCF what SPSS refers to 

as PCA (Acook, 2011). Though this may further add to the confusion, one thing is 

common to all methods introduced above. Whilst they are, in theory, very 

appropriate for assessing patterns in the data in the way required for this 

genealogy study, they are only defined for continuous variables (Rencher, 2002; 

Kolenikov & Angeles, 2004; Acook, 2011), whilst the vast majority of variables to 

consider for this assignment is categorical in nature. For this reason, a package 

developed by Kolenikov & Angeles (2004) was considered as an alternative, 

which implements ‘polychoric principal components analysis’ into the software 

environment STATA. However, as Kolenikov & Angeles (2004) state, this method 

may only be valid for continuous as well as ordered categorical variables, which 

again leaves out the majority of variables relevant for this assessment.  

 

 

In conclusion, as neither FA, PCA nor polychoric PCA appeared to be applicable to 

unordered categorical data, an alternative methodology was considered for this 

exercise, commonly referred to as multiple correspondence analysis (MCA). The 

term ‘correspondence analysis’ stems from the French term ‘Analyse Factorielle 

de Correspondence’ which was defined by Benzéri et al. (1973) and the technique 

is also referred to as the ‘categorical equivalent to PCA’ (Le Roux & Rouanet, 

2010). The aim of this form of analysis is to visualise the raw data in a low-
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dimensional space (usually two dimensions) which then helps to identify patterns 

in this data (Bartholomew et al., 2008). It does so by converting categories of 

variables into points on a plane (the biplot), and the researcher may then analyse 

the resulting cloud and sub-clouds of points in this geometric space (Le Roux & 

Rouanet, 2010).   

 

 

There are actually two clouds to consider. The ‘cloud of categories’ shows the 

chi-square distance between categories of variables, the ‘cloud of individuals’ 

reflects dissimilarities in response patterns of ‘individuals’ - or rather ‘studies’ in 

the case of this genealogy exercise ( Le Roux & Rouanet, 2010). Hence, the cloud 

of categories would tell us whether certain combinations of categories of 

variables are more common than others. If this is the case, then the respective 

categories would appear close to each other on the biplot. Though this is an 

important aim of correspondence analysis, it is not what we are primarily 

interested in within this genealogy study. Rather, the primary aim is to analyse 

the cloud of individuals which shows which studies share common response 

patterns in terms of those categories.  

 

 

Consider Figure 4.4 below. The biplot on the top shows the cloud of categories 

for the two variables ‘Funding institution’ and ‘QHES’. From this biplot, we can 

learn that the lowest QHES scores most commonly appear in studies which did 

not disclose their funding sources. Conversely, government/ research council 

funded studies appear close to a QHES score of 80 to 100. In between are the 

industry funded studies, which most commonly score between 60 and 80 QHES 

points. The interesting question is now which studies actually have similar 

response patterns in terms of funding source and QHES score, and this is exactly 

what the cloud of studies on the bottom of Figure 5.4 shows. Hence, markers of 

studies which are absolutely identical in terms of the categories of variables 

under consideration, overlap on the biplot. The more differences between 

combinations of categories, the greater is the distance between studies on the 

biplot.  
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Figure 4.4: Example of a MCA on ‘funding source’ and ‘study quality’ 
 

Cloud of categories 

Cloud of studies 

 

 

 

Hence, the idea of using this technique in this genealogy study is simply that 

studies which are very similar in terms of their response patterns (i.e. the 
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individuals (Bartholomew et al., 2008; Le Roux & Rouanet, 2010). If this is the 

case, the respective studies could be pooled within the same group on study-

level within subsequent MLM analysis. Hence, MCA is not employed to ascertain 

combinations of categories that are more common than others (cloud of 

categories), but rather to assess which studies share common response patterns 

(cloud of individuals) even if the underlying data is diverse In nature.  

 

 

Of course, the more variables we include in this assessment, the less likely it may 

be to find studies which are completely alike in terms of their response patterns. 

In other words, the diversity between pairs of studies is likely to increase with an 

increasing amount of individual characteristics to look at. On the other hand, 

with an increasing amount of study characteristics, similarity may be less likely a 

coincidence but rather the result of studies actually being related in some way. In 

conclusion, biplots will be produced with different subsets of variables, starting 

off with the complete set of variables presented in Table 4.7 below, and then 

subsequently dropping variable by variable in increasing order of relevance to 

the response patterns observed. The more variables we drop, the less diverse are 

the response patterns, and the more points on the cloud of individuals may 

coincide (Bartholomew et al., 2008; Le Roux & Rouanet, 2010). However, the 

more variables are being dropped, the more likely it gets that similarities 

between studies are not a result of actual relationships but rather a coincidence, 

as they are based on viewer study characteristics under consideration.   

 

 

Accordingly, after disclosing similarities between studies in this way, a 

subsequent step is to validate findings by looking into the actual studies and 

trying to find the underlying relationship which may have caused the observed 

similarity. In a way, we confirm the ‘genotypic’ relationship after disclosing 

‘phenotypic’ similarity. If there is no apparent relationship, then the observed 

similarity should not be considered when re-grouping data on study-level in 

subsequent multilevel analysis.  

 

 

To sum up, MCA helps to assess which studies share common characteristics and 

should therefore be regarded as similar. It does so by utilising the data already 
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collected within the literature review and data-abstraction exercise reported 

earlier in this chapter and therefore constitutes a time-saving alternative to a full 

qualitative assessment of relationships between studies and their resulting 

similarities in terms of study-characteristics. Nevertheless, it needs to be 

emphasized that this whole exercise is explorative in nature, and what may work 

in theory, may not lead to unambiguous results in practice, e.g. due to noise in 

the data or other factors distorting the results.  

 

 

 

4.3.3. Data 

 

 

As detailed above, this genealogy study starts off from the data already available 

from the literature review and data abstraction exercise. This data was collected 

from 67 economic evaluation papers which were published on the cost-

effectiveness of statins in the primary and secondary prevention of CVD. Only 

papers which decomposed the ICER or the INMB statistic were included as only 

this allows calculating as response variable an INMB with a common threshold 

value or running a bivariate MLM with incremental cost and incremental effects 

as a vector of response variables. Covariates were defined from a long list of 

potential variability factors which were previously reported in Sculpher et al. 

(2004) and Goeree et al. (2007). A number of variables entered the data 

abstraction exercise which may also be useful for the purposes of ascertaining 

relevant relationships between published papers. As a result, a very rich dataset 

was obtained with data collected on more than 80 distinct variables on data and 

study-level (details may also be obtained from previous sections of this chapter).  

 

 

Certainly, not all of these variables may be relevant for this genealogy exercise. 

Rather, it is indicated to first hypothesize about potential relationships between 

published papers and then determine which study characteristics encoded as 

variables in the dataset may be affected by any relationship between papers. 

This is equivalent to choosing covariates for a regression analytic model, where 

one would only include candidate variables of which a relationship to the 

dependent variable is anticipated. Hence, as the basic principle ‘garbage in, 
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garbage out’ applies just as much to MCA as it does to regression analytic 

modelling, it is indicated to first think about what may be affected if two studies 

are related in some way, and then to screen the dataset for the existence of 

appropriate candidate variables.  

 

 

It is appreciated that, out of the potentially unlimited space of existing 

relationships and study characteristics affected by such relationships, this 

exercise may only look into a very limited number of obvious candidates. This 

underpins the character of this exercise as an explorative study into the 

genealogy of economic evaluation studies and one may think of a more 

systematic approach to the selection of variables for future research. Potential 

relationships which were considered are ‘common authorship’, ‘recycled model’, 

‘common funding source’ and whether studies were based on the same ‘methods 

guideline’. The existing dataset was then screened for variables which are 

considered sensitive to the existence of any of these relationships between 

papers and therefore includable in the MCA. Results may be obtained from Table 

4.7. Based on this data, biplots were produced with different subsets of 

variables, starting off with the complete set of variables presented in Table 4.7, 

and then subsequently dropping variable by variable in increasing order of 

relevance to the response patterns observed. The more variables we drop, the 

less diverse are the response patterns, and the more points on the cloud of 

individuals should coincide. However, the more variables we drop, the more 

likely it gets that similarities between studies are simply coincidence, as they are 

based on viewer study characteristics under consideration.   
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Table 4.7:  Potential candidate variables for MCA 
 

Variable Description Level Nature 

outc_measure How was health outcome reported in the study Level 1 (data) unordered, binary 

elicitation 
If QALYS were used, what was the method of 

preference elicitation? 
Level 1 (data) 

unordered, 

categorical 

population 
If QALYS were used, what do the utility values 

reflect (patient / population values) 
Level 1 (data) 

unordered, 

categorical 

DRC What was the discount rate on costs  Level 1 (data) 

Continuous 

(converted to 

ordered, categorical) 

DRB What was the discount rate on benefits Level 1 (data) 

Continuous 

(converted to 

ordered, categorical) 

duration What was the treatment duration modelled Level 1 (data) ordered, categorical 

extrapol 
Was there any extrapolation beyond the latest 

follow up? 
Level 1 (data) unordered, binary 

horizon What is  the time horizon? Level 1 (data) ordered, categorical 

Persp_rep 
What was the study perspective as reported by 

the authors of the article 
Level 1 (data) 

unordered, 

categorical 

Persp_cost_concl 
What was the study perspective on costs as 

concluded by the reviewer 
Level 1 (data) 

unordered, 

categorical 

intervention 
What was the brand name of the intervention 

drug? 
Level 1 (data) 

unordered, 

categorical 

comparator 
What was the brand name of the comparator 

drug? 
Level 1 (data) 

unordered, 

categorical 

source_effects 
From which source (trial, meta-analysis) was 

the effectiveness data taken from 
Level 1 (data) 

unordered, 

categorical 

paper_origin 

In which country was the paper written (if 

authors from several jurisdictions were 

involved, where is the lead author based? 

Level 2 (study) 
unordered, 

categorical 

multinational Was the study multinational Level 2 (study) unordered, binary 

fund_inst 
What was the primary source of funding 

(institution) 
Level 2 (study) 

unordered, 

categorical 

fund_man 
If funding source was private, which 

manufacturer was involved? 
Level 2 (study) 

unordered, 

categorical 

gen_des What was the general study design? Level 2 (study) 
unordered, 

categorical 

prim_des 
If primary modelling, what was the specific 

study design? 
Level 2 (study) 

unordered, 

categorical 

sec_des 
If secondary modelling, what was the specific 

study design 
Level 2 (study) 

unordered, 

categorical 

effect_calc Method of effect calculation Level 2 (study) 
unordered, 

categorical 

Timing What is the timing of the economic evaluation Level 2 (study) 
unordered, 

categorical 

cur_conv Was currency converted Level 2 (study) unordered, binary 

conv_method 
If currency was converted, what was the 

conversion method used by the authors? 
Level 2 (study) 

unordered, 

categorical 

scope What was the scope of assessment Level 2 (study) 
unordered, 

categorical 

 

Note that descriptive statistics of the variables considered in this exercise were 

already reported in the previous section of this chapter. In addition, full 

descriptive statistics are available from Chapter 5.2.3 and Appendix 5.   

 



 

149 
 

4.3.4. Results and discussion 

 

 

Figure 4.5 shows the results of performing a MCA to ascertain similarities in 

study characteristics between published economic evaluation papers included in 

this empirical exercise. Each point on the biplot represents one study, and the 

distance between individual points is determined by differences in the response 

patterns of studies. In other words, studies which share common response 

patterns should be in very close proximity on the biplot. If studies are absolutely 

identical in their response patterns, their markers on the biplot should coincide.  

 

 

Figure 4.5a shows a pattern which one could almost refer to as random. In other 

words, there are virtually no apparent clusters on the plot, meaning that the 

existence of common response patterns in studies is very low. However, with 

decreasing number of categorical variables included in the assessment, one can 

observe that points on the biplot increasingly group together in clusters. This is in 

line with expectations as the more study characteristics are compared, the less 

likely it should be that two studies are completely alike. Results therefore have 

face validity. However, what is worrying is that the combinations of coinciding 

points on the biplot change and therefore appear to be sensitive to the choice of 

covariates to include. In other words, if we observe two studies response 

patterns to be very similar in biplot 4.5a then ideally we should observe this 

result to be robust in all four biplots. In fact, we observe one such example with 

studies 15 and 65 coinciding exactly on all four biplots, but for other pairs of 

studies (e.g. 39 and 44 on biplot 4.5a) this close proximity disappears with 

dropping variables from the assessment.  

 

 

After analysing biplots, the next step in this case study is to ascertain whether 

there are any apparent relationships between the studies with similar response 

patterns which coincide on the biplots presented in Figure 4.5. For this reason, a 

full text review was conducted for each pair (or group) of studies circled in red in 

Figure 4.5. This is a descriptive exercise and results can be obtained from Table 

4.8 below.  
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As can be seen from Table 4.8, it was possible to establish a direct relationship 

between papers in almost 50% (10 out of 21) of the matches on the biplots 

shown in Figure 4.5. These relationships were mostly based on common 

authorship (7 of 10). In one case, the relationship between two papers, which 

were identical in terms of data sources and the model to estimate cost-

effectiveness, was almost undetectable as the authors completely failed to cross-

reference their papers. A link could only be established through the funding 

source, which was identical in both papers (Annemans et al., 2010; Khoury et al., 

2009). The strong link between these two papers would still be hidden in the 

dataset if one would only look into genotypic relationships between studies and 

not the phenotypic similarities between those studies.  

Figure 4.5: Biplots showing clouds of studies with decreasing number of study 

characteristics under consideration 
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Table 4.8: Descriptive analysis of relationships between published papers 

appearing in close proximity on the cloud of studies 
 

Papers coinciding on 

biplots 

Biplots on 

which 

papers 

coincide 

Description of the relationship between papers 

coinciding on biplots  

Descriptive 

analysis 

accords 

MCA?  

IDs: 1 / 25 / 58 

Ashraf et al. (1996); HPS 
collaborative Group (2009); 
Caro et al. (2003) 

c There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers.   

No 

IDs: 2 / 34 

Caro et al. (1997); Tonkin et 
al. (2006) 

c There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 3 / 4 

Grover et al. (1999); Grover 
et al. (2000) 

c / d There is a strong link between both papers in terms 
of common authorship, as both papers were 
published by Grover et al. This may explain the use 
of the identical model (CVD life expectancy model) 
as well as similar data sources.  

Yes 

IDs: 5 / 25 

Hamilton et al. (1995); HPS 
Collaborative Group (2009) 

b There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 5 / 41 

Hamilton et al. (1995); Soini 
et al. (2010) 

d There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 9 / 64 

Pharoah (1996);  
Drummond et al. (1993) 

a There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 10 / 45  

Szucs et al. (1998); Szucs et 
al. (2000)  
 

c / d There is a strong relationship between published 
papers. Both papers share common authorship, and 
economic models are almost identical. Whilst data 
sources vary for effectiveness data, cost data is 
taken from the same sources. Both studies share the 
same origin, and papers are published in German.  

Yes 

IDs: 11 / 38 

Szucs et al. (2000); 
Obermann et al. (1997) 

c / d Both papers were published in Germany, and hence, 
similar methods standards may apply. However, 
sources of effectiveness and cost data differ, and 
there is no apparent relationship in authorship.  

Yes 

IDs: 13 / 14 

Jonsson et al. (1996); 
Jonsson et al. (1999) 

d Both studies share a strong relationship through 
common authorship and the fact that they rely on 
the analysis of RCT data from 4S. Whilst ID 13 
(Jönssen et al (1996)) focusses on the cost-
effectiveness of simvastatin as assessed within the 
whole 4S trial population, ID 17 (Jönsson et al (1999) 
focus on diabetic patients from that cohort only.  

Yes 

IDs: 15 / (36) / 65 

Ganz et al. (2000); Wagner 
et al. (2009);  Chan et al. 
(2007) 

a / b / c / 
(d) 

Two studies (Wagner et al (2009) and Chan et al 
(2007)) are partly based on the same effectiveness 
data from the IDEAL trial. All three studies rely on a 
Markov model to estimate cost-effectiveness of 
statins. However, there are no further apparent 
relationships between the three papers.  

No 

IDs: 18 / 55 

Alonso et al. (2008);  
Ramsey et al. (2008)  

b There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 19 / 26 / 58 

Annemans et al. (2010); 
Khoury et al. (2009); Caro 
et al. (2003) 

d Studies by Annemans (2010) and Khoury (2009) were 
both funded by Pfizer. Both studies rely on data from 
CARDS. The DAM used in both studies is identical. 
Interestingly, though both papers are very similar 
and obviously related, no reference has been made 
by their authors to each other. The third paper (Caro 
et al (2003)) does not have an apparent relationship 
to the other two papers mentioned. 

Yes 
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IDs: 22 / 61 

Grover et al. (2008); Grover 
et al. (2003) 

c There is a strong link between both papers in terms 
of common authorship. This is also reflected in the 
use of the identical DAM (CHD life expectancy 
model) and further similarities in terms of study 
methods and unit cost sources etc.  

Yes 

IDs: 24 / 56 

Greving et al. (2011); 
Scuffham et al. (2004) 

d There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 35 / 36 

Wagner et al. (2009a);   
Wagner et al. (2009b)  

b There is a very strong link between both papers in 
terms of authorship, methods and data sources Yes 

IDs: 40 / 52 / 62 

Spaans et al. (2003); HPS 
coll. Group (2006);  Glick et 
al. (1992) 

d There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 42 / 61 

Grover et al. (2003);  Peura 
et al. (2008)  

d There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 43 / 53 

Slejko et al. (2010); Tsevat 
et al. (2001) 

d There is no apparent relationship in terms of 
common authorship, use of the same model, funding 
source or identical data sources between the papers 

No 

IDs: 44 / 63 

Nherera et al. (2010);  NICE 
lipid guideline 67 (2008) 

d Strong relationship in terms of authorship model 
structures, study methods and data sources Yes 

IDs: 63 / 67 

NICE lipid guideline 67 
(2008);  
Ara et al. (2009) 

c Transition probabilities in the HTA report from ARA 
et al partly taken from the study by Cooper et al, 
which led to the NICE guideline 67.   

Yes 

IDs: 66 / 67 

Ward et al. (2007); Ara et 
al. (2009)  

d Both studies are related through common 
authorship and they were also both conducted as 
part of the HTA Programme. Both studies were 
conducted by SCHARR and the DAM underlying both 
studies is known as the SCHARR-model  

Yes 

 

 

Though the findings reported above indicate that the method applied to 

investigate the genealogy of economic evaluation studies is very promising, there 

is still concern in terms of basing an alternative MLM structure upon it. For 

instance, the method produced roughly 50% of ‘false positive’ matches on the 

respective biplots, and one can almost be certain that a number of ‘false 

negative’ relationships are still hidden in the dataset. This means that the results 

reported above are, at most, partially disclosing existing relationships within the 

data. This method may, with further refinement in a systematic exercise as it is 

suggested for future research, be very useful to investigate links between 

economic evaluation studies and the extent to which studies replicate each 

other. However, within this project, the method did not appear to be ‘sensitive’ 

and ‘specific’ enough to base alternative MLM structures upon its findings. 

Potential reasons may lie, for instance, in the choice of variables to enter the 

MCA. As these variables were drawn from existing data which was not purposely 

collected for this genealogy study, one may argue that important study 
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characteristics were missing from this assessment. Furthermore, this case study 

showed that MCA results are very sensitive with respect to the categorical 

variables considered, which most certainly asks for a much more systematic 

approach to variable selection when considering MCA to assess similarities 

between economic evaluation studies in future research. 

 

 

On the other hand, it was not possible to allocate more time to this exercise 

which is, though related to the question of the appropriate MLM structure, not 

crucially relevant for addressing the transferability problem. Changing the MLM 

structure by pooling individual studies to groups of studies may have an effect on 

the results when running the respective models. However, there are also a 

number of valid reasons to retain the current multilevel structure even if some 

papers are found to be very similar in some aspects. For instance, pooling papers 

would mean that the number of level two units decreases, potentially casting 

into doubt the assumption of random parameters on that level (Snijders et al., 

2005).  Furthermore, even if studies are similar in most aspects, pooling them 

would obviously have an impact on those study-level covariates which still show 

differences between those studies. For instance, within the affected studies 

shown in Table 4.8, timing constitutes an important difference even if all other 

observed study-level characteristics are identical. When pooling those studies, 

differential timing may no longer be assessable as a study-level covariate within 

the multilevel framework.  

 

 

It is also important to note that parameters of studies become, in theory, fully 

exchangeable after adjusting for the appropriate covariates (e.g. Gelman et al., 

2004), so that the question of similarity between economic evaluation studies 

may be entirely shifted to the matter of covariate adjustment. Finally, the 

current model shows level two units in its most disaggregated form. One may 

argue that further aggregation may also lead to false inferences because of the 

ecological fallacy (e.g. Hox, 2010). This holds especially true in a situation when 

there is no clear cut between two studies which may be pooled because of their 

apparent similarity, and two studies which are similar in some aspects, but not 

‘similar enough’ to justify pooling in the researchers judgement.  
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Nevertheless, though it may not be indicated to alter the MLM structures 

theoretically developed and tested in Chapter 3 based on the results of this 

genealogy study, there are important findings which may impact on the 

remainder of this empirical exercise. Precisely, not considering existing 

relationships between published economic evaluation studies with respect to the 

MLM structure does not mean that this project ignores such relationships 

altogether. In line with the assumption of partial exchangeability, one may 

consider links between studies in terms of covariates on study-level. First, each 

of the variables considered above to assess similarity between economic 

evaluation studies will be tested individually for significance in the multilevel 

framework. This analysis of covariates is reported in Chapter 5.2.  

 

 

In addition, one may further look into the issue of common authorship to group 

studies accordingly. For this matter, authors of all 67 studies included in this 

empirical exercise were first listed in a spreadsheet, resulting in a list of 351 

authors. Next, authors of the respective studies were ordered alphabetically, so 

that it was relatively straightforward to group studies of common authorship 

together (note that this part of the assessment did purposely not distinguish 

between first and co-authorship). This way, it was possible to ascertain the most 

frequent authors in the dataset, namely S.A. Grover and B. Jonsson, each 

involved in seven studies, L. Coupal (six studies) as well as T.D. Szucs and H. 

Zowall, with five studies each in the dataset. Finally, authors and studies were 

grouped according to the most frequent relationships in terms of authorship, 

resulting in twelve groups of studies (Table 4.9 below). It turned out that only 18 

studies in the dataset were not linked through common authorship to any of the 

other studies considered. Considering all links between studies results in one 

large group of related studies and a further six smaller groups. Only considering 

the strongest links between studies and ignoring some relationships between 

groups of studies results in the above mentioned 12 groups of papers related 

through common authorship. Finally, two categorical variables were generated 

for testing in the multilevel framework in Chapter 5.2. The hypothesis is that 

results from studies from one group of authors may be more in the same range 

compared to results from other groups of authors so that variability in measures 

of cost-effectiveness is lower for studies of common authorship.  
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Table 4.9: Relationships between papers in terms of common authorship 
 

Nr Authors Studies of common authorship 

0 No links through common authorship 
1, 7, 9, 10, 12, 17, 18, 19, 20, 

23, 24, 24, 38, 46, 48, 50, 60, 65 

1 Caro, Shepherd, McGuire, Klittich 2, 27, 33, 54, 58, 64 

2 Roberts, Merike, Wagner, Johnson, Goetghebeur, Sullivan 26, 27, 35, 36, 43, 55 

3 Grover, Coupal, Zovall, Hamilton, Lavoie 3, 4, 5, 8, 16, 22, 40, 61 

4 Pandya, Taylor, Weinstein, Thompson, Drummond 30, 33, 35, 53, 59, 62, 64 

5 Jonnsson, Pedersen, Wedel, Johannesson, Olsson, Kjekhus, Lindgren 6, 13, 14, 21, 36, 47, 51, 57 

6 Berger, Szucs, Maerz, Schaefer, Kuntz, Klose 11, 15, 37, 45, 49, 53 

7 Davies, Martikanen, Niskanen, Soini 39, 41, 42 

8 Neil, Calvert, Minhas, Nherera, Thorogod, Fuller 44, 54, 59, 63 

9 Ward, Ara, Pandor 27, 66, 67 

10 Scuffham, Chaplin 31, 32, 56 

11 Mihaylova (HPS-Group) 25, 52 

12 Morris 28, 29 

 

 

 

4.3.5. Conclusion 

 

 

This case study showed that MCA is a promising method to look into similarities 

between existing economic evaluation studies and thereby assessing the extent 

to which evidence replicates itself. Applied to an extensively studied area such as 

statins for the primary and secondary prevention of CVD, the author could show 

a fair degree of overlap between phenotypic similarities between studies 

detected by the method, and genotypic relationships between those studies 

assessed within a subsequent descriptive analysis. Future research may look into 

more systematic ways of variable selection and additional analytic options 

offered by the method to refine its results. In terms of this empirical analysis, 

however, it is not recommended to alter the multilevel model structure but 

rather to acknowledge existing links between economic valuation studies in 

terms of covariates on study-level.  
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5. Empirical Analysis 
 

 

In Chapter 3, a number of MLMs were developed for the integration of 

secondary cost-effectiveness data measured as incremental net monetary 

benefits (INMB). These models were then developed further into a bivariate 

framework for the explicit and simultaneous assessment of incremental cost and 

incremental effects in one model. The models were then put to the test and 

compared to a standard OLS regression model fitted to a pilot dataset on the 

cost-effectives of statins in the primary and secondary prevention of CVD. It 

turned out that the MLM framework consistently outperformed the OLS 

framework, and that the hierarchical structure assumed in each model was a key 

factor for the overall fit of the model. Hence, from the pilot study reported in 

Chapter 3.4 it got apparent that a key question for the empirical work of this 

project is to test which MLM works best for the purposes of this exercise. This 

chapter brings together the MLM methods developed in Chapter 3, the findings 

from the pilot study reported in Chapter 3.4, and the data obtained from a 

systematic review and data abstraction exercise on the cost-effectiveness of 

statins in the primary and secondary prevention of CVD, which was the focus of 

the previous Chapter 4.  

 

 

The primary aim of this chapter is to run the models developed on the data 

abstracted to address the transferability problem of economic evaluation data in 

health between geographic domains. The chapter first addresses the question of 

the most appropriate MLM structure before the focus is on covariate adjustment 

on data and study-level in Section 2 of this empirical exercise. Both issues need 

to be addressed prior to the assessment of country-level variability – or the lack 

thereof – which is assessed in detail in Section 3 of this chapter. Specifically, the 

potential to assess country-level covariates and implications of findings with 

respect to the transferability of economic evaluation data between countries are 

considered. Finally, a case study within which random slopes are added to the 

model demonstrates how the multilevel framework may be applied to explicitly 

model variation in the data as a function of explanatory variables. The case study 
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shows how this ‘variance function’ addresses the core of the transferability 

problem as it makes explicit the variability in the relationship of measures of 

cost-effectiveness and explanatory variables. For values of the explanatory 

variable for which variability in measures of cost-effectiveness is low, 

transferring evidence to the target domain may be rather indicated compared to 

values of the explanatory variable for which variability in international cost-

effectiveness data is particularly high.   

 

 

Accordingly, four fundamental objectives are addressed and elaborated on 

throughout the course of this chapter. The first objective is to determine the 

appropriate model structure which best fits the data on the cost-effectiveness of 

statins in the primary and secondary prevention of CVD. This involves not just 

testing which multilevel structure previously developed works well on the data 

collected, but also whether assumptions made in these models are justified for 

the data. The starting point of this first exercise is to run the models developed in 

Chapter 3 and tested in the pilot study on the full dataset without the inclusion 

of any covariates. Thereafter, it is tested whether the assumption of 

independence between countries is also justified for the subset of data which 

stems from multinational studies as not just the relevant economic evaluation 

literature, but also findings from the pilot study indicate that this might not be 

the case. It turns out that this issue is intrinsically tied to the issue of cross-

classification in the data. Finally, the issue of ‘shrinkage’ within the multilevel 

framework is addressed further, and it is elaborated on the question whether 

this constitutes a potential source of bias when analysing not individual patient 

data but rather secondary data from economic evaluation studies. MLM features 

such as ‘weighting’ are considered in response to this issue. Note that links 

between economic evaluation studies, e.g. in terms of common authorship, and 

the question whether such links shall be considered in terms of model structure 

or covariates, was the focus of the genealogy study reported in Chapter 4. 

Hence, this question is not picked up again before section two, which is 

concerned with covariate adjustment on data and study-level. 

 

 

All models are first run as variance components models without the inclusion of 

any slope parameters. This serves several objectives. First, it allows to assess 



 

158 
 

whether there is variation in INMBs (as well as ∆C and ∆E in the bivariate 

framework), within and between studies, and also between countries included in 

the dataset (Steele, 2008; Rasbash et al., 2009; Hox, 2010). It also allows 

quantifying this variability on each level modelled (Steele, 2008; Rasbash et al., 

2009; Hox, 2010). Furthermore, it can be assessed which studies, and countries, 

are outliers in terms of cost-effectiveness of the technology under consideration 

before adjusting for any covariates (Rasbash et al., 2009, CMM workshops / 

variance components). Finally, the variance components model serves as a 

benchmark for further analysis (Rasbash et al., 2009; Hox, 2010). As a result of 

analysis one of this empirical exercise we determine a multilevel model structure 

which is then carried forward to the second part of this chapter.  

 

 

The objective for the second part of this empirical exercise is to systematically 

assess covariates on data and study-level which were drawn from a long list of 

variability factors as obtained from the relevant literature on the transferability 

of economic evaluation data (Sculpher et al., 2004, Goeree et al., 2007). This 

assessment does not just serve the aim to infer which covariates may be related 

to INMB, ∆C or ∆E of statins in the primary and secondary prevention of CVD. 

Rather, in a multilevel framework, changing anything on a lower level might have 

an impact on each subsequent level (e.g. Hox, 2010). Hence, the inclusion of 

lover level covariates in the multilevel framework could potentially disclose 

further variation between countries included in the dataset, so that controlling 

for lower-level covariates is imperative for the assessment of variability factors 

on country-level (Hox, 2010). Hence, the second objective is to assess whether 

the model carried forward from Section 5.1 of this exercise performs better in 

this sense after the inclusion of covariates on data and study-level.  

 

After all the efforts taken to disclose country-level variability, it may be 

concluded that this source of variation is, in fact, present in the data, which then 

allows further analysis of potential causes of this variability between countries. 

This would be done by including country-level covariates in the model (Sculpher 

et al., 2004; Drummond et al., 2009). However, if country-level variability 

remains low throughout the course of this exercise, this could have a number of 

reasons. There may be, for instance, another model specification which fits the 

data better and which was not explicitly modelled in this study; or the 



 

159 
 

‘appropriate set of covariates to include’ was not yet found (Drummond et al., 

2009). Finally, it could in fact mean that there is simply not much of the 

variability in international cost-effectiveness data due to differences between 

countries, as most of this variability relates to differences within and between 

studies included in the dataset. Assessing these questions depending on the 

actual amount of variability disclosed on country-level both in the univariate and 

bivariate framework is the focus of Section 5.3 of this chapter.  

 

 

Finally, the fourth objective of this empirical exercise is to explore additional 

analytic features which are unique to the MLM framework. In particular, the final 

section of the empirical analysis looks into fitting random slopes to the model 

and, related to that, the concept of the ‘variance function’, where the variation in 

cost-effectiveness data may be explicitly modelled as a function of explanatory 

variables (Steele, 2008; Rasbash et al., 2009). When fitting covariates to the 

model in the second and third part of this exercise, it is assumed that intercepts 

of study regression lines vary randomly whereas the slopes of these regression 

lines are assumed to be fixed. This leads to parallel regression lines between 

studies included in the dataset (Steele, 2008; Rasbash et al., 2009). However, the 

relationship between measures of cost-effectiveness and explanatory variables 

may be different for different studies (or countries), which means that not just 

the intercepts, but also the regression slopes for these variables may differ 

between higher-level units. This has been previously acknowledged by some 

health economists who used MLM in the context of trial based economic 

evaluation (Sculpher et al., 2004; Manca et al., 2005; Thompson et al., 2006; 

Bachmann et al.; 2007). However, what is entirely new to the domain of 

economic evaluation in health is the concept of the variance function. Precisely, 

if one allows for random slopes, the variance on the level for which a random 

slope was modelled becomes a quadratic function of the explanatory variable 

(Steele, 2008) which may be used to express variation in measures of cost-

effectiveness data as a function of covariates in the model.  
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Figure 5.1.: Overall analysis plan for the empirical exercise of this project 
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This concept relates to the transferability problem at its core as one may argue 

that for values of the explanatory variable for which variation in higher-level 

units (i.e. studies and/or countries) is low, additional evidence for the target 

country may also be more likely to be in the same range in terms of cost-

effectiveness. In contrast, the higher this variation, the more indicated it may be 

to produce new target specific evidence. Hence, the variance function may be 

used to target research resources more specifically to those questions for which 

variance in international cost-effectiveness data is particularly high. 

 

The analysis strategy as outlined above is also in accord with what is 

recommended in the MLM literature. A bottom up approach is usually 

advocated, starting with the simplest possible model and then including 

parameters which are tested for significance after they have been added (e.g. 

Hox, 2010). This procedure starts by building the fixed part of the model, and 

then continues to the random components (Rasbash et al., 2009; Hox, 2010). It 

ensures to keep the model as simple as possible and thereby complies with the 

‘lex parsimoniae’ (Occam’s Razor). The simplest possible model is the variance 

components model without explanatory variables (Steele, 2008; Rasbash et al., 

2009; Hox, 2010). It is therefore also referred to as ‘intercepts only model’ as the 

regression lines in this model are parallel and ‘flat’ (Hox, 2010). After having 

specified the variance components model, covariates are tested. This is done by 

proceeding from the lower level to the higher level as changes on the lower level 

might impact anything observed on subsequent levels (Steele, 2008; Rasbash et 

al., 2009; Hox, 2010). Hence, data-level covariates are tested first, and once the 

model is fully specified on data-level, study-level and country-level covariates 

may be added. Once a full random intercepts model has been specified in that 

way, the next step is to test the random part of the model, hence fitting random 

slopes of covariates. Testing random slopes is executed on a parameter by 

parameter basis, as not doing so might lead to an ‘overparameterized model with 

serious estimation problems’ (Hox, 2010). It is acknowledged that covariates 

which were not significant with fixed slopes may be significant in a random slope 

specification (Rasbash et al., 2009; Hox, 2010). However, searching amongst the 

full dataset on a parameter by parameter basis (i.e. even separately for each 

category in a categorical variable) is not realistic in terms of the time effort 

involved and also not the purpose of the case study reported in Section 5.4, so 

that it was decided to scale down on this particular exercise.  
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The remainder of this chapter is organized alongside the four fundamental 

objectives defined above. Hence, the following Section 5.1. reports on various 

variance components models in the univariate and bivariate framework. 

Thereafter, covariates on data and study-level are assessed systematically for the 

inclusion in the multilevel model carried forward from part one of this empirical 

exercise. This is reported in Section 5.2. The covariates under consideration were 

drawn from a long list of variability factors as obtained from the relevant 

literature (Sculpher et al., 2004; Goeree et al., 2007) and further details about a 

systematic literature review and data abstraction exercise are also obtainable 

from the previous Chapter 4. Discussing the choice of covariates within each 

level of the model and each subgroup of variables constitutes a key challenge in 

this empirical exercise due to the theoretically unlimited space of variability 

factors and consequently the large number of covariates abstracted from the 

studies includable in this project. After having specified a full random intercepts 

model with data and study-level covariates in Section 5.2., the following Section 

5.3 focusses on the country-level by either including covariates, or considering 

potential reasons for a lack of country-level variability on that level.  

 

Independent of the outcome of the exercise as outlined above, the final Section 

5.4 of this chapter demonstrates the value of fitting random slopes and to model 

variation in international cost-effectiveness data as a function of explanatory 

variables. It is argued that the concept of the ‘variance function’ addresses the 

transferability problem as it may be applied to target research resources more 

specifically to those questions for which variation in measures of cost-

effectiveness is particularly high. 

 

All multilevel analyses are carried out in MLwiN (Rasbash et al., 2009a) and 

performed in a univariate framework with INMBs as response variable, and also 

in a bivariate framework with the two stochastic components of the INMB 

statistic (∆C and ∆E) as a vector of response variables. Additional analyses 

(descriptive statistics, principal component factor analyses, multiple 

correspondence analyses etc.) were carried out in STATA 12.   
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5.1. Objective one: Determining the appropriate 

multilevel model structure 

 

 

The aim of this empirical exercise is to address the transferability problem of 

health economic evaluations by fitting a multilevel model to international data 

on the cost-effectiveness of statins in the primary and secondary prevention of 

CVD. This allows the assessment of variability factors on each level of the 

modelled data hierarchy. In the MLM methods Chapter 3, a number of 

alternative model structures have been developed, starting off from a single 

level OLS regression and ending up with a cross-classified bivariate model which 

allows not just directly assessing a country-level in the presence of cross-

classified data from multinational studies, but also decomposes the INMB 

statistic by modelling both ∆C and ∆E as a vector of response variables. These 

alternative model structures were then tested in a pilot study in Chapter 3.4, 

which was carried out on a reduced dataset on the cost-effectiveness of statins. 

This pilot study already showed that, due to ignoring that data in studies is not 

independent, the OLS regression model and the two-level model which clusters 

data in countries only, were clearly outperformed by those multilevel structures 

which did explicitly account for a study-level.  

 

 

However, it was also observed that the cross-classified model, which takes into 

account that data is clustered in both studies and countries and also allows the 

inclusion of data from multinational studies which are responsible for the cross-

classification problem, did not perform any better than the two-level hierarchical 

model which completely ignores the existence of a country-level. Not just was 

there no improvement in model fit due to the inclusion of a country-level, there 

was also a lack of noteworthy variability on the country-level itself. As a potential 

reason for this finding it was hypothesized that the assumption of independence 

between geographic domains may not be adequate for those studies in the 

dataset which are ‘multinational’ in nature and thereby introduce the issue of 

cross-classification as their data may not appropriately reflect the variation in 

cost-effectiveness attributable to differences between the countries considered. 

In other words, if data from multinational studies is less affected by variability on 

country-level, this potentially ‘lays a curtain’ over the overall country-level 
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variability present in the rest of the data from non-multinational studies and 

therefore casts into doubt whether the assumption of independence between 

countries actually holds for those studies. The suspicion that data from 

multinational studies may not be as context specific as generally assumed, e.g. 

due to standardised trial protocols (e.g. Ramsey et al., 2005), or the fact that not 

all data required to populate an economic model is country-specific (e.g. Barbieri 

et al., 2005), has been discussed before in the economic evaluation literature. 

Therefore, it is indicated to investigate whether the assumption of independence 

on country-level actually holds for data from multinational studies before settling 

on a MLM structure to be carried forward to the analysis of potential variability 

factors in the second part of this empirical exercise.  

 

Finally, as this is also intrinsically tied to determining the appropriate model 

structure, additional assumptions required to fit a MLM to this dataset on the 

cost-effectiveness of statins are considered before adding covariates to the 

model. The fact that this exercise utilizes secondary data and not individual 

patient data requires further attention as the ‘gravity’ of a study in a multilevel 

framework partly depends on the number of data points provided by that study, 

and this, in turn, affects the amount of shrinkage that study is subject to (Steele, 

2008; Rasbash et al., 2009). Hence, as data points do not represent actual 

individual patients, a studies’ ‘weight’ in the overall model might only depend on 

the extensive reporting of subgroup and/or sensitivity analyses. Therefore, it is 

to consider whether this constitutes a potential thread to the validity of results 

and, if so, whether there are any strategies available, such as adding weights to 

individual studies or to bootstrap studies and resample data before fitting the 

MLM, which could efficiently counteract this potential source of bias.  

 

 

The following Section 5.1.1 details the analysis strategy to investigate the 

appropriate multilevel structure for the remainder of this empirical exercise. 

Subsequently, the data and methods of analysis to carry out this assessment are 

explained in Sections 5.1.2 and 5.1.3. Section 5.1.4 reports and discusses the 

results of the running various variance components models before Section 5.1.5 

picks up on the issue of shrinkage as a potential source of bias in the assessment 

of secondary data from international cost-effectiveness literature.  
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5.1.1. Plan of analysis for part one of this empirical exercise  

 
 
The starting point of this analysis is the cross-classified model developed in the 

MLM methods Chapter 3 which was already applied to the pilot study dataset in 

Chapter 3.4. This model offers the most flexibility in terms of accommodating 

both a study and country-level and simultaneously allows for cross-classified 

data structures due to multinational studies being part of the dataset. However, 

this model also comes with considerable complexity, and its relative value 

depends upon its ability to capture variability on each level of the data hierarchy. 

Pilot study results indicate, however, that the cross-classified model may not 

capture a sufficient amount of country-level variability to permit the assessment 

of covariates on that level. Hence, if variability between countries is low, then we 

first need to rule out that model assumptions may cause this failure to capture 

variability in measures of cost-effectiveness on country-level.  

 

As outlined in the introduction to this section, one reason may be the impact of 

multinational trial data on between-country variability as data from 

multinational trials is suspected to draw a curtain over potentially existing 

country-level variability in the cross-classified model. It is hypothesized that data 

from multinational trials shows much lower between-country variability, and this 

data ‘infects’ country parameters in the cross-classified model and drags them 

towards each other in the MLM. Potential reasons for this lower country-level 

variability have been discussed in the literature (e.g. Ramsey et al., 2005). The 

easiest way to address this issue would obviously be to simply drop the data 

from multinational studies from any further analysis. This would result in a 

strictly hierarchical dataset which would allow assessing whether country-level 

variation would increase as compared to the cross-classified model. However, 

though this model is also run to receive some benchmark values on country-level 

variation without multinational studies in the dataset, dropping data means 

losing valuable observations, and especially in a multilevel context, where one 

needs a certain number of units on higher levels to assume random parameters 

(Snijders, 2005), this may not be the preferred strategy as the number of studies 

and countries in the dataset may be affected too. In addition, one would 

compare two different models being applied to two different subsets of the data, 
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meaning that differences in model fit are not directly comparable across both 

experiments. 

 

 

There is an alternative analysis strategy which offers additional insights into the 

causes of country-level variability, or the lack thereof, in the dataset. It all comes 

back to the question of whether subsets of the data are actually independent. 

The cross-classified model assigns data from both single-country-studies and 

multinational studies to their respective study on study-level, hence assuming 

that this data is dependent within studies and independent between studies. 

Exactly the same is assumed on country-level though this assumption may not 

hold for multinational studies. Therefore, instead of dropping the affected data 

points, the data from multinational studies may simply be ‘pooled’ in a distinct 

group on country-level, thereby removing its influence on other country-

parameters. Obviously, as some countries in the dataset are only considered 

within those multinational studies, this would mean to lose some parameters on 

country-level. However, what is gained is the chance to analyse the full dataset 

with all studies originally includable in this exercise whilst still obtaining ‘clean’ 

country-level estimates from all the other studies in the dataset. Secondly, the 

problem of cross-classification in the data does no longer exist so that a strictly 

hierarchical three-level model with data being clustered in studies and studies 

being clustered in countries, applies. However, most importantly this strategy 

addresses that multinational studies might not appropriately reflect country-

level variability, which may also be the cause for (severely) underestimated 

country-level variation as observed in the pilot study.  

 

 

In conclusion, if the suspicion that data from multinational studies may draw a 

curtain over existing country-level variation is supported by the data, much 

higher country-level variation would be observed when running such a three-

level hierarchical model on a dataset where data from multinational studies is 

pooled in a separate group on country-level. To rule out that the model 

architecture itself conceals country-level variability, a cross-classified model is 

also run on an ‘intermediate’ dataset, where some data from multinational 

studies has been pooled on country-level, and the rest of that data has been 

assigned to their respective target countries. If the problem lies in the data and 

not in the model architecture that allows for cross-classification, then country-
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level variation would be somewhere in between the fully cross-classified model 

and the alternative three-level model which pools all data from multinational 

studies on country-level.  

 

It is important to note that, instead of pooling data from multinational studies on 

country-level, it was also considered to do the opposite, namely splitting data 

from these studies on study-level. This would introduce a strict 1:1 relationship 

between ‘hypothetical’ studies and the respective countries modelled in the 

affected studies and thereby also eliminate the cross-classification problem. 

However, though the number of countries would remain unaffected, this would 

spuriously inflate the number of studies on study-level. Doing so would have 

strong implications on the random part of the model, potentially resulting in 

severely underestimated study-level variability (e.g. Steele, 2008). To understand 

this issue it is useful to draw an analogy to the OLS regression model which 

overestimates precision for higher-level covariates if the underlying data is not 

independent (Steele, 2008; Rasbash et al., 2009; Hox, 2010). Furthermore, whilst 

the assumption of dependent country-level data within those multinational 

studies is supported by the relevant literature (e.g. Ramsey et al., 2005; Barbieri 

et al., 2005), the assumption of independent data on study-level with respect to 

those countries is most certainly not. On top of that, if country-level variability 

increased in such a model, this could simply be due to some of the study-level 

variability being ‘dragged’ to the country-level because of the strict 1:1 

relationship between hypothetical study-groups and countries within these 

multinational studies. Finally, comparing the cross-classified model to a three-

level hierarchical model where data from multinational studies is pooled on 

country-level allows looking into the issue of whether multinational study data 

shows lower country-level variability, which constitutes in itself an important 

finding from this empirical exercise. On the other hand, splitting data on study-

level would not permit any additional insights into this important issue.  
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In conclusion, models in this first exercise will be run on: 

• the fully cross-classified dataset 

• A cross-classified dataset where data from multinational studies for some 

countries is pooled in one group, whilst data for other countries has been 

assigned to their respective country groups (intermediate dataset) 

• the full dataset where cross-classification has been completely eliminated 

due to pooling data from multinational studies on country-level 

(hierarchical dataset) 

• a reduced dataset where all multinational studies were dropped for 

comparative purposes (reduced dataset) 

 

The main models of interest are the cross-classified MLM, the three-level 

hierarchical model and, for comparative purposes following the results from the 

pilot study, the two-level hierarchical model which ignores the existence of a 

country-level. In addition, the two-level model which clusters data in countries 

only and the OLS regression model, which completely ignores complex data 

structures, are also implemented to confirm findings from the pilot study in 

terms of their worse fit compared to the above mentioned model specifications.  

Table 5.1 shows the analysis plan for this first exercise with the dataset being 

subject to different assumptions as introduced above on the vertical axis and the 

respective MLMs to fit on the horizontal axis. 

 

Table 5.1:   Analysis strategy for the first exercise to determine the appropriate 

multilevel model structure 

Dataset 

Models 

Cross-

classified 

dataset 

Intermediate 

dataset 

Hierarchical 

dataset 

Reduced 

dataset 

Cross-classified model X X -- -- 

Three-level hierarchical 
model 

-- -- X X 

Two-level model with data 
clustered in studies 

X X 

Two-level model with data 
clustered in countries 

X X X X 

OLS regression model X X 

 



 

169 
 

Because assumptions regarding independence on country-level as introduced 

above leave the data and study-levels unaffected, the two-level model which 

clusters data in studies only yields identical results for the cross-classified, the 

intermediate and the hierarchical dataset. Only the reduced dataset may yield 

different results due to all data points from multinational studies being dropped 

from this analysis. The same holds for the OLS regression model as this 

specification does not consider any complex data structures. Only the two-level 

hierarchical model, which clusters data in countries, may differ in its results 

between different assumptions regarding the data on country-level as these 

directly impact on the respective model output.  

 

Before further specifying all models to be run in this exercise, the following 

section introduces the data which is used for this analysis in more detail.  

 

5.1.2. Data for exercise one 

 

Chapter 4 already reported on a systematic literature review on the cost-

effectiveness of statins in the primary and secondary prevention of CVD and 

explained how the form for abstracting data from these studies was developed 

from a long list of potential variability factors drawn from the relevant economic 

evaluation literature and used to populate a dataset for this empirical exercise. 

This chapter also reports on the efforts taken to prepare the dataset for further 

analysis and the resulting dataset is now being used for the analysis as outlined 

above. The intervention of statins in the primary and secondary prevention of 

CVD was chosen as it has been extensively researched in the past, meaning that 

a sufficient number of includable studies and geographic locations was 

hypothesized to be present in the data to justify the assumption of random 

parameters on study and country-level which is crucial for fitting multilevel 

models (Spiegelhalter et al., 2000; Spiegelhalter et al., Rasbash et al., 2009; 2004; 

Hox, 2010).  

 

 

During the systematic literature review, 67 studies were found to be includable 

in this exercise, providing in total 2094 estimates of incremental net monetary 
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benefit where the authors also decomposed the INMB statistic, hence explicitly 

reporting data on ∆C and ∆E of the healthcare intervention. This data is clustered 

in 23 different geographic locations. As some data is applicable to the UK as a 

whole, but other data only to England/Wales on the one hand or Scotland on the 

other, three distinct categories were introduced to the dataset to reflect these 

geographic entities. Table 5.2 provides an overview of the geographic locations 

represented in the data and Figure 5.2 is a Venn-diagram which groups data 

according to the respective studies being ‘multinational’ or ‘single country’ in 

nature. Note that Table 5.2 differs from Table 4.5 in Chapter 4.2.2 as it shows the 

distribution of data points – not studies – per country.  

 

Table 5.2: Geographic locations represented in the dataset  
 

Country Frequency In % Cummulative  

Data points for that 

country from 

multinational studies 

% of data points for 

that country from 

multinational studies 

Australia 13 0.62% 0.62% 1 7.69% 

Belgium 30 1.43% 2.05% 8 26.67% 

Brazil 2 0.1% 2.15% -- -- 

Canada 422 20.15% 22.30% 16 3.79% 

Denmark* 13 0.62% 22.92% 13 100% 

Finland 39 1.86% 24.79% 13 33.33% 

France* 24 1.15% 25.93% 24 100% 

Germany 133 6.35% 32.28% 39 29.32% 

Hong Kong 8 0.38% 32.66% -- -- 

Hungary 4 0.19% 32.86% -- -- 

Italy* 28 1.34% 34.19% 28 100% 

Japan 6 0.29% 34.48% -- -- 

Netherlands 70 3.34% 37.82% -- -- 

New Zealand* 1 0.05% 37.87% 1 100% 

Norway* 10 0.48% 38.35% 10 100% 

Portugal* 12 0.57% 38.92% 12 100% 

Spain 40 1.91% 40.83% 36 90% 

Sweden 81 3.87% 44.70% 34 41.98% 

Switzerland 3 0.14% 44.84% 1 33.33% 

UK 408 19.48% 64.33% 36 8.82% 

UK (Engl./Wales) 475 22.68% 87.01% -- -- 

UK (Scotland) 11 0.53% 87.54% -- -- 

USA 261 12.46% 100% 16 6.13% 

Total 2094 100% 100% 288 13.75% 

*  Data for this country was only available from multinational studies  

 

As can be seem from Table 5.2 and Figure 5.2, the vast majority of data stems 

from single-country-studies with 1806 data points from 61 studies applicable to 

17 geographic domains. On the other hand, 16 countries were considered in six 

multinational studies yielding a total of 288 data points. These 288 data points 

from multinational studies introduce the cross-classification problem to the 

dataset as it causes the strict hierarchical structure between studies and 

countries in the remaining data to break down. Of the 16 geographic domains 
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considered in these multinational studies, six only appear in those studies adding 

up to 88 data points, meaning that none of the single-country-studies provides 

data for any of those countries (Denmark, France, Italy, Netherlands, New 

Zealand and Norway). The remaining ten countries considered in multinational 

studies add up to 200 data points which, in the cross-classified model, would 

impact on country-parameters of those countries which were also considered in 

single-country-studies. Table 5.2 shows that this impact ranges between roughly 

4% (Canada) to up to 90% (Spain) of all data points for those ten countries being 

drawn from multinational studies. It is hypothesized that this fact, plus the 

existence of countries only considered in multinational studies, significantly 

reduces country-level variation in the fully cross-classified model as data from 

multinational studies severely underestimates country-level variation in the cost-

effectiveness of statins for the primary and secondary prevention of CVD.   

 

Figure 5.2: Venn-diagram ordering country-specific data according to the 

nature of the underlying economic evaluation study 

 

 

 

 

 

 

 

 

The easiest way to eliminate this impact is obviously be to drop all six studies 

from further analyses. To yield estimates of country-level variability without the 

influence of data from multinational studies, a three-level hierarchical model is 

implemented on this reduced dataset for comparative purposes. In a sense it 

constitutes the ‘opposite extreme’ to the full, cross-classified dataset, resulting in 

1806 data-points clustered in 61 studies and 17 countries. However, an 

alternative solution is to pool data from multinational studies on country-level. 

This allows keeping data from all multinational studies in the dataset and only 

reduces the number of parameters on country-level by the respective amount of 

Nk (country) = 17 

Nj (study) = 61 

Ni (data) =1806 

 

Countries assessed in 
‚single-country studies’ 

only 

Nk (country) = 6 

Nj (study) = 4 

Ni (data) =88 

 

Countries assessed in 
‚multinational studies’ 

only 

Nk (country) = 10 

Nj (study) = 2 

Ni (data) =200 

 

Data from multinational 
studies applicable to 

countries also assessed in 
single-country-studies 

 

 

Total:         Ni (data) =2094        Nj (study) = 67       Nk (country) = 23 
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countries considered only in multinational studies. Hence, this dataset, which is 

also strictly hierarchical in nature, consists of 2094 data points from 67 studies 

and 17+1 countries (the additional country-group refers to the data from 

multinational studies being pooled in a separate group on country-level).   

 

In addition, an ‘intermediate solution’ is considered which also reduces the 

impact of data from multinational studies on country-parameters, but still 

requires fitting a cross-classified model to the data. All six countries which only 

appear in multinational studies (Denmark, France, Italy, New Zealand, Norway 

and Portugal) are still considered as separate groups on country-level. On the 

other hand, data from multinational studies which refers to one of the ten 

countries already existing in the dataset (i.e. the ‘overlapping’ part of the Venn-

diagram in Figure 5.2.) is pooled in a separate group on country-level. This means 

that 88 data points from multinational studies are assumed to be country 

specific, resulting in the maximal number of 23 country-specific groups on that 

level. The remaining 200 data points from multinational studies are pooled in a 

further group on country-level, so that this dataset consists of 2094 data points 

from 67 studies and 23+1 countries. The value of this additional analysis lies in 

the fact that it introduces cross-classification on a ‘lower scale’, and if low 

country-level variability in the fully cross-classified model as observed in the pilot 

study is only due to the data from multinational studies showing much less 

variability then the rest of the data, then running a MLM on this intermediate 

dataset would result in country-level variation being somewhere in between the 

fully cross-classified dataset and the three-level hierarchical dataset where all 

data points from multinational studies are being pooled on country-level.  

 

 

Table 5.3 below summarizes the four resulting datasets which are used to assess 

the appropriate model structure for further analysis. Further details on the 

studies included in this empirical exercise are also available from Chapter 4, 

which reports on the systematic literature review on the cost-effectiveness of 

statins for the primary and secondary prevention of CVD.  
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Table 5.3:  Datasets for determining the appropriate multilevel model structure 

Dataset 

Nr. and 

name  

Assumptions regarding data structure 
Data 

structure 

Ni 

(data) 

Nj 

(study) 

Nk 

(country) 

Data points 

from 

multinational 

studies 

pooled on 

country-level 

1a 

cross-
classified 

data within multinational studies is 
independent on country-level  

 

� All data from multinational studies 
grouped to respective target 
countries 

Cross-
classified 

2094 67 23 0 

1b 

inter-
mediate 

Part of the data from multinational 
studies is dependent on country-
level.  

 

� Data from multinational studies for 
ten 
 countries pooled on country-level  

Cross-
classified 

2094 67 23+1 200 

1c 

hier-
archical 

All data from multinational studies 
dependent on country-level 

 

� All data from multinational studies 
pooled on country-level 

3-level 
hier-

archical 
2094 67 17+1 288 

1d 

reduced 

All data from multinational studies 
dependent on country-level 

 

� All data from multinational studies 
dropped 

3-level 
hier-

archical 
1806 61 17 0 

 

Now that several variants of the dataset for assessing the appropriate MLM 

structure have been introduced (which all differ by the assumptions made 

regarding independence of cost-effectiveness data on country-level), the actual 

variables required for this analysis are introduced next. As only the response 

variables (INMB, ∆C and ∆E) are modelled as clustered in studies and geographic 

locations without the inclusion of any covariates, the few variables required are 

i) an ID-variable for the study the data point was drawn from, ii) an ID-variable 

for the country the data point refers to and iii) data on the response variables of 

interest (i.e. INMB, ∆C and ∆E). As all data points obviously refer to a specific 

study, the country of interest was always specified in each study, and as the 

reporting of INMBs, ∆C and ∆E was a study inclusion criterion, there is no data 

missing in any of these variables. Descriptive statistics for the three response 

variables can be found below in Table 5.4.  

Table 5.4:  Descriptive statistics of response variables for exercise one 
 

Variable Obs Mean Std. Dev. Min Max 

∆C 2094 £ 8871.77 £ 15061.75 £ -3688.47 £ 178653.1 

∆E 2094 0.636 0.908 -.03 5.4 

INMB 2094 £ 10209.56 £25422.09 £ -151053.1 £ 150430.5 
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Obviously, when multiplying the raw mean ∆E of 0.636 with the threshold value 

λ of 30.000 assumed in this exercise and subtracting the raw mean ∆C of 

8871.77, one arrives almost exactly at the mean INMB of £ 10209.56 measured 

in 2010 £-Sterling.  

 

 

5.1.3. Methods of analysis for exercise one 

 

 

As detailed in the plan of analysis, the models of interest in this first exercise are 

the cross-classified specification with data nested in studies and geographic 

locations, where studies and countries are cross-classified and, secondly, the 

three-level hierarchical model, where data is clustered in studies and studies are 

clustered in countries respectively. Both models are compared to a simpler two-

level hierarchical model which groups data in i) studies only and ii) countries 

only. In addition, the respective OLS regression model, which does not take into 

account complex data structures, is implemented to confirm findings from the 

pilot study. All models are run in a univariate version with INMB as the only 

response variable and a bivariate version with ∆C and ∆E as a vector of response 

variables. Table 5.5 shows the unit diagrams as well as the respective algebraic 

forms of these models. Details on complex data structures, MLM methodology, 

and the algebra presented below are also provided in Chapter 3.  

 

 

Table 5.5 summarizes all five models to be run in this first exercise to determine 

the appropriate multilevel model structure. As mentioned, models 1.a and 1.b 

both take into account that international cost-effectiveness data is nested in the 

studies it was drawn from and the countries it refers to. However, model 1.a. 

assumes that studies and countries are cross-classified due to the data drawn 

from multinational studies being grouped to their respective target countries 

whilst model 1.b assumes a strict hierarchical order between studies and 

countries as data from multinational studies may either be dropped or pooled in 

a separate group on country-level. Models 1.c and 1.d are both two-level models 

which either assume that data is only clustered in the studies it was drawn from 

(model 1.c) or the countries it refers to (model 1.d). Model 1.e. is an empty OLS 

regression model which ignores the existence of complex structures in the data.
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Table 5.5. Multilevel Models for Exercise one 

Model summary Unit diagrams Univariate model 

specification 

Bivariate model specification 

 

Model 1 a  
 

Cross-classified variance 
components model with cost-
effectiveness data clustered in 
studies and countries where 
studies and countries are cross-
classified.  
 

 
 

��(�K
~�(��, �
 ��(�K
 = �� + !�K + !�� + ���(�K
 
 

With !�K~�(0, �"�	 
 !��~�(0, �"�	 
 ���(�K
~�(0, ���	 
 

}v�,�(�K
v8,�(�K
~ ~���(��, �
 
 �n,�(�K
 = (��n+!�nK + !�n� + ��n�(�K

 ∗ �n,�(�K
 
 �8,�(�K
 = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,�(�K
 = 1 − �8 

With: 

P!�,�,K!�,8,KQ ~��� (0, Ω"
     where  Ω" = R�"�,�	�"�,�8 �"�,8	 S 
P!�,�,�!�,8,�Q ~��� (0, Ω"
      where  Ω" = R�"�,�	�"�,�8 �"�,8	 S 
}��,�,�(�K
��,8,�(�K
~~��� (0, Ω"�
   where  Ω� = R���,�	���,�8 ���,8	 S 

 

Model 1 b 
 

Three-level hierarchical variance 
components model with cost-
effectiveness estimates being 
nested in economic evaluation 
studies and studies being nested 
in geographic domains.  

 

���K~�(��, �
 ���K = �� + '�K + !��K + ����K 
 

With '�K~�(0, �L�	 
 !��K~�(0, �"�	 
 ����K~�(0, ���	 
 

 

}v�,��Kv8,��K~ ~���(��, �
 
 �n,��K = (��n+'�nK + !�n�K + ��n��K
 ∗ �n,��K 

 �8,��K = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,��K = 1 − �8 

With: 

P'�,�,K'�,8,KQ ~��� (0, ΩL
     where  ΩL = R�L�,�	�L�,�8 �L�,8	 S 
P!�,�,�K!�,8,�KQ ~��� (0, Ω"
      where  Ω" = R�"�,�	�"�,�8 �"�,8	 S 
P��,�,��K��,8,��KQ ~��� (0, Ω�
    where  Ω� = R���,�	���,�8 ���,8	 S 

 

Models 1.c and 1.d 
 

Two-level variance components 
model with either: 
- cost-effectiveness data 

clustered in studies only 
(model 1.c) or   

- cost-effectiveness data 
clustered in countries only 
(model 1.d) 

 

���~�(��, �
 ��� = ��+!�� + ���� 
 

With !��~�(0, �"�	 
 ����~�(0, ���	 
 

}v�,��v	8��~ ~���(��, �
 
 �n,�� = (��n+!�n� + ��n��
 ∗ �n,�� 
 �8,�� = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,�� = 1 − �8 

With: 

P!�,�,�!�,8,�Q ~��� (0, Ω"
      where  Ω" = R�"�,�	�"�,�8 �"�,8	 S 
P��,�,����,8,��Q ~��� (0, Ω�
      where  Ω� = R���,�	���,�8 ���,8	 S 

 

Model 1.e 
 

Empty ordinary least squares 
regression model which ignores 
complex data structures 
  

 

��~�(��,�
 �� = �� + �� 
 

With ��~�(0, ��	
 

}v�,�v8,�~ ~���(��,�
 
 �n,� = (��n + �n�
 ∗ �n,� 
 �8,� = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,� = 1 − �8 

With: 

P��,��8,�Q ~��� (0, Ω�
      where  Ω� = R����	���8� ��8�	 S 

 

 

CE CE CE CE CE CE CE CE CE 

Study 1 Study 2 Study 3 

Country A Country B Country C 

CE CE CE CE C C CE CE CE 

Study 1 Study 2 Study 3 

Country A Country B 

CE CE CE CE CE CE CE CE CE 

Study 1 / 
Country A 

 

Study 2 / 

Country B 

Study 3 /  
Country C 

CE CE CE CE CE CE CE CE 
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All models consist of an intercept term ′β�′, and an error term for each 

hierarchical level. The subscripts refer to these levels with ‘i’ representing level 

one, ‘j’ level two, and ‘k’ level three so that ‘v�:’ is the error term for level three, ′u��:’ the error term for level two and ‘e���:’the error term for level one 

respectively. As the cross-classified model, though conceptually a three-level 

model, is regarded as a two-level structure with countries and studies cross-

classified at level two, the error terms are denoted with ‘u�:’ and ‘u��′ 
respectively (Rasbash et al., 2009; Hox, 2010). For the univariate specification, it 

is assumed that INMB is normally distributed at each level of the model which is 

denoted with ‘y��:~N(XB,Ω
’. 
 

 

Decomposing the INMB statistic offers a number of advantages in this exercise 

(Nixon et al., 2005; Pinto et al., 2005; Manca et al., 2007; Grieve et al., 2007; 

Bachmann et al., 2007; Willan et al., 2008; Grieve et al., 2010). First, there is no 

need to run models at different threshold values λ, which is necessary to 

combine ∆C and ∆E to INMBs. Secondly, the correlation between the two 

stochastic components of the INMB statistic is explicitly modelled. Finally, once 

covariates are included, a bivariate model allows assessing the differential 

impact of covariates on each response variable whilst acknowledging that ∆C and 

∆E are, themselves, correlated. The hierarchical structure assumed in these 

bivariate models is exactly identical to the hierarchy assumed in their univariate 

counterparts. However, a bivariate normal distribution is now assumed for the 

two response variables ∆C and ∆E. Furthermore, a response indicator ‘r’ is 

included which is 1 for ∆C and 0 for ∆E and a separate level for this response 

indicator has been fitted below the data-level. Finally, the bivariate model 

estimates one error variance for each response variable plus their respective 

covariance on each level. Again, further details on the multilevel methodology 

applied in this empirical exercise are also available from Chapter 3.  

 

 

All datasets and the respective models to fit have now been specified for this 

first experiment. Hence, the next step is to actually implement and run these 

models within the software environment MLwiN using Markov Chain Monte 

Carlo (MCMC) estimation (Rasbash et al., 2009a; Browne, 2012). Though all 

models could also be implemented using iterative generalised least squares 
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(IGLS), it is a far more complex procedure, which is why it has been strongly 

advocated to use MCMC for cross-classified and especially for bivariate models in 

MLwiN (Rasbash et al., 2009 and personal communication with Professor W.J. 

Browne, CMM, Bristol). A detailed step by step guide on how to implement all 

models in MLwiN can be found in Appendix 3. The statistical software package 

MLwiN was chosen for this exercise as it is special MLM software with unique 

capacities to specify complex data structures as developed in this empirical 

exercise (Rasbash et al., 2009a). Though it is acknowledged that there are other 

software applications allowing to fit MLMs (e.g. HLM, STATA or R),the features 

offered by MLwiN proved particularly useful to deal with complex structures 

such as cross-classification, or multivariate MLMs, or even a combination 

thereof. In addition, the Centre for Multilevel Modelling in Bristol, which 

developed the software package MLwiN, is sponsored through the UK Economics 

and Social Science Research Council, which enables free access to an unrestricted 

version of MLwiN to all researchers based in a UK academic institution.  

 

 

The following section reports on the results of this first exercise to determine the 

appropriate multilevel structure for secondary cost-effectiveness data from 

different geographic domains.  

 

 

5.1.4. Results of exercise one  

 

 

Table 5.6 provides the results of running the univariate models and Table 5.7 

shows the corresponding results for the bivariate model specifications. When 

looking at the fixed part of each model (i.e. their intercepts) within the univariate 

framework first, one may conclude that results of the cross-classified and three-

level hierarchical model (models 1.a. and 1.b) are very much in the same range 

(between £7191 and £7266). Only when applying the three-level hierarchical 

model to the reduced dataset, the intercept is slightly lower, producing an 

overall mean INMB of £6606 measured in 2010 £-Sterling. Assumptions about 

the country-level do not affect the two-level hierarchical model which clusters 

data in studies only (model 1.c.), which is why this model has only been run once 

with the full dataset and once with the reduced dataset. Results correspond very 



 

178 
 

strongly with models 1.a and 1.b (£7269 for the full dataset and £6707 for the 

reduced dataset without data from multinational trials). However, intercepts of 

the two-level model which clusters data in countries (model 1.d) and the OLS 

regression model (model 1.e) clearly differ from the results of the other models. 

As the intercept of an empty OLS regression model simply reduces to the raw 

mean of the response variable, results reported for model 1.e in Table 5.6 are 

identical to the raw mean INMB reported in Table 5.4. Interestingly, the two-

level model, which clusters data in countries only, corresponds much stronger 

with this OLS regression model for the cross-classified and intermediate datasets 

whilst not assuming independence of data from multinational studies on 

country-level clearly affects the intercept of model 1.d. This observation already 

indicates the importance of appropriately reflecting complex data structures and 

making reasonable assumptions about dependencies in the data when analysing 

secondary cost-effectiveness data from published economic evaluation studies.  

 

 

The intercepts of the bivariate model specifications reported in Table 5.7 are 

considered next. First, for the bivariate model, ∆C was linearly transformed by 

dividing each value of this response variable by 100. Though theoretically 

irrelevant, MLwiN may encounter convergence problems if, in a multivariate 

model, there is a large difference in error variances between the different 

response variables; as it is the case for the error variances of ∆C and ∆E (personal 

communication with Professor W.J. Browne and R. Pillinger, CMM, Bristol). 

When looking at the results, a reassuring observation is that re-combining the 

two response variables ∆C and ∆E to INMB’s assuming a threshold value λ of 

£30,000 resembles the values reported for the intercepts of the univariate 

models in Table 5.6, though some variation is likely due to the random nature of 

the MCMC estimation process and the different model specifications (Browne, 

2012). As for the univariate model specifications, models 2.a. and 2.b produce 

very similar intercepts. Likewise, model 2.c, which clusters data in studies only, 

shows similar results to the cross-classified and the three-level hierarchical 

model. However, when decomposing the INMB statistic, it suddenly becomes 

apparent that the similarity in the intercepts between model 1.d and 1.e in the 

univariate framework is likely to be a coincidence only as, in the bivariate 

framework, the corresponding values for ∆C and ∆E differ sharply. Only re-

combining ∆C and ∆E to INMB’ leads to the observed resemblance in results as in 
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the univariate models. This is a very compelling argument for decomposing the 

INMB statistic and indicates that some variability in measures of cost-

effectiveness may simply ‘disappear’ when combining ∆C and ∆E to INMBs.  

 

Hence, a first look at the variance components models reported in Tables 5.6 and 

5.7 already reveals that different assumptions about the hierarchical structure of 

a dataset may have strong implications on the fixed part of the model. However, 

if models which only differ with respect to their hierarchical structure do 

produce different results, one needs to choose one model specification which 

may fit the data best. For this purpose, one may compare the deviance of each 

model (Steele, 2008; Bartholomew et al., 2008; Rasbash et al, 2009; Hox, 2010).  

Generally, when estimating a multilevel model using IGLS, the deviance is the 

difference in the -2*log(likelihood) values for a fitted model and a saturated 

model (Steele, 2008; Bartholomew et al., 2008; Rasbash et al, 2009; Hox, 2010). 

When estimating a model using MCMC, the deviance information criterion (DIC) 

is the mean deviance at each iteration of the MCMC estimation procedure 

(Browne, 2012).  This DIC also accounts for the number of parameters in the 

model so that the values reported in Tables 5.6 and 5.7 are directly comparable 

between competing model specifications (Browne; 2012). However, as Browne 

(2012) clarifies, the ‘stochastic nature of the MCMC algorithm leads to some 

random variability in the DIC diagnostic depending on starting values and 

random number seeds’. If differences in the DIC diagnostic are small, this should 

hence be confirmed with different seeds and/or starting values. (Browne, 2012) 

 

 

Comparing the DIC diagnostic across different model specifications in Tables 5.6 

and 5.7 clearly confirms the findings from the pilot study. The OLS regression 

model, which fails to capture any complex data structures, and the two-level 

hierarchical model, which clusters data in countries only, thereby ignoring that 

data is also clustered in economic evaluation studies, are clearly outperformed 

by the more elaborated model specifications which take into account the 

existence of a study-level. This fact holds both within the univariate and bivariate 

framework.  
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Table 5.6: Results for running univariate models in exercise one: 

Model 

 

 

Dataset 

Model 1.a 

Cross-classified model 

(data in studies and countries) 

Model 1.b 

Three-level hierarchical model 

(data in studies and countries 

Model 1.c. 

Two-level hierarchical model 

(data in studies) 

Model 1.d. 

Two-level hierarchical model 

(data in countries) 

Model 1.e. 

OLS regression model 

(no complex data structures) 

INMB INMB INMB INMB INMB 

1.a. 

Cross-classified 

dataset 

Nk = 23 
Nj = 67 

Ni = 2094 

 

 

Intercept 

(λ=£30,000) 
7241 -- 7269 10244 10207 

σ3�:	 	(Country) 247200 -- -- 141402544 -- σ3��	 	(Study) 252676864 -- 253045104 -- -- σ2�	 	(Data) 290686048 -- 290676352 557439040 646884928 

VPC - country 
VPC – study 
VPC - data 

0.05% 
46.48% 
53.47% 

-- 
-- 
-- 

-- 
46.54% 
53.46% 

20.23% 
-- 

79.77% 

-- 
-- 

100% 

DIC 46749 -- 46749 48112 48424 

Dataset  INMB INMB INMB INMB INMB 

1.b. 

Intermediate 

dataset 

Nk = 23+1 
Nj = 67 

Ni = 2094 
 

Intercept 
(λ=£30,000) 

7266 -- 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

10389 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

�"�K	 	(Country) 312401 -- 149956464 �"��	 	(Study) 252744640 -- -- ���	 	(Data) 290719328 -- 546511168 

VPC - country 
VPC – study 
VPC - data 

0.06% 
46.48% 
53.46% 

-- 
-- 
-- 

21.53% 
-- 

78.47% 

DIC 46748 -- 48111 

Dataset  INMB INMB INMB INMB INMB 

1.c. 

Hierarchical 

dataset 

Nk = 17+1 
Nj = 67 

Ni = 2094 
 

Intercept 
(λ=£30,000) 

-- 7191 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

7725 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

�"�K	 	(Country) -- 2482226 89529856 �"��	 	(Study) -- 251875168 -- ���	 	(Data) -- 290664096 555042432 

VPC - country 
VPC – study 
VPC - data 

-- 
-- 
-- 

0.46% 
46.21% 
53.33% 

13.89% 
-- 

86.11% 

DIC -- 46749 48103 

Dataset  INMB INMB INMB INMB INMB 

1.d. 

Reduced 

dataset 

Nk = 17 
Nj = 67 

Ni = 1806 
 

Intercept 
(λ=£30,000) 

-- 6606 6707 6308 7885 �"�K	 	(Country) -- 4017363 -- 62504128 -- �"��	 	(Study) -- 233477872 236665968 -- -- ���	 	(Data) -- 257023552 256972576 473493920 541458816 

VPC - country 
VPC – study 
VPC - data 

-- 
-- 
-- 

0.81% 
47.21% 
51.97% 

-- 
47.94% 
52.06% 

11.66% 
-- 

88.34% 

-- 
-- 

100% 

DIC -- 40097 40097 41200 41443 
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Table 5.7: Results for running bivariate models in exercise one: 
Model 

 

 

Dataset 

Model 2.a 

Cross-classified model 

(data in studies and countries) 

Model 2.b  

Three-level hierarchical model 

(data in studies and countries 

Model 2.c. 

Two-level hierarchical model  

(data in studies) 

Model 2.d. 

Two-level hierarchical model  

(data in countries) 

Model 2.e. 

OLS regression model 

(no complex data structures) 

∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

1.a. 

Cross-classified 

dataset 

Nk = 23 
Nj = 67 

Ni = 2094 
 
 

Intercept 
(λ=£30,000) 

62.36 0.448 -- -- 65.18 0.456 53.47 0.494 88.72 0.636 �"�K	 	(Country) 212 0.004 -- -- -- -- 2937 0.298 -- -- �"��	 	(Study) 8161 0.419 -- -- 8073 0.427 -- -- -- -- ���	 	(Data) 10857 0.314 -- -- 10867 0.313 18933 0.592 22717 0.826 

VPC - country 
VPC – study 
VPC - data 

1.10% 
42.44% 
56.46% 

0.54% 
56.85% 
42.61% 

-- 
-- 
-- 

-- 
-- 
-- 

-- 
42.62% 
57.38% 

-- 
57.70% 
42.30% 

13.43% 
-- 

86.57% 

33.48% 
-- 

66.52% 

-- 
-- 

100% 

-- 
-- 

100% 

DIC 28734 -- 28734 31262 32134 

Dataset  ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

1.b. 

Intermediate 

dataset 

Nk = 23+1 
Nj = 67 

Ni = 2094 
 

Intercept 
(λ=£30,000) 

62.06 0.438 -- -- 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

58.36 0.529 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

�"�K	 	(Country) 680 0.028 -- -- 4863 0.388 �"��	 	(Study) 7302 0.386 -- -- -- -- ���	 	(Data) 10874 0.314 -- -- 18776 0.587 

VPC - country 
VPC – study 
VPC - data 

3.61% 
38.73% 
57.67% 

3.85% 
53.02% 
43.13% 

-- 
-- 
-- 

-- 
-- 
-- 

20.57% 
-- 

79.43% 

39.79% 
-- 

60.21% 

DIC 28736 -- 31265 

Dataset  ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

1.c. 

Hierarchical 

dataset 

Nk = 17+1 
Nj = 67 

Ni = 2094 
 

Intercept 
(λ=£30,000) 

-- -- 60.02 0.418 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

62.10 0.465 
Same as above 

(different assumptions 
regarding the data on  country-
level do not affect estimation 
results as the existence of a 
country-level has not been 

acknowledged in this model) 

�"�K	 	(Country) -- -- 2082 0.118 6270 0.365 �"��	 	(Study) -- -- 6984 0.362 -- -- ���	 	(Data) -- -- 10869 0.313 18818 0.603 

VPC - country 
VPC – study 
VPC - data 

-- 
-- 
-- 

-- 
-- 
-- 

10.44% 
35.03% 
54.52% 

14.88% 
45.65% 
39.47% 

24.99% 
-- 

75.01% 

37.71% 
-- 

62.29% 

DIC -- 28733 31267 

Dataset  ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E ∆C/100 ∆E 

1.d. 

Reduced 

dataset 

Nk = 17 
Nj = 67 

Ni = 1806 
 

Intercept 
(λ=£30,000) 

-- -- 62.79 0.405 68.49 0.449 63.36 0.426 91.61 0.568 �"�K	 	(Country) -- -- 2585 0.145 -- -- 7466 0.379 -- -- �"��	 	(Study) -- -- 7338 0.318 8654 0.402 -- -- -- -- ���	 	(Data) -- -- 11959 0.251 11954 0.251 20438 0.421 24912 0.648 

VPC - country 
VPC – study 
VPC - data 

-- 
-- 
-- 

-- 
-- 
-- 

11.81% 
33.53% 
54.65% 

20.31% 
44.54% 
35.15% 

-- 
41.99% 
58.01% 

-- 
61.56% 
38.44% 

26.76% 
-- 

73.24% 

47.38% 
-- 

52.63% 

-- 
-- 

100% 

-- 
-- 

100% 

DIC -- 24573 24573 26539 27464 
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However, when comparing the cross-classified (model 1.a), the three-level 

hierarchical (model 1.b), and the two-level hierarchical model which clusters 

data in studies only (model 1.c), one recognises that their respective DIC values 

are almost identical. This also holds both for the univariate and bivariate model 

specifications. Furthermore, the minimal difference in DIC is likely to be a result 

of the random nature of the MCMC estimation process as very small changes in 

the DIC are likely to occur with each run of the model (Browne, 2012). As the DIC 

accounts for differences in the number of parameters estimated in each model 

(Browne, 2012), these model specifications may hence be regarded as equivalent 

in terms of their fit to the data (Note that for the reduced dataset the DIC is 

clearly lower in all model specifications. This is, however, not a result of 

improved model fit, but rather of dropping some observations from the dataset). 

As a result, including a study-level into the hierarchy modelled seems to be very 

important to appropriately reflect the structure of the data whilst adding a 

country-level does, at this point, not improve the model fit much further. 

Accordingly, and also in line with the pilot study results, models 1.d and 1.e may 

no longer be considered in this exercise.  

 

 

Though there is roughly equivalence in model fit between the two-level 

specification, which clusters data in studies only, and the more elaborated three-

level hierarchical and cross-classified models, this does not mean that the more 

complex models will not fit the data better once covariates are considered. On 

the other hand, the two-level model does not permit the explicit assessment of 

country-level covariates, which is a key objective of this empirical exercise. For 

these reasons, it was decided to take a model specification which explicitly 

considers the country-level forward to the second part of this empirical exercise, 

which is concerned with covariate adjustment on data and study-level. However, 

this still leaves one choice open before considering covariates, which is the 

choice between the cross-classified model, which treats data from multinational 

studies as independent between countries (model 1.a), and the three-level 

hierarchical model, which assumes that data from multinational studies is not 

country-specific and thereby clusters this data in a separate group on country-

level (model 1.b). As is was hypothesized that data from multinational studies 

draws a curtain over potentially existing country-level variability, it is indicated to 

have a closer look at the random part of the respective models.   
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Moving on to this random part of the MLMs presented in Tables 5.6 and 5.7 

shows even more clearly the importance of making appropriate assumptions 

regarding dependencies within the data. When comparing the variance 

partitioning coefficient (VPC) between the cross-classified and the three-level 

hierarchical models, it can be observed that country-level variability is constantly 

increasing with decreasing influence of data from multinational studies on 

individual country-level parameters. In other words, it appears that data from 

multinational studies is much less affected by variability on country-level which 

‘drags’ country-means towards each other in the cross-classified model and 

thereby ‘camouflages’ the country-level variability which actually does exist 

within the data from single-country-studies. Gradually removing this influence of 

data from multinational studies on individual country-level parameters 

increasingly uncovers this country-level variability in the rest of the data. This has 

also been visualised in Figure 5.3. It can be observed that the country-level VPC 

in Figure 5.3 constantly increases for all response variables in the univariate and 

bivariate framework starting from the cross-classified model, where all data from 

multinational studies was assigned to its respective target countries, up to the 

three-level hierarchical model applied to the reduced dataset, where all data 

from multinational studies was dropped. Interestingly, the effect of treating data 

from multinational studies as dependent on country-level is much stronger in the 

bivariate than in the univariate framework. This indicates that part of the 

country-level variability in international cost-effectiveness data may be disguised 

when combining ∆C and ∆E to INMBs, which shows ever more clearly the 

importance of decomposing the INMB statistic within the bivariate framework.  

 

In conclusion, the assumption of independence of data from multinational 

studies on country-level may not be justified, which does not mean, however, 

that this data shall be dropped from the remainder of this empirical exercise. 

Rather, this first exercise indicates that the influence of this data on individual 

country-parameters may be removed by grouping it in a separate cluster on 

country-level, thereby acknowledging the fact that this data is not independent 

between countries. This is exactly what happens within the hierarchical dataset, 

which shows significantly increased country-level variability for both ∆C and ∆E in 

the bivariate model. To sum up, results from this first experiment show that the 

three-level hierarchical model applied to a dataset, which clusters all data from 

multinational studies in a separate group on country-level, may be carried 
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forward to subsequent analyses as the assumption of independence of 

multinational study data on country-level, which also introduces the cross-

classification problem, appears to be questionable.   

 

Figure 5.3:    Country-level variability with respect to assumptions about (in-) 

dependence of data on country-level 

 

 

After having made a choice regarding the appropriate model structure to take 

forward to the second part of this empirical exercise, it may be useful to take a 

step back to have a further look at the fixed part of this model before moving on 

to have a closer look at the impact of ‘shrinkage’ within the multilevel framework 

in Section 5.1.5. Specifically, with information on the overall mean regression 

coefficient and the study residuals, which can be obtained from MLwiN (Rasbash 

et al., 2009), one can estimate the respective study means in the multilevel 

framework. Also, MLwiN provides the data required for estimating confidence 

intervals around these study means (Rasbash et al., 2009), so that it is possible to 

build forest plots for all the studies included in the dataset. These forest plots 

differ from the caterpillar plots which can be produced directly in MLwiN. 

Caterpillar plots report as ‘zero’ on the vertical axis the overall regression mean, 

so that one may infer whether a study significantly departs from this overall 

regression mean (Rasbash et al., 2009). On the other hand, the forest plots 

presented in Figure 5.4 below, which were produced after estimating models in 

MLwiN and importing data to Ms Excel, show on the horizontal axis actual INMB, 
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∆C or ∆E. Hence, one may infer, for instance, which studies have confidence 

intervals crossing zero, meaning that there is a chance that the response variable 

may also be negative. In addition, the forest plots provide a visual presentation 

of the data which makes it easy to locate outliers, and which studies report more 

or less robust results judged from the actual size of the confidence intervals. 

Finally, one can draw conclusions across the three forest plots due to the 

relationship of a studies mean INMB and the means of the components of the 

INMB statistic ∆C and ∆E. 

 

 

From Figure 5.4.a. it gets apparent that, whilst the majority of studies report a 

mean INMB which is positive at a threshold value of £30.000, their respective 

confidence intervals almost always include zero. Few studies even report a 

negative mean INMB (updated to 2010 £-Sterling) which are highlighted in red in 

Figure 5.4.a (Hjalte et al., 1989; Glick et al., 1992; Drummond et al, 1993; 

Martens et al., 1994; Pharoah et al., 1996; Perreault et al., 1998; Hamilton et al., 

1999; Morris & Godber, 1999; CDC Group, 2002; Nagata et al., 2005; Franco et 

al., 2007). One can also observe a few strong outliers reporting much higher 

INMBs than the rest of the studies in the dataset. Amongst these studies are 

Alonso et al. (2008), Grover et al. (1999), Grover et al. (2000), Grover et al. 

(2001), Grover et al. (2003) and a study from Spaans et al. (2003) which was also 

co-authored by S.A. Grover. The fact that the outliers in the dataset appear to be 

strongly related through ‘common authorship’ is an observation which relates 

back to the genealogy study reported earlier in Chapter 4, and will also be 

further assessed in Section 5.2 of this empirical chapter when considering study-

level covariates which resulted from the genealogy study.  

 

 

However, when looking across the three forest plots presented below, one can 

draw further conclusions in terms of these outliers. For instance, higher mean 

INMBs appears to be correlated to both higher ∆C and ∆E, so that part of the 

positive effect of elevated ∆E on INMBs may be offset by higher ∆C. The bivariate 

model specification, where the INMB statistic is decomposed into its stochastic 

components, may be useful to further assess the relationship between cost-

effectiveness data and covariates whilst taking into account that ∆C and ∆E are, 

themselves, correlated. This is again a strong argument for decomposing the 
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INMB statistic in this exercise as it allows additional insights into causes of 

variability in international cost-effectiveness data.   

 

 

Finally, the level-two residuals obtained from MLwiN and used to generate the 

forest plots below were subject to ‘shrinkage’ when estimating the respective 

MLM (Rasbash et al., 2009). This means that not just the overall regression 

mean, but also the individual study means are affected depending on their 

respective number of data points and variances at each level of the data 

hierarchy. As a result, study means presented below are ‘dragged’ towards the 

overall regression mean depending on the number of data points abstracted 

from those studies as well as the within and between study variability (Steele, 

2008; Rasbash, 2009; Hox, 2010). A potential problem arises as this exercise does 

not deal with individual patient data, where shrinkage depends on the number of 

individuals included in a study, but rather with secondary cost-effectiveness 

data, where the number of data points per study depends on the rigour with 

which subgroup and sensitivity analyses were conducted and reported. Hence, 

whilst shrinkage is supposed to balance out the fact that studies in a dataset are 

of different size, this fact demands further attention when dealing with 

secondary cost-effectiveness data, where the number of data points abstracted 

from one study does not necessarily reflect the weight it should have relative to 

other studies in the dataset. The actual impact of shrinkage factors on the results 

of this exercise and the associated potential for bias when applying MLM 

techniques to secondary cost-effectiveness data from published economic 

evaluation studies is considered below in Section 5.1.5. 
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Figure 5.4: Forest Plots of INMBs, ∆Cs, and ∆Es for all 67 studies included in the dataset 
  (Estimates from 2-level model with data clustered in studies – study means shrunken towards overal mean depending on within study variability and number of data points from that study) 
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FIgure 3a: Forest plot of INMB's 

(shrunken study means and respective 95% 

CI's) 
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Figure 3b: Forest plot of incremental cost 

(shrunken study means and respective 95% 

CI's) 
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FIgure 3c: Forest plot of incremental effects

(shrunken study means and respective 95% 

CI's) 

Study IDs  01: Ashraf et al (1996)  02: Caro et al (1997) 03: Grover et al (1999) 04: Grover et al (2000) 05: Hamilton et al (1995) 06: Johanneson et al (1997) 07: Muls et al (1998) 08: Perreault et al (1998) 09: Pharoah et al (1996) 10: Szucs et al (1998) 

11: Szucs et al (2000a) 12: van Hout et al (2001) 13: Jönsson et al (1996) 14: Jönsson et al (1999) 15: Ganz et al (2000) 16: Grover et al (2001) 17: Martens et al (1994) 18: Alonso et al (2008) 19: Annemans et al (2010) 20: Araujo et al (2007) 
21: Lindgren et al (2010)  22: Grover et al (2008) 23: Franco et al (2007) 24: Greving et al (2011) 25: HPS Group (2009) 26: Khoury et al (2009) 27: Kongnakorn et al (2009) 28: Morris (1997) 29: Morris, Godber (1999) 30: Rosen (2010) 
31: Scuffham et al (2005) 32: Scuffham et al (2006) 33: Tailor et al (2009) 34: Tonkin et al (2006) 35: Wagner et al (2009a) 36: Wagner et al (2009b) 37: Berger et al (1997) 38: Obermann et al (1997) 39: Davies et al (2006) 40: Spaans et al (2003) 
41: Soini et al (2010) 42: Peura et al (2008) 43: Slejko et al (2010) 44: Nherera et al (2010) 45: Szucs et al (2000b) 46: Sigvant et al (2011) 47: Johannesson et al (1996) 48: Troche et al (1998) 49: Szucs et al (2004) 50: Nagata et al (2005) 
51: Lindgren et al (2007) 52: HPS Group (2006) 53: Tsevat et al (2001) 54: Raikou et al (2007) 55: Ramsey et al (2008) 56: Scuffham et al (2004) 57: Hjialte et al (1989) 58: Caro et al (2003) 59: CDC Group (2002) 60: Chau et al (2001) 
61: Grover et al (2003) 62: Glick et al (1992) 63: NICE (2008) 64:Drummond et al (1993) 65: Chan et al (2007) 66: Ward et al (2007) 67: Ara et al (2009)           : overall regression mean (not identical to raw mean estimates)  
 

*INMBs as reported in Figure 2.a may be calculated by multiplying ∆E from Figure  2c with a threshold value λ of 30000 and subtracting ∆C reported in Figure 2.b. Small differences are the result of shrinkage and the 
random nature of the MCMC estimation procedure.  
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5.1.5. Shrinkage as a potential source of bias in the analysis of 

secondary cost-effectiveness data 

 

Before moving on to the assessment of covariates, it is important to consider the 

impact of shrinkage in the MLM framework. As mentioned in Chapter 3, 

assuming exchangeability, which is a necessary assumption to fit MLMs, is 

supposed to ‘mediate’ between the two extreme viewpoints of either identical 

or independent study parameters in the sense that it allows for some sort of 

pooling, but without ignoring the fact that the data stems from different studies 

indeed (Spiegelhalter et al., 2000; Spiegelhalter et al., 2004; Gelman et al., 2004; 

Rasbash et al., 2009; Hox, 2010). As a result, shrinkage factors ‘drag’ group 

means towards the overall regression mean depending on their respective 

number of lower-level units as well as the within and between group variability 

(Steele, 2008; Rasbash et al., 2009). This makes perfect sense, for instance, when 

the lowest level consists of patients in randomised controlled trials. The extent of 

shrinkage towards the overall regression mean would then depend on the 

number of patients in each trial as well as the within and between trial variability 

(Spiegelhalter et al., 2000). 

 

However, this empirical exercise deals with secondary economic evaluation data 

abstracted from existing studies published on the cost-effectiveness of statins in 

the primary and secondary prevention of CVD. Hence, the data in this exercise 

does not represent individual patients which would instantly justify empirical 

Bayes shrinkage estimation. Rather, data points reflect estimates of cost-

effectiveness of statins as reported by the authors of the respective studies 

included in this exercise. The number of data points within each study is hence 

depending on the extent to which authors performed and reported on subgroup 

and sensitivity analysis in their papers. This means that differences in the way 

data and models were utilised to perform subgroup and / or sensitivity analyses, 

or even just the way results have been reported in the respective papers, may 

already account for differences on group sizes, which then affects study means in 

the MLM through shrinkage estimates. As a result, there is an argument around 

the appropriateness of shrinkage estimation if the underlying data stems from 

existing economic evaluation studies and does not represent individual patients. 

Before moving on to covariate adjustment, this section therefore looks deeper 
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into this issue by discussing the underlying concept, show the actual impact of 

shrinkage estimates within the variance components models reported above, 

and discusses alternative strategies which were considered to ‘counterweigh’ the 

effect of shrinkage within this secondary data integration exercise.  

 

 

5.1.5.1. Empirical Bayes shrinkage estimation within the multilevel modelling 

framework 

 

To quantify the impact of shrinkage on the results presented above, one needs 

to make explicit the connection between the MLM, where residuals are 

estimated for each hierarchical level and shrinkage estimates ‘mediate’ between 

the two extreme assumptions of either identical or independent study 

parameters, and the respective non-hierarchical OLS model, which does not 

account for complex data structures. Empirical Bayes shrinkage estimates ‘drag’ 

study means towards the overall regression mean (e.g. Steele, 2008; Rasbash et 

al., 2009). This section shows that the OLS regression model, which does not take 

into account that data is clustered in studies, is simply a special case of the MLM 

where shrinkage estimates are assumed to be zero (e.g. Willan et al., 2005; 

Steele, 2008; Rasbash et al., 2009). Further, in an empty OLS regression model, 

the intercept is simply the raw mean of the response variable (e.g. Maddala, 

2001). In conclusion, we may quantify the effect of shrinkage by comparing study 

means as obtained from the variance components model presented above with 

the individual study means calculated from the raw data.  

 

As detailed in the multilevel methods Chapter 3, to be able to make comparisons 

between studies in the multilevel framework, the study-level residual ‘u�′ needs 

to be estimated (Steele, 2008; Rasbash et al., 2009). An estimate of ‘u�′ may be 

derived by calculating the ‘mean raw residual’, that is: (Steele, 2008; Rasbash et 

al., 2009; CMM-workshops/variance components).  

 �̅� = �<� − �=�   (1, repeated from Chapter 3) 
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Where’ y<�′ is the mean of the response variable in study ‘j’, and ′β��′ is an 

estimator of the overall mean of the response variable. This raw residual is then 

multiplied by the shrinkage factor ‘S’ (Spiegelhalter et al., 2004; Willan et al., 

2005; Steele, 2008; Rasbash et al., 2009):  

 

 !?�� = @�̅�      where 									@ = -A./-A./0(BA1/CD
  (2, repeated from Chapter 3) 

In (2), ′n�′ is the sample size in study ‘j’, hence the number of data points 

reported in that study (Steele, 2008; Rasbash et al., 2009). ′σA2	′ and ‘σA3	’ are 

estimates of the variances of the within-study and between-study error terms 

respectively (Steele, 2008; Rasbash et al., 2009). The respective level one 

residual is given as (CMM-workshops/variance components):  

 

 e?��� = y�� − 7β�� + β�8x8��9 − u?��                (3) 

 

Now it can be illustrated why the assumption of exchangeability of study 

parameters mediates between the two extremes of either identical or 

independent parameters obtained from different cost-effectiveness studies. If 

the between study variance ′σ3	’ is assumed to be zero, then this is equal to say 

that all variation in the reported cost-effectiveness measures stems from ‘within-

study’ variability, hence, the mean study effects are ‘identical’ between studies. 

This would mean that there are no differences between studies and all cost-

effectiveness estimates may be safely pooled together. In terms of equations (2) 

and (3), if ‘S’ is zero in (2), then  ′!?��’ will be zero too, and (3) reduces to: 

 e?�� = y� − β�� − β�8x8�                (4) 

 

 

This is simply the residual as defined for the OLS regression model (e.g. Maddala, 

2001) If, on the other hand, ‘σ3	 → ∞′, then the study effects are regarded to be 

independent, meaning that data from different sources may not be pooled 

together. Hence, assuming exchangeability allows to model that the ‘reality’ 

might be somewhere in between those extreme viewpoints. To sum up,  
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	′σ3	 → 0′ is the special case where the shrinkage factor ′S = �A�/�A�/0��A�/��� ′ tends 

towards zero and the study effects are completely shrunken towards the overall 

mean of the response variable ′β�’. A pooled OLS regression model may be 

equivalent in this case. If 	′σ3	’ is high, then the shrinkage factor			′S = �A�/�A�/0(�A�/�� 
’ 
tends towards unity, meaning that the between country variance is high and 

shrinkage of study effects towards the overall mean ′β�′ is small ( Steele, 2008) 

 

 

However, the extent of shrinkage does not only depend on the amount of 

between study variability	′σ3	’. The higher the number of data points provided by 

one single study (n�
, the more information is provided by that particular study 

to the overall model, and the less will the study mean be shrunken towards the 

overall mean (Steele, 2008; Rasbash et al., 2009; Hox, 2010). On the other hand, 

if a study provides only few estimates of cost-effectiveness, then shrinkage is 

high as this study ‘borrows’ a lot of information from all other studies available 

(Steele, 2008; Rasbash et al., 2009; Hox, 2010).  

 

 

It has now been shown that by assuming the shrinkage factor ‘S’ to be zero, a 

MLM, where data is grouped in economic evaluation studies, reduces to an OLS 

regression equation. Hence, to quantify the effect of shrinkage within the 

variance components models reported above, one may simply compare the 

study means of the variance components model with the intercepts estimated by 

an OLS regression model being fit to a) the pooled data and b) the data from 

each study separately to model both the assumptions of a) identical and b) 

independent parameters. However, we may further simplify this procedure. In an 

OLS regression equation, the intercept is given by (e.g. Maddala, 2001):  

 β��� =	y� − β�8� ∗ x�                             (5) 

 

Where ′y′ is the overall mean of the response variable and ‘β�8�’ represents a 

vector of explanatory variables (e.g. Maddala, 2001). However, in the variance 

components models above covariates have not yet been considered so that the 
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equivalent OLS regression would be an empty model without any slope 

parameters. Hence, (5) reduces to: 

 β��� =	y�                              (6) 

 

which means that, in an empty OLS regression model, the intercept is identical to 

the raw mean of the response variable. In conclusion, we may show the effect of 

shrinkage in the variance components model reported above by simply 

calculating the study means in the MLM as the group departure from the overall 

intercept ( �� + !�) and comparing the result to the raw study means calculated 

as (e.g. Maddala, 2001):  

 

 ��� = 8pD ∗ ∑ ���p��m8                              (7) 

 

to assume independent parameters or the raw mean of the pooled data for 

identical study parameters calculated as: 

 

 �� = 8p ∗ ∑ ��p�m8                                (8) 

 

Note that, alternatively, one may simply insert values for the within and between 

group variances ′σA2	’ and ‘σA3	 	′, which can be obtained from MLwiNs equation 

window after running the respective model as well as the study group sizes ‘n�′ in 

equation (2) to calculate the shrinkage factor for each study in the MLM and 

then divide the level two residuals ′!> ��′ which are also obtainable from MLwiN  

by ‘S’ to get the mean raw residual ′���’ (Rasbash et al., 2009) When adding this 

mean raw residual to the overall regression mean ′��′, one receives 

approximately the raw means calculated with equation (7) (Rasbash et al., 2009) 

The following section reports both study means estimated by the variance 

components model reported above., the raw means calculated with equations 

(8) and (9), and the respective shrinkage factors calculated with equation (2).  

Results are then compared in a graph displayed in Figure 5.5. Finally, the impact 

of shrinkage in this empirical exercise and resulting concerns when applying 

MLM techniques to secondary cost-effectiveness data are discussed before 

moving on to part two of this empirical work, which is concerned with covariate 

adjustment in the MLM framework.  
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5.1.5.2. Quantifying the impact of empirical Bayes shrinkage estimates on 

study means 

 

 

Table 5.8. shows raw study means, shrunken study means and shrinkage factors 

for INMB, ∆C and ∆E and the results from Table 5.8 are also visualised in Figure 

5.5 below. Note that the shrinkage factor (S) is not the ratio of the raw study 

means and shrunken study means as it is applied to shrink the ‘mean raw 

residuals’ (�̅�) to obtain study-level residuals ‘u�’ which are then added to the 

overall regression mean ′��′ to obtain shrunken study mean values (Steele, 2008; 

Rasbash et al., 2009, CMM workshops / variance components). For most studies 

in the dataset, the shrinkage factor, which is bound between 0 and 1, is above 

0.9. Furthermore, for ∆E shrinkage factors are even closer to unity, indicating 

that study means for ∆E are even less shrunken towards the overall regression 

mean (Steele, 2008). The reason for this is given in equation (2) above. Shrinkage 

factors are closer to zero (i.e. so that shrinkage is stronger), if ′n�′ is small or ′σA2	′ 
is large compared to ′σA3	′ (Steele, 2008). In other words, if there are only few 

data points in one group (so that we have little information about that group), or 

if within group variability is high compared to between group variability 

(indicating low dependency of data within groups), then study means are pulled 

more strongly towards the overall mean (Steele, 2008; Rasbash et al., 2009; 

CMM workshops / variance components) Finally, as shrinkage factors are applied 

to the mean raw residual and not directly to study means, shrinkage has a 

stronger impact on outliers in the dataset than it has for studies close to the 

overall regression mean (Steele, 2008; Rasbash et al., 2009; CMM workshops / 

variance components) 

 

 

Between group variability is generally high within the given dataset, indicating 

high dependency of the data within studies and therefore providing a strong 

justification for the use of MLM. Accordingly, shrinkage factors are generally 

high, meaning that shrinkage towards the overall regression mean is, at most, 

moderate. In addition, as ∆E shows even higher between group variability than 

INMB or ∆C (which is getting obvious when comparing the respective variance 

partitioning coefficients reported in Table 5.8), shrinkage factors are even closer 

to unity, meaning that study means are even less shrunken towards the overall 

regression mean. Nevertheless, though high dependency within groups generally 
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leads to higher shrinkage factors, which decreases the impact of shrinkage on 

study means, Figure 5.5 shows that for few studies shrinkage does have quite 

some impact within the MLM framework. The length of the horizontal line for 

each study in Figure 5.5 indicates the difference between the raw and the 

shrunken study means. It was mentioned that shrinkage has a stronger effect on 

outlying studies, and this is getting visible when comparing, for example, studies 

18 and 19 (Alonso et al., 2008; Annemans et al., 2010) in Figure 5.5a. As ‘nj‘ is 

identical in both studies (nj = 4), their respective shrinkage factors are also 

identical with 0.78. However, as the mean raw residual is much higher for the 

outlying study by Alonso et al. (2008), shrinkage has a much stronger impact on 

its respective study mean. In conclusion, the impact of shrinkage on study means 

in this exercise depends not just on the respective number of data points 

abstracted from each study, but also on the within and between group variability 

in the data and the location of each study mean relative to the overall regression 

mean.  
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Table 5.8:   Raw and shrunken study means plus shrinkage factors  
 

 INMB ∆C ∆E 

raw mean 10210 88.71 0.64  � 7233 65.18 0.46 ¡A¢�     (vpc) 253045104    (46.54%)  8073    (42.62%) 0.43    (58.11%) ¡A£�     (vpc) 290676352    (53.46%) 10867    (57.38%) 0.31    (41.89%) 

Study Nj 
Raw 

mean 

Shrunke

n mean 

Shrinkage 

factor 

Raw 

mean 

Shrunke

n mean 

Shrinkage 

factor 

Raw 

mean 

Shrunken 

mean 

Shrinkage 

factor 

1 13 3344 3626 0.92 12.49 16.97 0.91 0.15 0.17 0.95 

2 11 750 1391 0.91 21.9 25.36 0.89 0.10 0.12 0.94 

3 144 48242 47869 0.99 168.14 168.08 0.99 2.17 2.16 0.99 

4 52 26763 26284 0.98 251.3 247.41 0.97 1.73 1.71 0.99 

5 60 -12201 -11856 0.98 413.31 403.61 0.98 0.97 0.97 0.99 

6 25 5216 5269 0.96 13.12 15.71 0.95 0.22 0.22 0.97 

7 18 2837 3079 0.94 18.63 21.49 0.93 0.16 0.17 0.96 

8 60 -1748 -1605 0.98 147.88 145.34 0.98 0.44 0.44 0.99 

9 46 -2782 -2557 0.98 55.63 55.28 0.97 0.09 0.10 0.98 

10 42 4836 4862 0.97 37.79 38.47 0.97 0.29 0.29 0.98 

11 8 8356 8192 0.87 37.94 42.61 0.86 0.41 0.41 0.92 

12 5 16143 14435 0.81 118.16 110.26 0.79 0.93 0.87 0.87 

13 19 5320 5404 0.94 18.8 21.90 0.93 0.24 0.25 0.96 

14 109 7639 7605 0.99 14.25 14.99 0.99 0.30 0.30 0.99 

15 29 2537 2677 0.96 50.25 50.41 0.96 0.25 0.26 0.98 

16 112 54616 54087 0.99 155.08 155.37 0.99 2.34 2.32 0.99 

17 7 -1580 -344 0.86 51.54 50.65 0.84 0.12 0.15 0.91 

18 4 45443 36677 0.78 324.81 276.24 0.75 2.60 2.28 0.85 

19 4 6601 6751 0.78 0.74 17.30 0.75 0.22 0.25 0.85 

20 2 1773 3774 0.64 -1.23 22.40 0.60 0.06 0.15 0.73 

21 2 207 2808 0.64 3.93 24.02 0.60 0.02 0.13 0.73 

22 22 9960 9790 0.95 41.25 43.27 0.94 0.47 0.47 0.97 

23 4 -2470 -276 0.78 37.71 40.30 0.75 0.04 0.11 0.85 

24 61 399 492 0.98 5.58 6.69 0.98 0.03 0.04 0.99 

25 100 13937 13814 0.99 58.5 58.88 0.99 0.66 0.66 0.99 

26 6 3199 3836 0.84 5.01 15.17 0.82 0.12 0.15 0.89 

27 8 3960 4324 0.87 18.6 24.88 0.86 0.19 0.21 0.92 

28 2 -2885 823 0.64 63.8 57.46 0.60 0.12 0.22 0.73 

29 17 -2361 -1753 0.94 66.61 64.75 0.93 0.14 0.16 0.96 

30 6 3961 4471 0.84 13.94 22.81 0.82 0.18 0.20 0.89 

31 7 5718 5927 0.86 0.82 11.46 0.84 0.19 0.21 0.91 

32 4 1220 2566 0.78 26.05 33.37 0.75 0.13 0.18 0.85 

33 24 3101 3273 0.95 33.49 34.79 0.95 0.22 0.22 0.97 

34 12 7103 7088 0.91 18.96 23.99 0.90 0.30 0.31 0.94 

35 12 1737 2214 0.91 4.84 10.10 0.90 0.07 0.09 0.94 

36 4 439 1973 0.78 4.46 16.98 0.75 0.03 0.09 0.85 

37 7 6343 6481 0.86 20.57 27.92 0.84 0.28 0.29 0.91 

38 36 6411 6401 0.97 22.54 24.16 0.96 0.29 0.29 0.98 

39 52 8447 8375 0.98 68.41 68.41 0.97 0.51 0.51 0.99 

40 10 53221 48311 0.90 131.69 136.26 0.88 2.21 2.08 0.93 

41 16 4422 4562 0.93 40.45 41.99 0.92 0.28 0.29 0.96 

42 10 5399 5579 0.90 40.21 42.99 0.88 0.31 0.32 0.93 

43 1 9484 8302 0.47 31.15 52.05 0.43 0.42 0.43 0.58 

44 7 4196 4585 0.86 30.94 35.83 0.84 0.24 0.26 0.91 

45 2 11142 9706 0.64 17.57 39.46 0.60 0.43 0.42 0.73 

46 12 2202 2593 0.91 -0.49 5.65 0.90 0.07 0.09 0.94 

47 8 -17 900 0.87 10.4 16.36 0.86 0.03 0.07 0.92 

48 1 -7224 557 0.47 89.34 65.71 0.43 0.06 0.24 0.58 

49 4 1890 3085 0.78 6.6 19.52 0.75 0.09 0.14 0.85 

50 6 -8381 -5848 0.84 96.56 84.09 0.82 0.04 0.10 0.89 

51 20 3 369 0.95 11.05 13.65 0.94 0.04 0.05 0.96 

52 168 18730 18608 0.99 1.72 2.53 0.99 0.63 0.63 1.00 

53 4 4947 5467 0.78 103.52 92.40 0.75 0.51 0.51 0.85 

54 12 11700 11260 0.91 29.1 34.19 0.90 0.49 0.48 0.94 

55 6 4297 4781 0.84 -7.52 5.55 0.82 0.12 0.15 0.89 

56 22 2178 2406 0.95 3.26 6.50 0.94 0.08 0.09 0.97 

57 2 -7375 -1950 0.64 156.85 110.41 0.60 0.28 0.36 0.73 

58 62 6432 6406 0.98 20.33 21.32 0.98 0.28 0.28 0.99 

59 9 -5655 -4171 0.89 156.66 139.94 0.87 0.33 0.36 0.92 

60 8 3729 4132 0.87 11.05 18.28 0.86 0.16 0.18 0.92 

61 12 79387 72846 0.91 153.63 161.60 0.90 3.16 2.98 0.94 

62 3 -14167 -8149 0.72 325.66 230.16 0.69 0.61 0.65 0.80 

63 4 5746 6094 0.78 18.29 30.06 0.75 0.25 0.28 0.85 

64 128 -19034 -18834 0.99 363.39 359.08 0.99 0.58 0.58 0.99 

65 7 1230 2095 0.86 51.21 51.45 0.84 0.21 0.24 0.91 

66 322 1352 1337 1.00 23.8 38.47 1.00 0.17 0.17 1.00 

7 72 1659 1722 0.98 26.11 26.67 0.98 0.14 0.15 0.99 
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Figure 5.5: Differences between raw study means and shrunken study means 
 

(Graph plots the mean INMB, ∆C and ∆E for each study as obtained from 1) the raw data and 2) from a two-level MLM so that means are shrunken towards overal mean depending on within study 
variability, between study variability and number of data points from that study) 
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Figure 5.5a. Difference between raw 

study means and shrunken study 

means in INMBStudy ID
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Figure 5.5b. Difference between raw 

study means and shrunken study means 

in ∆CStudy ID
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Figure 5.5c. Difference between raw 

study means and shrunken study means 

in ∆EStudy ID

01: Ashraf et al (1996)  02: Caro et al (1997) 03: Grover et al (1999) 04: Grover et al (2000) 05: Hamilton et al (1995) 06: Johanneson et al (1997) 07: Muls et al (1998) 08: Perreault et al (1998) 09: Pharoah et al (1996) 10: Szucs et al (1998) 
11: Szucs et al (2000a) 12: van Hout et al (2001) 13: Jönsson et al (1996) 14: Jönsson et al (1999) 15: Ganz et al (2000) 16: Grover et al (2001) 17: Martens et al (1994) 18: Alonso et al (2008) 19: Annemans et al (2010) 20: Araujo et al (2007) 
21: Lindgren et al (2010)  22: Grover et al (2008) 23: Franco et al (2007) 24: Greving et al (2011) 25: HPS Group (2009) 26: Khoury et al (2009) 27: Kongnakorn et al (2009) 28: Morris (1997) 29: Morris, Godber (1999) 30: Rosen (2010) 
31: Scuffham et al (2005) 32: Scuffham et al (2006) 33: Tailor et al (2009) 34: Tonkin et al (2006) 35: Wagner et al (2009a) 36: Wagner et al (2009b) 37: Berger et al (1997) 38: Obermann et al (1997) 39: Davies et al (2006) 40: Spaans et al (2003) 
41: Soini et al (2010) 42: Peura et al (2008) 43: Slejko et al (2010) 44: Nherera et al (2010) 45: Szucs et al (2000b) 46: Sigvant et al (2011) 47: Johannesson et al (1996) 48: Troche et al (1998) 49: Szucs et al (2004) 50: Nagata et al (2005) 
51: Lindgren et al (2007) 52: HPS Group (2006) 53: Tsevat et al (2001) 54: Raikou et al (2007) 55: Ramsey et al (2008) 56: Scuffham et al (2004) 57: Hjialte et al (1989) 58: Caro et al (2003) 59: CDC Group (2002) 60: Chau et al (2001) 
61: Grover et al (2003) 62: Glick et al (1992) 63: NICE (2008) 64:Drummond et al (1993) 65: Chan et al (2007) 66: Ward et al (2007) 67: Ara et al (2009)           : pooled mean  
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5.1.5.3. Discussing the ‘appropriateness’ of shrinkage within this secondary 

data integration exercise 

 

Two questions follow from what has been reported above: first, may shrinkage 

lead to some sort of bias in the case of integrating secondary cost-effectiveness 

data where the number of data points per study is generally not indicative for 

the respective size of the underlying study sample. In other words, as shrinkage, 

or the lack thereof, may only be a consequence of differences in the way 

subgroup or sensitivity analyses were performed and reported in the respective 

studies, it may not be justified to shrink studies based on the respective number 

of data points abstracted per study. Secondly, if the answer to the first question 

is yes, is there anything we can do about it in the MLM framework. As 

mentioned, empirical Bayes shrinkage estimation follows directly the assumption 

of exchangeability, and any attempt to ‘counterweigh’ shrinkage would impact 

on the very foundations of multilevel modelling (e.g. Spiegelhalter et al., 2000; 

Spiegelhalter et al., 2004; Steele, 2008). To this extend, this issue is nothing less 

than a fundamental critique on the use of MLM for the integration of secondary 

cost-effectiveness data, and the answer to this question may be much more a 

philosophical than a technical one.  

 

To answer the first question, consider again the case of the two studies with the 

ID’s 18 and 19 (Alonso et al., 2008; Annemans et al., 2010) in Figure 5.5a. As 

mentioned, both studies contribute four data points each to the overall dataset, 

so that their respective group sizes are relatively small compared to other 

studies. We do not judge a priori whether the data points provided by these 

studies are poor guesses of the cost-effectiveness of statins in the primary and 

secondary prevention of CVD. Accordingly, the mean raw residual (�̅�) calculated 

from the respective data points may be ‘wrong’. This idea holds for each group in 

the dataset, as we cannot judge a priori which study may provide the ‘best guess’ 

regarding the cost-effectiveness of statins (though we will come back to this 

issue when adding covariates to the model). Now, when combining data from 

one group with data from all other groups, this will shrink residuals towards the 

overall average, so that level-two residuals will be less sensitive to outliers in the 

group (Steele, 2008). Figure 5.5a shows that, though group sizes and respective 

shrinkage factors are identical for both studies, the mean of the outlying study 
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18 is shrunken much stronger towards the overall average. Of course, when 

group sizes partly depend on nothing else than differences in the way authors 

reported cost-effectiveness estimates, one may argue that this process will bias 

results towards those studies which provide a large number of data points. 

However, the example of studies 18 and 19 makes clear that group size is only 

one of three factors determining the actual impact of shrinkage on study means 

in this exercise. The other two factors are 1) dependency (i.e. the relation 

between within and between group variability) and 2) location (i.e. the relative 

distance of each group mean from the overall regression mean) (Steele, 2008; 

Rasbash et al., 2009). Hence, to judge the appropriateness of shrinkage and to 

develop a method which may counterweigh potential bias introduced by 

‘artificial’ study sizes in the case of secondary data integration, one has to 

discuss each of the three factors involved in the process. This discussion starts 

with dependency and location before it comes back to the issue of group sizes.   

 

In terms of ‘dependency’ shrinkage appears to be justified just as much in the 

case of secondary data integration as it is for the integration of say individual 

patient data from RCTs. The idea that data from one study may be more similar 

to each other than it is to data from other studies makes intuitive sense in the 

case of secondary cost-effectiveness data. Furthermore, reflecting dependencies 

within the data is the whole purpose of MLM (e.g. Spiegelhalter et al., 2000; 

Spiegelhalter et al., 2004; Willan et al., 2005, Manca et al., 2005), and the fact 

that between group variability is generally high within the variance components 

models reported above provides a strong justification for the use of MLM. On the 

contrary, if one used a method to integrate secondary cost-effectiveness data 

which does not take into account dependencies within that data (as it is the case 

for example with the OLS model applied in the pilot study and in Chapter 3.4), 

one risks making plainly wrong inferences (e.g. Steele, 2008). This has been 

demonstrated quite impressively with the negative relationship between INMB 

and TCL obtained when applying the OLS model to the pilot dataset. Within each 

study, there is always a positive relationship between patients’ cholesterol level 

and the cost-effectiveness of statins, which also accords expectations. However, 

as some studies assess patient groups which are sicker than others, the cost-

effectiveness of statins may be lower even in the presence of higher cholesterol 

levels. Hence, the inability to discriminate between within and between group 
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effects leads to an overall negative relationship between INMB and TCL though 

this is clearly incorrect. Furthermore, the pilot study showed that precession was 

severely overestimated for higher-level variables like GDP per capita in the case 

of the OLS framework. For these reasons, acknowledging dependencies in the 

data through the process of shrinkage appears to be strongly justified within this 

secondary data integration exercise.  

 

A similar conclusion has been reached with respect to ‘location’ of study means 

relative to each other. If we treat each study in the dataset as a random sample 

of cost-effectiveness estimates from a wider ‘population’ of cost-effectiveness 

estimates for a particular health technology (e.g. Spiegelhalter et al., 2000; 

Spiegelhalter et al. 2004), then it makes intuitive sense to drag outlying studies 

towards the overall study mean. In this sense, we simply combine the data from 

the outlying group with the information provided by all the other groups to bring 

study-level residuals closer to the overall average. This makes study-level 

residuals less sensitive to outlying elements. As mentioned, we do not judge a 

priori whether the information provided by one study is actually a ‘poor guess’ of 

the cost-effectiveness of statins (though we may account for this later when 

including covariates to the equation). Rather we reduce the impact of outlying 

elements of the group by dragging them closer towards the overall average. In 

other words, if there was no shrinkage when integrating secondary cost-

effectiveness data, then the impact of outliers on the overall regression mean 

would be much stronger. This can be observed when comparing the variance 

components models 1.a, 1.b. or 1.c above with the respective OLS regression 

model 1.e. Within the OLS regression model, full weight is given to outliers which 

report mean INMBs way above the other studies in the dataset, thereby pulling 

the overall mean INMB clearly above the regression mean within the multilevel 

framework. Hence, also with respect to ‘location’, shrinkage appears to be 

justified for the integration of secondary cost-effectiveness data.  

 

What is left is the impact of ‘group size’, and it is arguable whether the ‘nj’ for 

each study appropriately reflect the size, and thereby the ‘weight’ each study 

should carry in this exercise. On the other hand, it is certainly no straightforward 

task to determine an appropriate weight per study when some studies in this 
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exercise rely on actual patient data from RCTs, and others rely on combining data 

from different sources within a DAM. Even assigning the same weight to each 

study on these grounds may appear questionable. In other words, any attempt 

to re-weigh studies to ‘counterweigh’ the effect of group sizes within the process 

of shrinkage (assuming there is a way to account for this in the model which is 

also discussed below) may be similar to trading one source of potential bias with 

another one.  

 

However, let us consider once more the thought that INMBs in this exercise 

constitute a random sample from a hypothetical space of cost-effectiveness 

estimates (e.g. Spiegelhalter et al., 2000; Spiegelhalter et al., 2004). A priori, we 

do not judge whether one estimate may be more likely than another one (e.g. 

Spiegelhalter et al., 2004). If this assumption holds, however, then we have to 

accept that studies which provide more data points based on subgroup and 

sensitivity analyses also provide a larger ‘slice’ of the space of potential cost-

effectiveness estimates for that particular health technology. Even though these 

data points do not reflect individual patients, we ought to accept that, a priori, 

they should not be treated anyhow differently. From this perspective, shrinkage 

makes sense even when dealing with secondary cost-effectiveness data. On top 

of that, reporting subgroup and sensitivity analyses is regarded as a crucial factor 

when judging the quality of a particular economic evaluation study. In this 

respect, shrinkage simply assigns a higher weight to those studies which better 

comply with quality checklists in this matter (e.g. Drummond et al., 1996, Ofman 

et al., 2003; Evers et al., 2005). Furthermore, we may control for differences 

between studies through covariate adjustment (e.g. Drummond et al., 2009; 

Manca et al., 2010). For instance, one may rate study quality using an 

appropriate checklist and then control for this factor through the inclusion of a 

respective covariate on study-level. Within this empirical exercise, this is 

considered using the validated QHES instrument (Ofman et al., 2003). 

Furthermore, a number of study-level covariates are included to account for 

differences between studies. As a result, after adjusting for the appropriate 

covariates, data from different studies should become, in theory, exchangeable 

(Gelman et al., 2004; Manca et al., 2007; Drummond et al., 2009).  
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Before discussing potential strategies to counterweigh shrinkage, one further 

aspect of the problem needs to be considered which was not yet specifically 

addressed. The problem of shrinkage in the integration secondary data from 

health economic evaluations is very intuitive on study-level as it was detailed 

above. However, what does this mean for country-level parameters? Clearly, 

shrinkage on country-level follows the same logic in the sense that country-group 

size, location of the country-mean relative to other country parameters, and the 

relation of within and between country variability determines the amount of 

shrinkage per country (Steele, 2008, Rasbash et al., 2009). However, does the 

same critique apply with respect to country-group sizes? Unlike the number of 

data points abstracted from one particular study, which clearly depends on the 

rigour with which analysts exploited the data to perform subgroup and sensitivity 

analyses, country-group sizes additionally depend on the number of studies 

conducted in a specific country. In other words, countries for which more 

economic evaluation data from different studies are available receive a higher 

weight through shrinkage in the multilevel model. This is in complete accord with 

the logic behind empirical Bayes shrinkage estimation (e.g. Spiegelhalter et al., 

2000; Spiegelhalter et al., 2004) as it gives higher weight to geographic domains 

for which more data is available and, conversely, drags countries for which the 

evidence base is poor closer to the overall mean. From this perspective, one may 

argue whether shrinkage is not perfectly justified in secondary data integration 

on country-level, irrespective of the nature of the underlying economic 

evaluation study (i.e. IPD analysis or DAM). In addition to that, data from 

different studies becomes, in theory, exchangeable once the researcher 

controlled for the appropriate set of covariates (Gelman et al., 2004; Manca et 

al., 2007; Drummond et al., 2009). Hence, it may be controlled for such 

differences in Section 5.2 of this empirical exercise, which is concerned with 

covariate adjustment on data and study-level, as this may also feed through to 

variability observed between geographic domains. The ultimate aim is to disclose 

the actual amount of variability between countries, which is then further 

assessed in Section 5.3 of this empirical exercise.   
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5.1.5.4. Strategies to address the issue of group sizes within secondary data 

integration 

 

Though the above section provides a number of reasons to believe that 

shrinkage may also be appropriate in the case of integrating secondary data from 

published economic evaluation studies, it is acknowledged that the issue of 

group sizes on study-level may demand further attention. Hence, if one does not 

follow the argument as outlined above, it is indicated to develop a strategy to at 

least try to address the issue of shrinkage on study-level within the method of 

analysis chosen for this empirical exercise. Otherwise, as mentioned above, this 

issue may turn into a fundamental critique on the use of MLM for the integration 

of secondary cost-effectiveness data. For this reason, several strategies were 

considered to address the issue of study group sizes within the current exercise.  

 

For example, as a relatively straightforward approach it was considered to 

bootstrap data from each study individually and then to draw a random sample 

for each study of identical size. This would have led to identical ‘nj’ for each study 

in the dataset. However, it would have definitely changed the relationship 

between ′σA2	′  and ′σ> 3	′ so that shrinkage factors would not only be adjusted with 

respect to group size, but also with respect to the balance of within and between 

group variability. In other words, the potential bias introduced by artificial group 

sizes would have been traded against a potential bias with respect to changing 

the degree of dependency within the data. On top of that, this would have 

meant to bootstrap not just data for the response variable for each study 

individually, but also covariates once these are added to the model, which would 

have amounted to considerable efforts to implement this strategy.  

 

As an alternative, it was considered to use MLwiNs weighting facility to adjust for 

differences in the ‘nj’ for studies included in this empirical exercise (CMM, 2011).  

The idea is that information from particular studies is ‘oversampled’ in the 

current dataset as it stems from studies where subgroup and sensitivity analyses 

were carried out more extensively (CMM, 2011). Hence, one may argue that out 

of the space of cost-effectiveness estimates, some did have a greater 

‘probability’ of being selected into the sample than others. Without weighting, 
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however, the model assumes that each data point did have the same chance of 

being selected into the sample (CMM, 2011). The probability of being selected 

into the sample may depend on certain variables referred to as ‘Z’. Furthermore, 

a set of covariates is considered within the multilevel framework in the second 

part of this exercise, which is denoted with ‘X’. According to (CMM, 2011), as 

long as there is no interaction between any variable out of Z on which the 

probability of being selected into the sample depends, and any variable out of X 

which enters the MLM as a covariate, results will be unbiased. Conversely, 

however, if there is a relationship between a covariate out of X and anything 

which may affect the probability of being selected into the sample out of Z, then 

the results may be biased (CMM, 2011).  

 

The problem of weighting in this secondary data integration exercise is a very 

complex one, and, in line with what has been outlined above, many issues arise 

for instance in terms of i) is this the appropriate method to address the issue of 

study group sizes within secondary data integration, ii) if so, when to assign 

those weights, iii) how to assign those weights to data points of studies and, on a 

practical note, iii) how to implement the respective model in a particular 

software environment (MLwiN). Related to the latter issue, CMM (2011) state 

that ‘at present the weights facility is not available when using MCMC estimation 

(since the method of implementing weights for MCMC would be radically 

different from the method for likelihood or quasi-likelihood estimation and 

require further methodological work and programming which has not yet been 

undertaken)’. However, the models developed in this empirical exercise could, in 

line with what has been strongly advocated by members of the Centre for 

Multilevel Modelling in Bristol (personal communication with Professor W. 

Browne and R. Phillinger, CMM), only be implemented with success when using 

MCMC estimation procedures. This fact precludes the use of the weighting 

facility in MLwiN at this point in time so that it is strongly recommended to 

further look into this issue once an appropriate software environment exists 

which allows running complex multilevel models using MCMC whilst also 

applying weights to studies. This matter is therefore assigned to potential areas 

for further research as it cannot be fully addressed within this thesis.  
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5.1.5.5. Conclusion 

 

In conclusion, this assessment showed that the impact of shrinkage is, at most, 

moderate within this empirical exercise and the problem arises predominantly 

on study-level. On the contrary, it is arguable whether the logic behind 

shrinkage, which gives higher gravity to geographic domains for which more data 

is available, is not justified between countries included in this empirical exercise. 

Differences in the nature of cost-effectiveness data may be addressed through 

covariate adjustment, so that data should become, in theory, exchangeable after 

controlling for the appropriate set of covariates. In addition to that, the 

moderate impact of shrinkage on study parameters within this empirical exercise 

is a result of high dependency of the data within studies, meaning that between 

study variability is high compared to within study variability, which leads to 

shrinkage factors being relatively close to unity. Furthermore, the relative 

location of study means with respect to the rest of the data seems to have a 

stronger impact on shrinkage than the actual number of data points provided by 

each study. Both ‘dependency’ and ‘location’, as factors influencing the impact of 

shrinkage, are perfectly justified for the integration of secondary cost-

effectiveness data. For the third factor, ‘group size’, it is recommended to further 

look into methodologies for assigning appropriate weights to studies in the 

dataset and then to implement this information within the respective multilevel 

models, given that a software may soon be available which allows assigning 

weights when using MCMC estimation procedures.  
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5.1.6. Summary and conclusions for the first part of this empirical 

exercise 

 

The first section of this empirical chapter was concerned with determining the 

appropriate MLM structure for the integration of published economic evaluation 

data from international studies on the cost-effectiveness of statins in the primary 

and secondary prevention of CVD. This assessment was not just concerned with 

testing which MLM structure previously developed works well on the data 

collected, but also whether assumptions made are justified for the data.  

 

 

Starting off with the models previously developed in the MLM methods Chapter 

3 and tested in the pilot study, this section showed that appropriate assumptions 

regarding (in-) dependencies of the data are crucial for making correct inferences 

when analysing secondary cost-effectiveness data. The pilot study already 

showed that, due to ignoring that data within studies is not independent, the 

OLS regression model and the two-level hierarchical model, which clusters data 

in countries only, were clearly outperformed by those MLM structures which did 

explicitly account for a study-level. This finding was clearly confirmed by the 

analysis reported in this section. However, it was also observed in the pilot study 

that the cross-classified model does not outperform the two-level hierarchical 

model which groups data in studies and that the country-level does not show 

noteworthy variability. As a potential reason for this finding, it was hypothesized 

that the assumption of independence between countries may not be adequate 

for those studies in the dataset which are ‘multinational’ in nature and thereby 

introduce the issue of cross-classification. If data from multinational studies is 

less affected by variability on country-level, this potentially ‘lays a curtain’ over 

the overall country-level variability present in the rest of the data from non-

multinational studies and therefore casts into doubt whether the assumption of 

independence between countries actually holds for data of those studies.  

 

For this reason, a three-level hierarchical model, which groups data in studies 

and studies in countries, was run both on a reduced dataset, where data from 

multinational studies was dropped, as well as the full dataset where this 

multinational study data was grouped in a separate cluster on country-level. To 

confirm that the lack of country-level variability in the cross-classified model 
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results from the data and not technical issues with model specification and 

implementation, a cross-classified model was also run on an ‘intermediate’ 

dataset, where some multinational study data was assigned to its respective 

target countries, and the remaining data clustered in a separate country group, 

thereby introducing the cross-classification problem on ‘a lower scale’.  

 

 

This analysis has clearly shown that the country-level variability observed in the 

model crucially depends on assumptions regarding independence of data from 

multinational studies on country-level. Whilst country-level variability was 

negligible for the cross-classified model, it increased dramatically within the 

bivariate three-level hierarchical framework, both for the full as well as the 

reduced dataset. In addition, running the cross-classified model for the 

intermediate dataset resulted in country-level variability somewhere in between 

the fully cross-classified model and the three-level hierarchical structure. These 

results clearly confirm that country-level variability may be underestimated in 

multinational studies, which constitutes an important finding from this research 

in its own right. Consequently, it was decided to take forward the three-level 

hierarchical model to the second part of this empirical exercise, as only this 

model makes appropriate assumptions regarding (in-) dependencies in the 

dataset, permits the simultaneous assessment of covariates on data, study, and 

country-level, and allows using the full dataset through grouping multinational 

study data in a separate group on country-level.  

 

 

The analysis as detailed above also demonstrates the benefits of decomposing 

the INMB statistic into its components ∆C and ∆E within the bivariate framework. 

First, one does not need to re-run models for different threshold values. 

Secondly, the correlation between the two stochastic components of the INMB 

statistic is explicitly modelled. Finally, once covariates are included, a bivariate 

model allows assessing the differential impact of covariates on each response 

variable whilst acknowledging that ∆C and ∆E are, themselves, correlated. When 

comparing the univariate and bivariate versions of the tree-level hierarchical 

model, it got apparent that part of the variability in international cost-

effectiveness data ‘disappears’ when combining ∆C and ∆E to the INMB statistic.  

This very interesting finding is subject to further analysis in Section 5.3 of this 

empirical chapter, which is concerned with country-level variability, or the lack 

thereof, in both the univariate and bivariate MLM framework.  
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Finally, this section assessed, in depth, whether Empirical Bayes shrinkage 

estimation may be regarded as appropriate in a model which attempts to 

integrate secondary data from published economic evaluation studies, where the 

weight of a particular study does not depend on individual patients considered, 

but rather on the extent to which subgroup and sensitivity analyses have been 

reported. It could be shown that, due to high between group variability in the 

data, shrinkage factors are generally very high, which means that shrinkage is, at 

most, moderate. More importantly, however, this section argued that the impact 

of shrinkage on study means in this exercise depends not just on the respective 

number of data points abstracted from each study, but also on the within and 

between group variability in the data (i.e. dependencies) and the location of each 

study mean relative to the overall regression mean. With respect to 

‘dependency’ and ‘location’, it was argued that shrinkage is perfectly justified 

within this secondary data integration exercise. For the third factor, ‘group size’, 

a distinction was made between country groups and study groups. With respect 

to countries, it was argued that the logic behind shrinkage, which gives higher 

gravity to geographic domains for which more data is available, may also be 

justified for countries included in this empirical exercise, even if the underlying 

data stems from published economic evaluation studies. With respect to studies, 

there may be arguments both in favour as well as against the appropriateness of 

shrinkage and it is recommended to further look into methods for assigning 

appropriate weights to studies in the dataset and then to implement this 

information in the respective MLM; provided that a software may soon be 

available which allows assigning weights when using MCMC estimation.  

 

The discussion section (Chapter 6) elaborates further on the findings of this 

particular section. However, important for the next section is the fact that the 

three-level hierarchical model, which clusters data from multinational studies in 

a separate group on country-level, is regarded as the appropriate MLM to take 

forward for further analyses. This model is used to analyse covariates on data 

and study-level, which were drawn from a long list of potential variability factors 

as reported in the literature (Sculpher et al., 2004; Goeree et al., 2007). This 

assessment of data and study-level covariates is the focus in the next Section 5.2 

of this empirical exercise.   
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5.2. Objective two: assessing variability factors on data 

and study-level 

 

The previous section was concerned with determining the appropriate MLM 

structure which best describes complex data structures as present in a set of 

international cost-effectiveness data abstracted from multiple economic 

evaluation studies and applicable to multiple geographic domains. Within that 

section, a number of alternative model architectures were compared, ranging 

from an OLS regression model, which ignores the existence of complex data 

structures, up to a cross-classified MLM, which groups international cost-

effectiveness data both in the studies it was abstracted from and the countries it 

refers to. Models which account for the existence of a study-level clearly 

outperformed the OLS regression model and the two-level hierarchical model 

which pools data in countries only. Furthermore, it turned out that the 

independency assumption of data from multinational studies on country-level 

disguises country-level variability, and that therefore a three-level hierarchical 

model, which pools data from multinational studies in a separate group on 

country-level, better fits the data. It was therefore concluded to carry forward 

this three-level hierarchical model to the second part of this empirical exercise, 

where the purpose is to assess variability factors which may account for part of 

the variation in international cost-effectiveness data.  

 

Covariates on data and study-level are systematically assessed which were drawn 

from a long list of variability factors as obtained from the literature (Sculpher et 

al., 2004; Goeree et al., 2007) and abstracted from the studies included in the 

systematic literature review (as reported in Chapter 4). This may not just help 

gaining an insight into the most important variability factors on data and study-

level, but also potentially disclose further variability on country-level (Hox, 2010), 

which is the focus of assessment in Section 5.3. of this empirical chapter. The 

following Section 5.2.1 outlines the plan of analysis for this part of the empirical 

exercise. Subsequently, methods and data to assess factors potentially causing 

variability in international cost-effectiveness data are introduced in Sections 

5.2.2 and 5.2.3 Results of this assessment are presented in Section 5.2.4., before 

moving on to the third part of this empirical exercise, where the aim is to assess 
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country-level variability – or the lack thereof – in measures of cost-effectiveness 

elicited from international economic evaluation studies.  

 

 

5.2.1. Plan of analysis for part two of this empirical exercise  

 

The key objective of this exercise is to control for variability on data and study-

level and thereby to potentially disclose further country-level variability (e.g. 

Hox, 2010). If successful, this may support the hypothesis that differences in 

cost-effectiveness results are, at least in part, due to differences between 

geographic domains, which would justify the three-level structure and also allow 

testing covariates on country-level. Within a MLM, anything introduced on a 

lower level might also impact on higher levels, but not vice versa (Hox, 2010). 

Hence, by introducing covariates on data and study-level, further country-level 

variability may be disclosed which may then be systematically assessed in Section 

5.3 of this empirical exercise.   

 

In other words, if differences between the cost-effectiveness of a health 

technology between studies are not just due to differences between those 

studies, but also due to differences between the geographic locations these 

studies were originally conducted for, then explicitly modelling a country-level 

better fits the data than applying a framework where data is clustered in studies 

only. The underlying assumption is that of (partial) exchangeability not just 

between studies but also between countries represented in the dataset 

(Spiegelhalter et al., 2000 & 2004; Drummond et al., 2009). In part one of this 

empirical exercise, this issue was addressed before including covariates to the 

model and equivalence of the three-level hierarchical model and its two-level 

counterpart, which ignores the existence of a country-level, was observed in 

terms of their respective DIC statistic. In this section, covariates are added to the 

model on data and study-level, and the explicit recognition of a country-level in 

the three-level hierarchical model allows the assessment of changes in country-

level variability through the inclusion of lower-level covariates.  
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This is also in accord with what is recommended in the MLM literature. A bottom 

up approach is usually advocated, starting off with the simplest possible model 

and then including parameters which are tested for significance after they have 

been added (Hox, 2010). The simplest model is a variance components model 

which does not include any explanatory variables (Steele, 2008; Rasbash et al., 

2009). This model specification was the focus of the previous Section 5.1. In this 

section, however, covariates are added to the model whilst assuming slopes of 

covariates to be fixed, resulting in a random intercepts specification (Steele, 

2008, Rasbash et al., 2009; Hox, 2010). This is achieved by proceeding from the 

lower level to the higher level (Hox, 2010). Hence, data-level covariates are 

tested first, and only once the model is fully specified on data-level, study-level 

covariates may be added. Once a full random intercepts model with data and 

study-level covariates has been specified, the next step is to test covariates on 

country-level, given that sufficient variability in measures of cost-effectiveness 

exists between geographic domains. This, however, is the focus of the 

subsequent Section 5.3 of this empirical exercise.   

 

Having outlined an overall analysis strategy for this exercise, it is necessary to 

operationalize this analysis strategy for the current dataset on the cost-

effectiveness of statins in the primary and secondary prevention of CVD. As a 

first step, one has to determine which covariates in the dataset belong to which 

level, how covariates within levels may best be arranged in subgroups of ‘similar 

tenor’, and which sequence should be applied when analysing subgroups of 

covariates. This helps braking down the hugely complex task of determining the 

‘appropriate set of covariates’ (Drummond et al., 2009) out of a large pool of 

candidate variables and is the focus in Section 5.2.1.1. Subsequently, an analysis 

strategy is determined for assessing covariates within subgroups in Section 

5.2.1.2. This involves producing bivariate statistics, checking for correlations, but 

also to look into potential additional covariates which may be derived from the 

raw data, e.g. through the use of data reduction techniques. Finally, further 

aspects of the analysis strategy with respect to missing values are addressed in 

Section 5.2.1.3, before moving on to Section 5.2.2 which introduces the full 

dataset and reports on descriptive statistics of covariates.  
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5.2.1.1. Covariates, levels, and subgroups of covariates within levels 

 

The overall strategy of building a full random intercepts model is to proceed 

from the lower level to the higher level (Hox, 2010). Hence, data-level covariates 

are tested first, and only once the model is fully specified on data-level, study-

level covariates may be added. This means that, as a very first step, the variables 

available from the dataset must be assigned to their respective levels. Note that 

the variables considered in this section are only those which are directly 

obtainable from the studies included in this empirical exercise and which 

consequently relate to the data and study-level only. Country-level covariates 

(including wider socioeconomic factors and healthcare system characteristics), 

which may be obtainable from alternative data sources (e.g. WHO databases), 

are considered in Section 5.3 of this empirical chapter, which is entirely involved 

with the assessment of country-level variability. To learn more about data and 

study-level covariates, Chapter 4 gives further details on how covariates were 

defined for this empirical exercise.  

 

 

As already mentioned in Chapter 4, the theoretically unlimited space of 

variability factors potentially relevant for this empirical exercise was initially 

confined to a long list of factors based upon work from Sculpher et al. (2004) and 

Goeree et al. (2007), who both systematically reviewed the literature involved 

with economic evaluation in health to compile a list of 77 unique factors 

potentially causing variability in economic evaluation data. Based upon this list of 

variability factors, a data abstraction form was devised, which initially comprised 

more than 200 variables. Subsequently, this data abstraction form was tested 

and modified in a pilot study by abstracting data from a subset of 16 papers 

included in this empirical exercise. Details on both the development of the data 

abstraction form and the pilot study are available from Chapters 3 and 4. After 

the pilot study was completed, it was decided to drop around 90 variables, either 

because data was not available from the studies or because variation was 

minimal or entirely missing within as well as between studies included in the 

pilot. Hence, the main data abstraction exercise started off with a form 

(implemented in MS Excel), which comprised around 100 variables, both on data 

and study-level (this form is obtainable in MS Word format in Appendix 4.13).  
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Following the systematic literature review, 67 studies were found includable in 

this empirical exercise, and data was abstracted from these studies. After 

cleaning and preparing the resulting data for MLM analysis, 66 variables were 

imported to STATA 12, which includes both the three response variables (INMB, 

∆C and ∆E) as well as ID-variables for each level of the data hierarchy, but 

excludes any of the derived variables, e.g. from applying data reduction 

techniques (for instance principal components factor analysis). Descriptive 

statistics of these variables are presented below in Section 5.2.2.  

 

 

During the course of data abstraction, it became apparent that some variables 

vary within studies, whilst others may only vary between studies. This 

observation is the only basis on which covariates are assigned to either the data 

or the study-level. For most variables, this decision is clear cut, for instance INMB 

values are usually reported for subgroups of patients with different cholesterol 

levels within a study, so that TCL varies within studies and is therefore a data-

level covariate. On the other hand, timing is obviously a variable which never 

varies within, but most certainly between studies and should therefore be 

assigned to the study-level. However, for some variables this decision was not as 

clear cut. For instance, the economic perspective of the analysis was initially 

considered a study-level covariate, until some studies were found which varied 

their perspective (e.g. Wagner et al., 2009a). Hence, the economic perspective 

may no longer be regarded as a study-level covariate as there is variation within 

this categorical variable on data-level. Accordingly, the MLM software MLwiN, 

which is used to run the MLMs in this exercise, would automatically assign this 

variable to the data-level (Rasbash et al., 2009; Rasbash et al., 2009a). As a 

result, from 60 covariates (not considering response variables, id-variables and 

derived variables), 19 variables were assigned to the study-level, whilst the 

remaining 41 variables show variation within studies and were therefore 

assigned to the data-level. In this context it should also be noted that the 

inclusion of sensitivity analyses results in this empirical exercise was responsible 

for shifting a number of variables, initially considered as clear study-level 

covariates, to the data-level, as authors assessed the impact of varying the 

respective variables within their studies. This holds, for example, for the annual 

drug cost of the intervention, the discount rate, the economic perspective, the 

time horizon or the duration of treatment with statins in years.  
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Hence, in terms of the analysis plan, the 41 variables on data-level are assessed 

first before proceeding to include study-level covariates. However, though this 

already brings some structure into this exercise, one needs to devise an order 

with which variables are tested within each level. For this reason, subgroups of 

variables are defined and then ordered to further structure this exercise. As 

before when deriving variables for data abstraction, the studies by Sculpher et al. 

(2004) and Goeree et al. (2007) served as a starting point for this task. Sculpher 

et al. (2004) grouped variability factors into i) patient factors, ii) clinician factors, 

iii) healthcare system factors and iv) wider socioeconomic factors, whilst Georee 

et al. (2007), who basically confirmed and extended the list of variability factors 

reported by Sculpher et al. (2004), grouped such factors in i) patient 

characteristics, ii) disease characteristics, iii) provider characteristics, iv) 

healthcare system characteristics and v) methodological factors.  

 

 

As country-level variation is not the focus of this part of the empirical exercise, 

variables relating to the healthcare system or wider socioeconomic factors are 

not considered at this point (but rather in Section 5.3 of this empirical chapter). 

Furthermore, variables relating to clinician factors or provider characteristics are 

not present in the dataset as studies did scarcely report data on these potential 

variability factors (the respective variables were dropped after completing the 

pilot study). Hence, most variables considered here encode patient 

characteristics, disease characteristics, or methodological factors. However, not 

all variables in the dataset fall into these categories, which is why further groups 

of variables were defined. These groups are intervention and comparator 

characteristics, general study characteristics and study quality indicators. This 

resulted in a system of six groups of covariates with three groups on data-level 

and study-level respectively, and this is also presented in the flow chart displayed 

in Figure 5.6 below.  
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Figure 5.6: Flow chart outlining the process of covariate assessment within this empirical exercise 
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Accordingly, Tables 5.9 and 5.10 contain groups of covariates on data and study-

level, and also specify the anticipated relationship between each covariate and 

the respective response variable (INMB, ∆C or ∆E). The last two columns of 

Tables 5.9 and 5.10 report on existing studies which either support or contradict 

the anticipated relationship between covariates and response variables.  For 

most studies which were used to inform prior expectations on the relationship 

between response variables and covariates, actual estimates of incremental cost, 

incremental effects and INMBs were compared within each study across 

subgroups of patients, different parameter ranges for sensitivity analyses or 

different scenarios considered within these studies. Most of these publications 

where decision analytic modelling studies, whilst three studies analysed 

individual patient data (Jönnson et al., 1999; Raiku et al., 2007; Tonkin et 

al.,2006). Only one study in Table 5.9 reports marginal effects from using a form 

of hierarchical modelling applied to secondary cost-effectiveness data from 

published studies (Franco et al., 2005).  

 

 

As reported in Table 5.9, a large number of studies support the relationships 

anticipated between patient and disease characteristics and response variables 

(INMB, ΔC and ΔE). For instance, 12 studies are in support of a negative 

relationship between INMB and the age of patients, amongst those a high quality 

report by the National Institute for Health and Clinical Excellence, which states 

that better cost-effectiveness estimates associated with commencing treatment 

at younger age ‘reflect the greater potential to prevent events, and thus the 

higher utility and cost benefits accrued from remaining event free health state’ 

(NICE, 2006). Only three studies where found which disagree with this view. 

Evidence is also very conclusive for the relationship between ΔC and ΔE and the 

age of patients, and also for other covariates encoding patient and disease 

characteristics. However, for all other groups of covariates reported in Tables 5.9 

and 5.10, there is very little evidence available so that the empirical exercise is 

rather hypothesis generating than hypothesis testing for covariates other than 

patient and disease characteristics.  
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Table 5.9: Data-level covariates and their anticipated relationship to measures of cost-effectiveness 
 

Variable 

name 

Description Nature of 

variable 

Anticip. relationship  Supporting evidence Contradicting 

evidence INMB ∆C ∆E 

Group 1a  covariates: Patient and disease characteristics 

age_cat 
What was the age of the sub-population 

modelled 
Ord. cat Neg Neg Neg 

INMB: 7, 9-11, 14-16, 23, 24, 26, 31, 33 

/ ∆C:4, 6, 8-11, 14, 16, 23, 24, 26, 31, 

33 / ∆E:4, 6, 9-11, 14-16, 23, 24, 26, 33 

INMB: 8, 13, 31 / ∆C: 

15 / 

∆E: 8, 13, 31 

gender_cat 
gender of the population (% of men in 

population) 
Ord. cat. Pos Neg Pos 

INMB: 5, 6 9-11, 13, 14, 20, 22, 24, 26, 

27, 30, 33 / ∆C: 5, 6, 9-11, 14, 22, 26, 

27, 30, 33 / ∆E: 5, 6, 8-11,13, 14, 20, 

22, 26, 27, 30, 33 

INMB: 8 

∆C:  8, 13 

CVD_hist 
CHD related medical history (% of second. Prev. 

patients ) 
Unord. cat. Pos Neg Pos 

 INMB: 3, 7, 10, 24, 27, 32, 33 / ∆C: 3, 

10, 27, 32  / ∆E: 3,10, 27, 32, 33 

INMB: 11 / ∆C: 11 / 

∆E: 11 

Tcl Total cholesterol level baseline Cont. Pos Neg Pos INMB & ∆E: 6, 9, 10, 26 / ∆C: 6, 9, 10 ∆C: 6, 26 

Hdl High density lipoprotein level at baseline Cont. Neg Pos Neg INMB, ∆C & ∆E: 14, 19 --- 

Ldl Low density lipoprotein level Cont. Pos Neg Pos  INMB:9, 26/ ∆C:9, 20, ∆E:  26 ∆C: 26 

Hypert 
percentage of hypertensive people in the 

subsample 
Cont. Pos Neg Pos 

 INMB:9, 14, 19, 26/ ∆C:19 / ∆E: 9, 

19,26 

 

Sbp Mean systolic blood pressure at baseline Cont. Pos Neg Pos 
 INMB: 6, 9, 14, 26/ ∆C:19 / ∆E: 9, 

19,26 

INMB: 19 

∆C: 6 

Diab Percentage of diabetic patients at baseline Cont. Pos Neg Pos 
INMB: 2, 6, 10, 11, 19, 21, 24, / ∆C: 6, 

10, 11, 19, 31 / ∆E:2, 10, 21 

∆C: 21, / ∆E: 6 

smokers Percentage of smokers at baseline Cont. Pos Neg Pos 
INMB: 2, 9, 14, 21, 26 / ∆C: 9, 14, 28 / 

∆E: 2, 9, 14, 21, 26  

∆C: 21 

risk_cat Risk category of the subsample Ord. cat. 
Pos Neg Pos 

INMB: 7,17, 24 --- 
For primary prevent. only 

Group 1b covariates: Intervention and comparator 

intervention Brand name of the intervention drug? Unord. cat. ? ? 
No 

effect 
 INMB: 25 --- 

comparator Brand name of the comparator drug? Unord. cat. ? ? 
No 

effect 
  INMB: 25 --- 

act_comp 
Comparator ‘doing nothing’ or comparator 

‘other statin’ 
Unord. cat. 

Neg Neg Neg --- 
--- 

For ‘other statin’  

tdd_int 
What was the total daily dose of the 

intervention 
Ord. cat. Pos Neg Pos INMB: 32 / ∆C: 1 /∆E: 1 

INMB:1 

∆E: 32 

tdd_comp What was the total daily dose of the comparator Ord. cat. Neg Neg Neg --- --- 

Cost-int 
What are the annual drug cost of the 

intervention in 2010 £-Sterling 
Cont. Neg Pos n.a. INMB: 24 --- 

Unitcost_int What was the unit cost of the intervention Cont. Neg Pos n.a. INMB: 24 --- 

Cost_comp 
annual drug cost of the comparator in 2010 £-

Sterling 
Cont. Pos Neg n.a. --- --- 

Unitcost_comp What was the unit cost of the comparator Cont. Pos Neg n.a. --- --- 

Incr_cost 
What was the incremental annual drug cost  of 

the intervention 
Cont. - Pos n.a. --- --- 

Group 1c covariates: Methodological characteristics on data-level 

outc_measure How was health outcome reported in the study Binary. ? ? ? --- --- 

elicitation 
If QALYS were used, what was the method of 

preference elicitation? 
Unord. cat. 

? ? ? 
--- --- 

population 
If QALYS were used, what do the utility values 

reflect (patient / population values) 
Unord. cat. 

? ? ? 
--- --- 

DRC Discount rate on costs  Cont. ? ? n.a. --- --- 

DRB Discount rate on benefits Cont. Neg n.a. Neg --- --- 

duration Treatment duration modelled Ord. cat. Pos Pos Pos --- --- 

extrapol Any extrapolation beyond the latest follow up? Binary ? ? ? --- --- 

horizon Time horizon? Ord. cat. Pos Pos Pos INMB: 24 --- 

hor_eq_dur 
Does the time horizon equal the treatment 

duration? 
Binary 

? ? ? 
--- --- 

Persp_rep 
Study perspective as reported by the authors of 

the article 
Unord. cat. 

Pos Neg ?  INMB: 7 
--- 

For ‘societal’ only  

Persp_cost_con

cl 

Study perspective on cost as concluded by the 

reviewer (health insurance perspective omitted) 
Unord. cat. 

 Pos Neg n.a. INMB: 7 
--- 

For ‘societal’ only  

data_class How was the datapoint classified Unord. cat. ? ? ? -- --- 

basecase 
Was the data point result of a base case or 

sensitivity analysis? 
Binary 

? ? ? 
-- --- 

source_effects 
From which source (trial, meta-analysis) was 

effectiveness data taken from 
Unord. cat. 

? ? ? 
-- --- 

Barbieri_score_

1 

How context specific is the CE estimate judged 

from the input parameters 
Unord. cat. 

? ? ? 
-- --- 

Barbieri_score_

2 

How context specific is the CE estimate judged 

from the input parameters 
Unord. cat. 

? ? ? 
-- --- 

(1) Ara et al. (2009), (2) Ashraf et al (1996), (3) Caro et al (2003), (4) CDC-Group (2002), (5) Davies et al. (2006), (6) Drummond et al. (1993), (7) Franco et al. (2005),  

(8) Greving et al. (2011), (9) Grover et al (1999), (10) Grover et al (2000), (11) Grover et al. (2001), (12) Grover et al. (2003), (13) Grover et al. (2008), (14) Hamilton et al 

(1995), (15) HPS (2006), (16) HPS (2009), (17) Huse et al. (1998), (18) Johannesson et al (1997), (19) Jönsson et al (1999), (20) Lindgren et al (2007), (21) Muls et al. 

(1998), (22) Nagata-Kobayashi et al. (2005), (23) Nherera et al (2010), (24) NICE (2006), (25) NICE (2008b), (26) Perreault et al (1998), (27) Pharoah et al (1996), 

(28) Raikou et al. (2007), (29) Sigvant et al. (2011), (30) Soini et al (2010), (31) Tonkin et al. (2006), (32) van Hout et al. (2001), (33) Ward et al. (2007) 
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Table 5.10: Study-level covariates and their anticipated relationship to measures of cost-effectiveness 
 

Variable 

name 
Description 

Nature of 

variable 

Anticipated 

relationshio to  

Supporting 

evidence 

Contradicting 

evidence 

INMB ∆C ∆E 

Group 2a covariates: General Study characteristics 

language In which language was the paper written? Binary ? ? ? --- --- 

paper_origi

n 

In which country was the paper written (if authors from 

several jurisdictions were involved, where is the lead 

author based? 

Unord. cat. ? ? ? --- --- 

Timing What is the timing of the economic evaluation Unord. cat. Pos Neg Pos INMB: 1 --- 

fund_inst primary source of funding (institution) Unord. cat. Pos Neg Pos INMB: 1, 2 
--- 

For industry funding  

fund_man 
If funding source was private, which manufacturer was 

involved? 
Unord. cat. ? ? ? --- --- 

Author_grou

p_long 

Variable which encodes relationships between published 

papers in terms of common authorship 
Unord. cat. ? ? ? --- --- 

Author_grou

p_short 

Variable which encodes relationships between published 

papers in terms of common authorship 
Unord. cat. ? ? ? --- --- 

Group 2b covariates: Methodological characteristics on study-level 

gen_des What was the general study design? Unord. cat. Neg ? ? 
INMB: 1  --- 

For secondary modelling 

prim_des If primary modelling, what was the specific study design? Unord. cat. ? ? ? --- --- 

sec_des If secondary modelling, what was the specific study design Unord. cat. ? ? ? --- --- 

effect_calc Method of effect calculation Unord. cat. 
Neg ? ? 

INMB: 1  --- For modelling 

intermediate outcomes 

multination

al 
Was the study multinational Binary ? ? ? --- --- 

infl_adj Were cost estimates in the model adjusted for inflation? Unord. cat. ? ? n.a. --- --- 

adj_method 
If cost estimates were adjusted for inflation, what was the 

adjustment method 
Unord. cat. ? ? n.a. --- --- 

cur_conv Was currency converted Binary ? ? n.a. --- --- 

conv_metho

d 

If currency was converted, what was the conversion 

method used by the authors? 
Unord. cat. ? ? n.a. --- --- 

scope What was the scope of assessment Unord. cat. Pos Neg Pos INMB: 3 --- 

Group 2c covariates: Study Quality indicators 

qhes_cata 
What was the overall QHES category given a strict 

application of the QHES criteria 
Ord. cat. ? ? ? --- --- 

qhes_catb 
What was the overall QHES category given a pragmatic 

application of the QHES criteria 
Ord. cat. ? ? ? --- --- 

Qhes_conta 
What was the overall QHES score given a strict application 

of the QHES criteria? 
Cont. ? ? ? --- --- 

Qhes_contb 
What was the overall QHES score given a practicable 

application of the QHES criteria? 
Cont. ? ? ? --- --- 

(1) Franco et al (2005), (2) Miners et al (2005), (3) NICE (2006) 
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Nevertheless, even without supporting literature, one can speculate about the 

relationship between covariates and response variables if there is a theory or 

logical argument which supports this prior expectation, which is why columns 

four to six in Tables 5.9 and 5.10 also report on anticipated relationships for 

those covariates for which there was no evidence available from the literature. 

Why a certain direction of change was anticipated for each covariate, however, 

will not be discussed here but rather in Chapters 5.2.4 and 6.3.1 in the light of 

the results from testing covariates within the multilevel models developed in this 

thesis and with reference to the supporting literature (if available).  

 

 

Finally, it is important to define a sequence with which groups of covariates are 

considered in the multilevel analysis. As mentioned by Sculpher et al. (2004), ‘In 

economic evaluation generally, arguably the most important source of variation 

in cost-effectiveness is between subgroups of patients defined in terms of 

demographic and clinical factors’. Sculpher et al. (2004) further state that ‘this 

important source of patient-level variation feeds through to centre or country 

variation in cost-effectiveness if these subgroups of patients are not evenly 

distributed between locations. The amount of literature available to inform 

expected relationships between patient and disease characteristics and response 

variables as reported in Table 5.9 underpins the importance of this group of 

covariates. Therefore, patient and disease characteristics shall be considered first 

in this part of the empirical exercise. Doing so not just controls for differences 

between subgroups of patients on data-level, but also ‘removes’ the potential 

impact on variation between studies and countries in the multilevel framework. 

Note that patient and disease characteristics only refer to differences between 

subgroups of patients as assessed within the studies included in this empirical 

exercise like age, gender, cholesterol level at baseline, CVD related medical 

history or smoking status. Patient and disease characteristics do not refer to 

differences in demographic or disease characteristics between countries. The 

latter will be the focus of Section 5.3 of this empirical study.  

 

 

Following the assessment of patient and disease characteristics, variation caused 

by differences in the intervention and comparator are considered as this group 

of covariates is also suspected to be responsible for some variability in measures 
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of cost-effectiveness of statins in the primary and secondary prevention of CVD. 

There are a number of different statins on the market, which are considered in 

different dosages and assessed with respect to different comparators (either 

‘doing nothing, ‘other statin’ and /or ‘different dosage’) within the studies 

included in this empirical exercise. Hence, one needs to control for this potential 

source of variation, as otherwise the effect of differences in the intervention or 

comparator may feed through to the variability in measures of cost-effectiveness 

observed on study or even country-level. 

 

 

Once the model controls for the appropriate set of patient and disease as well as 

intervention and comparator characteristics, the next group of variability factors 

are methodological differences affecting measures of cost-effectiveness which 

may vary within studies included in the dataset. Hence, factors like the outcome 

measure (LYS or QALYs), the discount rate applied to costs or effects, the time 

horizon, the economic perspective, or whether the respective data point refers 

to base case or sensitivity analysis, may be assessed. This group of covariates is 

also concerned with variation with respect to the sources from which input data 

was drawn. This relates, for instance, to the source of effectiveness data in terms 

of the trial from which this data was obtained. However, another source of 

variation refers the ‘geographic context specificity’ of input parameters.    

 

 

Barbieri et al. (2005) grouped studies with respect to differences in the 

geographic origin of input parameters. Accordingly, there may be differing 

degrees of variability in measures of cost-effectiveness. This source of variation 

may even differ within the studies included in the dataset. To assess this 

potential source of variability, information was first collected from studies to 

record the geographic origin of the data used to populate the economic model. 

Secondly, covariates which group studies with respect to their ‘geographic 

specificity’ of input parameters were derived from the raw data, which are 

subject to multilevel analysis in this section. The idea is analogous to what has 

been observed with respect to data from multinational studies in Section 5.1 of 

this empirical exercise, namely that the highest degree of variation on country-

level may exist in cost-effectiveness data which is based on target country 

specific values for all input parameters. Chapter 4, which is concerned with the 

data abstraction for this empirical exercise, explains in detail how the ideas of 
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Barbieri et al. (2005) were applied to define a set of categorical variables which 

encode variation, or the lack thereof, with respect to geographic locations of 

input parameters. The raw data to derive such covariates has been omitted from 

further analysis.  

 

 

Moving on to the study-level, it was decided that general study characteristics 

(such as timing, paper origin, or the respective funding source) are assessed 

before methodological aspects on study-level are considered. A reason for this 

sequence is that general study characteristics (such as paper origin or timing) 

may partly determine methods on study-level (for example as authors aim to 

follow a specific HTA guideline applicable to a certain geographic location at a 

certain point in time), so that it makes sense to assess general study 

characteristics first. Finally, study quality indicators, resulting from applying the 

QHES instrument (Ofman et al., 2003) to the studies included in this empirical 

exercise, are considered to conclude the assessment of data and study-level 

covariates in this section of the empirical analysis. How data from applying QHES 

was collected and combined to a single score is also described in Chapter 4.  

 

 

 

5.2.1.2. Analysis strategy for covariate Assessment on data and study-level 

 

In the previous subsection, the dataset was divided into subgroups of covariates, 

and a sequence was established with which groups of covariates are considered 

in this empirical exercise. This breaks down the complicated task of determining 

the appropriate set of covariates out of a large number of candidate variables. 

However, what is required to accomplish this task is a strategy to determine the 

appropriate set of covariates for inclusion in the final MLM, and this is the focus 

of this subsection.  

 

First, univariate descriptive statistics are reported, i.e. means and standard 

deviations for continuous variables before and after imputation of missing values 

(the missing value strategy is also outlined further below), and proportions for 
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categorical variables respectively. At the very minimum, this establishes that 

variables considered in this exercise do, in fact, vary (Fielding & Pillinger, 2008). 

In addition, summarizing and describing the data may help hypothesising about 

potential patterns and relationships (Fielding & Pillinger, 2008). Apart from 

descriptive statistics, correlations between subsets of explanatory variables are 

assessed in depth and approaches to reduce redundancies in the dataset are 

applied (which is explained further below). Relationships between covariates and 

response variables are then analysed in more detail by individually entering 

covariates into the respective MLMs to test whether the anticipated relationship 

to the response variable (INMB, ∆C or ∆E) holds, and whether this relationship is 

statistically significant. Finally, a random intercepts model with covariates on 

data and study-level is developed to control for variability on data and study-

level, thereby disclosing the maximum amount of country-level variation, which 

is then further assessed in Section 5.3. of this empirical exercise.  

 

A systematic approach to covariate selection is imperative in this part of the 

empirical exercise. Though of tremendous informative value, it is not sufficient to 

choose variables on grounds of bivariate statistics only. The reason is that a 

covariate may not show the anticipated sign or may not reach statistical 

significance because of a confounding factor which has not been controlled for 

(e.g. Maddala, 2001). Conversely, covariates may individually reach significance, 

but not once tested in conjunction as they may be highly correlated (Maddala, 

2001, Acock, 2010). To aid this choice and to avoid randomly testing subsets of 

covariates within the MLM framework, it is useful to hypothesize about potential 

relationships between explanatory variables, and to put such relationships to the 

test by assessing correlations between explanatory variables. An example in the 

current dataset are the patient and disease characteristics ‘systolic blood 

pressure (SBP)’, ‘hypertension status’ and ‘smoking status’. Hypertension status 

and SBP may be regarded as alternative measures of a similar physiological 

pattern, and, as it constitutes a risk factor for elevated blood pressure, smoking 

status is suspected to be correlated to both SBP and hypertension status. As all 

three variables are continuous (hypertension status and smoking status are 

measured as the percentage of patients affected), pairwise correlations may be 

produced as a first indication of statistical relationships between potential 

explanatory variables (Acock, 2010). Alternatively, polychoric correlations may 
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be produced for ordered categorical variables (Kolenikov & Angeles, 2004). For 

unordered categorical variables, dependencies may be tested using a chi2 test of 

association, and the method of multiple correspondence analyses, which plots 

categories of variables in terms of their chi-squared distances on a low-

dimensional space, may be used to further assess patterns in categorical data 

(Bartholomew et al., 2008; Le Roux & Rouanet, 2004) 

 

Hence, subgroups of covariates defined in the previous subsection are analysed 

with respect to correlations in the data and based on these correlations, several 

strategies may be considered. If, for example, two variables are regarded as 

alternative measures of the same concept, then it may be indicated to simply 

choose one variable over the other for inclusion in the MLM based on 

significance, model fit and other issues such as the proportion of missing values 

imputed for each variable. However, if it is suspected that correlated variables 

are interrelated measures of a common underlying but unobserved construct, 

one may consider data reduction techniques. The choice of method thereby 

depends on the nature of the observed variables and potential candidate 

methods were already discussed in the context of the genealogy study reported 

in Chapter 4. One multivariate method often used to assess patterns in data is 

factor analysis (FA). As Rencher (2002) states, ‘the goal of factor analysis is to 

reduce the redundancy among the variables by using a smaller number of 

factors.’ These factors are, unlike the observations, unobserved and therefore 

also referred to as ‘latent variables’. Of particular interest for this part of the 

empirical exercise is what Acook (2010) refers to as ‘principal components factor 

analysis’ (PCF). PCF may be used if one has a set of items which all measure the 

same underlying concept (Acook, 2010) and it may be applied to obtain a ‘factor 

score’ which could be used as a covariate instead of the set of items initially 

observed. The question for choosing amongst the set of covariates is whether 

the factor score itself, or any of the original items leads to better model fit when 

considered alternatively in the MLM.  
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Figure 5.7: Strategy of covariate assessment within subgroups of covariates   

 

 

However, PCF is only valid for continuous data (Rencher, 2002; Acock, 2010;) and 

its application in the current exercise may therefore be rather limited. For this 

reason, a package developed by Kolenikov & Angeles (2004) was considered as 

an alternative, which implements ‘polychoric principal components analysis’ into 

the software environment STATA. However, Kolenikov and Angeles (2004) state 

that this method is only valid for continuous as well as ordered categorical 

variables, which again leaves out the majority of variables relevant for this 

assessment. For this reason, multiple correspondence analysis (MCA) was 

considered, which is also referred to as the ‘categorical equivalent to PCA’ (Le 

Roux && Rouanet, 2010). The aim of MCA is to visualize the raw data in a low-

dimensional space (usually two dimensions) which then helps to identify patterns 

in this data. (Bartholomew et al, 2008). It does so by converting categories of 

variables into points on a plane (the biplot), and the researcher may then analyse 

the resulting cloud and sub-clouds of points in this geometric space (Le Roux, 

Rouanet, 2010). A summary score may then be derived which can be used in the 

MLM as an alternative to the initial set of correlated covariates.  
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To sum up, the choice of covariates follows a rigorous assessment of 

relationships between explanatory variables and response variables as well as 

intercorrelations between explanatory variables. Assessing correlations and 

patterns in the data as well as the application of data reduction techniques aims 

to avoid that multicollinearity between explanatory variables distorts the 

estimation process. This is the focus of Section 5.2.3 of this empirical exercise, 

which starts off with descriptive statistics before reporting on missing data and 

imputation thereof and concludes with a rigorous assessment of correlations 

between subsets of explanatory variables in the dataset. Subsequently, the 

results Chapter 5.2.4 starts off with reporting on bivariate statistics generated 

from testing covariates individually in the MLM framework, before a full random 

intercepts model is developed by applying the above detailed analysis strategy to 

each subgroup of covariates in the sequence outlined in the previous subsection. 

This results in a MLM with covariates on data and study-level, which may then be 

further developed through the inclusion of country-level covariates in Section 

5.3, given that there is sufficient variability on country-level after adjusting for 

data and study-level covariates.  Finally, random slopes and the variance function 

are assessed in a case study in Section 5.4 of this empirical chapter. Before 

moving on to study methods and introducing the data for this part of the 

empirical exercise, however, further aspects of the analysis strategy are 

explained with respect to missing values in the data.  

 

 

5.2.1.3. Analysis strategy for missing observations 

 

 

Missing data are, generally speaking, observations which we intended to make 

but, for some reason, haven’t (Carpenter & Kenward, 2007). Within this 

empirical exercise, missing data arises from the failure of included studies and 

related sources to report on relevant aspects, for example, patient risk 

characteristics or methodological characteristics. Missing data occurs both on 

data and study-level, and it also occurs in categorical as well as continuous 

variables. There is not one single method, or gold standard, to address missing 

data issues, though multiple imputation of missing data has gained a lot of 

popularity in recent years (Carpenter & Kenward, 2007). The primary aim of 
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missing data imputation is to be able to make valid inferences even in the 

presence of missing data (Carpenter & Kenward, 2007; Carpenter & Goldstein). 

However, this validity depends upon the ‘mechanism’ by which data is missing 

(Carpenter & Goldstein).  

 

 

What is generally referred to as “missingness mechanism” goes back to Little & 

Rubin (1987). The missingness mechanism describes whether data is missing 

completely at random (MCAR), missing at random (MAR) or missing not at 

random (MNAR) (Acock, 2005; Carpenter & Kenward, 2007). Data is missing 

completely at random if the missingness is completely unrelated to the outcome 

(Carpenter & Kenward, 2007).  If data is MCAR, we may simply ignore data points 

with missing values, which leads to listwise deletion of the affected data 

(Carpenter & Kenward, 2007). However, the occurrence of MCAR is rare so that 

the assumption of data missing completely at random is restrictive. (Acook, 

2005; Carpenter & Kenward, 2007; Acook, 2010; Carpenter & Goldstein). Less 

restrictive is the assumption of data missing at random (MAR) (Acook, 2005; 

Carpenter & Kenward, 2007). If we can explain the occurrence of missing data in 

one variable by another variable in the dataset, then the missing data may be 

MAR. (Acook, 2005; Carpenter & Kenward, 2007; Acook, 2010). In this empirical 

exercise, the MAR condition may be satisfied if, for example, missing values in 

the categorical age variable (age_cat) do not depend on the age of the 

respondents, after controlling for, say, gender. According to Acook (2005), the 

issue of MAR is not whether gender can predict age_cat, but whether gender is a 

mechanism to explain whether values in the age variable are missing. The 

variables which are used to explain whether data is missing or not (in this 

example ‘gender’) may be included as auxiliary variables in a model when 

imputing missing values (Acook, 2010). A third mechanism of missingness is 

missing not at random (MNAR). In simple terms, if data are neither MCAR nor 

MAR, then they are MNAR or informatively missing (Carpenter & Kenward, 

2007). Dealing with data MNAR is much more difficult as the observed data does 

not tell anything definite about the ‘relationship between the chance of seeing a 

variable and its “unseen value” or to “describe how the distribution of the data 

differs among data points with missing values’ (Carpenter & Kenward, 2007).   
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The default strategy in many statistical packages, which is only valid under the 

restrictive MCAR assumption, is listwise deletion. In the case of MCAR it may 

provide unbiased estimates. However, the case of MCAR may be very rare, which 

casts into doubt the validity of this approach in many practical applications 

(Acock, 2005; Carpenter & Kenward, 2007). A further problem occurs if the 

sample size is small, which in the case of this empirical exercise, holds for the 

study and country-levels, so that listwise deletion may simply lead to an 

unacceptable loss of power. Apart from listwise deletion, traditional, or ‘ad hoc’ 

approaches of dealing with missing values include pairwise deletion, mean 

substitution (overall mean, or mean of subgroups), regression based single 

imputation or creating a new category for missing values in categorical variables 

(Acook, 2005). A more elaborated approach, which is gaining a lot of popularity 

recently, is multiple imputation (MI) of missing values (Acook, 2005; Acock, 2010; 

Carpenter & Kenward, 2007; Carpenter and Goldstein).  

 

Starting with MI, its idea, which goes back to Rubin (1987), is to treat missing 

values as random variables, and to impute several values for each missing value, 

resulting in a number of complete datasets (Rubin, 1987). The imputed values do 

not contain any unique information, so that the complete dataset restores the 

original variance-covariance matrix (Alemdar, 2009; Acook, 2010). The first step 

in MI is to model the variable with missing values as a response of the other 

variables in the dataset. Then, a (random) draw is being made from the normally 

distributed residuals, which results in the imputed values (Acock, 2005; 

Carpenter & Kenward, 2007, Acock, 2010). These values, as mentioned above, do 

not contain any unique information so that the completed dataset replicates the 

original variance-covariance matrix (Alemdar, 2009). However, as these values 

are imputed from a distribution of possible values, a single imputation is 

inappropriate. Therefore, several values are imputed for each missing value 

(Acock, 2005; Carpenter & Kenward, 2007, Acock, 2010) This results in a number 

of (k) datasets, typically somewhere between 5 and 10 (Acock, 2005). After 

having obtained ‘k’ imputed datasets, the next step involves analysing each 

dataset using the model of interest, in this case the hierarchical three-level 

model, which leads to ‘k’ regression outputs (Acock, 2005). The final step 

combines these ‘k’ regression outputs into one pooled regression-output Acock, 

2005. The underlying assumption for MI is that data is, at least, MAR Acock, 

2005; Carpenter & Kenward, 2007, Acock, 2010. In adding the variability in the 
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imputed values to the variability observed in the dataset, the regression results 

do not suffer from overestimated precision (Acock, 2005; Carpenter & Kenward, 

2007, Acock, 2010). In other words, MI captures the uncertainty associated with 

data being missing (Acock, 2005; Carpenter & Kenward, 2007, Acock, 2010). As 

the imputed values do not contain any additional information than what is 

already contained in the dataset, the resulting inference is valid, i.e. unbiased 

(Acock, 2005; Carpenter & Kenward, 2007, Acock, 2010).  

 

 

However, an important problem arises when considering the multilevel structure 

of the model of interest in this exercise. Carpenter & Goldstein highlight that an 

imputation model ‘must have the right variance structure’. Hence, ‘if a dataset is 

multilevel, then the imputation model must be multilevel too’. In a simulation 

study, Gibson and Oleynik (2003) compared different methods of treating 

missing values in a dataset with a two-level hierarchical data structure. Missing 

values (10% in one analysis and 40% in another) were generated in level two 

variables, and two datasets were produced, one with 30, and one with 160 

higher-level units. Especially when missing values were high (40%) and the 

number of higher-level units was low (30), MI performed poorly compared to 

traditional ‘ad hoc’ approaches. The authors concluded that the poor 

performance of MI in their study may have been due to the fact that the MI 

procedure was not suitable for hierarchical models when values are missing at 

level two.   

 

 

For this reason, alternative options to reflect the multilevel nature of the dataset 

in the imputation model were considered in this thesis. For instance, Carpenter 

and Goldstein developed macros for multiple imputation in MLwiN, but 

unfortunately, it is only capable of handling missing data in level one variables 

which obviously limits its applicability to the current exercise. An alternative to 

Carpenter and Goldsteins macros is ‘Realcom IMPUTE’, a freeware developed by 

the Centre for Multilevel Modelling in Bristol (Goldstein, 2009). The advantage of 

Realcom IMPUTE over the MI macros is that it deals more adequately with 

categorical and normal data and multilevel structures (Goldstein, 2009). The 

procedure has three stages. First, the model of interest is being set up in MLwiN 

where some of the variables have missing data. Secondly, REALCOM-IMPUTE is 
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run. Then, MLwiN uses the output from REALCOM-IMPUTE to produce the model 

estimates (Goldstein, 2009). However, Realcom IMPUTE is currently only capable 

of dealing with two-level hierarchical data, although the author mentions that, in 

some cases, it may be possible to substitute fixed for random effects. 

Nevertheless, the procedure may not yet be fully applicable to more complex 

data structures, as for example the three-level bivariate MLM in this exercise.   

 

 

Finally, to further look into methods of implementing MI in the MLM framework, 

the author posted this problem at ‘MULTILEVEL@JISCMAIL.AC.UK’, an 

international mailing list for researchers involved with MLM. Though some 

suggestions were made to tackle this problem in alternative software 

environments (e.g. implementing the model of interest in MPlus, using STATA for 

both imputation and implementing the model of interest with GLAMM or 

STMIXED, or using AMELIA II instead of Realcom), the overwhelming feedback 

was that each solution would come with its own set of problems and that there 

is, at this point, probably no appropriate solution to this problem in the case of 

particular complex data structures.  

 

 

In conclusion, MI may be, in general, the most sophisticated way to deal with 

missing data. However, problems arise when the multilevel data structure is not 

acknowledged appropriately in the imputation model. Whilst some solutions 

exist to implement multilevel MI, these methods may not yet be advanced 

enough to deal with more complicated data structures like the bivariate three-

level model. This is an area of on-going research, and it may also constitute an 

interesting topic for future research beyond the scope of this project. However, 

for the current exercise, an alternative missing value strategy is required.  

 

 

Hence, regression based single imputation was considered for continuous 

variables, whilst an extra ‘missing category’ was introduced to address missing 

values in categorical data. In regression based single imputation, one predicts the 

missing value from a regression model where the dependent variable is the 

variable affected by missing values, and a vector of explanatory variables which 

may help predicting the value of the dependent variable (e.g. Briggs et al., 2002). 



 

229 
 

Hence, this strategy includes defining an imputation model and selecting a 

number of explanatory variables which one assumes to help predicting the 

missing values in the affected variable (Briggs et al., 2002). After this model has 

been fitted, one can use the results to impute the predicted mean from the 

regression equation given the observed values of the covariates for that data 

point (Briggs et al., 2002). This works well if the data is MAR (Briggs et al., 2002). 

In the case of this empirical exercise, one may, for instance, impute missing 

values on the annual drug cost of the intervention by fitting an OLS regression 

with the covariates ‘timing’, ‘country’, ‘drug_name’ and ‘drug_dose’. After 

running the regression, one may then predict the missing value in ‘drug_cost’ by 

applying the information on the coefficients applicable to the affected data 

points. As stated on missingvalues.org.uk, regression mean imputation ‘can 

generate unbiased estimates of means, associations and regression coefficients 

in a much wider range of settings than simple mean imputation.’ Even though 

the variability of the imputations may be too small, this should be less of a 

concern compared to more ad hoc imputation techniques like simple mean 

imputation or imputing the mean for subgroups (missingvalues.org.uk).  

 

 

To deal with missing values for categorical data, an extra category for missing 

values was created for each affected variable. This allows using the full dataset 

whilst showing how the missing cases differ from those where data has been 

reported. However, one needs to be aware of the fact that this approach 

potentially lumps together very dissimilar cases in one category. In other words, 

the “impact of this strategy depends on how missing values are divided among 

the real categories, and how the probability of a value being missing depends on 

other variables.” (missingdata.org.uk). Bias in any direction may be the 

consequence.  

 

 

In addition to the above, a binary indicator is used to show whether a value has 

been imputed in the variable of interest (e.g. Acook, 2005). If such an indicator 

variable is included in the model of interest, two scenarios are possible. If it is 

not significant, then imputation has increased the sample size without biasing 

the results (Morris et al., 2005). However, if the dummy is significant, then it 

allows estimating an effect for the non-missing values which is not affected by 
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the imputation of missing values (Morris et al., 2005). In other words, this 

method leads to the same regression estimates as listwise deletion as the binary 

indicator variable captures the departure of the imputed cases from the other 

cases in terms of the outcome variable (Acook, 2005). However, one needs to be 

aware that when there are several variables with missing values, and this 

missingness has a common pattern, then using several indicator variables may 

cause a multicollinearity problem (Acook, 2005).  

 

 

Imputing regression based values for continuous data, assigning missing values 

to an extra category for categorical variables, and including an indicator variable 

for missing values is not without controversy in the literature and certainly not 

the ‘best one could do’ (e.g. Acock, 2005). Overestimation of precision and some 

potential for bias make it necessary to interpret results with caution. However 

this strategy might be the ‘best we can currently do’, as the use of MI in the 

presence of complex data structures is an area of on-going research. The next 

section briefly outlines the methods of analysis, which is basically to apply the 

three-level hierarchical model in a random intercepts specification to the data. 

Subsequently, the dataset is summarized in Section 5.2.3, where descriptive 

statistics before and after imputing missing values are reported. Results from 

bivariate statistics and the construction of a full random intercepts model with 

covariates on data and study-level are then presented in Section 5.2.4, before 

this part of the empirical exercise ends with a brief summary and conclusions in 

Section 5.2.5.  
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5.2.2. Methods of analysis for experiment two 

 

 

This exercise applies the three-level hierarchical model with data grouped in 

studies and studies grouped in geographic domains, where data from 

multinational studies is clustered in a separate group on country-level, to a set of 

secondary cost-effectiveness data on statins in the primary and secondary 

prevention of CVD. The model is run in its univariate specification with INMB as 

the only response variable, as well as a bivariate model with ∆C and ∆E as a 

vector of response variables. Table 5.11 summarizes the models to determine 

the appropriate set of covariates on data and study-level.  

 

 

In essence, the only difference between the models run in this part of the 

empirical exercise and the variance components models 1.b and 1.c in part one, 

is the inclusion of a vector of explanatory variables on each hierarchical level, 

denoted with ′�8H8��:’ (data) and  ′�	H	�K’ (study) and ‘�JHJK’ (country) 

respectively. Note, however, that country-level covariates are only considered 

later in Section 5.3 of this empirical exercise. As before, the intercept term is 

denoted with ‘β�’ and subscripts refer to each level of the data hierarchy with ‘i’ 

representing level one, ‘j’ level two, and ‘k’ level three so that ‘v�:′ is the error 

term for level three, ‘u��:’ the error term for level two and ‘e���:’ the error term 

for level one respectively. For the univariate specification it is assumed that 

INMB is normally distributed at each level of the model whilst a bivariate normal 

distribution is assumed for the bivariate model. As in the bivariate variance 

components model before, the response indicator ‘r’ is 1 for ∆C and 0 for ∆E and 

a separate level for this response indicator is fitted below the data-level. Finally, 

the bivariate random intercepts model estimates one error variance for each 

response variable plus their respective covariance on each level. Again, further 

details on the multilevel methodology applied in this empirical exercise are 

available from Chapter 3.  
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Table 5.11: Multilevel models for exercise two 
 

 
Model of interest 

(Three-level hierarchical model) 

Model summary 

 

Three-level hierarchical random intercepts model with cost-effectiveness 
estimates being nested in economic evaluation studies and studies being nested 
in geographic domains.  Data from multinational studies is being clustered in a 
separate group on country-level.  
 
 
 

Unit diagram 
 

 

 

 

 

Univariate model 

specification 
 

 

 

 ���K~�(��, �
 ���K = �� + �8H8��K + �	H	�K + �JHJK + '�K + !��K + ����K 
 

With '�K~�(0, �L�	 
 !��K~�(0, �"�	 
 ����K~�(0, ���	 
 

Bivariate model 

specification 

 

 

}v�,��Kv8,��K~ ~���(��, �
 
 �n,��K = (��n + �8nH8��K + �	nH	�K+�JnHJK + '�nK + !�n�K + ��n��K
 ∗ �n,��K 

 

�8,��K = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,��K = 1 − �8 

 

With: 

P'�,�,K'�,8,KQ ~��� (0, ΩL
     where  ΩL = R�L�,�	�L�,�8 �L�,8	 S 
P!�,�,�K!�,8,�KQ ~��� (0, Ω"
      where  Ω" = R�"�,�	�"�,�8 �"�,8	 S 
P��,�,��K��,8,��KQ ~��� (0, Ω�
    where  Ω� = R���,�	���,�8 ���,8	 S 

 

 

CE CE CE CE CE CE CE CE CE 

Study 1 Study 2 Study 3 

Model 2.a 

Country A Country B 
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As before, models were implemented in MLwiN using MCMC estimation 

procedures (Rasbash et al., 2009a; Browne, 2012). A detailed step by step guide 

on how to implement all models in MLwiN can be found in Appendix 3. As 

detailed in the analysis strategy above, covariate selection was supported by 

preliminary analyses, starting off from descriptive statistics for covariates, 

regression based imputation of missing values, as well as further analytical 

procedures to address collinearity between explanatory variables (pairwise 

correlations, polychoric correlations, correspondence analyses) and to reduce 

the complexity of the dataset (e.g. through principal components factor analyses 

or multiple correspondence analysis). Further details on these methods are 

obtainable from the genealogy study reported in Chapter 4. Preliminary analyses 

were performed in STATA 12 and are reported in the following section (5.2.3). A 

final dataset was then exported to MLwiN for bivariate statistics and to build a 

random intercepts model with covariates on data and study-level, and this is 

reported in Section 5.2.4 .  

 

 

 

5.2.3. Data for experiment two and preliminary analyses  

 

 

Details on response variables as well as data and study-level covariates are also 

available from Chapter 4 which focusses on the systematic literature review on 

the cost-effectiveness of statins in the primary and secondary prevention of CVD. 

In addition, further particulars and descriptive statistics for the response 

variables (INMB, ∆C, ∆E), are available from Section 5.1.2 of this empirical 

chapter. In brief, Chapter 4 reports on how the form for abstracting data from 

included studies was developed from a long list of potential variability factors 

drawn from the relevant economic evaluation literature and used to populate a 

dataset for this empirical exercise. The resulting dataset is used here for the 

analysis as outlined above.  

 

 

67 studies were includable in this empirical exercise, providing 2094 estimates of 

incremental net monetary benefit where the authors also decomposed the INMB 

statistic, hence explicitly reporting data on ∆C and ∆E of the healthcare 
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intervention. Within the three-level hierarchical model, data is clustered in 17 

countries which were the focus of the 61 single country studies included in this 

dataset. In addition, 288 data points from six multinational studies are clustered 

in a separate group on country-level, so that the final dataset consists of ni=2094, 

nj=67 and nk=18. As some data is applicable to the UK as a whole, but other data 

only to England/Wales on the one hand or Scotland on the other, three distinct 

categories were introduced to the dataset to reflect these geographic entities. 

Table 5.2 in Section 5.1.2 of this empirical exercise provides an overview of the 

geographic locations represented in the data. Descriptive statistics for all 

covariates considered in this part of the empirical exercise are available from 

Appendix 5. 

 

 

5.2.3.1. Descriptive statistics 

 

 

1064 (50.81%) of all data points refer to secondary prevention, whilst 958 

(45.75%) data points in the sample refer to patients who never experienced a 

CVD event. 72 data points stem from studies which did not discriminate between 

primary and secondary prevention of CVD. For those data points referring to 

primary prevention only, all risk categories are present, with most data referring 

to a 10 year CVD risk between 20% and 30%. This risk was calculated using the 

Framingham risk equation (Anderson et al., 1991) and individual risk factors 

collected within this study. Details are also reported in Chapter 4.  

 

 

Whilst more than one third of all data points (38.16%) refer to male study 

populations, roughly one quarter refers to females (27.51%) or mixed 

populations (26.55%) respectively. In 7.78% of the cases there was no clear 

indication of gender. Descriptive statistics further reveal that mean TCL in the 

overall dataset was 6.68 (SD: 1.204), SBP for all patients was at a mean of 137.48 

(SD: 13.35) and the hypertension status, diabetes status and smoking status was 

positive in 31.7%, 17.5% and 29.1% of all patients under assessment. Further 

patient and disease characteristics are available from Tables 5.1.1 and 5.1.2 of 

Appendix 5 
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Moving on to intervention and comparator characteristics, it turns out that 

simvastatin is by far the most prominent intervention under assessment, with 

1080 (51.58) of all data points referring to this statin. In 87.58% of all cases, the 

intervention was compared to ‘doing nothing’, whilst in 258 data points the 

comparator was a statin, either of a different kind as the intervention, or of the 

same kind but in different dosages. In two cases, the comparator was unclear. 

The mean annual drug cost of the intervention (converted to £-Sterling using 

Purchasing Power Parities (PPP) and updated to 2010 using country specific GDP 

deflators (Shemilt et al., 2008; OECD, 2010) are £521.59. The annual drug cost 

are highest for lovastatin at £932.14 (SD: 515.14), followed by pravastatin at 

£858.00 (SD: 236.67), atorvastatin at £503.89 (SD: 232.19), simvastatin at 

£477.70 (SD: 312.81), rosuvastatin at £337.28 (SD: 247.16) and fluvastatin at 

£293.08 (SD: 103.10) respectively. Finally, the unit cost of the intervention 

(across all statins under consideration) is around £0.05 per mg. Again, per statin, 

unit cost are highest for lovastatin at £0.075/mg (SD: 0.008), followed by 

pravastatin at £0.061/mg  (SD: 0.021), simvastatin at £0.048/mg (SD: 0.033), 

atorvastatin and rosuvastatin at £0.044/mg each (SD: 0.041 and 0.021) and 

fluvastatin at £0.013 (SD: 0.012) respectively.  

 

 

In the majority of cases (62.99%), life years saved was the outcome measure of 

choice compared to 37.01% of data points where QALYs were used to assess the 

incremental effect of statins. If QALYs were used, then utility weights usually 

reflect population preferences (447 vs. 215 of the 775 data points with QALYs). 

The duration of drug treatment in years peaked at 5 to 10 years (37.63%) and 

lifetime (38.87%), whilst almost all data points were affected by some sort of 

extrapolation beyond the latest follow up (92.74%). Accordingly, the time 

horizon was most frequently lifetime with 1333 data points (63.66%), and the 

second most common time horizon was between 10 and 15 years (15.75%). In 

the majority of cases (1328, 63.42%) drug treatment was assumed to last exactly 

as long as the time horizon modelled, and in 766 cases (36.58%) the duration of 

drug treatment in years was shorter than the time horizon under consideration. 

Few studies varied their economic perspective to show the impact of the 

perspective on cost-effectiveness results (e.g. Wagner et al., 2009a). Hence, the 

economic perspective is a variable on data-level. In most cases, authors reported 

to have used a health insurance (NHS) perspective (1369, 65.38%) and in 214 
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cases (10.22%), authors mentioned to have used a societal perspective. In 244 

cases, no perspective was reported whatsoever. However, in this thesis, the 

economic perspective as reported by authors was compared to own judgement 

and in 635 cases there is disagreement between what studies report and what 

the author of this thesis concludes. Hence, the economic perspective, as judged 

in this thesis, is that of the provider in 20 cases (0.96%), that of the health 

insurance (NHS) in 1939 cases (92.60%) and a societal perspective was used in 

135 cases (6.45%). Again, descriptive statistics of covariates are also reported in 

Appendix 5.1 of this empirical exercise.  

 

 

About half (53.72%) of all data points refer to base case analysis, whilst 969 

(46.28%) of data points refer to sensitivity analyses results. If a data point refers 

to sensitivity analyses, the most common variable under assessment was the 

treatment duration or time horizon (288, 13.75%), followed by the discount rate 

for cost or effects (257, 12.27%), and the cost of the intervention (annual drug 

cost), with 86 (4.11%) cases. When looking at sources of effectiveness data, the 

most prominent way to obtain this data was through a systematic review of the 

relevant effectiveness literature and/or a meta-analysis. The second most 

important source of effectiveness data was the 4S trial, a multinational study 

focussing on Scandinavian countries which looked into the effectiveness and 

cost-effectiveness of simvastatin (Scandinavian Simvastatin Survival Study Group, 

1994). Other prominent sources of effectiveness data were the Heart Protection 

study (HPS collaborative group, 2002) with 280 (13.37%) data points and the 

Excel study (Bradford et al., 1990) with 120 (5.73) data points. In total, 19 

different sources of effectiveness data were found in the relevant literature. 

Finally, looking at the geographic specificity of input parameters following the 

example of Barbieri et al (2005), one can see that by far the most common way 

to populate an economic model is to use country specific cost and resource use 

data, but effectiveness data and utility weights from other geographic domains 

(type CR, 1033 data points, 49.33%). Also quite common is the use of unit cost, 

resource use and utility weights from the target country, whilst effectiveness 

data is being transferred from other geographic domains (513, 24.50%). Only 56 

data points (2.67%) were completely target specific, so that the economic model 

was fully populated with target country specific data.  
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Moving on to the study-level, the first group of covariates to consider are general 

study characteristics. 61 out of 67 studies were written in English language, and 

the most common geographic origins of publications included in this exercise 

were Canada and the UK, with 13 studies (19.50%) each, followed by the USA 

with 12 studies (17.91%). Most papers were somehow related through common 

authorship, and considering all relationships between papers published and 

included in this exercise, only 18 papers are not linked to each other, whilst 29 

papers (43.28%) belong to one big group of common authorship. The most 

published authors in the field are Grover and Jonnsson, each involved in seven 

studies, Coupal (six studies) as well as Szucs and Zowal with five studies each. 

The timing of studies (which is not the year of publication) ranges from 1988 to 

2009, with two peaks between 1995 to 1998 and 2005 to 2007. As mentioned, 

the majority of papers focussed on one single country (91.04%), whilst six papers 

(8.96%) were multinational in nature. Industry was involved in the funding of 39 

publications (58.21%), whilst funding was unclear for 17 studies (25.37%). If 

industry funding was available, then the manufacturers most commonly involved 

were Pfizer with 13 studies and Merck with 12 studies in the dataset.   

 

 

Methods on study-level show that most studies (61; 91.04%) relied on secondary 

modelling, whilst only six studies (8.96%) made direct use of individual patient 

data from RCTs. If secondary modelling, the most common model used was a 

Markov state transition model (41; 61.19%). Seven studies (10.45%) were based 

on decision trees, and other modelling approaches involved life tables, or 

discrete event simulation. An important question is how effectiveness was 

measured and modelled within a study, and there are two general approaches. 

Most studies (61.19%) modelled the reduction in risk to experience a CVD event 

in the future to estimate incremental effectiveness. 26 studies (38.81%), 

however, used the intermediate outcome of cholesterol reduction to 

approximate its impact on CVD risk, which then resulted in an estimation of life 

years or QALYs saved. The majority of 35 studies (52.24%) explicitly looked into 

the effect of statins on coronary heart disease (CHD) and cerebrovascular disease 

(CD), whilst 18 studies (26.87%) looked at CHD only. 11 studies (16.42%) looked 

at CHD, CD and peripheral arterial disease (PAD) simultaneously. Inflation 

adjustment of cost estimates to a common baseline year was explicitly reported 

in 18 studies (26.87%), whilst this was unclear in 35 cases (52.24%), If inflation 
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adjustment was applied, the healthcare component of the target countries 

consumer price index was most commonly used (10 studies, 14.93%). Finally, 

currency conversion was applied in 15 studies (22.39%), and the most common 

method of currency conversion was the use of real exchange rates (11, 16.42%).  

 

 

Finally, an indication of study quality was provided by using the QHES instrument 

(Ofman et al., 2003). This quality checklist was applied to each of the 67 studies 

to obtain a summary score (between zero and 100), which may be used as an 

explanatory variable on study-level. Unfortunately, applying the QHES 

instrument was not entirely straightforward, for instance, as some dimensions 

on that checklist are comprised of several sub-categories, so that studies may 

tick part of that dimension, but not each aspect of it. For this reason, two 

approaches were considered when combining scores of individual QHES 

dimensions to one overall score of study quality. First, the instrument was 

applied in a strict sense, meaning that points were only given to a study if each 

sub-category in a particular dimension was ticked positive. Secondly, a pragmatic 

approach was applied, where the score for each dimension was divided by the 

number of subcategories in that dimension and points were allocated for each 

sub-category. Obviously, this resulted in higher scores for most studies in the 

dataset (more details on how the QHES instrument was operationalized are 

available in Chapter 4). Both scores are applied as continuous variables and the 

mean QHES score following strict criteria is 59.36 (SD: 16.33), whilst the 

‘pragmatic approach’ led to a mean score of 69.32 (SD: 13.89). However, scores 

were also converted to categorical variables to better reflect the lack of precision 

when using tools like the QHES instrument, and results indicate that a strict 

application of the QHES better discriminates between studies in the dataset.   

 

 

5.2.3.2. Missing values 

 

As mentioned in Section 5.1.3., there were no missing observations in any of the 

dependent variables (INMB, ∆C, ∆E). However, descriptive statistics show a 

multivariate pattern of missingness (Briggs et al., 2003) with missing values in 

both continuous and categorical variables on data and study-level. Table 5.12 

summarizes missing values both on data and study-level.  
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Table 5.12: Missing values  
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Correlation between missingness 

indicator and response variable 

INMB ∆C ∆E 

TCL Cont. Data Pat/Dis 1193 901 43.03 -0.1106*** 0.3286*** -0.2849*** 

HDL Cont. Data Pat/Dis 1147 947 45.22 -0.1326*** -0.3366*** -0.3098*** 

LDL Cont. Data Pat/Dis 926 1168 55.78 -0.3316*** -0.0015 -0.3103*** 

Hypert Cont. Data Pat/Dis 826 1268 60.55 -0.3231*** -0.1960*** -0.4099*** 

SBP Cont. Data Pat/Dis 1140 954 45.56 -0.1341*** -0.3390*** -0.3125*** 

Smokers Cont. Data Pat/Dis 1141 953 45.51 -0.1364*** -0.3395*** -0.3149*** 

Diab Cont. Data Pat/Dis 1163 931 44.46 -0.1287*** -0.3365*** -0.3062*** 

Age_cat Cat. Data Pat/Dis 2020 74 3.53 0.0178 -0.0631** -0.0183 

Gender_cat Cat. Data Pat/Dis 1931 163 7.78 -0.0103 -0.0602*** -0.0429** 

Risk_cat Cat. Data Pat/Dis 2042 52 2.48 -0.0592*** -0.0229 -0.0679*** 

Intervention Cat. Data Int/comp. 1746 348 16.62 -0.1468*** -0.1486*** -0.2191*** 

Cost_int Cont. Data Int/comp. 1957 137 6.54 -0.0093 -0.101*** -0.0645** 

Unitcost_int Cont. Data Int/comp. 1738 356 17.00 -0.1495*** -0.1526*** -0.2239*** 

Tdd_int Cat. Data Int/comp. 1738 356 17.00 -0.1495*** -0.1526*** -0.2239*** 

Comparator Cat. Data Int/comp. 2092 2 0.10 -0.0076 -0.0140 -0.0148 

Cost_comp Cont. Data Int/comp. 2092 2 0.10 -0.0076 -0.0140 -0.0148 

Unitcost_comp Cont. Data Int/comp. 2083 11 0.53 -0.0175 -0.0830* -0.0373* 

Tdd_comp Cat. Data Int/comp. 2083 11 0.53 -0.0175 -0.0830* -0.0373* 

Elicitation Cat. Data Meth, DL 2077 17 0.81 -0.0238 -0.0224 -0.0346 

Elicit_short Cat. Data Meth, DL 2077 17 0.81 -0.0238 -0.0224 -0.0346 

Population Cat. Data Meth, DL 2008 86 4.11 -0.0311 -0.0604* -0.0625** 

Duration Cat. Data Meth, DL 1974 120 5.73 -0.1667*** 0.3141*** 0.0181 

Duration_short Cat. Data Meth, DL 1974 120 5.73 -0.1667*** 0.3141*** 0.0181 

Fund_inst Cat. Study Gen, SL 50 17 25.37 0.0465 -0.0266 0.0289 

Fund_man Cat. Study Gen, SL 52 15 22.39 -0.0458 -0.0774 -0.0706 

Sec_des Cat. Study Meth, SL 54 13 19.40 -0.0971 0.0464 0.1019 

Infl_adj Cat. Study Meth, SL 32 35 52.24 0.0334 0.1606 0.0937 

Adj_method Cat. Study Meth, SL 32 35 52.24 0.0334 0.1606 0.0937 

Conv_method Cat. Study Meth, SL 63 4 5.97 -0.0149 0.1606 0.0937 

scope Cat. Study Meth, SL 64 3 4.48 -0.1104 0.0066 -0.0917 

 

Most continuous variables are heavily affected by missing values. For instance, 

patient and disease characteristics show missing values between 43% (total 

cholesterol level) up to 60.55% (hypertension status in % of patients). In contrast, 

missing values for continuous intervention and comparator characteristics are 

much lower, with 6.5% for the annual drug cost of the intervention up to 17% for 

the unit cost of the intervention. Missing values in categorical variables on data-

level are generally modest, between 0.1% (comparator) and 7.78% (gender), 

though two categorical variables are affected more strongly by missing values, 

namely ‘intervention’ and the total daily dose thereof with 17% missing values 

each. Moving to categorical variables on study-level, two variables show missing 

values of less than 10% (currency conversion method, 5.97% and scope, 4.48%). 

However, three variables show between 19.4% and 25,37% (secondary design, 

funding manufacturer, and funding institution, and two variables show even 

more than 50% missing values (inflation adjustment and adjustment method). It 
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is therefore questionable whether, from a missing values perspective, these two 

variables should enter multilevel analysis.  

 

 

To gain further insights into the mechanism by which values are missing, a binary 

variable was created for each affected covariate (irrespective of whether 

continuous or categorical in nature) with 1 if a value is missing and 0 otherwise. 

Next, correlations between the response variables and the missing values 

indicators were generated. For this matter, point biserial correlations were 

chosen, a special case of Pearson correlations in which one variable (the 

missningness indicator) is dichotomous, and the other variable (the response 

variable) is continuous in nature (Cox, 1974). Results are presented in Table 5.12 

above. The highly significant correlations between continuous patient and 

disease characteristics and the response variables do not speak in favour of any 

ad hoc imputation method (like simple mean imputation) as there is a high 

potential for bias. However, if auxiliary variables for the imputation model are 

chosen well, bias may be minimised when using a regression based imputation 

approach (missingvalues.org.uk). Note that bias is also addressed through the 

use of binary indicator variables in the MLM framework. If this indicator variable 

is not significant in the model of interest, then imputation increased the sample 

size without biasing the results. However, if significant, then regression estimates 

are equal to those obtained through listwise deletion as the binary indicator 

variable captures the departure of the imputed cases from the other cases in 

terms of the outcome variable (Acock, 2005; Morris et al., 2005).  

 

 

To define a regression based imputation model for continuous variables, the 

dataset was first screened for covariates potentially related to missingness in 

affected variables. Subsequently, a logistic regression model was run with the 

binary missingness indicator of the affected variable as a response and each 

candidate for the imputation model as an explanatory variable (Acock 2010). As a 

result, the set of explanatory variables for the actual imputation model for each 

affected continuous variable was defined as those covariates significant in the 

logistic regression (Acock, 2010). The output from logistic regressions to 

determine variables for the imputation model are reported in Appendix 5.2. Note 

that logit models may experience convergence problems in the case of very few 
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missing values (Acook, 2010). For this reason, imputations for the annual drug 

cost of the comparator as well as the unit cost of the comparator were based on 

the same set of variables as have been chosen for the imputation models of the 

intervention cost and unit cost of the intervention respectively (though the 

variable ‘intervention’ was obviously replaced by the variable ‘comparator’). 

Descriptive statistics of continuous variables before and after imputation of 

missing values can be found in Table 5.13 below.  

 

Table 5.13: Descriptive statistics of continuous variables before and after 

regression based imputation of missing values 

Variable 
Obser-

vations 

Nr. of 

obser-

vations 

imputed 

Mean 

before 

impu-

tation 

SD 

before 

impu-

tation 

Mean 

after 

impu-

tation 

SD after 

impu-

tation 

Difference 

in means 

H0 diff ≠ 0 

 

Pr(|T| > 

|t|) 

tcl 1193 901 6.676 1.204 6.631 1.005 0.045 0.2533 

hdl 1147 947 1.168 0.1023 1.177 0.0924 -0.009** 0.0165 

ldl 926 1168 4.509 1.036 4.639 0.9659 -0.13*** 0.0009 

hypert 826 1268 0.317 0.381 0.341 0.275 -0.024* 0.057 

sbp 1140 954 137.47 13.35 137.92 10.05 -0.45 0.2815 

smokers 1141 953 0.291 0.3348 0.298 0.25 -0.007 0.5002 

diab 1163 931 0.178 0.3491 0.195 0.2662 -0.017 0.1144 

cost_int 1957 137 521.59 335.1 528.84 326.33 -7.25 0.4855 

unitcost_int 1738 356 0.0504 0.0321 0.0459 0.0309 0.0045*** 0.0001 

cost_comp 2092 2 26.06 115.37 26.09 115.32 -0.03 0.9913 

Unitcost_omp 2083 11 0.004 0.018 0.005 0.0285 -0.001 0.0299 

*      Difference in means significant at the 1% level , **    Difference in means significant at the 5% level , ***  
Difference in means significant at the 10% level 

 

 

As can be seen from Table 5.13, means of continuous variables before and after 

imputation are very much in the same range and only in three cases (HDL, LDL 

and unitcost_int) is the difference significant above the 95% confidence level. 

However, a binary variable is included in the MLM to capture the departure of 

the imputed from the non-imputed cases to make sure that imputation does not 

bias regression results (Acock, 2005; Morris et al., 2005). Further, looking at the 

standard deviations before and after imputation shows the main weakness of 

regression based imputation compared to MI. The standard deviations after 

imputation are generally lower than before imputation. This is because of the 

increased sample size and the fact regression based imputation generally leads 

to underestimated variability in the data (missingvalues.org.uk). Nevertheless, 

imputation of missing values allows using the full dataset with 2094 estimates of 

cost-effectiveness clustered in 67 studies and 18 geographic domains. The 

following Subsection 5.2.3.3 focuses on correlations in the data, before bivariate 

statistics are reported in Section 5.2.4.  
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5.2.3.3. Correlations between potential explanatory variables 

 

 

Correlations are assessed between subgroups of potential explanatory variables. 

First, patient and diseases characteristics are considered. As all variables in this 

group are either continuous or ordered categorical, polychoric correlations are 

assessed using a STATA package developed by Kolenikov & Angeles (2004). 

Results are reported in Table 5.14 below. Starting off with measures of 

cholesterol, high collinearity was expected between TCL and LDL as TCL is 

comprised of LDL, HDL and triglycerides (e.g. Friedewald et al., 1972) and as LDL 

is the dominating factor for TCL. Hence, if LDL changes in one direction, so may 

TCL in most cases. As Table 5.14 shows, this expectation was met by the data as 

almost perfect collinearity was observed between both cholesterol measures. 

This observation, plus the previously reported fact that there are much less 

values missing for TCL, speaks in favour of dropping LDL from further analysis. 

Moving on to HDL, its impact on TCL may be offset by simultaneous changes in 

LDL or triglycerides in any direction, which is why neither a strong correlation 

was anticipated between HDL and TCL nor between HDL and LDL. This 

expectation was also met by the data.  

 

Table 5.14: Polychoric correlations between patient and disease characteristics 

 
tcl hdl ldl hypert sbp diab smokers 

age_
cat 

gender
_cat 

risk_
cat 

CVD_his
t 

tcl 1.00 
          

hdl 0.14 1.00 
         

ldl 0.96 0.12 1.00 
        

hypert -0.12 0.00 -0.17 1.00 
       

sbp 0.03 0.18 0.00 0.84 1.00 
      

diab -0.05 0.14 -0.06 -0.12 0.03 1.00 
     

smokers -0.02 -0.15 -0.02 0.84 0.70 -0.20 1.00 
    

age_cat -0.26 -0.12 -0.29 0.12 0.09 0.06 0.00 1.00 
   

gender_cat -0.38 -0.06 -0.39 0.14 0.07 0.05 0.02 0.27 1.00 
  

risk_cat -0.36 -0.17 -0.41 0.45 0.36 -0.12 0.29 0.43 0.59 1.00 
 

CVD_hist -0.31 -0.20 -0.34 0.34 0.25 -0.25 0.19 0.27 0.56 0.86 1.00 

 

 

The next group of variables for which strong correlations were anticipated are 

SBP, hypertension status and smoking status. Again, this expectation was 

confirmed by the data. However, unlike TCL and LDL, which may be used as 
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alternative measures of cholesterol, one may not simply drop say SBP in favour 

of hypertension or smoking status as all variables, though principally concerned 

with the circulation system, measure different aspects of it. On the other hand, if 

simultaneously used in a MLM, one almost certainly runs into problems of 

multicollinearity (e.g.Maddala, 2001). For this reason, principal components 

factor analysis (PCF) was applied to reduce the complexity of the dataset (Acock, 

2010). When applied to the data, ‘PCF identifies components that are composites 

of the measured variables’ (Acock, 2010). PCF may therefore be used when 

developing a scale ‘where one dimension is identified to represent the core of a 

set of items’ (Acock 2010). This scale may then be used as an alternative 

covariate in the MLM, and referred to as circulation related CHD risk. Table 5.15 

below summarizes the results from running a PCF on SBP, hypertension and 

smoking.  

 

Table 5.15: Principal components factor analysis on SBP, hypertension and 

smoking 

Factor Eigenvalue Difference Proportion Cummulative 

Factor1 2.485 2.121 0.828 0.828 

Factor 2 0.364 0.214 0.121 0.949 

Factor 3 0.150 -- 0.050 1 

LR test: independent vs. saturated chi2(3) – 4171.76 Prob>chi2 = -0.0000 

 

 

In PCF, the sum of Eigenvalues equals the number of items, three in this case 

(Bartholomew et al., 2008; Acock, 2010). Hence, from the fact that Factor 1 has 

an Eigenvalue of almost 2.5 (82.5% of the sum of Eigenvalues), one can conclude 

that all three items fall along one dimension. The corresponding factor score, 

which is standardised with a mean of zero and a standard deviation of 1, was 

estimated in STATA 12. This score may be tested as an alternative to the 

components entering the PCF (SBP, hypertension and smoking).  

 

 

Further patient and disease characteristics which are highly correlated are 

‘risk_cat’, an ordered categorical variable encoding CVD risk of patient 

subgroups, and ‘CVD_hist’, an ordered categorical variable encoding the CVD 

related medical history of patients. This is not surprising as the variable ‘risk_cat’ 

is comprised of five risk categories for primary prevention (from very low to 

extreme), plus an extra category for secondary prevention as the Framingham 
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risk equation, which was used to estimate CVD related risk, is not valid if patients 

already experienced a CVD event. As a result, the secondary prevention category 

of ‘risk_cat’, which comprises almost 50% of all data points, perfectly coincides 

with the secondary prevention category of the variable ‘CVD_hist’. Hence, one 

may only consider these variables alternatively and choose the one which best 

improves the fit of the model. Finally, correlations were also observed between 

individual patient risk characteristics and ‘risk_cat’. This is again not surprising as 

individual patient risk factors, such as ‘TCL’, ‘LDL’, ‘gender’, ‘SBP’, ‘smoking 

status’, ‘diabetes’, etc. were used as factors in the Framingham risk equation 

which was applied to derive the categorical risk variable ‘risk_cat’. For this 

reason it is questionable whether issues of multicollinearity permit simultaneous 

use of such variables in a multilevel model.  

 

 

Moving on to characteristics of the intervention and comparator, high 

correlations were expected between the type, the unit cost and the total daily 

dose of either intervention or comparator on the one hand and their respective 

annual drug cost on the other. The reason is that ‘unit cost’, ‘total daily dose’ and 

‘type’ may be regarded as determinants of ‘annual drug cost’ of either the 

intervention or the comparator. Therefore, one may either use annual drug cost 

individually, or a combination of its determinants simultaneously in a MLM 

though the latter choice becomes more problematic as there is also high 

correlation between the total daily dose of the intervention and its respective 

unit cost, which again may cause a multicollinearity problem. Note that 

intervention and comparator have been omitted from Table 5.16 below as they 

are neither continuous nor ordered categorical variables, so that neither Pearson 

nor polychoric correlations apply. However, to confirm expectations, both 

variables were transformed into a set of binaries and point biserial correlations 

were computed to assess the association between brand and annual drug cost. 

In addition to the above, the two variables ‘comparator’ and ‘active_comparator’ 

are almost identical, as the latter is simply a reduced binary version of the 

former. Both variables coincide in 1834 (87.58%) cases where the comparator is 

‘doing nothing’. Hence, simultaneous use in a multilevel model is not indicated.  
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Table 5.16: Polychoric correlations between patient and disease characteristics 

 
Tdd_ 
int 

Unitcost
_int 

Cost_ 
int 

Tdd_ 
comp 

Unitcost_ 
comp 

Cost_ 
comp 

Incr_ 
cost 

Tdd_int 1       

Unitcost_int -0.705 1      

Cost_int -0.021 0.669 1     

Tdd_comp 0.407 -0.420 -0.159 1    

Unitcost_comp 0.449 -0.097 0.172 0.408 1   

Cost_comp 0.361 -0.046 0.284 0.416 0.847 1  

Incr_cost -0.364 0.458 0.267 -0.390 -0.078 -0.055 1 

 

 

Moving on to methodological characteristics on data-level, one can see that, in 

contrast to patient and disease or intervention and comparator characteristics, 

this set of variables is almost exclusively categorical in nature, with discount 

rates on cost and benefits being the only continuous exceptions. For this reason, 

another strategy was considered for assessing associations between categories 

of variables as Pearson correlations, polychoric correlations or point biserial 

correlations do not apply. The same method was used which was previously 

utilised for the genealogy study reported in Chapter 4. The two continuous 

variables DRC and DRB were first transformed into ordered categoricals and 

multiple correspondence analysis was applied to assess which categories of 

variables correspond strongly with each other (Bartholomew et al., 2008; Le 

Roux & Rouanet, 2010). A key advantage of MCA is that it provides a graphical 

presentation of correspondences between categories of variables on a plane 

with corresponding categories being in closer proximity on that plane. However, 

a related disadvantage is that such planes quickly become inextricable due to the 

number of categories under assessment (van Kerm, 1998). In other words, the 

principle ‘garbage in garbage out’ certainly applies to MCA just as much as it 

does other quantitative methods.  

 

 

For this reason, the method is used with caution and methodological variables on 

data-level are first further divided into groups of conceptually related variables, 

and these smaller groups of variables are then separately assessed using MCA if 

appropriate. Methodological variables on data-level are categorized in subgroups 

relating to a) outcome-measurement, b) time horizon and time preference c) 

perspective d) data classification and e) geographic source of input data. MCA 
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was deemed appropriate in three cases. First, ‘outc_measure’, ‘elicitation’ and 

‘population’ were tested as they all relate to the way effectiveness is defined and 

elicited in a study. Secondly, ‘DRC’, ‘DRB’, ‘duration’ ‘extrapol’ ‘horizon’ and 

‘hor_eq_dur’ are tested as variables concerned with time horizon and time 

preference. Finally, whilst including variables on data-level, different 

combinations of general study characteristics and methods on data and study-

level are tested in an explorative exercise to find out whether there are 

correspondences between key characteristics of international methods 

guidelines for economic evaluation in health. If correspondences between 

categories of variables are revealed, a summary score is produced to reduce the 

complexity of the dataset analogously to what has been reported above when 

using PCA for measures of circulation related risk. This summary score may then 

be used as an alternative construct in the MLM.  

 

 

 

Results for running an MCA on ‘outc_measure’, ‘elicitation’ and ‘population’ are 

presented below. The total inertia is a measure of scatter, and the principal 

inertia tells how much of this scatter is captured by each dimension in the model 

(Bartholomew et al., 2008). This has been visualised in a screeplot above (Figure 

5.8) where the principal inertia is plotted for each dimension in the model. In this 

case, the first two dimensions account for 95.82% of the total inertia. This 

indicates a very good fit of the model and the ‘elbow’ in the screeplot, after 

Figure 5.8: Screeplot for MCA on outc_measure, elicitation 

and population 
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which there is only small decrease in inertia, indicates that plotting results on a 

two dimensional space may be appropriate (Bartholomew et al., 2008). 

 

 

Next, the results of the MCA are visualised on a biplot presented in Figure 5.9., 

which clearly shows the correspondences between the categories of the three 

variables. One can see that the horizontal axis, which accounts for 83.3% of the 

total inertia, captures the two alternative measures of effectiveness ‘QALYS’ and 

‘life Years Saved. The vertical axis, on the other hand, captures different methods 

of preference elicitation and it also shows which of these methods were rather 

applied to patient populations, and which methods were rather used to elicit 

information from a general population sample. For instance, time trade off 

questions were usually asked to patients, whilst the health utility index or the 

EQ-5D instrument may have been applied to patients or members of the general 

population. Other choice based methods and the 15-D instrument clearly 

correspond with the category ‘population’, meaning that these methods were 

applied to assess utility weights from a general population sample.  

 

 

 

 

The third step in this analysis is to estimate a correspondence score analogously 

to what has been done using PCF for components of circulation related CVD risk 

Figure 5.9: Biplot for MCA on outc_measure, elicitation and 

population 
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above. This correspondence score may then be used as an alternative covariate 

capturing the concept of outcome measure within the MLM framework.  

 

 

Table 5.17: MCA on ‘outc_measure’, ‘elicitation’ and ‘population’ 

 

Number of obs:  1998 / Total inertia: 1.2008 / Number of axes:  2 

  Principal Inertia Percent Cumulative 

Dimension 1 1 83.28% 83.28% 

Dimension 2 0.1506 12.54% 95.82% 

Dimension 3 1.11e
-31

 0% 95.82% 

Dimension 4 6.93e
-33

 0% 95.82% 

 

 Overall Dimension 1 Dimension 2 

Categories Mass Quality %inertia Coord  sqcorr contrib Coord  sqcorr contrib 

Outc_measure 
LYS 
QALYs 

 
0.220 
0.113 

 
1.000 
1.000 

 
0.094 
0.183 

 
0.717 
-1.394 

 
1.000 
1.000 

 
0.113 
0.220 

 
0.000 
0.000 

 
0.000 
0.000 

 
0.000 
0.000 

Elicitation 
n.a. (LYS) 
TTO 
EQ 5D 
HUI 
15D 
Other choice 

 
0.220 
0.019 
0.039 
0.001 
0.001 
0.054 

 
1.000 
0.841 
0.994 
0.969 
0.938 
0.938 

 
0.094 
0.083 
0.065 
0.002 
0.002 
0.115 

 
0.717 
-1.394 
-1.394 
-1.394 
-1.394 
-1.394 

 
1.000 
0.363 
0.976 
0.876 
0.753 
0.753 

 
0.113 
0.036 
0.076 
0.002 
0.002 
0.104 

 
0.000 
4.116 
0.488 
1.168 
-1.780 
-1.780 

 
0.000 
0.477 
0.018 
0.093 
0.185 
0.185 

 
0.000 
0.317 
0.009 
0.001 
0.003 
0.170 

Population 
n.a. (LYS) 
patient 
population 

 
0.220 
0.034 
0.079 

 
1.000 
0.872 
0.959 

 
0.094 
0.114 
0.153 

 
0.717 
-1.394 
-1.394 

 
1.000 
0.487 
0.853 

 
0.113 
0.066 
0.154 

 
0.000 
3.195 
-1.382 

 
0.000 
0.385 
0.124 

 
0.000 
0.349 
0.151 

 

 

MCA was also performed for a subset of variables relating to time horizon and 

time preference. The variables ‘horizon’, ‘extrapol’ and ‘hor_eq_dur’ led to a 

good overall fit of the model with 81.42% of the total inertia falling on the first 

two dimensions. Results of the respective MCA are presented in Appendix 5.3.  

Again, a correspondence score was calculated for use as a covariate in the MLM. 

Finally, the same procedure was repeated with different subsets of 

methodological characteristics on data-level as well as general study 

characteristics and methodological characteristics on study-level to assess 

whether key characteristics of international methods guidelines show 

correspondences on the biplot. However, further strong correspondences were 

not revealed.  
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5.2.4. Results 

 

 

In Chapter 3 MLMs were developed for the analysis of secondary cost-

effectiveness data from different geographic domains. This chapter also reported 

on a pilot study to test these models and Chapter 4 focussed on a systematic 

literature review and data abstraction exercise on the cost-effectiveness of 

statins for the primary and secondary prevention of CVD which provided the data 

for this empirical exercise. This chapter started off with determining the 

appropriate MLM structure to analyse the data obtained from the systematic 

literature review. Then, an analysis strategy was outlined to assess covariates 

within the MLM framework. The space of available covariates was divided in 

manageable groups of variables; descriptive statistics and missing values analysis 

were reported, as well as correlations between subsets of explanatory variables. 

The results from analysing covariates in the MLMframework assuming fixed 

slopes are reported next. First, bivariate statistics from entering each covariate 

individually in the multilevel framework are reported and discussed. Secondly, a 

model which aims to unravel the maximum amount of country-level variability is 

constructed by including the set of covariates which best controls for variability 

on data and study-level. This model is then carried forward to the analysis of 

country-level variability in Section 5.3 of this empirical chapter.  

 

 

5.2.4.1. Bivariate statistics 

 

Tables 5.18 to 5.23 below contain results of individually testing covariates in the 

univariate and bivariate versions of the three-level hierarchical model which 

groups cost-effectiveness data in the studies it was drawn from and the countries 

it refers to whilst accommodating a separate cluster on country-level for 

multinational study data. Data-level covariates are assessed first, starting off 

with patient and disease characteristics as the arguably most critical source of 

variability in cost-effectiveness data (Sculpher et al., 2004), followed by 

intervention and comparator characteristics and methods on data-level. 

Subsequently, general study characteristics, methods on study-level and study 

quality indicators are tested individually in the models of interest. A binary 
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missingness indicator is used in conjunction with variables where data was 

initially missing (Acock, 2005; Morris et al., 2005). If not significant, this indicates 

that missing data imputation increased the sample for analysis without biasing 

the results. If significant, then the missingness indicator captures the departure 

of the imputed cases from the non-imputed cases and thereby leads to the same 

regression coefficients one would have obtained with stepwise deletion of the 

missing observations (Morris et al., 2005). Models are implemented in MLwiN 

using MCMC estimation procedures (Rasbash et al., 2009a; Browne, 2012). 

Hence, the DIC diagnostic is used to compare the overall fit between models. The 

DIC diagnostic already accounts for differences in the number of parameters to 

estimate, so that its value is directly comparable between a saturated model and 

its respective comparator (Browne, 2012). For bivariate statistics, this 

comparator is obviously the variance components model without covariates. 

Hence, if the DIC decreases when including covariates into the models discussed 

in the first section of this empirical exercise, then this indicates an improved fit of 

the model. However, as Browne (2012) clarifies, the ‘stochastic nature of the 

MCMC algorithm leads to some random variability in the DIC diagnostic 

depending on starting values and random number seeds’. If differences in the DIC 

diagnostic are small, models were hence re-run with different seeds and/or 

starting values.  

 

 

Starting with patient and disease characteristics (Table 5.18 below), almost all 

covariates show the expected sign and are significant on the 5% or even 1% level. 

This holds for all continuous variables (HDL, LDL, SBP, Hypertension, Smokers, 

BP_PCF and Diabetes) with the exception of TCL, for which the coefficient for ∆C 

in the bivariate model does show the anticipated sign but only borders at the 

10% level of significance. Moving on to categorical variables, the coefficient for 

46 to 55 year old patients is not significant in the univariate model. This only 

means that INMBs in this age cohort do not significantly differ from the omitted 

category, which represents patients below the age of 45. For older age groups, 

and especially in the bivariate model, where ‘age_cat’ led to the largest drop in 

the DIC diagnostic compared to all other patient and disease characteristics, the 

coefficients are highly significant. The coefficients observed also accord 

expectations in a sense that better cost-effectiveness estimates associated with 

commencing treatment at younger age ‘reflect the greater potential to prevent 
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events, and thus the higher utility and cost benefits accrued from remaining 

event free health state’ (NICE, 2006). Furthermore, the coefficient for patients 

above the age of 75, which indicates improved cost-effectiveness compared to 

patients aged 65 to 75, may be a result of more secondary prevention patients in 

this age cohort, for whom statin treatment is assumed to be more cost-effective. 

Also in accord with expectations are the coefficients for gender, as statins show 

lower incremental cost, higher incremental effects and hence improved cost-

effectiveness measured in INMBs in males as compared to females. 

 

Table 5.18: Bivariate statistics of patient and disease characteristics 

 

 
 Univariate model Bivariate model 

Explanatory 

variable 

(SE) 

Raw Mean 

(SD) / 

Proportion 

(%) 

INMB 

(2010 £ 
Sterling) 

DIC 

(Benchmark
: 46749  

(%-change)) 

∆C/100 

(2010 £ 
Sterling) 

∆E 

 

DIC 

(Benchmark
: 28735 (%-

change)) 
TCL 6.676 (1.204) 4012 (640)*** 46709 (-0.09%) -6.62 (4.05) 0.103 (0.022)*** 28699 (-0.13%) 

HDL 1.168 (0.102) -47062 (10302)*** 46724 (-0.05%) 210.76 (59.10)*** -0.868 (0.353)** 28709 (-0.09%) 

LDL 4.509 (1.036) 5200 (667)*** 46687 (-0.13%) -8.563 (4.224)** 0.136 (0.022)*** 28677 (-0.20%) 

SBP 137.48 (13.348) 640 (41.35)*** 46509 (-0.51%) -4.024 (0.252)*** 0.008 (0.001)*** 28352 (-1.33%) 

Hypertension 31.70% (38.13%) 23718 (1661)*** 46537 (-0.45%) -92.29 (10.51)*** 0.48 (0.06)*** 28501 (-0.81%) 

Smokers 29.10% (33.48%) 18681 (1859)*** 46641 (-0.23%) -25.60 (11.67)** 0.536 (0.061)*** 28627 (-0.38%) 

BP_PCF 0 (1.00) 6016 (424)*** 46545 (-0.44%) -25.49 (2.68)*** 0.115 (0.014)*** 28501 (-0.81%) 

Diabetes 17.81% (34.91%) 13494 (1834)*** 46692 (-0.12%) -34.36 (11.34)*** 0.341 (0.061)*** 28679 (-0.19%) 

Age_cat 

<45 
46-55 
56-65 
66-75 
>75 

Unclear 

 
322 (15.38%) 
439 (20.96%) 
862 (41.17%) 
299 (14.28%) 

98 (4.68%) 
74 (3.53%) 

 
Omitted 

161 (1333) 
-4819 (1271)*** 

-13295 (1364)*** 
-7301 (2309)*** 

10812 (8776) 

46621 (-0.27%) 

 
Omitted 

-93.70 (7.363)*** 
-136.24 (7.06)*** 
-173.89 (7.51)*** 

-120.61 (12.67)*** 
-110.88 (43.67)** 

 
Omitted 

-0.304 (0.039)*** 
-0.609 (0.037)*** 
-1.023 (0.040)*** 
-0.641 (0.067)*** 

-0.051 (0.271) 

27705 (-3.58%) 

Gender 

Female 
Male 

Mixed sample 

 
576 (27.51%) 
799 (38.16%) 
719 (34.34%) 

 
Omitted  

10184 (955)*** 
5097 (3908) 

46635 (-0.24%) 

 
Omitted 

-33.51 (5.88)*** 
-77.85 (23.58)*** 

 
Omitted 

0.226 (0.031)*** 
-0.071 (0.148) 

28619 (-0.40%) 

Risk_cat 

<10% 
10%-20% 
20%-30% 
30%-40% 
40%-50% 
Secondary 
prevention 

Unclear 

 
193 (9.22%) 

367 (17.53%) 
278 (13.28%) 
140 (6.69%) 
106 (5.06%) 
958 45.75%) 
52 (2.48%) 

 
Omitted 

18319 (1637)*** 
17431 (1767)*** 
14547 (2055)*** 
23145 (2297)*** 
17452 (2057)*** 
13698 (4975)*** 

46590 (-0.34%) 

 
Omitted 

-167.41 (9.06)*** 
-216.62 (9.85)*** 

-236.75 (11.44)*** 
-241.10 (12.80)*** 
-180.06 (11.66)*** 
-176.34 (26.28)*** 

 
Omitted 

0.053 (0.055) 
-0.139 (0.060)** 

-0.306 (0.069)*** 
-0.032 (0.078) 
0.000 (0.070) 
-0.115 (0.178) 

28103 (-2.20%) 

CVD_history 

No 
Yes 

Mixed sample 

 
1064 (50.81%) 
958 (45.75%) 

72 (3.44%) 

 
Omitted 

1506 (1516) 
10325 (7418) 

46750 (0.00%) 

 
Omitted 

3.33 (9.20) 
22.83 (42.62) 

 
Omitted 

0.081 (0.051) 
0.409 (0.270) 

28736 (-0.00%) 

Missingness indicators 
Miss_tcl 901 (43.03%) -1134 (4271) -- -24.16 (24.77) 0.471 (0.120)*** -- 

Miss_hdl 947 (45.22%) -2719 (4296) -- -21.89 (23.57) -0.101 (0.168) -- 

Miss_LDL 1168 (55.78%) -8064 (3776)** -- 34.53 (23.41) -0.109 (0.146) -- 

Miss_sbp 954 (45.56%) 8188 (2583)*** -- -24.66 (22.65) -0.091 (0.166) -- 

Miss_hypert 1268 (60.55%) -2553 (3978) -- -29.90 (20.33) -0.139 (0.145) -- 

Miss_smokers 953 (45.51%) -2269 (4154) -- -31.10 (22.06) -0.129 (0.163) -- 

Miss_bp_pcf 1269 (60.60%) -3795 (3942) -- -22.53 (20.73) -0.150 (0.147) -- 

Miss_diabetes 931 (44.46%) 312 (4285) -- -31.91 (22.52) -0.053 (0.164) -- 

Miss_age_cat 74 (3.53%) -2603 (2381) -- -3.76 (11.56) -0.096 (0.061) -- 

Miss_gend_cat 163 (7.78%) -533 (1495) -- -4.249 (9.32) -0.033 (0.050) -- 

Miss_risk_cat 52 (2.48%) -558 (2383) -- -3.41 (13.04) 0.419 (0.137)*** -- 

* 
*
* 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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More problematic, however, is the categorical variable ‘risk_cat’. Though highly 

significant both for INMBs in the univariate model and ∆C in the bivariate model, 

‘risk_cat’ does not show the pattern one would anticipate where cost-

effectiveness improves continuously with increasing ten year CVD risk. Though it 

may be possible that cost-effectiveness is higher for the highest primary 

prevention group compared to secondary prevention (e.g. Huse et al., 1998), we 

should at least expect a continuous improvement of INMBs with increased CVD 

risk in primary prevention patients. This, however, is not the case, which casts 

into doubt the validity of the findings. What adds to the problem is that 

coefficients for ∆C in the bivariate model are mostly not significant. Obviously, 

one would expect a strong relationship between ‘risk_cat’ and measures of cost-

effectiveness for both ∆C, as statin treatment may prevent future healthcare 

cost, and ∆E, as higher risk groups may have more to benefit from statin 

treatment. Potential reasons for the problems associated with this explanatory 

variable may relate to the way it was constructed from a number of different 

variables abstracted from papers, which were used to estimate CVD risk using 

the Framingham risk equation (Anderson et al., 1991). If data to populate this 

risk equation was not available, a number of alternative means were exploited to 

obtain estimates of 10 year CVD risk (details are available from Chapter 4). 

Resulting risk estimates were then grouped for primary prevention in categories 

of 10% increments, and to capture the whole range of data points in the dataset, 

a category for secondary prevention was also introduced as the Framingham risk 

equation is not valid in patients who already experienced a CVD event (Anderson 

et al., 1991). The complexity of this process and the degree to which raw data 

was manipulated to obtain this categorical variable may have introduced 

additional noise which explains the problems with the coefficients as detailed 

above. In addition, it may be problematic to enter this variable in the final MLM 

in conjunction with individual risk factors such as TCL, HDL, or SBP, as ‘risk_cat’ is 

a summary construct of these individual risk factors and therefore shows a 

considerable degree of collinearity (as observed in the previous Section 5.2.3.3). 

Therefore, multicollinearity problems may be the consequence, which may 

indicate dropping this variable from further analysis even though it leads to a 

considerable change in the DIC diagnostic in the bivariate model.  
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Finally, as can be seen from Table 5.18 above, the history of a CVD event is not a 

significant explanatory variable in the model. As mentioned above, the reason 

may be that very high risk primary prevention groups potentially benefit as 

much, if not more, than some secondary prevention patients (e.g. Huse et al., 

1998), which then leads to a failure in observing significant results for this 

variable. However, simultaneously controlling for individual risk factors may 

address this problem and thereby reveal the actual relationship between CVD 

history and the cost-effectiveness of statins in the primary and secondary 

prevention of CVD.  

 

 

Moving on to intervention and comparator characteristics (Table 5.19 below), 

highly significant coefficients are observed which also accord expectations for 

most continuous variables. Precisely, as annual intervention cost increase, so 

should ∆C, which consequently leads to decreasing INMBs. Annual drug cost may 

have an impact on treatment compliance and hence incremental effects as well, 

but this was not observed in the bivariate model. Likewise the continuous 

variable incremental drug cost, which is nothing but the annual drug cost of the 

intervention minus the annual drug cost of the comparator, shows a highly 

significant positive relationship with ∆C, and an inverse relationship with INMB 

which is also highly significant. However, the annual drug cost of the comparator 

is not in accord with prior expectations as ∆C of the intervention should decrease 

with increasing cost of the comparator, leading to better cost-effectiveness 

results. This was not confirmed by the data as an inverse relationship was 

observed in the univariate model. Finally, unit cost of the intervention and the 

comparator show the same sign as their annual drug cost counterparts, which 

again confirms expectations for the intervention but disagrees with expectations 

for the comparator. A reason may be some degree of correlation between 

intervention cost and comparator cost, meaning that changes in the cost of the 

comparator may be offset by changes in the intervention, so that its impact on 

incremental drug cost and, ultimately, INMBs remains ambiguous. This 

hypothesis may be tested when simultaneously including drug cost of the 

intervention and the comparator in one model in part two of this section.  
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Table 5.19: Bivariate statistics of intervention and comparator characteristics 

 

 
 Univariate model Bivariate model 

Explanatory 

Variable 

Raw Mean (SD) 

/ 

Proportion (%) 

INMB 

(2010 £ Sterling) 

DIC 

(Benchmark: 
46749 

 (%-change)) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC 

(Benchmark: 
28735 

 (%-change)) 

Cost_int 528.84 (326.32) -9.289 (2.173)*** 46733 (-0.03%) 0.112 (0.013)*** 0.000 (0.000) 28658 (-0.27%) 

Unitcost_int 0.046 (0.031) -71638 (29179)** 46741 (-0.02%) 1172 (173)*** 1.484 (0.957) 28696 (-0.14%) 

Cost_comp 26.09 (115.31) -10.59 (4.93)** 46747 (-0.00%) -0.074 (0.029)** -0.001 (0.000) 28726 (-0.03%) 

Unitcost_comp 0.005 (0.029) -67854 (44928) 46748 (-0.00%) -655 (252)*** -4.43 (1.48)*** 28722 (-0.05%) 

Incr_cost 502.75 (314.47) -7.331 (2.201)*** 46739 (-0.02%) 0.134 (0.013)*** 0.000 (0.000) 28643 (-0.32%) 

Intervention 

Simvastatin 
Fluvastatin 

Atorvastatin 
Pravastatin 
Lovastatin 

Rosuvastatin 
unclear 

 
1080 (51.58%) 

41 (1.96%) 
184 (8.79%) 

256 (12.23%) 
125 (5.97%) 
60 (2.87%) 

348 (16.62%) 

 
Omitted 

-3508 (5660) 
-1508 (3073) 

-7058 (4078)* 
-12292 (7360)* 

-1607 (3177) 
-7010 (9370) 

46753 (0.01%) 

 
Omitted 

-30.16 (32.91) 
4.53 (17.34) 

-10.11 (20.20) 
75.26 (30.38)** 

26.68 (18.62) 
23.52 (32.95) 

 
Omitted 

0.179 (0.189) 
0.014 (0,104) 

-0.203 (0.119)* 
-0.349 (0.170)** 

0.073 (0.104) 
0.030 (0.171) 

28729 (-0.02%) 

Tdd_intervention 

Up to 10 mg 
Up to 20mg 
Up to 30mg 
Up to 40mg 

>60mg 
unclear 

 
65 (3.10%) 

259 (12.37%) 
554 (26.46%) 
654 (31.23%) 
206 (9.84%) 

356 (17.00%) 

 
Omitted 

-4876 (4370) 
14940 (6466)** 
-3194 (812)*** 

-7511 (4573) 
-6251 (8589) 

46746 (-0.01%) 

 
Omitted 

44.07 (25.96)* 
36.73 (35.04) 
8.67 (25.58) 

32.48 (26.71) 
-2.49 (46.58) 

 
Omitted 

-0.072 (0.148) 
0.652 (0.255)** 
-0.054 (0.152) 
-0.107 (0.158) 

-0.310 (0.130)** 

28727 (-0.03%) 

Comparator 

Simvastatin 
Fluvastatin 

Atorvastatin 
Pravastatin 
Lovastatin 

Rosuvastatin 
Doing nothing 

Unclear 

 
153 (7.31%) 

3 (0.14%) 
44 (2.10%) 
19 (0.91%) 
24 (1.15%) 
15 (0.72%) 

1834 (87.58%) 
2 (0.10%) 

 
Omitted 

4010 (13100) 
764 (9685) 

1735 (5148) 
75.09 (6117) 
2278 (7682) 

7178 (4249)* 
-614 (15598) 

46751 (0.00%) 

 
Omitted 

-76.51 (77.64) 
-85.10 (56.96) 
-27.36 (31.18) 
-104.7 (37.41)*** 
-63.46 (46.15) 
-23.63 (25.25) 
-25.86 (92.74) 

 
Omitted 

-0.227 (0.431) 
-0.359 (0.355) 
-0.052 (0.169) 

-0.427 (0.211)** 
-0.136 (0.270) 
0.091 (0.152) 
-0.128 (0.398) 

28727 (-0.03%) 

Act_comparator 

no (doing nothing) 
yes (statin) 

 
1834 (87.58%) 
260 (12.42%) 

 
Omitted 

-6545 (2770)** 
46746 (-0.01%) 

 
Omitted 

-34.00 (16.27)** 

 
Omitted 

-0.322 (0.097)*** 
28729 (-0.02%) 

Tdd_comparator 

0mg 
Up to 10mg 
Up to 20mg 
Up to 30mg 
Up to 40mg 

unclear 

 
1834 (87.58%) 

44 (2.10%) 
26 (1.24%) 
24 (1.15%) 

155 (7.40%) 
11 (0.53%) 

 
Omitted 

-6110 (9228) 
-3239 (4652) 

-8588 (12580) 
-8062 (3342)** 
-5023 (12940) 

46747 (0.00%) 

 
Omitted 

-70.81 (49.93) 
-74.05 (26.81)*** 
-89.10 (63.46) 
-4.58 (19.39) 

-75.78 (75.84) 

 
Omitted 

-0.517 (0.332) 
-0.347 (0.153)** 
-0.753 (0.444)* 

-0.269 (0.109)** 
-0.400 (0.506) 

28726 (-0.03%) 

Missingness indicators 

Miss_cost_int 137 (6.54%) 2808 (3919) -- -16.54 (22.26) 0.042 (0.128) -- 

Miss_ucost_int 356 (17.00%) -7388 (9008) -- -26.76 (36.79) -0.372 (0.346) -- 

Miss_cost_comp 2 (0.10%) -3502 (15396) -- -6.97 (90.36) -0.064 (0.509) -- 

Miss_ucost_comp 11 (0.53%) 16038 (18449) -- 141 (104) 1.001 (0.682) -- 

Miss_incr_cost 139 (6.64%) 2155 (3820) -- -31.19 (21.17) -0.041 (0.142) -- 

Miss_intervention 348 (16.62%) -4378 (3434) -- -53.31 (20.40)*** -0.305 (0.118)*** -- 

Miss_tdd_int 356 (17.00%) -1823 (3677) -- -73.74 (20.96)*** -0.310 (0.130)** -- 

Miss_comparator 2 (0.10%) -2956 (12087) -- -7.36 (73.64) -0.128 (0.398) -- 

Miss_tdd_comp 11 (0.53%) 1009 (5818) -- -8.42 (25.47) -0.082 (0.137) -- 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 

 

 

Moving on to categorical variables reported in Table 5.19 above, significant 

coefficients become rare. The fact that both the variable ‘intervention’ and 

‘comparator’ show only few coefficients which reach statistical significance may 

speak in favour of the view taken by NICE, essentially saying that ‘a statin is a 

statin is a statin’, implying there is no effectiveness evidence which would justify 
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to favour one statin over another when commencing treatment (Nice, 2008b). 

Non-significant coefficients for the ordered categorical variable encoding the 

total daily dose of the intervention may be explained by the offsetting effect of 

the total daily dose of the comparator technology, meaning that higher doses of 

the intervention may have been compared to higher doses of the comparator, so 

that measures of cost-effectiveness may remain in the same range. This 

hypothesis is supported by a positive polichoric correlation of above 0.4. Only 

the binary variable ‘active comparator’ which indicates whether a statin has 

been compared to another statin or ‘doing nothing’, shows significant 

relationships, which accords expectations. Precisely, comparing the intervention 

to another statin leads to lower ∆E as the comparator may lead to additional 

(quality adjusted) life years. This decrement in ∆E is likely to offset any 

decrement in ∆C, which may stem from the additional annual drug cost of the 

comparator. As a result, cost-effectiveness may be lower when comparing a 

statin to another statin, as opposed to comparing a statin to ‘doing nothing’.  

 

 

The third group of variables to consider are methodological characteristics on 

data-level, i.e. study methods which may vary within individual studies, which 

are reported in Table 5.20 below. Starting with the annual discount rate for ∆C 

and ∆E, we observe highly significant negative relationships in the univariate 

model, as well as a positive relationship for the discount rate on costs and a 

negative relationship for the discount rate on effects in the bivariate model 

which both are highly significant too. For the discount rate on effects, the 

observed relationship is in accord with what one would expect as increasing the 

discount rate decreases the present value of future (quality adjusted) life years 

saved, and hence lowers estimates of INMBs. However, for incremental costs 

things are more difficult. Increasing the discount rate decreases the net present 

value of future drug cost for both the intervention and the comparator (if the 

comparator is not ‘doing nothing’). In addition, the net present value of future 

treatment cost without intervention decreases with increasing the discount rate 

on costs, which in sum may lead to increasing incremental cost of the 

intervention and this, in turn, may lead to a negative relationship between DRC 

and INMB.  
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Table 5.20: Bivariate statistics of methodological characteristics on data-level 
 

  Univariate model Bivariate model 

Explanatory 

variables 

Raw Mean (SD) 

/ 

Proportion (%) 

INMB 

(2010 £ Sterling) 

DIC 

(Benchmark: 
46749  

(%-change)) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC 

(Benchmark: 
28735  

(%-change)) 

DRC 0.039 (0.017) -135022 (32104)*** 46734 (-0.03%) 752.91 (187.16)*** -- 28722 (-0.05%) 

DRB 0.030 (0.018) -215253 (33485)*** 46708 (-0.09%) -- -5915 (1036)*** 28707 (-0.10%) 

MCA_outc 0 (1) 624.83 (1213) 46751 (0.00%) -- 0.082 (0.042)* 28732 (-0.01%) 

MCA_horizon 0 (1) -1433 (1089) 46749 (0.00%) -5.216 (6.325) -0.053 (0.040) 28736 (0.00%) 

Outc_measure 

LYS 
QALYs 

 
1319 (62.99%) 
775 (37.01%) 

 
Omitted 

-1879 (1667) 
46750 (0.00%) 

 
-- 

 
Omitted 

-0.080 (0.052) 
28735 (0.00%) 

Elicitation 

n.a. (LYS) 
TTO 

EQ-5D 
HUI 
15D 

Other choice 
unclear 

 
1319 (62.99%) 

112 (5.35%) 
313 (14.95%) 

6 (0.29%) 
5 (0.24%) 

322 (15.38% 
17 (0.81%) 

 
Omitted 

-6617 (6320) 
1745 (2795) 

-3786 (12963) 
-2203 (17657) 
-8966 (18374) 
-2193 (9456) 

46751 (0.00%) 

 
Omitted 

-- 
-- 
-- 
-- 
-- 
-- 

 
Omitted 

-0.193 (0.210) 
0.010 (0.088) 
-0.203 (0.431) 
-0.073 (0.559) 
-0.047 (0.506) 
-0.045 (0.310) 

28738 (0.01%) 

Elicitation_shor

t 

n.a. (LYS) 
TTO 

EQ-5D 
Other choice. 

unclear 

 
1319 (62.99%) 

112 (5.35%) 
313 (14.95%) 
333 (15.90%) 

17 (0.81%) 

 
Omitted 

-6388 (6436) 
1734 (2788) 
-3556 (9340) 
-2300 (9534) 

46751 (0.00%) 

 
Omitted 

-- 
-- 
-- 
-- 

 
Omitted 

-0.188 (0.204) 
0.008 (0.089) 
-0.083 (0.316) 
-0.053 (0.317) 

28738 (0.01%) 

Population 

n.a. (LYS) 
patient 

population 
unclear 

 
1319 (62.99%) 
215 (10.27%) 
474 (22.64%) 

86 (4.11%) 

 
Omitted 

-4886 (4914) 
1930 (2860) 
-2843 (8841) 

46750 (0.00%) 

 
Omitted 

-- 
-- 
-- 

 
Omitted 

-0.133 (0.155) 
0.006 (0.091) 
-0.029 (0.288) 

28737 (0.01%) 

Duration 

< 5 years 
5 to <10 years 

10 to <15 years 
15 to <20 years 
20 to <25 years 

> 25 years 
(lifet.) 

Unclear 

 
66 (3.15%) 

788 (37.63%) 
175 (8.36%) 
44 (2.10%) 
87 (4.15%) 

814 (38.87%) 
120 (5.73%) 

 
Omitted 

1306 (5654) 
2371 (5473) 
3082 (6068) 
5503 (5954) 
8753 (5535) 

-10290 (12917) 

46733 (-0.03%) 

 
Omitted 

25.09 (30.02) 
11.97 (29.09) 
23.36 (33.22) 
-0.987 (32.50) 
38.77 (29.11) 

215.97 (63.16)*** 

 
Omitted 

0.097 (0.195) 
0.097 (0.190) 
0.145 (0.210) 
0.140 (0.209) 

0.383 (0.194)** 
0.026 (0.503) 

28711 (-0.08%) 

Duration_short 

< 10 years  
10 to 20 years 

> 20 years 
unclear 

 
854 (4078%) 
219 (10.46%) 
901 (43.03% 
120 (5.73%) 

 
Omitted 

1532 (2301) 
6974 (1916)*** 
-13122 (11565) 

46731 (-0.04%) 

 
Omitted 

-3.31 (13.74) 
10.47 (10.98) 

221.93 (56.07)*** 

 
Omitted 

0.040 (0.076) 
0.251 (0.063)*** 

0.134 (0.449) 

28715 (-0.07%) 

Extrapol 

no  
yes  

 
152 (7.26%) 

1942 (92.74%) 

 
Omitted 

3294 (5492) 
46750 (0.00%) 

 
Omitted 

30.29 (32.71) 

 
Omitted 

0.163 (0.213) 
28736 (0.00%) 

Horizon 

< 5 years 
5 to <10 years 

10 to <15 years 
15 to <20 years 
20 to <25 years 

> 25 years 
(lifet.) 

 
17 (0.81%) 

191 (9.12%) 
330 (15.76%) 
132 (6.30%) 
91 (4.35%) 

1333 (63.6%) 

 
Omitted 

888 (10654) 
2710 (10544) 
1804 (10620) 
4993 (10732) 
8336 (10445) 

46741 (-0.02%) 

 
Omitted 

26.83 (59.53) 
18.22 (59.51) 
22.97 (59.92) 
3.369 (60.88) 
43.83 (58.63) 

 
Omitted 

0.089 (0.404) 
0.122 (0.400) 
0.101 (0.403) 
0.138 (0.408) 
0.373 (0.399) 

28724 (-0.04%) 

horizon_short 

< 10 years  
10 to 20 years 

> 20 years 

 
208 (9.93%) 

462 (22.06%) 
1424 (68%) 

 
Omitted 

1424 (2570) 
6600 (2326)*** 

46740 (-0.02%) 

 
Omitted 

-6.02 (15.35) 
8.62 (14.00) 

 
Omitted 

0.020 (0.086) 
0.222 (0.078)*** 

28727 (-0.03%) 

hor_eq_dur 

no 
yes 

 
1328 (63.42%) 
766 (36.58%) 

 
Omitted 

-5832 (2905)** 
46742 (-0.01%) 

 
Omitted 

-1.39 (17.20) 

 
Omitted 

-0.244 (0.104)** 
28726 (-0.03%) 

Persp_rep 

Health 
insurance 
Societal 

Not reported 

 
1369 (65.38%) 
214 (10.22%) 
511 (24.40%) 

 
Omitted 

-8945 (5019)* 
-5650 (5619) 

46750 (0.00%) 

 
Omitted 

40.54 (28.28) 
32.28 (30.60) 

 
-- 

28736 (0.00%) 

Persp_C_concl 

Health 
insurance 
Societal 
Provider 

 
 
 
 

 
1939 (92.60%) 

135 (6.45%) 
20 (0.96%) 

 
 
 

 
Omitted 

13149 (4396)*** 
38984 (5074)*** 

 
 
 

46681 (-0.15%) 
 
 
 

 
Omitted 

-147.19 (26.16)*** 
-394.43 (29.26)*** 

 
 
 

 
-- 
 
 
 

28527 (-0.72%) 
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data_class 

base case 
 efficacy 

baseline risk 
cost (not int.) 

int. cost 
QALYs 

Dur./hor. 
Discount rate 

Other SA 

 
1125 (53.72%) 

12 (0.57%) 
49 (2.34%) 
64 (3.06%) 
86 (4.11%) 
72 (3.44%) 

288 (13.75%) 
257 (12.27%) 
141 (6.73% 

 
Omitted 

-1636 (6017) 
-6308 (3167)** 
-109.16 (2718) 
-632.80 (2198) 
-769.88 (3642) 

-6765 (1762)*** 
955.55 (1408) 
865.04 (2214) 

46732 (-0.04%) 

 
Omitted 

19.87 (36.26) 
69.27 (19.18)*** 

4.18 (16.37) 
18.44 (13.43) 
1.40 (22.00) 

12.69 (10.68) 
37.69 (8.55)*** 

-2.46 (13.07) 

 
Omitted 

0.25 (0.199) 
0.025 (0.103) 
0.017 (0.091) 
0.048 (0.071) 
-0.003 (0.124) 

-0.176 (0.058)*** 
0.162 (0.046)*** 

0.028 (0.072) 

28685 (-0.17%) 

Basecase 

Yes 
No 

 
1125 (53.72%) 
969 (46.28%) 

 
Omitted 

-1337 (1080) 
46749 (0.00%) 

 
Omitted 

24.49 (6.64)*** 

 
Omitted 

0.045 (0.037) 
28720 (-0.05%) 

source_effects 

lit./meta 
PLACI/II 

CARE 
WOSCOPS 

4S 
4S/ WOSCOPS 

EXCEL 
LIPID 

CARDS 
HPS 
TNT 
LIPS 

IDEAL 
STELLAR 

Brown et al 
other 

 
652 (31.14%) 

38 (1.81%) 
88 (4.20%) 
81 (3.87%) 

509 (24.31%) 
46 (2.2%) 

120 (5.73%) 
23 (1.10%) 
28 (1.34%) 

280 (13.37%) 
42 (2.01%) 
33 (1.58%) 
24 (1.15%) 
62 (2.96%) 
22 (1.05%) 
46 (2.20%) 

 
Omitted 

3497 (10297) 
4750 (7842) 
-1070 (8090) 

24051 (6689)*** 
-3978 (15536) 

-10021 (11858) 
10950 (9692) 
5147 (9387) 

12542 (10017) 
1104 (10450) 
2583 (10242) 
-1390 (12260) 
6622 (11866) 
7369 (16660) 
8482 (6959) 

46750 (0.00%) 

 
Omitted 

-7838 (5817) 
-44.62 (44.39) 
-31.44 (45.01) 
1.501 (38.35) 
-9.63 (84.73) 

152.38 (59.15)*** 
-55.55 (54.48) 

-111.79 (50.42)** 
-78.44 (52.70) 
-84.50 (56.08) 

-94-47 (56.40)* 
-95.43 (67.59) 
-71.14 (66.68) 
-93.82 (84.76) 
-33.21 (38.16) 

 
Omitted 

-0.087 (0.421) 
0.067 (0.319) 
-0.068 (0.320) 

0.789 (0.261)*** 
-0.057 (0.605) 
-0.034 (0.417) 
0.230 (0.382) 
-0.229 (0.367) 
0.231 (0.379) 
-0.269 (0.385) 
-0.215 (0.427) 
-0.449 (0.484) 
-0.090 (0.472) 
-0.302 (0.644) 
0.223 (0.272) 

28736 (0.00%) 

4_S + 

No 
yes 

 
1585 (75.69%) 
509 (24.31%) 

 
Omitted 

21041 (5254)*** 
46748 (0.00%) 

 
-- 

 
Omitted 

0.699 (0.172)*** 
28734 (0.00%) 

Barbieri_score_

1 

Type C 
Type CR 
Type CU 
Type CRE 
Type CRU 

Type CREU 

 
186 (8.88%) 

1033 (49.33%) 
113 (5.40%) 
193 (9.22%) 

513 (24.50%) 
56 (2.67%) 

 
Omitted 

6964 (3738)* 
1367 (6563) 
1452 (7308) 

515.29 (6631) 
-1343 (7690) 

46746 (-0.01%) 

 
Omitted 

-36.60 (22.53) 
-15.71 (39.21) 

-82.61 (43.53)* 
-59.34 (37.60) 

-93.00 (46.20)** 

 
Omitted 

0.049 (0.131) 
0.015 (0.227) 
-0.235 (0.304) 
-0.153 (0.262) 
-0.396 (0.314) 

28731 (-0.01%) 

Barbieri_score_

2 

Type 1 
Type 2 
Type 3 
Type 4 

 
186 (8.88%) 

1146 (54.73%) 
706 (33.72%) 

56 (2.67%) 

 
Omitted 

5818 (3321)* 
23.25 (5144) 
-3778 (5809) 

46746 (-0.01%) 

 
Omitted 

-31.74 (19.50) 
-64.11 (31.81)** 
-75.14 (35.96)** 

 
Omitted 

0.049 (0.114) 
-0.185 (0.221) 
-0.343 (0.237) 

28730 (-0.02%) 

Missingness indicators 

Miss_mca_outc 98 (4.68%) -1269 (7184) -- 2.172 (38.57) -0.001 (0.276) -- 

Miss_elicitation 17 (0.81%) -1755 (4226) -- -- 0.074 (0.132) -- 

Miss_population  86 (4.11%) -637.60 (2136) -- -- -0.031 (0.068) -- 

Miss_duration 120 (5.73%) -1224 (1696) -- 22.27 (10.34)** 0.031 (0.055) -- 

* 
** 

*** 
+ 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
No variation on data-level. Will be treated as study-level covariate within further analysis.  

 

Further continuous variables in this subgroup are MCA scores for variables 

concerned with outcome measurement (‘MCA_outcome’) and time horizon 

(‘MCA_horizon’). Neither leads to statistically significant results, as can be seen 

from Table 5.20 above. Likewise, the items used to generate these MCA scores 

fail to produce any significant results. However, very few methodological factors 

on data-level do have highly significant coefficients, one of them being the 

perspective on cost as judged by the author of this thesis. Interestingly, this is in 

sharp contrast to the results obtained when testing the perspective on cost as 

reported by the authors of studies included in this exercise, as results of this 

regression do not reach statistical significance. When looking at the perspective 



 

258 
 

as judged within this thesis, one observes that both a societal and a provider 

perspective are associated with lower incremental cost and improved cost-

effectiveness as compared to the health insurance (NHS) perspective, which was 

left to the omitted category. For the provider perspective this may be due, for 

instance, to not including cost-items which may be considered from a health 

insurance but not from a provider perspective, and for the societal perspective 

this may be due to the inclusion of additional cost savings for the society due to 

CVD prevention with statins, such as avoiding future work loss.  

 

 

As also reported in Table 5.20, whilst most types of sensitivity analyses did not 

significantly differ from base case results when testing the variable ‘data_class’, 

the binary variable basecase (yes/no) was highly significant for incremental cost 

in the bivariate model. Further, three covariates were tested in this group of 

variables which are concerned with data sources for populating the economic 

model. First, estimates of treatment effect were obtained from different 

randomised trials. However, the variable ‘source effects’ shows that only very 

few coefficients are significant, indicating that trial results, even for different 

statins with different comparators, are in the same range. Nevertheless, results 

obtained using data from the 4S study, which is also the trial which most cost-

effectiveness estimates in this empirical exercise are based upon, differ sharply 

from the rest of the dataset. A strong positive and highly significant relationship 

to ∆E in the bivariate model was observed and consequently, a positive and 

highly significant relationship with INMBs in the univariate model too. The fact 

that there was no relationship to ∆C also makes sense as different studies, 

though based on the same effectiveness data, may have used different costing 

methodologies. To control for this potential source of variability in effectiveness 

data, which also leads to a systematic difference in INMBs, a binary variable was 

created which is 1 if the estimate was obtained using 4S data, and zero 

otherwise. Note, however, that this binary variable does not show any variation 

within economic evaluation studies which is why it is treated as a study-level 

covariate in subsequent analyses. Obviously, it would be interesting to look into 

reasons why 4S is associated with better effectiveness and INMB values in the 

current analysis.  
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Finally, the geographic origin of input parameters was systematically assessed by 

creating a variable which captures the degree to which input values represent 

the target location. Precisely, the variable ‘barbieri_score_1’ comprises six 

categories where the category ‘C’ refers to cost-effectiveness data with only unit-

cost estimates being target location specific. Likewise, the category ‘CU’ refers to 

cost-effectiveness estimates based on target specific unit cost data and utility 

weights and so on, up to ‘CUER’, where all main input parameters were based on 

target location specific data. A shorter variant of this variable was also created 

(‘barbieri_score_2’), which categorises data in four groups from ‘1’ (only one 

input parameter target specific) to ‘4’ (all input parameters target specific).  

Details on the way this variable was created can also be obtained from Chapter 

4. As reported in Table 5.20 above, however, neither variant of this variable 

showed any conclusive results if tested individually in the multilevel framework. 

Maybe this changes when testing the variable in conjunction with other 

covariates.  

 

 

Moving on to the study-level, bivariate statistics were first produced for general 

study characteristics, as reported in Table 5.21 below. First of all, timing was 

assessed as a continuous variable. A negative relationship was anticipated with 

∆C, whilst the relationship with ∆E was assumed to be positive. The reason is 

that we may expect both statins becoming cheaper and more effective over 

time, consequently leading to improved cost-effectiveness. However, the data 

only confirms this expectation for ∆C in the bivariate model, whilst coefficients 

for ∆E and INMB are not significant. Moving on to the funding institution, we 

observe that studies mainly funded through industry show higher INMBs and this 

relationship is significant at the 5%-level. However, a similar relationship is not 

observed for ∆C or ∆E in the bivariate model.  

 

 

Next, covariates encoding existing relationships between studies through 

common authorship are tested. These variables resulted from looking into the 

genealogy of economic evaluation studies in Chapter 4 and details on the way 

these covariates were created can be found there. Results reported in Table 5.21 

show that only one group of papers with common authorship clearly depart from 

the rest of the dataset in terms of both ∆C and ∆E in the bivariate model as well 

as INMBs in the univariate model. This group of studies was co-authored by SA 

Grover and this finding confirms the interpretation of the forest plots presented 
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earlier in Section 5.1.4 of this chapter, which already indicated that papers co-

authored by this researcher were clearly out of the range of other studies 

included in this empirical exercise. Apart from common authorship, another 

combining factor between those studies is the use of the same DAM, namely the 

‘CHD life expectancy model’. An interesting topic for the discussion section is to 

look into potential reasons why this model may lead to much higher estimates of 

cost-effectiveness compared to other studies in this empirical exercise. To 

control for this potential source of variability, a binary variable was created 

which is ‘1’ if a data point refers to a study included in this group and ‘0’ 

otherwise.  

 

Table 5.21: Bivariate statistics of general study characteristics 

 

 
 Univariate model Bivariate model 

Explanatory 

Variables 

Raw Mean 

(SD) / 

Proportion 

(%) 

INMB 

(2010 £ 
Sterling) 

DIC 

(Benchmark: 
46749  

(%-change)) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC 

(Benchmark: 
28735  

(%-change)) 

Timing 2000 (5.40) 213.26 (378.04) 46749 (0.00%) -8.09 (1.97)*** -0.018 (0.016) 28733 (-0.01%) 

Language 

English 
German 

 
61 (91.04%) 

6 (8.96%) 

 
Omitted 

-645.17 (7653) 
46749 (0.00%) 

 
Omitted 

-36.06 (50.19) 

 
Omitted 

-0.124 (0.375) 
28735 (0.00%) 

Funding_institution 

RC/gov/uni/other 
Industry 
unclear 

 
11 (16.42%) 
39 (58.21%) 
17 (25.37%) 

 
Omitted 

10803 (5430)** 
12184 (6343)* 

46750 (0.00%) 

 
Omitted 

-48.92 (32.18) 
-32.82 (40.93) 

 
Omitted 

0.168 (0.212) 
0.315 (0.269) 

28736 (0.00%) 

Funding_manuf. 

No manufacturer 
BMS 

MERCK 
Pfizer 
Other  

unclear 

 
11 (16.42%) 
7 (10.45%) 

12 (17.91%) 
13 (19.40%) 
9 (13.43%) 

15 (22.39%) 

 
Omitted 

5683 (7782) 
16389 (6407)** 
14798 (6566)** 

5903 (7364) 
8807 (6546) 

46750 (0.00%) 

 
Omitted 

-57.98 (45.18) 
11.01 (40.15) 

-71.02 (36.63)* 
-80.57 (41.90)* 
-35.84 (41.29) 

 
Omitted 

0.037 (0.318) 
0.597 (0.291)** 

0.190 (0.284) 
-0.134 (0.294) 
0.214 (0.288) 

28737 (0.01%) 

Author_group_long 

No relationships  
Group 01 
Group 02 
Group 03 
Group 04 
Group 05 
Group 06 
Group 07 
Group 08 
Group 09 
Group 10 
Group 11 
Group 12 

 
18 (26.87%) 

4 (5.97%) 
5 (7.46%) 

8 (11.94%) 
4 (5.97%) 

7 (10.45%) 
5 (7.46%) 
3 (4.48%) 
3 (4.48%) 
3 (4.48%) 
3 (4.48%) 
2 (2.99%) 
2 (2.99%) 

 
Omitted 

-6581 (7736) 
-1107 (8100) 

27522 (6222)*** 
-6840 (8704) 
-2107 (6949) 
1411 (7881) 
2051 (9142) 
3119 (9606) 
-2189 (8791) 
-1415 (9306) 

11601 (10848) 
-6715 (11940) 

46748 (0.00%) 

 
Omitted 

65.04 (45.72) 
-36.38 (49.14) 

141.69 (42.38)*** 
94.59 (52.11)* 
-11.39 (44.09) 
-11.25 (46.36) 
-16.51 (55.70) 
-43.97 (55.79) 
-15.44 (48.64) 
-57.38 (55.99) 
-33.69 (57.38) 
0.98 (70.59) 

 
Omitted 

-0.004 (0.315) 
-0.099 (0.310) 

1.438 (0.297)*** 
0.088 (0.309) 
-0.110 (0.287) 
-0.006 (0.272) 
-0.021 (0.351) 
-0.033 (0.352) 
-0.115 (0.303) 
-0.244 (0.344) 
0.289 (0.391) 
-0.178 (0.437) 

28736 (0.00%) 

Author_group_short 

No relationships  
Group 01 
Group 02 
Group 03 
Group 04 
Group 05 
Group 06 
Group 07 

 
18 (26.87%) 
29 (43.28%) 
8 (11.94%) 
3 (4.48%) 
2 (2.99%) 
3 (4.48%) 
2 (2.99%) 
2 (2.99%) 

 
Omitted 

-2249 (4416) 
27044 (6060)*** 

1936 (8603) 
-929.24 (9788) 
-1292 (9286) 
10576 (9728) 
-6883 (11661) 

46748 (0.00%) 

 
Omitted 

6.86 (28.43) 
160.60 (41.37)*** 

-25.89 (58.21) 
-10.87 (59.90) 
-61.32 (55.45) 
-47.50 (58.82) 
10.23 (66.79) 

 
Omitted 

-0.046 (0.167) 
1.522 (0.256)*** 
-0.060 (0.334) 
-0.191 (0.370) 
-0.281 (0.327) 
0.171 (0.361) 
-0.130 (0.394) 

28735 (0.00%) 

Author_Grover 

No 
yes 

 
59 (88.06%) 
8 (11.94%) 

 
Omitted 

28410 (5196)*** 
46747 (0.00%) 

 
Omitted 

147.15 (34.16)*** 

 
Omitted 

1.510 (0.223)*** 
28735 (0.00%) 

Missingness indicators 

Miss_fund_inst 17 (25.37%) 1064 (1185) -- -9.215 (7.289) 0.006 (0.039) -- 

Miss_fund_man 15 (22.39%) 1681 (4748) -- -1.338 (10.36) 0.055 (0.056) -- 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Moving on to methodological characteristics on study-level for which bivariate 

statistics are reported in Table 5.22, we observe that studies capturing treatment 

effectiveness by modelling the impact of a change in cholesterol levels on 

(quality adjusted) life years show higher ∆C and ∆E than studies directly 

considering the change in CVD risk without making explicit the link from 

intermediate to final outcomes. This relationship is highly significant for both 

components of the INMB statistic in the bivariate model and, in addition to that, 

the impact on ∆E seems to outweigh the impact on ∆C, so that INMBs are also 

higher in studies which explicitly model from intermediate to final outcomes; 

though this relationship only borders at the 5%-level of significance.  

 

Table 5.22: Bivariate statistics of methods on study-level  

 

 
 Univariate model Bivariate model 

 
Raw Mean (SD) 

/ 

Proportion (%) 

INMB 

(2010 £ 
Sterling) 

DIC (Benchmark: 
46749  

(%-change)) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC (Benchmark: 
28735 

 (%-change)) 

General design 

Primary modelling 
Secondary 
modelling 

 
6 (8.96%) 

61 (91.04%) 

 
Omitted 

2527 (7080) 
46749 (0.00%) 

 
Omitted 

51.30 (40.02) 

 
Omitted 

0.244 (0.265) 
28736 (0.00%) 

Secondary design 

N.a. (primary m.) 

Markov model 
Decision tree 

Other 

 
6 (8.96%) 

41 (61.19%) 
7 (10.45%) 

13 (19.40%) 

 
Omitted 

2672 (7033) 
-286.35 (9344) 
3399 (8230) 

46750 (0.00%) 

 
Omitted 

33.86 (46.77) 
126.10 (48.48)*** 

54.54 (46.77) 

 
Omitted 

0.226 (0.287) 
0.470 (0.357) 
0.253 (0.333) 

28737 (0.01%) 

Effect_calc 

CHD risk 
reduction 

Cholest. reduction 

 
41 (61.19%) 
26 (38.81%) 

 
Omitted 

8188 (4368)* 
46749 (0.00%) 

 
Omitted 

84.48 (25.69)*** 

 
Omitted 

0.505 
(0.194)*** 

28735 (0.00%) 

multinational 

no 
yes 

 
60 (89.55%) 
7 (10.45%) 

 
Omitted 

4819 (6896) 
46749 (0.00%) 

 
Omitted 

-31.86 (54.79) 

 
Omitted 

0.036 (0.403) 
28735 (0.00%) 

Infl_adj 

n.a.  
no  
yes 

unclear 

 
12 (17.91%) 

2 (2.99%) 
18 (26.87%) 
35 (52.24%) 

 
Omitted 

-6110 (12836) 
-8759 (6458) 
-1834 (5777) 

46750 (0.00%) 

 
Omitted 

-20.49 (76.33) 
9.22 (40.18) 

43.41 (32.53) 

 
Omitted 

-0.226 (0.507) 
-0.275 (0.290) 
0.211 (0.236) 

28737 (0.01%) 

Adj_method 

n.a. 
simple CPI 

healthcare CPI 
not though 
indicated 
unclear 

 
12 (17.91%) 
8 (11.94%) 

10 (14.93%) 
2 (2.99%) 

35 (52.24%) 

 
Omitted 

-12040 (7767) 
-5143 (7569) 
-4734 (12604) 
-1534 (5801) 

46750 (0.00%) 

 
Omitted 

15.64 (46.62) 
-8.61 (47.75) 

-32.73 (72.63) 
35.73 (33.57) 

 
Omitted 

-0.413 (0.324) 
-0.180 (0.328) 
-0.318 (0.478) 
0.192 (0.233) 

28737 (0.01%) 

Cur_conv 

No 
yes 

 
52 (77.61%) 
15 (22.39%) 

 
Omitted 

4797 (3878) 
46750 (0.00%) 

 
Omitted 

0.297 (23.13) 

 
Omitted 

0.150 (0.151) 
28737 (0.01%) 

Conv_method 

n.a. 
Exchange rates 

unclear 

 
52 (77.61%) 
11 (16.42%) 

4 (5.97%) 

 
Omitted 

6878 (4386) 
-2424 (7582) 

46751 (0.00%) 

 
Omitted 

-0.232 (24.73) 
17.80 (45.42) 

 
Omitted 

0.227 (0.158) 
0.009 (0.286) 

28735 (0.00%) 

Scope  

CAD 
CAD and CD 

CAD, CD and PAD 
unclear 

 
18 (26.87%) 
35 (52.24%) 
11 (16.42%) 

3 (4.48%) 

 
Omitted 

2610 (1781) 
1057 (5628) 
-8031 (11584) 

46749 (0.00%) 

 
Omitted 

40.45 (10.70)*** 
-70.04 (28.55)** 

-6.243 (67.14) 

 
Omitted 

-0.030 (0.059) 
-0.144 (0.226) 
-0.182 (0.460) 

28727 (-0.03%) 

Missingness indicators 

Miss_infl_adj 35 (52.24%) 658.6 (887.1) -- -2.825 (5.383) 0.012 (0.029) -- 

Miss_adj_method 35 (52.24%) 661.8 (887.8) -- -2.849 (5.383) 0.013 (0.222) -- 

Miss_conv_meth. 4 (5.97%) -3968 (3244) -- -28.40 (19.82) -0.227 (0.108)** -- 

Miss_scope 3 (4.48%) 7132 (5290) -- 40.62 (32.32) 0.371 (0.176)** -- 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Apart from that, the assessment of methods on study-level did not lead to 

noteworthy results, as only one further categorical variable (scope) showed 

significant coefficients for the cost component of the INMB statistic. One may 

expect that studies which do not only look into the impact of statins on coronary 

heart disease (CHD), but also consider conditions as stroke or peripheral arterial 

disease, tend to have lower ∆C than studies which are confined to CHD only. This 

may be due to future cost avoided for a broader range of conditions due to 

prevention with statins. However, analysis shows a highly significant positive 

coefficient for studies which include stroke next to CHD but a negative 

coefficient for studies including CHD, stroke and peripheral arterial disease so 

that results are not entirely conclusive.   

 

 

Finally, the data abstraction exercise reported in Chapter 4 was accompanied by 

applying the QHES instrument to the studies included in this empirical exercise 

(Ofman et al., 2003). This resulted in a score (bound between zero and 100) for 

each study in the dataset which supposedly gives an indication of study quality. 

Though a number of quality checklists exist and the application of such tools is 

not without controversy, this may be regarded as an attempt to control for some 

part of the variability in measures of cost-effectiveness due to differences in the 

methodological rigour with which economic evaluation studies were conducted 

and reported. Further details on why the QHES instrument was chosen out of a 

number of potential checklists, how it was applied to the studies in this empirical 

exercise, which problems were encountered throughout the process, and how 

these problems were addressed within this thesis are reported in Chapter 4.  

 

 

For bivariate statistics, the information obtained from QHES was implemented in 

different ways, resulting in two continuous and two categorical variants of this 

variable. The reason is that the authors who developed QHES defined 

dimensions of study quality of which some are comprised of several 

subcategories (Ofman et al., 2003). This induces the problem that studies may 

score in some but not all subcategories in one dimension. Depending on how 

rigorous one is in the application of this instrument, this may lead to different 

scores for the same study. Therefore, two continuous variables were derived 

(again, further details are available from Chapter 4), and to better reflect the 
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immense uncertainty attached to the data obtained through QHES, the 

continuous data was also transformed to categorical variables with 5 categories 

with increments of 20 between zero and 100. Descriptive statistics show that a 

strict application of the QHES criteria (i.e. not assigning a score for a particular 

dimension if a study does not completely fulfil the criteria) leads to a lower mean 

but higher standard deviation for continuous data, and also a higher spread 

across categories for categorical data.  

 

 

Bivariate statistics reported in Table 5.23 show negative relationships between 

continuous QHES variables and both components of the INMB statistic, whilst 

this relationship is significant at the 1% level for ∆C and at the 5%-level for ∆E. 

This result indicates that a higher study quality (as measured by the QHES 

instrument) is associated with more conservative estimates of incremental 

effects, and also lower estimates of incremental costs compared to studies which 

achieved a lower QHES score. However, significance was not achieved for 

coefficients in the univariate model. Testing the categorical versions of the QHES 

instrument confirms the previous findings, though it is interesting that results do 

not longer reach statistical significance for ∆E in QHES_cat_a, which resulted 

from a strict application of the QHES criteria. This observation indicates that 

results may be interpreted with caution, as they obviously are very sensitive to 

small variations in the way QHES has been operationalized in this empirical 

exercise.  

 

 

Table 5.23: Bivariate statistics of study quality indicators  

 

 
 Univariate model Bivariate model 

 
Raw Mean (SD) 

/ 

Proportion (%) 

INMB 

(2010 £ Sterling) 

DIC 

(Benchmark: 
46749 

 (%-change)) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC 

(Benchmark: 
28735  

(%-change)) 

QHES cont_a 66.23 (17.97) -167.77 (131.06) 46749 (0.00%) -2.244 (0.77)*** -0.013 (0.006)** 28736 (0.00%) 

QHES cont_b 75.34 (15.36) -193.81 (154.60) 46749 (0.00%) -2.545 (0.903)*** -0.015 (0.007)** 28736 (0.00%) 

QHES cat_a 

Up to 40 pts 
41 to 60 pts 
61 to 80 pts 

81 to 100 pts 

 
7 (10.45%) 

31 (46.27%) 
22 (32.84%) 
7 (10.45%) 

 
Omitted 

7039 (7488) 
4112 (7823) 
-321 (9271) 

46749 (0.00%) 

 
Omitted 

-98.03 (38.03)*** 
-140.89 (41.25)*** 
164.97 (49.22)*** 

 
Omitted 

-0.013 (0.293) 
-0.229 (0.321) 
-0.481 (0.391) 

28734 (0.00%) 

QHS cat_b 

Up to 60 pts 
61 to 80 pts 

81 to 100 pts 

 
20 (29.85%) 
40 (59.70% 
7 (10.45%) 

 
Omitted 

-9528 (4565)** 
-12150 (7109)* 

46749 (0.00%) 

 
Omitted 

-71.10 (24.70)*** 
-110.83 (39.46)*** 

 
Omitted 

-0.521 (0.172)*** 
-0.762 (0.276)*** 

28735 (0.00%) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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5.2.4.2. Random intercepts models with multiple covariates on data and study-

level  

 

 

In this section, a full random intercepts model is developed with covariates on 

data and study-level. The primary objective is to control for variability factors on 

both levels which potentially feed through to the country-level so that further 

country-level variability may be disclosed. This country-level variability is the 

focus of assessment in Section 5.3 of this empirical exercise. In this section, it is 

assumed that slopes of explanatory variables are fixed (this assumption is being 

relaxed in Section 5.4 through the inclusion of random slopes).  As detailed in the 

analysis strategy for this section, the model is being build up from the lower level 

to the higher level, and covariates are added to the model if their coefficients are 

significant and accord expectations and the overall fit of the model improves.  

 

 

The order with which variables are tested has also been laid out in the analysis 

strategy. Patient and disease characteristics are tested first as arguably the most 

critical source of variability in measures of cost-effectiveness (Sculpher et al., 

2004), followed by intervention and comparator characteristics, methods on 

data-level, general study characteristics, methods on study-level and study 

quality indicators. Results from gradually building up the full random intercepts 

model can be obtained from Appendix 5.4. The results from running the final 

model fully specified with covariates on data and study-level are obtainable from 

Table 5.24 below. Each covariate is tested individually, and its impact on overall 

fit and other coefficients with their respective p-values is observed. This bottom 

up approach ensures that the most appropriate set of covariates is chosen out of 

the pool of candidates available in this dataset. Missingness indicators are 

included in the model; however, they are only reported if they reach statistical 

significance. After choosing the most appropriate set of covariates, the impact on 

variability observed on each hierarchical level throughout the development of 

the models of interest is analysed and discussed.    

 

 

Combinations of patient and disease characteristics were tested first in the 

univariate and bivariate versions of the three-level hierarchical model. Results 

are detailed in Appendix 5.4.1. Total cholesterol (which was not significant for ∆C 
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when performing bivariate statistics), SBP and the percentage of patients 

diagnosed with diabetes in the study sample all turned out to be highly 

significant for INMB, ∆C and ∆E, whilst HDL was significant at the 10% level for 

∆C and ∆E in the bivariate model and at the 5% level for INMB in the univariate 

model. SBP turned out to be the variable which best controls for variability in 

cost-effectiveness data due to circulation related CVD risk. As a result, 

hypertension status, smoking status and the factor score obtained from running 

a PCF on SBP, hypertension and smoking were all dropped from the model due 

to strong collinearity with SBP. As before when running bivariate statistics, 

coefficients for the categorical variable encoding the age of the study sample 

turned out to be highly significant and show the previously observed relationship 

with measures of cost-effectiveness. Likewise, the gender variable accords 

expectations and shows highly significant coefficients. Interestingly however, 

CVD-history, which previously failed to show statistically significant coefficients, 

now turns out to be highly significant both for INMBs in the univariate model and 

∆E in the bivariate model. As hypothesized before, this may be due to the fact 

that controlling for individual patient risk factors unravels the actual relationship 

between measures of cost-effectiveness for statin treatment and CVD history, 

which should be positive for patients which previously experienced a CVD event.  

 

 

Adding intervention and comparator characteristics to the model further 

improves its fit (Appendix 5.4.2). The annual drug cost of the intervention is 

highly significant and accords expectations for INMB in the univariate model and 

∆C in the bivariate model. However, the annual drug cost of the comparator was 

dropped from the univariate model as improvement in fit was better when 

including the binary variable ‘active comparator’. The reason may be that both 

variables are highly correlated as the annual drug cost of the comparator is 

always zero when the comparator is ‘doing nothing’ (which is the case in 1834 

(87.58%) of data points). Hence, this binary variable was highly significant for ∆E 

in the bivariate model and significant at the 10% level in the univariate 

framework. In both cases, the coefficient shows the anticipated negative sign as 

one would expect both ∆E and INMBs to decrease if the intervention is 

compared to another statin rather than ‘doing nothing’. Instead of annual drug 

cost, a combination of the variables ‘unit cost’, ‘total daily dose’ and the specific 
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type of intervention or comparator was also tested in the model but results 

indicate a much better fit of the model as described above.  

 

 

The third group of variables to add to the model are methodological 

characteristics on data-level (Appendix 5.4.3). It turned out that only few 

variables show significant coefficients, but these variables improved the fit of the 

model quite dramatically. First of all, the discount rates on cost and effects were 

tested. Whilst both turned out to be significant at first, the discount rate on cost 

was dropped subsequently after including the categorical variable encoding the 

economic perspective taken on costs. A potential explanation for the correlation 

between both variables may be that different studies complied with different 

methods guidelines, which have their idiosyncratic views on both discount rate 

and perspective. Nevertheless, the discount rate on effects remained in the 

model as it was highly significant both for ∆E in the bivariate model and INMBs in 

the univariate framework.  

 

An interesting relationship was observed between the two explanatory variables 

‘horizon’ and ‘duration_eq_horizon’, which encodes whether treatment duration 

lasted as long as the time horizon of the economic model (or shorter). A time 

horizon of 20 years or more leads to higher INMBs and also higher ∆E in the 

bivariate model. Although one may think that longer treatment duration may 

also lead to higher ∆C, this was not observed in the bivariate model. In addition, 

INMBs and incremental effects turned out much more beneficial if the treatment 

with statins did not last as long as the models time horizon, meaning that statin 

treatment appears to be more beneficial when stopped before the end of the 

model lifetime.  Moving on to the variable ‘base case’, which encodes whether a 

data point refers to sensitivity analyses or not, it turns out that sensitivity 

analyses results are associated with both higher ∆C and higher ∆E in the bivariate 

model. This effect was not observed in the univariate model, most likely because 

the positive effect on ∆C is simply offset by the positive effect on ∆E.  

 

Finally, the variable ‘barbieri_score’ was tested in the model, and this led to 

significant coefficients for ∆C in the bivariate model. Precisely, continuously 
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decreasing ∆C is observed with increasing context specificity of the underlying 

input data. A related question is why this variable did not show significant 

coefficients for ∆E or INMBs. A reason may be that transferring effectiveness 

data is much more common than transferring economic data, so that there is 

simply no systematic variation in this relationship on the effectiveness side of the 

INMB statistic. This may then feed through to INMBs, so that the univariate 

model also fails to observe a relationship between context specificity of input 

data and measures of cost-effectiveness. Before moving on to the study-level, 

note that the source of effectiveness data also belongs to the group of 

methodological characteristics on data-level. Whilst this categorical variable did 

only show very little improvement in model fit, it also showed, however, that 

measures of ∆E and INMBs are much more beneficial if the study was based on 

data from the 4S trial. Hence, a binary variable was generated and tested when 

running bivariate statistics (more details are obtainable from the previous 

Section 5.2.4.1). Unlike the categorical variable with categories for each source 

of effectiveness data, which also differs within economic evaluation studies, this 

binary variable does not show any variation on data-level, and is therefore 

considered as a methodological characteristic on study-level further below.  

 

Moving on to this study-level (Appendix 5.4.4), it becomes more difficult finding 

significant coefficients. Timing, for instance, was expected to be an important 

explanatory both for ∆C and ∆E- and therefore also for INMBs. It was, however, 

not statistically significant. In theory, one may expect that statins become both 

less costly and more effective over time, however this was not observed in the 

multilevel models. With respect to incremental cost and INMBs, the explanation 

for this failure to observe significant coefficients may be relatively simple. The 

model already contains variables which encode the annual drug cost of the 

intervention and comparator technologies. If statin treatment becomes less 

costly over time, for instance because of generics which enter the market after 

product patents run out, this should be captured by those variables. 

Consequently, removing those variables from the model results in significant 

coefficients for timing, which accords prior expectations as these coefficients are 

negative for incremental cost and positive for INMBs. However, as the model fit 

is much better with the variables encoding annual drug cost, it was decided to 

keep those variables in the model and rather to drop timing instead.  
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Unfortunately, other variables which encode general study characteristics failed 

to show significant coefficients, for instance language (as papers included in the 

systematic review and data abstraction exercise may have been written in 

English or German). A further number of variables showed only significant 

coefficients in the univariate model, whilst coefficients for ∆C and ∆E were not 

significant. For instance, there was no significant difference between studies 

which were primarily funded by the government, research councils or 

Universities, and those primarily funded by the industry in the bivariate model, 

whilst INMBs were significantly higher (at the 5% level) for industry funding in 

the univariate model. However, this significant relationship disappeared when 

including a binary encoding whether a study uses the CHD life expectancy model 

by Grover et al (1998) and this observation is discussed in more detail with 

respect to the relevant literature (e.g. Miners et al., 2005) in Chapter 6.  

 

 

Assessing general study characteristics was not completely unsuccessful in terms 

of controlling for variability in measures of cost-effectiveness, and the reason for 

this is directly related to the genealogy study reported earlier in Chapter 4. It was 

hypothesized that studies which are ‘genotypically’ related, e.g. through 

common authorship, may also have ‘phenotypic’ characteristics in common, 

which may also lead to correlations in measures of cost-effectiveness. As a result, 

variables were created which encode links between studies included in this 

exercise due to common authorship, and analysis showed that one particular 

group of papers, all published by a group of authors around S.A. Grover, are 

strong outliers both in terms of ∆C and ∆E in the bivariate model and INMBs in 

the univariate framework. This finding confirms what was already indicated by 

the forest plots presented in Section 5.1.4. As a result, including a binary variable 

which is ‘1’ if the paper refers to this group of authors and ‘0’ otherwise leads to 

much higher estimates of INMBs and ∆E, and also elevated estimates of ∆C. 

Apart from common authorship, another similarity between the affected papers 

is the use of the identical DAM to assess cost-effectiveness which was already 

referred to above as the ‘CHD life expectancy model’. What may have caused this 

strong effect on measures of cost-effectiveness within the affected studies is also 

subject of further discussion in Chapter 6.  
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Table 5.24: Random intercepts model fully specified on data and study-level 
 

 
Univariate model Bivariate model 

Explanatory variables 
INMB 

(2010 £ Sterling) 
∆C/100 

(2010 £ Sterling) 
∆E 

 

Fixed part: 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30.000) 
-50105 716 -1.450 

TCL (SE) 4254 (562)*** -32.66 (3.13)*** 0.040 (0.018)** 

HDL (SE) -31211 (9424)*** 189.25 (53.17)*** -0.523 (0.303)* 

SBP (SE) 703 (35.82)*** -3.37 (0.19)*** 0.012 (0.001)*** 

Diabetes (SE) 15017 (1684)*** -19.44 (8.23)** 0.415 (0.053)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted 

311.4 (1111) 
-5934 (1091)*** 

-15211 (1157)*** 
-6663 (1956)*** 

-4437 (7421) 

 
Omitted  

-95.31 (6.05)*** 
-133.5 (5.95)*** 
-168.4 (6.27)*** 

-130.3 (10.58)*** 
-116.1 (43.39)*** 

 
Omitted 

-0.308 (0.036)*** 
-0.639 (0.035)*** 
-1.066 (0.037)*** 
-0.651 (0.063)*** 
-0.535 (0.230)** 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

10329 (841)*** 
11082 (3493)*** 

 
Omitted 

-32.76 (4.52)*** 
-29.01 (22.94) 

 
Omitted 

0.231 (0.027)*** 
0.253 (0.108)** 

CVD_history (SE) 

No 
Yes 

Mixed sample 

 
Omitted 

7985 (1632)*** 
8520 (6103) 

-- 

 
Omitted 

0.228 (0.049)*** 
0.334 (0.189)* 

Cost_intervention -9.08 (1.76)*** 0.129 (0.010)*** -- 

Cost_comparator -- -0.140 (0.023)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

 
Omitted 

-3845 (2211)* 
-- 

 
Omitted 

-0.274 (0.072)*** 

DRB -133550 (29321)*** -- -3.477 (0.889)*** 

Persp_cost_concl. 

Health insurance (NHS) 
Provider 
Societal 

 
Omitted 

33002 (4416)*** 
15212 (3498)*** 

 
Omitted 

-399.8 (22.88)*** 
-173.9 (19.82)*** 

-- 

Horizon 

< 20 years 
>20 years (lifetime) 

 
Omitted 

3812 (1349)*** 
-- 

 
Omitted 

0.159 (0.042)*** 

Duration=horizon 

yes 
No (treatment 

duration< horizon) 

 
Omitted 

13091 (2437)*** 
-- 

 
Omitted 

0.377 (0.075)*** 

Base case 

Yes 
No  

-- 
 

Omitted 
9.31 (4.95)* 

 
Omitted 

0.066 (0.030)** 

Barbieri_score_2 

Type 1 
Type 2 
Type 3 
Type 4 

-- 

 
Omitted 

-36.56 (15.29)** 
-64.08 (29.76)** 

-95.75 (32.03)*** 

-- 

Author_Grover 

No  
Yes 

 
Omitted 

29138 (5849)*** 

 
Omitted 

162.6 (44.79)*** 

 
Omitted 

1.412 (0.194)*** 

4S 

No 
yes 

 
Omitted 

14295 (5294)*** 
-- 

 
Omitted 

0.495 (0.159)*** 

Scope 

CHD 
CHD and stroke 

CHD, stroke and PAD  
unclear 

 
Omitted 

5535 (1566)*** 
8428 (4822)* 
5984 (9227) 

 
Omitted 

-36.63 (8.08)*** 
-33.78 (31.93) 
-104.5 (64.53) 

-- 

Random part: ����� 	(Country) 444825 3515 0.056 ����� 	(Study) 153583808 7797 0.136 ���� 	(Data) 188413984 5523 0.196 

VPC - Country 

VPC – Study 

VPC - data 

0.13% 
44.85% 
55.02% 

20.88% 
46.31% 
32.81% 

14.43% 
35.05% 
50.52% 

DIC 

(benchmark) 
45840 

(45844) 
26412 

(26423) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Moving on to methods on study-level, only two variables showed significant 

coefficients, namely ‘scope’ and ‘4S’ (Table 5.24). The variable ‘scope’ is a 

categorical which distinguishes between studies which 1) only consider the 

impact of statin treatment on CHD risk, 2) those which also consider the effect of 

prevention with statins on stroke and, 3) those studies which consider the effect 

of statins on CHD risk, stroke and peripheral arterial disease (PAD). Obviously, 

one would expect a positive relationship with ∆E as a broader scope leads to 

consideration of a broader range of beneficial effects from statin prevention. 

Likewise, ∆C may be lower, as a broader range of future healthcare cost may be 

avoided through statin treatment. However, significant coefficients which accord 

expectations were only observed for ∆C and INMBs, whilst coefficients were not 

significant for ∆E.  

 

 

Finally, the variable ‘4S’, which is ‘1’ if a study based its results on evidence from 

the 4S trial, and zero otherwise, was included as a methodological characteristic 

on study-level. This variable arose out of analysing the source of effectiveness 

data, and results indicated that only the 4S study may result in outliers in terms 

of incremental effects and INMBs. The results from running bivariate statistics 

were confirmed when including the binary in the random intercepts model, 

which led to an improvement of fit and strong changes both in study-level and 

country-level variability.  

 

 

Whilst results from gradually adding covariates to the model are obtainable from 

Appendix 5.4, Table 5.24 above reports on the results of running the fully 

specified random intercepts model with covariates on data and study-level. One 

group of variables is missing entirely from this model, i.e. indicators of study 

quality. Unfortunately, results indicate that variables encoding information from 

applying the QHES instrument to the studies included in the dataset, are not 

related to measures of cost-effectiveness. Potential reasons are that either there 

is no relationship between study quality and measures of cost-effectiveness, or 

that the QHES instrument simply failed to capture study quality in an appropriate 

manner, so that it was not possible to disclose any relationship between 

methodological rigour of an economic evaluation study and cost-effectiveness 
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results. The author believes that this latter explanation may be more likely, and 

elaborates further on this issue in the discussion of this empirical exercise.  

 

 

Before moving on to the next section, which is concerned with the assessment of 

country-level variability, it is indicated to make explicit once more how this 

whole exercise relates to the issue of variation in measures of cost-effectiveness 

between countries. For this matter, one may have a closer look at the random 

part of the models reported in Appendix 5.4. If lower-level variability factors feed 

through to higher levels, the actual amount of country-level variability may only 

be unravelled by including the appropriate set of covariates both on data and 

study-level. The multilevel framework offers an excellent platform to investigate 

this hypothesis as it allows higher-level variability to change in any direction with 

the inclusion of lower-level covariates (Hox, 2010). For instance, if Sculpher et al. 

(2004) are right with their statement that the impact of patient characteristics on 

measures of cost-effectiveness ‘feeds through to differences in cost-effectiveness 

observed on higher levels’, than we ought to observe changes in error terms 

relating to each hierarchical level of the model by including such lower-level 

covariates. Obviously, the same holds for study-level covariates, as controlling 

for study characteristics may also impact on the variability in measures of cost-

effectiveness observed between countries.  

 

 

As the model was gradually built up from the lower to the higher level, it is 

possible to map the change in variability on each hierarchical level throughout 

the course of this empirical exercise. If the suspicion holds in the sense that 

variability on lower levels disguises variability on country-level, one should 

observe the country-level gradually becoming an ever more important source of 

variability in measures of cost-effectiveness. Figure 5.10 captures the change in 

the variance partitioning coefficient (VPC) on each hierarchical level throughout 

the course of this empirical exercise. During the first part of this study, which was 

concerned with determining the appropriate MLM structure, variability on data-

level remained relatively constant, whilst the VPC increased on country-level and 

consequently decreased on study-level, especially for ∆C and ∆E in the bivariate 

model. The reason is that multinational study data disguised country-level 

variability in the cross-classified and intermediate models. Grouping data from 

multinational studies in a separate group on country-level disclosed further 

variability between countries, whilst study-level variability decreased 

respectively.  
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Secondly, testing data-level covariates in the model obviously had a very strong 

impact on level-one variability. It led to a sharp drop in VPC on data-level for 

both variability in INMBs in the univariate model as well as variability in ∆C and 

∆E in the bivariate model. However, variability on study-level and country-level 

Figure 5.10. VPC on data, study and country-level throughout this empirical 

exercise 
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increased simultaneously, and this not just in relative terms as measured with 

the VPC, but also in absolute terms, which is getting obvious when comparing 

the figures displayed in Tables 5.4.1 to 5.4.4 in Appendix 5.4. This is very 

compelling evidence in favour of the statement that the effect of lower-level 

variables feeds through to variability in measures of cost-effectiveness between 

studies and, ultimately, countries. It also shows one of the merits of the 

multilevel framework, as the impact of lower-level covariates on each 

subsequent hierarchical level is being made explicit. Unfortunately, however, 

variability on country-level remains very low for INMBs within the univariate 

framework, with just over 1% of the overall variability falling on that particular 

level. This is one focus of attention in the next Section 5.3 of this empirical 

exercise, which is concerned with country-level variability – or the lack thereof – 

in the MLM framework.  

 

Finally, adding study-level covariates also helped controlling for some part of the 

overall variability, particular on study-level. This also led to a change in country-

level variability, which increased further for ∆C but slightly decreased for ∆E and 

INMBs. It is important to mention, though, that the change in VPC observed on 

data-level due to the inclusion of study-level covariates is only a result of the 

overall variability decreasing. As mentioned before, changes on lower-levels may 

impact higher-levels, but not vice versa. Hence, as overall variability decreased, 

the error variances on data-level remained constant, which led their proportion 

of overall variability measured by the VPC to increase.  

 

 

5.2.5. Summary and conclusions for part two of this empirical 

exercise 

 

This section was predominantly concerned with testing covariates in the MLM 

framework on data and study-level and determining a model which best controls 

for variability on these levels, hence disclosing the maximum amount of country-

level variability in measures of cost-effectiveness for statins. Covariates on data 

and study-level were systematically assessed which were drawn from a long list 

of variability factors as obtained from the literature (Sculpher et al., 2004; 
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Goeree et al., 2007) and abstracted from the studies included in the systematic 

literature review reported in Chapter 4.  

 

Following descriptive statistics and the analysis and regression based imputation 

of missing values, a detailed assessment of correlations between potential 

explanatory variables, as well as the application of data reduction techniques, 

such as principal components factor analysis (Rencher, 2002; Acock, 2010) or 

multiple correspondence analysis (Le Roux & Rouanet, 2010), was carried out in 

this exercise. Thereafter, covariates were analysed in the multilevel framework 

assuming fixed slopes within a random intercepts specification (Steele, 2008; 

Rasbash et al., 2009, Hox, 2010) First, bivariate statistics from entering each 

covariate individually in the MLM were reported and discussed. Secondly, a 

model which aims to unravel the maximum amount of country-level variability 

was constructed by including the set of covariates which best controls for 

variability on data and study-level. This model, which was reported above in 

Section 5.2.4.2, is carried forward to the analysis of country-level variability in 

the subsequent Section 5.3 of this empirical chapter.  

 

Some important conclusions can already be drawn from the analysis reported 

above. For instance, adding covariates to the model on data and study-level 

successfully disclosed further variability on country-level, which is a necessary 

condition for assessing country-level covariates in the subsequent section. 

Hence, the model was successful in showing that lower-level variability factors 

feed through to higher levels so that the actual amount of country-level 

variability may only be unravelled by including the appropriate set of covariates 

both on data and study-level. This demonstrates impressively the importance of 

both reflecting appropriately complex data structures and controlling for 

variability on lower levels, even if the main focus is on higher-level (i.e. country-

level) variability. MLM is therefore regarded as an excellent analytic approach for 

this assessment as it allows for both complex data structures and covariate 

adjustment on each hierarchical level (Steele, 2008; Rasbash et al., 2009; Hox, 

2010). The analysis could show that country-level variability was constantly 

increasing with the inclusion of lower-level covariates for the bivariate model, 

which may allow the assessment of covariates on country-level in the bivariate 
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framework. However, a different conclusion has been reached for the univariate 

framework, where country-level variability remained negligible throughout the 

course of this exercise. For this reason, the subsequent Section 5.3 focusses on 

both, covariate adjustment on country-level in the bivariate framework, and 

assessing reasons for a lack of country-level variability in the univariate MLM.   

 

Next to determining a random intercepts model to be carried forward to Section 

5.3 of this empirical exercise, some interesting findings were made along the 

way, which are also discussed in far more detail in Chapter 6. For instance, as 

Sculpher et al. (2004) hypothesized, this exercise could show the tremendous 

importance of variation in patient and disease characteristics, which feeds 

through to variation in measures of cost-effectiveness between studies and 

countries in this empirical exercise. Further, testing intervention and comparator 

characteristics in the model showed that NICE’s view on statins is essentially 

confirmed, which says that ‘for the purposes of initiating therapy, there were no 

data on clinical events to suggest the superiority of any one statin over all the 

others in reducing cardiovascular events’ (NICE, 2006). In other words, testing 

categorical variables which discriminate between different statins in the dataset, 

did not lead to significant results for incremental effects in the bivariate model.   

 

Controlling for study-level variability factors proved far more difficult, especially 

with respect to methodological characteristics, even though the study-level 

appears to be an overriding source of variability in measures of cost-

effectiveness. The non-significance of the timing variable may be explained with 

the inclusion of ‘annual drug-cost’ as an explanatory, as this obviously reflects 

changes in price levels over time. However, only few variables on study-level 

were significant, amongst them a binary which captures whether effectiveness 

data was obtained from the 4S study, as well as a binary which captures whether 

a study uses the ‘CHD life expectancy model’ by Grover et al. (1998). 4S data 

relates to higher effectiveness estimates which also feeds through to INMBs in 

the univariate model, whilst papers by Grover et al. using the CHD life 

expectancy model show higher levels in all outcome variables. These are both 

interesting findings, and the discussion section elaborates in more detail on 

potential explanations.  



 

276 
 

The results with respect to the QHES instrument are somewhat dissapointing. 

Considerable effort went into operationalizing this instrument and to apply it to 

all 67 studies included in this dataset. Though bivariate statistics showed 

statistically significant negative relationships to both components of the INMB 

statistic, which indicates that higher study quality is related to more conservative 

estimates of incremental effects but also lower incremental cost, this result was 

very sensitive to small variations in the way QHES was operationalized - so that 

results may be interpreted with caution. This issue is discussed further in Chapter 

6. Another point for discussion relates to the funding source of papers included 

in this exercise, which indicates higher INMBs for industry funded studies, whilst 

coefficients were not significant in the bivariate model. Finally, a methodological 

aspect was identified which may be referred to future research. The use of 

multiple imputation methods for missing data imputation in multilevel analysis is 

an area of on-going research. Accordingly, methods which are appropriate for 

complex data structures as modelled within this empirical exercise are not yet 

developed. This is the reason why regression based imputation was used for the 

purposes of imputing missing data within this section. Hence, future research 

may look into multilevel multiple imputation methods for multivariate multilevel 

models, cross-classified models, and other complex data structures.  

 

Before discussing research findings in more detail in Chapter 6, the following 

Section 5.3 focusses on the analysis of country-level variability, or the lack 

thereof, using the random intercepts model with data and study-level covariates 

as developed above. Subsequently, a case study shows the relevance of 

modelling random slopes and variance as a function of explanatory variables for 

the transferability problem of economic evaluation data in the final Section 5.4 

of this empirical Chapter.  
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5.3. Objective three: assessing country-level variability 

within the multilevel model framework 

 

 

In Chapter 5.1, we learned that data from multinational studies is likely to 

‘disguise’ country-level variability existing in international cost-effectiveness data 

from single-country studies as country-level variability significantly increased 

when grouping data from multinational studies in a separate cluster on country-

level. This assumption follows the idea that data from multinational studies is not 

independent on country-level and therefore underestimates geographic 

variability in measures of cost-effectiveness. Assigning this data to their 

respective geographic domains ‘infects’ individual country parameters and drags 

them towards each other, with the result that variability on country-level is 

severely underestimated in the cross-classified MLM. For this reason, a three-

level hierarchical model was used to assess covariates on data and study-level in 

Section 5.2 of this empirical exercise, and this model assumes that multinational 

study data is not independent between geographic domains.  

 

 

Assessing data-level and study-level covariates in section 5.2 led to a number of 

important findings. For instance, Sculpher et al. (2004) stated that lower-level 

variability factors, such as patient and disease characteristics, may feed through 

to higher levels, thereby affecting the variability observed between studies and 

countries reflected in the dataset. The MLM framework offers an excellent 

opportunity to make this relationship explicit, as it allows for changes in variation 

in any direction on higher levels induced by covariates on lower levels of the data 

hierarchy (e.g. Hox, 2010). Hence, analysis could show, for instance, that the 

inclusion of patient and disease characteristics in the bivariate model 

successfully controls for some variability on data-level, whilst variability between 

studies and countries actually increases. This is also a compelling argument for 

the use of MLM methodology within this empirical exercise, as, in theory, data 

should become exchangeable on country-level once we controlled for the 

appropriate set of covariates on each level of the data hierarchy (Drummond et 

al., 2009).  
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Furthermore, a number of variability factors on data and study-level were 

discovered which are all associated with variation in measures of cost-

effectiveness for statins in the primary and secondary prevention of CVD. These 

findings are subject for further discussion in Chapter 6. However, two additional 

findings are of utmost relevance for this particular section, which is concerned 

with the assessment of variability in measures of cost-effectiveness between 

geographic domains.  

 

 

First of all, determining the appropriate MLM structure in Section 5.1 and 

including data and study-level covariates in Section 5.2 significantly increased 

variability on country-level for both ∆C and ∆E in the bivariate MLM. The analysis 

started off in Section 5.1 with a VPC on country-level of around 1% for ∆C and 

negligible 0.5% for ∆E respectively. Though, at the end of Section 5.2., country-

level variability is still not a dominant source of variability in measures of cost-

effectiveness, a VPC of around 20% for ∆C and 15% for ∆E indicates that this 

exercise was successful in disclosing variability between geographic domains. 

However, it is also acknowledged that data and study-level variability remain the 

dominant source of variation in international cost-effectiveness data for statins 

in the primary and secondary prevention of CVD, so that one may conclude that 

the ‘appropriate set of covariates’ which Drummond et al. (2009) refer to, has 

not yet been found on data and study-level.   

 

 

Nevertheless, some country-level covariates may be tested within the bivariate 

framework to investigate whether there are characteristics of countries which 

explain part of the variability observed in cost-effectiveness data between 

geographic domains. This is the focus of the second part of this section. Before 

assessing country-level covariates in the bivariate framework, however, there is 

another issue which has to be addressed first. Whilst country-level variability 

increased for both response variables in the bivariate framework, variation 

between countries remains negligible for INMBs in the univariate model, even 

after controlling for variability factors on data and study-level. Therefore, the 

first part of this section focusses on this issue, which is in sharp contrast to the 

results observed in the bivariate model specification.  
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The remainder of this section is organised as follows: Section 5.3.1 outlines the 

plan of analysis for this part of the empirical exercise. Potential reasons for the 

failure to observe an increase in country-level variability in the univariate 

framework are considered, and experiments are designed to test hypothesized 

explanations for this observation. Secondly, the strategy for testing country-level 

covariates in the bivariate model is outlined. Subsequently, Section 5.3.2 

considers the data required for part 3 of this empirical exercise. Country-level 

covariates are introduced and descriptive statistics are reported. A separate 

methods sections has been omitted from this part of the empirical chapter, as 

the models run are identical to those models developed in Section 5.2 of this 

empirical exercise. For this reason, Section 5.3.3 proceeds directly to the results 

of this analysis, starting off with the univariate model which, thus far, failed to 

detect considerable country-level variation, and proceeding to the analysis of 

country-level variability factors, which, at this point, may only be indicated within 

the bivariate framework. However, if further variability on country-level can be 

disclosed in the univariate model, then the inclusion of country-level covariates 

may even be an option in this framework.  

 

 

5.3.1. Plan of analysis for part three of this empirical exercise  

 

 

The aim of this part of the analysis is to assess country-level variability – or the 

lack thereof – in the MLM framework. The two specific objectives which follow 

from this aim are a) to test potential explanations for the failure of the univariate 

model to detect country-level variation and b) to assess country-level covariates, 

at least within the bivariate framework; but potentially also in the univariate 

framework, provided that country-level variation increases after addressing the 

first objective in this section.  

 

 

5.3.1.1. Assessing the lack of country-level variation in the univariate model 

 

Let us consider the lack of country-level variation in the univariate framework 

first. To generate potential explanations for this observation, the best way is to 

concentrate on anything which differs between the response variables in the 
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univariate model, which did not detect considerable country-level variation, and 

the bivariate framework, where the VPC on country-level achieved around 20% 

for ∆C and 15% for ∆E respectively. Obviously, the bivariate model decomposes 

the response variable INMB into its stochastic components ∆C and ∆E. Hence, 

what follows from this fact is also what should be considered in this analysis.  

 

 

First, in order to combine ∆C and ∆E to INMBs, one needs to determine a 

threshold value λ. This threshold values was set constant at £30,000 in Sections 

5.1 and 5.2. Hence, INMBs were calculated so far as follows:  

 [�f�¤qaq�p¤ =	∆
 ∗ λ − ∆,               (1) λ =	£ 30,000 

 

It may be the case that the value of the threshold λ impacts on variability in 

measures of INMB. For instance, if one sets the threshold value λ at zero, this 

means that INMBs reduce to ∆C and, consequently, the variability in measures of 

cost-effectiveness resembles the variability observed for ∆C in the bivariate 

model. Conversely, if one constantly increases λ, the impact of ∆C diminishes as λ 

tends towards infinity. Hence, variability observed resembles the variability in ∆E 

only. Whilst this shows that the threshold value λ needs to be considered when 

looking into the variability in measures of INMB, there is no a priori reason to 

believe that this would impact more strongly on the country-level than it does on 

variability within or between studies in the dataset.   

 

 

Nevertheless, it is relatively straightforward to design an experiment which tests 

the impact of the threshold value on the variability observed on each level. We 

may simply re-run the variance components model developed in Section 5.1 with 

INMBs calculated at different values for the WTP threshold λ. In other words, a 

sensitivity analysis of variability observed on each hierarchical level is performed 

with respect to λ. As a result, we can map variability observed on each level as a 

function of λ, and if there is a significant effect of the WTP threshold on country-

level variability, the random intercepts model developed in Section 5.2 could be 

re-run at this particular threshold value. This may provide a univariate model 

specification which discloses country-level variability through the inclusion of 
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data and study-level covariates at a WTP threshold which minimises the 

obscuring effect of λ on variability in measures of cost-effectiveness between 

countries. Results of this experiment are reported in Section 5.3.3.   

 

 

There may be a second reason for dramatically reduced country-level variability 

in INMBs observed in the univariate model. The variability in one component of 

the INMB statistic may be, at least in part, offset by variability in the other 

component of INMBs. Sections 5.1 and 5.2 already provided some insights into 

the variability in measures of cost-effectiveness which may support this 

hypothesis. The forest plots presented in Section 5.1.4 showed that some 

studies, which are outliers in terms of INMB, did not just show dramatically 

increased measures of ∆E, but also elevated measures of ∆C. In addition, 

bivariate statistics produced in Section 5.2.4.1 and also the random intercepts 

models developed in Section 5.2.4.2 showed that studies produced by S.A. 

Grover et al. using the ‘CHD life expectancy model’ are characterised by elevated 

measures of INMB, ∆E, and ∆C. In other words, elevated mean INMB observed in 

these studies is most likely the result of ∆E being estimated above the average of 

other studies included in this exercise. However, as the CHD life expectancy 

model also led to higher estimates of ∆C, the overall departure from the average 

INMB may be lower than it is for ∆E, due to an offsetting effect of elevated ∆C in 

the same model. In conclusion, a common pattern of variability in both 

components of the INMB statistic may reduce overall variability in incremental 

net monetary benefits.   

 

 

To test this hypothesis, country-level residuals are obtained from MLwiN after 

running the three-level hierarchical variance-components model. Residuals are 

then used to build forest plots analogously to the study-level forest plots of 

Section 5.1.4. If ∆C are positively correlated with ∆E, one should observe a 

similar pattern in both forest plots (i.e. higher incremental cost are associated 

with higher incremental effects and vice versa). As an increase in one component 

of the INMB statistic would then be, at least in part, offset by an increase in the 

other component, this should lead to lower variability observed in the forest plot 

for INMBs. However, interpretation of a visual presentation of the data is not 

unambiguous. For this reason, country-level means for ∆C and ∆E are transferred 
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back to STATA 12 to produce Pearson correlations for the two variables. To test 

correlations in the raw data, the same is done with raw country means for the 

components of the INMB statistic. If the suspicion articulated above holds, 

Pearson correlations should be high, positive, and statistically significant.  

 

 

This test may lead to an explanation for drastically lower country-level variability 

in the univariate model as compared to what has been observed for incremental 

cost and incremental effects in the bivariate framework. However, if this 

offsetting effect between ∆C and ∆E causes lower variability in INMBs, there is 

not much that could be done within this exercise to increase country-level 

variation in the univariate framework. Rather, this finding should be interpreted 

as a compelling argument in favour of decomposing the INMB statistic in the 

bivariate model.  

 

 

5.3.1.2. Testing country-level covariates in the bivariate model 

 

 

Moving on to this bivariate framework, the plan of analysis is to include 

covariates on country-level to test whether they may, in part, explain variability 

in measures of cost-effectiveness between geographic domains. Though 

variability, whilst constantly increasing throughout the course of this empirical 

exercise, may still not be regarded as particularly high on country-level ( country 

VPC of 20% for ∆C and roughly 15% for ∆E respectively), this exercise makes an 

attempt to look into potential causes of this variability on level three of the data 

hierarchy. As with data and study-level covariates, the relevant literature is used 

first to learn about potential causes of variability in measures of cost-

effectiveness between countries. As before, the two publications by Sculpher et 

al. (2004) and Goeree et al. (2007), who reviewed the cost-effectiveness 

literature to compile a list of factors potentially causing variability in measures of 

cost-effectiveness, provided a number of candidates for this assessment. 

Unfortunately, however, operationalizing such candidate variables and obtaining 

data for assessment appeared to be more difficult than it was experienced for 

data and study-level covariates. For instance, country-level variability factors are 

usually not explicitly modelled in economic evaluation studies and therefore not 
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reported in the respective studies either. Hence, alternative data sources are 

required which are reliable and provide estimates which are comparable across 

the range of countries included in the dataset. Therefore, data bases of 

international organisations (WHO, 2012; OECD, 2012; World Bank, 2012) are 

screened for indicators which may serve as a proxy for variability factors 

mentioned by Sculpher et al. (2004) or Goeree et al. (2007). This resulted in a 

considerable number of potential covariates to test in the multilevel framework. 

If data for any of the indicators is missing for a country included in this exercise, 

national sources (i.e. data provided by national departments of health, statistical 

bureaus etc.) are used to fill these gaps (most problematic in this sense was the 

special administrative region of Hong Kong. It was the geographic area for which 

most missing data problems occurred as it is not represented in the WHO data 

repository). If data is still missing after searching for alternative sources, the 

strategy is either to drop the affected variable, or to listwise delete affected data 

points for the particular analysis. Listwise deletion has been chosen as regression 

based imputation is not deemed appropriate for a dataset with only a few 

countries included, and as other ad hoc imputation techniques have a potential 

for bias. Again, this strategy was only applicable to eight data points relating to 

Hong Kong so that, if data for this geographic domain was missing, this resulted 

in a dataset of 2086 data points from 66 studies and applicable to 17 geographic 

domains, including one cluster on country-level for multinational study data.  

 

 

This data from multinational studies is responsible for another issue which has to 

be addressed before proceeding with the analysis. Not dropping this data 

increases the sample size on data and study-level, and grouping it in a separate 

cluster on country-level assures that this data does not disguise existing 

variability between countries. However, the resulting group on country-level 

represents a number of geographic domains, so that the question is how to 

assign values for country-level variables to this particular group. It was decided 

to run all analyses twice, once with the full dataset as used so far, and once with 

a reduced dataset, where all data from multinational studies has been dropped. 

For the full dataset, country-specific data is collected for the geographic domains 

represented in the ‘multinational’ cluster, and a mean value is calculated for the 

affected data points. Though this lumps together a number of potentially 

dissimilar cases, it allows keeping this data in the analysis which improves 
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estimation on data and study-level, and it also assures that country-level 

covariates can be tested without the distorting effect of multinational data on 

country-level for the remaining geographic domains. Bias is not likely to occur in 

any direction as a mean value is calculated from actual, not imputed data, 

though this obviously means that a) results for the group ‘multinational’ are 

essentially meaningless and b) there is likely to be an impact on the precision of 

the estimation procedure. Therefore, all analyses are also conducted using the 

reduced dataset from Section 5.1, where all data from multinational studies has 

been dropped. This procedure results in a dataset with 1806 data points 

clustered in 61 studies and 17 countries.   

 

 

As mentioned before, the models run in this section are identical to those 

developed in Section 5.2 of this empirical exercise, with the exception of 

country-level covariates now being explicitly considered in the model. For this 

reason, methods of analysis have been omitted from this section and the 

interested reader is referred to Section 5.2.2. of the empirical chapter. The next 

section introduces the country-level data required for the assessment as outlined 

above, before results are presented and discussed in Section 5.3.3.  

 

 

5.3.2. Data  
 

 

Assessing reasons for a lack of country-level variability in INMBs observed in the 

univariate MLM framework builds up from data used before in Sections 5.1 and 

5.2. Hence, the data introduced here relates to country-level covariates only, 

which are the focus of the second part of the analysis reported here. Table 5.25 

below summarizes the country-level data obtained from different sources. The 

first column refers to the variable name, whilst the second column provides a 

definition for the respective covariate, including the reference year this data 

refers to. The third column explains how variables relate to the list of variability 

factors as reported by Goeree et al. (2007). Though not all variability factors 

potentially relevant on country-level have been acknowledged in this exercise, 

Table 5.25 shows that covariates selected relate to a considerable number of 

variability factors previously discussed in the health economic literature. 

Columns four to six describe the nature of country-level covariates, provide 

summary statistics and report on respective data-sources. The anticipated 
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relationship between country-level covariates and measures of cost effectiveness 

is reported in columns seven to nine. The last two columns list studies which 

either support or contradict the relationship anticipated between response 

variables and country-level covariates.  

 

 

On the broadest level, GDP per capita and the percentage of GDP devoted to 

healthcare are considered as covariates predominantly encoding the resources 

available for healthcare in a particular country. The variables encoding private, 

governmental or social security expenditure as a percentage of total health 

expenditure or governmental expenditure on health respectively may be 

interpreted as indicators of the organisational structure and the type of 

healthcare system. Precisely, systems within which general government 

expenditure on health is high, may be those classified as NHS like systems, 

whereas social health insurance type systems show higher social security 

expenditure on health as a percentage of general government expenditure on 

health. If private expenditure on health as a percentage of total expenditure on 

health is high, this may be indicative of a predominantly private health insurance 

based system. User fees, co-payments and deductibles are important incentives 

for patients, which were previously mentioned as potentially variability factors 

(Sculpher et al., 2004; Goeree et al., 2007). Consequently, out-of-pocket 

expenditure (OOP) as a percentage of private expenditure on health is assessed 

to address this potential source of country-level variability.  

 

 

As statin prevention may be part of a national action plan to address CVD, the 

existence of such an action plan is encoded in the categorical ‘CVD_policy’. The 

next four variables in Table 5.25 (‘GPs’, ‘nurses’, ‘pharmacists’, ‘beds’) relate to 

variability in available resources (staff, facilities, equipment), and input mix 

(personnel / equipment). The remaining variables in Table 5.25 relate either to 

patient characteristics or disease characteristics respectively. In particular, ‘age’, 

‘life expectancy at birth’ and ‘urban’ relate to variability due to differences in 

demographics, mortality and population density, whilst ‘CVD_death’ may be 

regarded as a measure of mortality due to the disease under consideration. A 

problem with the latter variable is the fact that the WHO, which provided data 

on this covariate, only gives a combined measure of cardiovascular and diabetes 

death per 100,000, so that it is not clear how much of these death`s relate to 

which disease. Results may therefore be interpreted with caution. 
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Table 5.25: Country-level covariates and their anticipated relationship to measures of cost-effectiveness 

Name of 

covariate 

Definition Related variability factors from 

Goeree et al. (2007) 

Nature 

of 

variable 

Mean (SD) / 

Proportion (%) 

Data  

sources 

Anticipated 

relationship to 

Supporting 

evidence 

Contradicting 

evidence 

INMB ∆C ∆E 
GDP GDP per capita, PPP (current international $), 

2009 
Available resources Cont. 35169  (8969) World Bank  

Pos Pos Pos  7, 19 --- 

THE_GDP Total expenditure on health as a percentage 
of gross domestic product, 2009 

Available resources Cont. 9.96 (2.38) WHO / World Bank 
Pos Pos ? 6, 24 --- 

GOV_EXP_T
HE 

General government expend. on health as a 
percentage of total expend. on health, 2009 

Type of insurance coverage Cont. 68.18 (11.44) WHO / World Bank 
Pos Neg Pos 17 --- 

PRIV_EXP_T
HE 

Private expend. on health as a percentage of 
total expenditure on health, 2009 

Type of insurance coverage Cont. 29.67 (12.85) WHO / World Bank 
Neg Pos ? 6 --- 

SOCSEC_GG
E 

Social security expend. on health as a % of 
general gov. expend. on health, 2009 

Type of insurance coverage Cont. 39.47 (37.91) WHO / World Bank 
? ? ? --- --- 

OOP_PRIV_
EXP 

Out-of-pocket expenditure as a percentage 
of private expenditure on health, 2009 

User fees, co-payments, deductibles, 
incentives for patients 

Cont. 65.49 (18.00) WHO / World Bank 
Pos Neg ? 6 --- 

CVD_POLICY Existence of operational policy / strategy / 
action plan for cardiovascular disease? 2010 

Access to programmes and services, 
conventions, norms, guidelines 

Unord. 
cat. 

No: 4 (22.22%) 
Yes: 12 (66.67%) 
Unclear: 2 (11.11%) 

WHO 
Pos Neg Pos --- --- 

GPs Physicians density (per 10 000 population) 
2005-2009 

Available resources, input mix  Cont. 29.13 (7.49) WHO / Hong Kong, Centre 
for Health Protection, DH 

Pos Neg Pos --- --- 

Nurses Nursing and midwifery personnel density 
(per 10 000 population) 2005-2009 

Available resources, input mix  Cont. 82.03 (45.27) WHO / Hong Kong, Centre 
for Health Protection, DH 

Pos Neg Pos --- --- 

Pharmacists Density of pharmaceutical personnel (per 10 
000 population) 2005-2009 

Available resources, input mix  Cont. 7.74 (3.24) WHO / Hong Kong, Centre 
for Health Protection, DH 

Pos Neg Pos --- --- 

Beds Hospital beds per (10 000 population) 2008 – 
2010 

Available resources, input mix  Cont. 51.37 (28.88) WHO / Hong Kong, Centre 
for Health Protection, DH 

Pos Pos Pos --- --- 

Age Population median age (years), 2009 Demographics Cont. 39.87 (3.50) WHO / Hong Kong, Centre 
for Health Protection, DH 

Neg Neg Neg 2, 3, 4, 5, 8, 9, 

10, 12, 14, 15, 

20, 21, 22, 25, 26 

INMB: 2, 3, 5, 

11, 25 / ∆C: 14 / 

∆E: 5, 11, 25 

Relationship may reverse 

for age >65 

Urban Population living in urban areas (%), 2009 Population density Cont. 80.88 (10.39) World Bank ? ? ? --- --- 

Life 
Expectancy 

Life expectancy at birth (in years), 2009 Demographics Cont. 80.06 (2.80) WHO / Hong Kong, Centre 
for Health Protection, DH 

Pos Pos Pos 17 --- 

CVD_death Cardiovascular and diabetes death per 
100000, 2008 

Mortality due to disease Cont. 152.92 (59.84) WHO 
Pos Neg Pos --- --- 

BMI_25 BMI ≥ 25, crude estimate, 2008 Disease interact., comorb., epidemiol. Cont. 53.35 (10.37) WHO Pos Neg Pos 13 --- 

BMI_30 BMI ≥ 30, crude estimate, 2008 Disease interact., comorb., epidemiol. Cont. 22.50 (6.25) WHO Pos Neg Pos 13 --- 

MEAN_BMI Mean BMI, crude estimate, 2008 Disease interact., comorb., epidemiol. Cont. 26.52 (1.22) WHO Pos Neg Pos 13 --- 

TCL_6.2 Raised TCL ≥ 6.2 mmol/L,  crude estimate,  
2008 

Epidemiology Cont. 19.81 (4.15) WHO 
Pos Neg Pos 3, 8, 9, 22 ∆C: 3, 22 

MEAN_TCL Mean TCL (crude estimate), 2008 Epidemiology Cont. 5.26 (0.21) WHO Pos Neg Pos 3, 8, 9, 22 ∆C: 3, 22 

SBP_140 Raised blood pressure (SBP ≥ 140 or DBP ≥ 
90 or on medication, crude estimate, 2008 

Disease interact., comorb., epidemiol. Cont. 42.18 (4.89) WHO 
Pos Neg Pos 3, 8, 12, 16, 22 

INMB: 16 

∆C: 3 

MEAN_SBP Mean Systolic blood pressure, crude 
estimate, 2008 

Disease interact., comorb., epidemiol. Cont. 128.48 (3.42) WHO 
Pos Neg Pos 3, 8, 12, 16, 22 

INMB: 16 

∆C: 3 

GLUCOSE_7 Raised blood glucose ≥ 7.0 mmol/L, 2008 Disease interact., comorb., epidemiol. Cont. 9.58 (1.50) WHO Pos Neg Pos 
1, 3, 9, 10, 16, 

18, 21, 23, 25 
∆C: 3, 18, 23 MEAN_GLU

COSE 
Mean fasting glucose in mmol/L, crude 
estimate, 2008 

Disease interact., comorb., epidemiol. Cont. 4.49 (0.17) WHO 
Pos Neg Pos 

(1) Ashraf et al (1996), (2) CDC-Group (2002), (3) Drummond et al. (1993), (4) Franco et al. (2005), (5) Greving et al. (2011), (6) Grieve et al. (2005), (7) Grieve et al. (2007), (8) Grover et al (1999), (9) Grover et al (2000), (10) Grover et al. (2001), 
(11) Grover et al. (2008), (12) Hamilton et al (1995), (13) Hippisley-Cox et al. (2008), (14) HPS (2006), (15) HPS (2009), (16) Jönsson et al (1999), (17) Manca et al. 2007), (18) Muls et al. (1998), (19) Taghreed et al. (2003), (20) Nherera et al 
(2010), (21) NICE (2006), (22) Perreault et al (1998), (23) Soini et al (2010), (24) Thompson et al. (2006), (25) Tonkin et al. (2006), (36) Ward et al. (2007) 
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The remaining ten variables are measures of CVD risk factors on population level 

relating to obesity, total cholesterol level, blood pressure and blood glucose. An 

important question is why CVD risk factors may enter the MLM on country-level, 

as they were already included as variability factors on data-level. The reason is 

that patient and disease characteristics on data-level refer to differences in study 

populations, whilst the idea with population risk factors is that the cost-

effectiveness of statins on country-level may partly depend on the existence of 

CVD risk factors within the target population of a country. The MLM framework 

offers an excellent opportunity to consider both, differences in study populations 

on data-level, and differences in potential target populations on country-level.  

 

 

 

5.3.3. Results  

 

 

The first part of this section focuses on the assessment of variability in the 

univariate framework, within which it was not possible to disclose a substantial 

amount of variability in INMBs between geographic domains. The second part 

refers to the assessment of country-level variability factors in the bivariate MLM. 

 

 

5.3.3.1. Reasons for a lack of country-level variability in the univariate model  

 

 

As detailed in Section 5.3.1.1., two potential causes of a lack of country-level 

variability are being further assessed in this section, both originating from 

differences between the univariate model, where country-level variability is 

negligibly low, and its bivariate counterpart, where country-level variability was 

observed in both components of the INMB statistic. Results from performing a 

sensitivity analysis on the threshold value λ, which was set constant at £ 30,000 

in Sections 5.1 and 5.2 of this empirical chapter, are reported first, before the 

focus is on the suspicion of a common pattern in measures of ∆C and ∆E on 

country-level. Figure 5.11 below summarizes the results of running the univariate 

variance components model as developed in Section 5.1 of this empirical 

exercise with different values for the WTP threshold λ. Analysis starts with a 
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threshold value of zero. This reduces the INMB statistic to ∆C only, and results in 

terms of variability on each level resemble those observed for incremental cost 

in the bivariate framework.   

 

 

Figure 5.11: Variability in INMBs in the univariate model as a function of the 

threshold value λ 

 

 

 

Gradually increasing λ reduces the country-VPC from just above 10% to below 

0.5%, which is in complete accord with results of the univariate model reported 

in previous sections. Simultaneously, the VPC on data-level increases, whilst the 

study-level VPC remains relatively constant up to a WTP threshold of roughly 

£10,000. Beyond this level, however, the study-level VPC increases gradually as 

the data-level VPC decreases until both measures first cross and then level out 

beyond a threshold of around £40,000 per unit of health gain.  

 

 

Figure 5.11 above leads to several important conclusions. First of all, the 

univariate model run with incremental cost only (which is equivalent to assuming 

λ = 0), resembles the findings for ∆C in the bivariate framework. This validates 

the results of the bivariate MLM. Secondly, increasing the threshold value 

reduces country-level variation, and at a WTP-threshold of £30,000, findings are 

also in accord with the results reported for the univariate model in previous 
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sections. However, we cannot confirm that country-level variation increases 

drastically at any value for λ, and even increasing WTP beyond £500,000, would 

only resemble the results obtained for ∆E in the bivariate framework (which 

again indicates that results are valid). As mentioned before, there is no reason 

why changing the threshold value should have a particular impact on the 

country-level beyond that observed at its extreme values, i.e. λ=0 and λ�∞, 

resembling the variation in ∆C and ∆E respectively. In conclusion, we may rule 

out the threshold value as a potential reason for the failure to observe significant 

country-level variation in the univariate model.  

 

 

However, the sensitivity analysis showed that variability does increase at λ=0 and 

λ�∞, and this is in accord with the suspicion that there is a common pattern in 

∆C and ∆E on country-level; so that variability in one component of the INMB 

statistic is partly offset by variability in the other component of INMBs. This 

would explain why country-level variability reduces with higher values for λ (as 

variability in ∆C is increasingly offset by corresponding variability in ∆E), and only 

increases again once λ is so high that variability in INMBs only reflects that of ∆E. 

This suspicion is supported by some of the previous findings, especially regarding 

studies using the CHD life-expectancy model, which report both higher 

incremental cost and higher incremental effects for statins in the primary and 

secondary prevention of CVD.  

 

 

Hence, the next task is to further assess the idea that variability in one 

component of the INMB statistic is partly offset by variability in the other 

component of INMBs. This is done by simultaneously looking into country-level 

measures of ∆C, ∆E and INMBs respectively. For this reason, consider the forest 

plots in Figure 5.12 below. 
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Figure 5.12: Forest plots of incremental costs, incremental effects and INMBs on country-level 

 
(Forest plots generated after running a three-level hierarchical random intercepts model and exporting country-level residuals from MLwiN to MS Excel) 
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There appears to be a common pattern in ∆C and ∆E, i.e. if an estimate of 

incremental effects for a particular country is above the pooled mean, so is the 

corresponding measure of incremental cost for the same country. This results in 

variability in ∆E being partly offset by corresponding variability in ∆C in the INMB 

statistic, and this is confirmed by the forest plot on the left showing that 

variability in INMBs is much lower compared to that observed on country-level in 

∆Cs and ∆Es. To rule out that this finding is an artefact from running MLMs 

providing country-level residuals which are subject to shrinkage, the same 

analysis was repeated with raw country means for ∆Cs, ∆Es and INMBs. The 

forest plots (omitted here) appeared to be more ‘noisy’ than that displayed in 

Figure 5.12 above as country means were not shrunken towards the pooled 

mean. Though this somewhat complicated the interpretation of results, a similar 

pattern appeared to be present in the data. However, to confirm this result, 

which is based on the interpretation of a graphical display of the data and 

therefore not unambiguous, Pearson correlations were produced for country-

level mean ∆Cs and ∆Es both after running the three-level model and also for 

country-level means calculated from the raw data. If there is a common pattern 

in mean incremental cost and incremental effects on country-level, then Pearson 

correlations should be high, positive and statistically significant.  

 

 

Generating Pearson correlations in STATA 12 confirmed the results from 

interpreting Figure 5.12 above. A highly significant and positive correlation 

coefficient of 0.968 was found for country-level ∆C and ∆E obtained from the 

three-level hierarchical model. In addition to that, correlation coefficients for the 

raw mean ∆C and ∆E for each country were just as much correlated, with a 

correlation coefficient reaching 0.913. This result is also significant at the 1% 

level and rules out that shrinkage has anything to do with the common pattern 

observed in country-level mean incremental cost and incremental effects.  

 

 

Hence, we may conclude that the lack of country-level variation observed in 

INMBs in the univariate model stems from a common pattern in the country-

level variability for ∆ and ∆E, so that variability in one component of the INMB 

statistic is partly being offset by corresponding variability in the other 

component of the INMB statistic. The discussion in Chapter 6 hypothesizes about 



 

292 
 

potential causes for this common pattern in ∆C and ∆E on country-level. At this 

point, however, one may only conclude that the lack of variability observed in 

the univariate model on country-level is likely to be a result of combining ∆Cs 

and ∆Es to INMBs, so that within the scope of this exercise, there are no further 

means to increase country-level variability in the univariate framework. One 

should interpret this finding as a compelling argument for decomposing the 

INMB statistic within the bivariate model. This bivariate model is the focus of the 

second part of this section, which is entirely concerned with covariates encoding 

potential variability factors on country-level.  

 

 

 

5.3.3.2. Country-level covariates in the bivariate multilevel model  

 

 

Table 5.26 below reports results from individually testing each country-level 

covariate in the bivariate random intercepts model with covariates already 

included on data and study-level. Results from running the same model on the 

reduced dataset where data from multinational studies was dropped are 

reported in Appendix 5.5. Given the relatively low VPC for both ∆C and ∆E 

observed at the end of Section 5.2, the a priori expectation of ascertaining 

significant coefficients on country-level was low. Nevertheless, results show a 

number of coefficients moderately significant at the 10% level or 5% level 

respectively. In addition, coefficients mostly show the anticipated sign and 

reduce the DIC statistic, indicating an improved fit of the multilevel model. 

Results for running the same model on the reduced dataset are almost identical. 

Though coefficients obviously differ in their magnitude, these differences are 

generally negligible, and both signs of coefficients as well as their statistical 

significance accords between both analyses.   

 

 

Whilst GDP per capita as an indicator of a countries economic performance was 

not significant when tested individually in the random intercepts model with 

data and study-level covariates already specified, there was a small but 

significant positive relationship between the total health expenditure as a 

percentage of GDP and incremental effects in the bivariate model. There may be 
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several potential explanations for this observation. Statin utilisation may be 

higher in countries which devote a higher percentage of their GDP to healthcare, 

or the prevalence of CVD risk factors may be different in those countries. In fact, 

when looking at correlations between explanatory variables on country-level, 

one can observe positive and highly significant correlations between ‘THE_GDP’ 

on the one hand and ‘mean_bmi’, ‘mean_sbp’, ‘mean_tcl’ and ‘mean_glucose’ on 

the other. Hence, the positive and significant coefficient of ‘THE_GDP’ may either 

be explained by the fact that countries with higher GDP per capita are also 

characterised by higher levels of CVD risk-factors, or the significant coefficient 

may simply be a statistical artefact because of existing collinearity between the 

above named variables.  

 

Table 5.26:  Individually testing country-level covariates in the three-level 

bivariate random intercepts model 

Bivariate model 

 
Raw Mean (SD) / 

Proportion (%) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC (Benchmark: 
26413  

(%-change)) 
GDP 35169  (8969) 0.001 (0.001) 0.000 (0.000) 26413 (0.000%) 

THE_GDP 9.96 (2.38) 0.109 (1.280) 0.020 (0.008)** 26410 (-0.011%) 

GOV_EXP_THE 68.18 (11.44) -0.215 (0.258) -0.001 (0.002) 26415 (0.008%) 

PRIV_EXP_THE 29.67 (12.85) 0.223 (0.253) 0.000 (0.002) 26414 (0.004%) 

SOCSEC_GGE+ 39.47 (37.91) -0.096 (0.131) 0.001 (0.001) 26413 (0.000%) 

OOP_PRIV_EXP+ 65.49 (18.00) 0.031 (0.182) -0.000 (0.001) 26415 (0.008%) 

CVD_POLICY 

No 
Yes 
Unclear 

 
4 (22.22%) 

12 (66.67%) 
2 (11.11%) 

 
Omitted 

26.72 (19.24) 
19.91 (19.63) 

 
Omitted 

0.108 (0.109) 
-0.094 (0.110) 

26413 (0.000%) 

GPs 29.13 (7.49) -1.005 (0.981) 0.011 (0.005)** 26409 (-0.015%) 

NURSES 82.03 (45.27) 0.041 (0.130) 0.001 (0.001) 26414 (0.004%) 

PHARMACISTS 7.74 (3.24) 1.642 (1.832) 0.019 (0.010)* 26409 (-0.015%) 

BEDS 51.37 (28.88) -0.121 (0.256) 0.002 (0.002) 26410 (-0.011%) 

AGE 39.87 (3.50) -2.003 (1.828) 0.020 (0.001)* 26408 (-0.019%) 

URBAN 80.88 (10.39) 0.268 (0.564) -0.001 (0.003) 26415 (0.008%) 

LIFE_EXPECTANCY 80.06 (2.80) -3.059 (3.408) 0.004 (0.021) 26414 (0.004%) 

CVD_DEATH 152.92 (59.84) 0.114 (0.153) 0.000 (0.001) 26414 0.004%) 

BMI_25+ 53.35 (10.37) 0.434 (0.644) 0.004 (0.004) 26414 0.004%) 

BMI_30+ 22.50 (6.25) 0.559 (0.965) 0.010 (0.006)* 26413 (0.000%) 

MEAN_BMI+ 26.52 (1.22) 2.353 (5.056) 0.060 (0.031)* 26412 (-0.004%) 

TCL_6.2+ 19.81 (4.15) -0.562 (0.858) 0.004 (0.005) 26414 (0.004%) 

MEAN_TCL+ 5.26 (0.21) -18.91 (21.18) 0.177 (0.130) 26412 (-0.004%) 

SBP_140+ 42.18 (4.89) -0.232 (0.748) 0.001 (0.005) 26415 (0.008%) 

MEAN_SBP+ 128.48 (3.42) -0.284 (1.017) -0.001 (0.007) 26415 (0.008%) 

GLUCOSE_7+ 9.58 (1.50) 1.572 (2.061) 0.025 (0.013)* 26410 (-0.011%) 

MEAN_GLUCOSE+ 4.49 (0.17) 14.03 (23.92) 0.356 (0.147)** 26409 (-0.015%) 

* 
** 

*** 
 

+ 
 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
 

Eight data points referring to the special administrative region Hong Kong have been dropped due 
to country-level data missing for this geographic domain 
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Positive and significant coefficients were also observed for variables encoding 

the availability of resources (GPs and pharmacists). More GPS or pharmacists per 

10,000 population may be a reason for better utilisation of statins as they may 

be made available to a higher number of eligible patients and as those patients 

may be better monitored and motivated to comply with statin therapy (for GPs, 

however, the coefficient was not significant when running the model on the 

reduced dataset). Finally, significant coefficients were observed for age, BMI and 

the percentage of population with a blood glucose level of above 7 mmol/L. 

These findings accord expectations as statins should be more effective in 

populations with higher CVD risk.  

 

 

When testing country-level covariates individually in the random intercepts 

model, significant coefficients were only observed for incremental effects, 

whereas none of the covariates tested showed a significant relationship to 

incremental cost in the bivariate model. The same observation was made when 

running the model on the reduced dataset. A potential reason may be the 

presence of confounding factors, which potentially disguise relationships which 

may exist within the data. For this reason, country-level covariates were tested 

simultaneously in the three-level bivariate multilevel model. Results for the full 

dataset are obtainable from Table 5.27 below. Results for the reduced dataset 

are reported in Appendix 5.6. 
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Table 5.27: Bivariate random intercepts model fully specified on data, study 

and country-level 

 
∆C/100 

(2010 £ Sterling) 
∆E 

 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30,000) 
739 -1.500 

TCL (SE) -33.44 (3.13)*** 0.040 (0.018)** 

HDL (SE) 183.11 (53.91)*** -0.521 (0.301)* 

SBP (SE) -3.39 (0.19)*** 0.013 (0.001)*** 

Diabetes (SE) -19.35 (8.30)** 0.441 (0.053)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted  

-95.34 (6.02)*** 
-133.9 (5.91)*** 
-168.8 (6.27)*** 

-131.6 (10.62)*** 
-113.3 (45.68)** 

 
Omitted 

-0.308 (0.036)*** 
-0.639 (0.035)*** 
-1.066 (0.037)*** 
-0.656 (0.063)*** 
-0.512 (0.224)** 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

-33.13 (4.52)*** 
-31.11 (22.93) 

 
Omitted 

0.234 (0.027)*** 
0.234 (0.107)** 

CVD_history (SE) 

No 
Yes 

Mixed sample 

-- 

 
Omitted 

0.267 (0.054)*** 
0.345 (0.188)* 

Cost_intervention 0.127 (0.010)*** -- 

Cost_comparator -0.139 (0.022)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

-- 
 

Omitted 
-0.274 (0.072)*** 

DRB -- -4.127 (0.892)*** 

Persp_cost_concl. 

Health insurance (NHS) 
Provider 
Societal 

 
Omitted 

-401.19 (22.86)*** 
-175.26 (19.70)*** 

-- 

Horizon 

< 20 years 
>20 years (lifetime) 

-- 
 

Omitted 
0.184 (0.045)*** 

Duration=horizon 

yes 
No (treatment duration< 

horizon) 

-- 
 

Omitted 
0.394 (0.076)*** 

Base case 

Yes 
No  

 
Omitted 

9.42 (4.81)* 

 
Omitted 

0.089 (0.030)*** 

Barbieri_score_2 

Type 1 
Type 2 
Type 3 
Type 4 

 
Omitted 

-37.11 (15.26)** 
-66.07 (30.58)** 

-99.09 (32.85)*** 

-- 

Author_Grover 

No  
Yes 

 
Omitted 

156.35 (43.68)*** 

 
Omitted 

1.443 (0.200)*** 

4S 

No 
yes 

-- 
 

Omitted 
0.434 (0.153)*** 

Scope 

CHD 
CHD and stroke 

CHD, stroke and PAD  
unclear 

 
Omitted 

-38.71 (8.76)*** 
-33.40 (34.46) 

-104.78 (64.86) 

-- 

GDP_CAPITA -0.002 (0.001)** -- 

GOV_EXP_THE -0.759 (0.407)* -- 

THE_GDP -- 0.042 (0.010)*** 

AGE_POPULATION -- 0.050 (0.013)*** 

Random part: ����� 	(Country) 3640 0.069 ����� 	(Study) 7946 0.137 ���� 	(Data) 5517 0.194 

VPC - Country 

VPC – Study 

VPC - data 

21.28% 
46.46% 
32.26% 

17.25% 
34.25% 
48.50% 

DIC 

(benchmark) 
26387 

(26412) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 

 



296 
 

As a result of testing different combinations of country-level covariates in the 

three-level MLM with data and study-level covariates already specified, GDP per 

capita and government expenditure on health as a percentage of total health 

expenditure turn out to be negatively related to ∆C in the bivariate model and 

significant at the 5% and 10% level respectively. The same holds for running the 

model on the reduced dataset, with even higher significance levels (1% and 5% 

respectively). Countries with high government spending on health may also be 

characterised by higher market regulations, which may result in differences in 

prices for healthcare which potentially explains lower incremental cost. 

Conversely, countries with higher GDP may have higher prices for healthcare, so 

that future health care cost avoided through statin prevention may result in 

lower ∆C in countries with higher GDP. Finally, both total health expenditure as a 

percentage of GDP and age turn out positive and highly significant for ∆E, which 

confirms findings from testing both variables individually in the model. Again, 

results from running the model on the reduced dataset are in accord with these 

findings, with coefficients even being significant on the 1% level.  

 

 

 

5.3.4. Summary and conclusions for part three of this empirical 

exercise 

 

 

This section was concerned with variability in measures of cost-effectiveness 

between the countries reflected in the dataset. The analysis consisted of two 

parts. The objective of part one was to analyse potential causes for a lack of 

country-level variability in the univariate multilevel framework with INMBs as 

single response variable. Part two, on the other hand, was concerned with 

covariates on country-level in the bivariate framework, within which 

considerably more country-level variability was disclosed before in Sections 5.1 

and 5.2 of this empirical exercise.  

 

 

Two potential reasons where considered for a lack of country-level variability in 

the univariate framework. First, the threshold value λ, which was set constant in 

previous analyses, was suspected to be responsible for lower country-level 
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variability in INMBs as compared to its stochastic components ∆C and ∆E. For this 

reason, a sensitivity analysis was performed within which the model was run at 

different threshold values. For extreme values, this analysis showed similar 

country-level variability as for ∆C and ∆E in the bivariate model. This makes 

intuitive sense as variability in INMBs stems from ∆C alone if λ equals zero, and 

∆E alone if λ tends towards infinity. However, with respect to country-level 

variability, the threshold value may be excluded as a potential reason for a lack 

thereof in the univariate model.  

 

 

Secondly, it was suspected that variability in one component of the INMB 

statistic may be partly offset by variability in the other component. Previous 

analyses in Sections 5.1 and 5.2 of the empirical chapter already indicated that 

this may be the case. For this reason, forest plots with country means and their 

respective confidence intervals were produced for each response variable both 

from the raw data and using country-residuals from running the three-level 

hierarchical model. Analysing these forest plots strengthened the suspicion that 

variability on country-level in one component of the INMB statistic may be partly 

offset by variability in the other component, ultimately leading to drastically 

reduced country-level variability in INMBs. To confirm these results, Pearson 

correlations were produced both for the raw data as well as the country means 

obtained from running the three-level MLM. Correlations were well above 0.9 

and highly significant. It may hence be concluded that the lack of country-level 

variability in INMBs results from combining ∆C and ∆E, which have similar 

patterns of variability, so that variability in one component of the INMB statistic 

is partly being offset by variability of the other component. Potential reasons for 

this observation are considered in the discussion section in Chapter 6.  

 

 

Finally, this section was also concerned with country-level covariates for the 

bivariate model, within which the proportion of country-level variability was 

considerably higher. To rule out that lumping country-level data from 

multinational studies in a separate group on country-level distorts results, this 

analysis was performed both with the full dataset, and a reduced dataset which 

drops data points from multinational studies. Results were almost identical for 

both datasets. Testing country-level covariates individually in the model did not 



 

298 
 

result in any significant covariates for ∆C, whilst government expenditure on 

health as a percentage of total health expenditure, the number of GPs and 

pharmacists per 10,000 inhabitants, the mean population age as well as 

measures of BMI and blood glucose showed significant relationships to ∆E. When 

simultaneously assessing covariates in the final random intercepts model with 

variability factors considered on each hierarchical level, GDP per capita and the 

government expenditure on health as a percentage of total health expenditure 

turned out to be significantly related to ∆C, whilst coefficients for total health 

expenditure as a percentage of GDP and the population age were highly 

significant for ∆E. These results are further discussed in Chapter 6.  

 

 

Assessing country-level covariates in the three-level hierarchical random 

intercepts model concludes the systematic assessment of variability factors on all 

hierarchical levels of the dataset. Results are further discussed in Chapter 6, 

together with findings from the two previous Sections 5.1 and 5.2 of this 

empirical exercise. Before that, however, Section 5.4 of this empirical chapter 

shifts the focus towards a methodological feature of the MLM framework, which 

is hypothesized to relate at its core to the transferability problem of economic 

evaluation in health. A case study shows how random slopes may be added to 

the model, which then allows to explicitly model variation in measures of cost-

effectiveness as a function of explanatory variables. This so called ‘variance 

function’ is then constructed for a number of covariates in the model to show 

how this concept may be utilised to focus research efforts more specifically to 

those questions for which disagreement (i.e. variation) in international cost-

effectiveness data is particularly high.  
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5.4. Objective four: random slopes and the variance 

function 

 

The first section of this empirical exercise was concerned with determining the 

appropriate MLM structure for the analysis of secondary cost-effectiveness data 

of statins in the primary and secondary prevention of CVD. A three-level 

hierarchical model with measures of cost-effectiveness grouped in studies and 

studies grouped in countries was developed where data from multinational 

studies was clustered in a separate group on country-level. This model was 

carried forward to section two of this empirical exercise, where data-level and 

study-level covariates were tested in a random intercepts model to control for 

variability on both levels. Throughout the course of this exercise, further country-

level variability was disclosed for incremental effects and incremental cost in the 

bivariate model, whilst variability on country-level remained negligible for INMBs 

in the univariate framework. Accordingly, in Section 5.3, potential reasons for a 

lack of country-level variation in the univariate model were assessed, and 

covariates on country-level were included in the bivariate model. The analysis 

carried out in Section 5.3 concluded the assessment of variability factors for 

measures of cost-effectiveness on all hierarchical levels of the dataset.  

 

 

This final section of the empirical chapter shifts the focus towards a 

methodological feature of the MLM framework which may address the 

transferability problem of economic evaluation in health at its core. In a first 

step, random slopes are introduced to the models developed. Allowing slopes of 

covariates to vary within the MLM framework is something which other health 

economists already considered in their applications of MLM to economic 

evaluation data (Sculpher et al., 2004; Manca et al., 2005; Thompson et al., 2006; 

Bachmann et al., 2007). Doing so, however, also allows modelling the variation in 

the relationship between explanatory variables and the response variable as a 

function of explanatory variables and this is, to the knowledge of the author, 

something which has neither been considered in the area of health economics in 

general, nor in health economic evaluation in particular. The MLM literature 

refers to this concept as the ‘variance function’ (e.g. Steele, 2008; Rasbash et al., 

2009).  
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This final section of the empirical analysis shows how the variance function 

relates to the transferability problem. The idea is that for the range of values of 

explanatory variables where variance in international cost-effectiveness data is 

low, the transfer of existing evidence to the target location is rather indicated, 

compared to ranges of explanatory variables which show high variability in 

measures of cost-effectiveness. The following Subsection 5.4.1 starts off by 

outlining the plan of analysis for introducing random slopes to the model and 

modelling the variance function, before the methods of analysis are detailed in 

Section 5.4.2. The data used for this analysis has already been described in detail 

before, which is why results are reported directly after the methods of analysis in 

Section 5.4.3.  

 

 

5.4.1. Plan of analysis for part four of this empirical exercise  

 

 

It is important to clarify the rationale behind fitting random slopes to the 

multilevel models developed thus far. In the variance components model applied 

in Section 5.1 of this chapter, the effect of explanatory variables on measures of 

cost-effectiveness was not acknowledged. Therefore, the random intercepts 

model was introduced with multiple explanatory variables on data and study-

level in Section 5.2 of this chapter. Country-level covariates were then added to 

the bivariate model in Section 5.3. However, thus far it was assumed that the 

effect of explanatory variables on measures of cost-effectiveness of statins in the 

primary and secondary prevention of CVD is the same across all higher-level units 

(i.e. studies and/or countries). In other words, the individual regression lines for 

each study (and country) in the dataset were assumed to be parallel to each 

other (Steele, 2008; Rasbash et al., 2009). 

 

 

It is very likely though that the relationship between explanatory variables and 

measures of cost-effectiveness differs between different studies and/or 

countries in the dataset. For instance, it is not unreasonable to assume that, 

even if all studies report a positive relationship between total cholesterol and 

INMB, the slope of this relationship, i.e. the coefficient of the covariate, differs 

between studies. Likewise, the relationship between INMBs and say the annual 
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drug cost of the intervention may be different for different countries in the 

dataset. The MLM framework offers a unique opportunity to account for 

differences in the relationship between explanatory variables and response 

variables across higher-level units (Steele, 2008; Bartholomew et al., 2008; 

Rasbash et al., 2009; Hox, 2010).  

 

 

When allowing the relationship between explanatory variables and the response 

variable to differ between higher-level units, regression lines are no longer 

parallel to each other as they are in the random intercepts model (Steele, 2008; 

Hox, 2010). As long as regression lines run parallel, higher-level variability is only 

reflected in differences between intercepts, whilst variability in slopes is, by 

definition, not existent (Steele, 2008; Rasbash et al., 2009; CMM workshops / 

random slopes). Once slopes are allowed to differ, the variability between group 

regression lines may be different at any value of the explanatory variable (Steele, 

2008; Rasbash et al., 2009; CMM workshops / random slopes). Hence, this 

variability may now be expressed as a function of the explanatory variable 

(Steele, 2008; Rasbash et al., 2009; CMM workshops / random slopes). Further 

details are also available from the MLM Chapter 3 and from the methods of 

analysis section below. Modelling this variance function for a number of 

explanatory variables is the objective of this final section of the empirical 

chapter.  

 

 

To demonstrate the potential value of the variance function for addressing the 

transferability problem in economic evaluation in health, the analysis in this 

section concentrates on patient and disease characteristics, which Sculpher et al. 

(2004) rightfully identified as a critical source of variability in measures of cost-

effectiveness, potentially feeding through to variability between higher-level 

units. The analysis within this project thus far showed that patient and disease 

characteristics are, in fact, an important source of variability, and that the 

inclusion of respective covariates also changed the variation observed on higher 

levels. Additionally, relationships observed between patient and disease 

characteristics and response variables were always highly significant and in 

accord with prior expectations. This is in sharp contrast to study characteristics, 

where only few categorical variables were identified out of a large number of 



 

302 
 

candidates which successfully controlled for some variability on study and / or 

country-level – even though the study-level constitutes a major source of overall 

variability in the data. Likewise, country-level variability was observed to be low, 

even in the bivariate model, and only few variables were found to be related to 

the response variable.  

 

 

Having decided to use data-level covariates which encode characteristics of the 

patient and the disease to demonstrate the concept of the variance function, 

one needs to determine on which level random slopes may be fitted. This could 

be, in theory, any level of the model. However, it was decided to model random 

slopes on the study-level for the following reasons. When considering 

transferability problems in practice, decision makers may have to choose out of a 

number of existing economic evaluation studies applicable to other geographic 

domains. This choice may be based on the ‘degree of similarity’ between study 

characteristics and the target location, which accords the principles of analogical 

reasoning as outlined in Chapter 2. To assess the extent to which available 

studies meet the requirements of the target jurisdiction, decision makers hence 

compare attributes of the studies available with attributes of the target context, 

and decide which of the available international cost-effectiveness studies may be 

most appropriate to inform decisions in the target country. This process is also 

reflected in available transferability checklists, decision charts or indices (e.g. 

Heyland et al., 1996; Späth et al., 1999; Welte et al., 2004; Boulenger et al., 2005; 

Turner et al., 2009; Nixon et al; 2004 & 2009; Antonanzas et al., 2009). In short, 

the choice to make is a choice between existing studies, not geographic domains. 

Only once the decision maker has identified a number of candidate studies which 

meet the requirements of the target jurisdiction, country characteristics may be 

considered to the extent to which they are reflected in the economic evaluation 

in question. However, the analysis within the empirical exercise thus far clearly 

showed that country-level variability is low, even after controlling for a large 

number of potential variability factors on data and study-level. Hence, the 

geographic context within which the available evidence was originally produced 

turned out to be a far less important source of variability in international cost-

effectiveness data than differences between economic evaluation studies, which 

this analysis proved to be the overriding source of the variability in measures of 
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cost-effectiveness. This, in conclusion, constitutes a compelling argument for 

fitting random slopes on study-level.  

 

 

Before proceeding to the methods of analysis, it needs to be clarified once more 

that this chapter aims to demonstrate the value of fitting random slopes and 

modelling the variance function, it is not aimed to provide a systematic 

assessment of random slopes within the MLMs developed in previous sections. 

Doing so would require testing random slopes for all covariates on a ‘parameter 

by parameter’ basis, to avoid building an ‘overparameterized model which suffers 

from serious estimation problems’ (Hox 2011). Secondly, covariates which were 

not significant with fixed slopes may be significant in a random slope 

specification, so that previously excluded covariates would have to be tested 

again (Hox, 2011). Third, random slopes may be fitted to continuous and 

categorical data, and in the case of categorical variables, they may be fitted to 

each category separately (Rasbash et al., 2009). As a result, a systematic and full 

assessment of random slopes within this exercise would include considering an 

enormous amount of variables and categories of categorical variables with 

random slopes being tested on each level in the univariate model as well as each 

side of the bivariate model respectively, and this is clearly not feasible within the 

scope of this exercise.  

 

 

As a result, the following steps are taken for a number of patient and disease 

characteristics (TCL, SBP and smoking) to demonstrate the potential value of the 

variance function for addressing the transferability problem of economic 

evaluation data: 

 

1. running an OLS-regression model to plot an overall mean regression line 

without assuming complex data structures (this serves as baseline for 

analysis and helps demonstrating the relative merits of the multilevel 

model methodology).  

2. running a random intercepts model which results in an overall mean 

regression line and, parallel to that, individual study regression lines for 

each study in the dataset (this model specification is equivalent to the 

models run in Sections 5.2 and 5.3 of this empirical exercise) 
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3. running a random slopes model which allows study-level regression lines 

to differ both with respect to their intercepts and slopes (this model 

specification relaxes the assumption of an identical relationship between 

explanatory variables and response variables for different studies)  

4. Model the variance in the relationship between patient and disease 

characteristics and measures of cost-effectiveness between studies as a 

function of explanatory variables.  

 

Models are run both with INMBs in the univariate framework as well as 

incremental cost and incremental effects in the bivariate framework using 

MCMC estimation in MLwiN (Rabsash et al., 2009a, Browne, 2012) 

 

 

 

5.4.2. Methods of analysis 

 

 

The random slopes model in this section of the empirical analysis is, as before, 

run both in a univariate specification, with INMB as the only response variable, 

as well as a bivariate model, with ∆C and ∆E as a vector of response variables.  

The model of interest is a three-level hierarchical model, which groups data in 

studies and studies in countries respectively. In addition, data from multinational 

studies is being clustered in a separate group on country-level. Table 5.28 below 

summarizes the models relevant for this section.   

 

 

As before in the random intercepts model, we can interpret the parameter ‘��’ 

as the intercept and ′	�8H8��’ as the slope of the pooled regression line. Also 

identical to the univariate random intercepts model, ‘���	 ’ is the variance for the 

within-study error term ′		����:’ and ‘�L�	 ’ is the variance of the between country 

error term ‘'�K’ respectively. However, in contrast to the random intercepts 

model, the slope is no longer identical between the pooled regression line and 

the individual study regression lines.  
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Table 5.28: Multilevel models for exercise four 

 

 
Model of interest 

(Three-level hierarchical model) 

Model summary 

 

Three-level hierarchical random slopes model with cost-effectiveness estimates 
being nested in economic evaluation studies and studies being nested in 
geographic domains. Data from multinational studies is being clustered in a 
separate group on country-level. Random slopes were fitted on level two to allow 
the relationship between data-level covariates and response variables (INMB, ∆C, 
∆E) to differ between different studies in the dataset.  

Unit Diagram  

 

 

 

Univariate model 

specification 
 

 

 

 ���K~�(��, �
 ���K = �� + �8H8��K + �	H	�K + �JHJK + '�K + !��K + !8�K + ����K 

 
With M'�KN~�(0, ΩL
			where  ΩL = M�L�	 N P!�,�K!8,�KQ ~� (0, Ω"
      where  Ω" = R�"�	�"�8 �"8	 S T����KU~�(0, Ω�
			where  Ω� = M���	 N 

Bivariate model 

specification 

 
 }v�,��Kv8,��K~ ~���(��, �
 
 �n,��K = (��n + �8nH8��K + �	nH	�K+�JnHJK + '�nK + !�n�K + !8n�K + ��n��K
 ∗ �n,��K 
 �8,��K = � 1	(�	∆	*%�$0	(�	∆	����*$��        �	,��K = 1 − �8 

 
With: P'�,�,K'�,8,KQ ~��� (0, ΩL
     where  ΩL = R�L�,�	�L�,�8 �L�,8	 S 
�!�,�,�K!�,8,�K!8,�,�K!8,8,�K�~��� (0, Ω"
      where  Ω" = wxx

xy �"�,�	�"��,�8 �"�,8	�"�8,�� �"�8,8� �"8,�K	�"�8,�8 �"�8,88 �"88,�8 �"8,8K	 z{{
{|
 

P��,�,��K��,8,��KQ ~��� (0, Ω�
    where  Ω� = R���,�	���,�8 ���,8	 S 
 

Hence, special attention needs to be placed on the interpretation of ′Ω" =R �"�	�"�8 �"8	 S’ in which ‘�"8	 ’ is the variance in slopes between studies, ‘�"�	 ’ is the 

variance in intercepts between studies, and ‘�"�8’ is the covariance between 

intercepts and slopes (Steele, 2008; Rasbash et al., 2009). This issue is also 

further addressed below. For the bivariate model, the variance and covariance 

CE CE CE CE CE CE CE CE CE 

Study 1 Study 2 Study 3 

Country A Country B 
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between the stochastic components of the INMB statistic need to be considered 

as well, resulting in a 4*4 variance-covariance matrix for ‘Ω"’ on study-level 

(Bartholomew et al., 2008). For the univariate model it is assumed that INMB is 

normally distributed at each level of the model whilst a bivariate normal 

distribution is assumed for the bivariate model. As in the bivariate random 

intercepts model before, the response indicator ‘r’ is 1 for ∆C and 0 for ∆E and a 

separate level for this response indicator has been fitted below the data-level. 

Further details on the multilevel methodology applied in this empirical exercise 

are also available from Chapter 3.  

 

 

As mentioned above, special attention needs to be placed on the variance in 

intercepts between studies ‘�"�	 ’, the variance between their respective slopes 

‘�"8	 ’, as well as the intercept slope covariance, denoted with ‘�"�8’. In general, a 

random slope model allows not just intercepts, but also the slopes of individual 

regression lines to differ between studies included in the dataset (Steele, 2008; 

Rasbash et al., 2009). This means, if random slopes are assumed in the 

relationship between an explanatory variable and measures of cost-

effectiveness, this allows study regression lines to vary both in their intercepts 

and slopes across the range of values of the explanatory variable (Steele, 2008; 

Rasbash et al., 2009). In other words, study-level variability becomes a function 

of the explanatory variable (Steele, 2008; Rasbash et al., 2009). This has very 

important implications: first of all, the covariance between slope and intercept 

variance tells us about the pattern of individual study regression lines with 

respect to changes in the explanatory variable (Rasbash et al., 2009; MLM 

workshops / random slopes). If this covariance is negative, then study regression 

lines are ‘fanning in’ over the range of the explanatory variable (Steele, 2008; 

Rasbash et al., 2009; MLM workshops / random slopes). Conversely, if ‘�"�8’ is 

positive, study predictions are fanning out (Steele, 2008; Rasbash et al., 2009; 

MLM workshops / random slopes). An intercept slope covariance of zero 

indicates no particular pattern in individual study regression lines (Steele, 2008; 

Rasbash et al., 2009; MLM workshops / random slopes).   

 

 

Secondly, special attention needs to be placed on where the explanatory variable 

for which a random slope has been fitted is centred (Steele, 2008; Rasbash et al., 



 

307 
 

2009). The matrix ′Ω" = R�"�	��8 "8	 S’ defines the relationship between the error 

terms of the intercepts ‘!��’ and the error term of the slopes ‘!8�’ (Steele, 2008; 

Rasbash et al., 2009).  Depending on where the y-axis cuts the x-axis, one would 

obtain different measures of the between group error term ‘!��’, the variance of 

the intercepts between studies ‘�"�	 ’ and the covariance between slopes and 

intercepts ‘�"�8’, which is why all parameters must be interpreted 

simultaneously and in the light of where x=0 was placed. (Steele, 2008; Rasbash 

et al., 2009; MLM workshops / random slopes). To illustrate this issue, consider 

Figures 5.13 and 5.14 below. The black line in Figure 5.13 represents the overall 

mean regression line, whilst the green line represents the relationship between 

the explanatory variable x and the measures of cost-effectiveness in one 

particular study. Depending on the value of x, the variability between studies 

changes, which is shown by the red arrows between the overall mean regression 

line and the individual study prediction.  

 

 

Figure 5.14: Resulting variance function for sample 

dataset 

Figure 5.13: Study-level variability depends on value 

of explanatory variable in a random slopes model 



 

308 
 

In relation to that, the variance partitioning coefficient, which tells us about the 

amount of variability attributable to each hierarchical level of the model, now 

depends on the value of the explanatory variable too. It can be shown that 

study-level variability is now a quadratic function of the explanatory variable 

(Steele, 2008), which is shown in equation (1)  

  

 ���7!�� + !8�H8��9 = �"�	 + 2�"�8H8�� + �"8	 H8��	                         (1) 

 

Accordingly, the VPC may now be expressed as:   

 

�+,¤q"n¦ = -.W/ 0	-.WXYXZD0-.X/ YXZD/-.W/ 0	-.WXYXZD0-.X/ YXZD/ 0-1W/                           (2) 

 

Equation (1) is for obvious reasons also referred to as the ‘variance function’ 

which is also displayed in Figure 5.14 above (Steele, 2008; Rasbash et al., 2009).  

This variance function is being modelled for patient and diseases characteristics 

TCL, SBP and smoking. Results are reported in Section 5.4.3 below. It is 

hypothesized that additional information generated through conducting new 

studies in the target country may be particularly valuable for (ranges of) 

explanatory variables where study-level variability is high. Conversely, there may 

be regions of the variance function for which variability in existing data is low, 

and a study produced for the target country would be more likely to produce 

results which are in the same range then existing studies; so that additional 

research may not be indicated and one may rather transfer evidence from 

existing studies to the target domain. Hence, the variance function may be used 

to target research resources more specifically to those questions for which 

study-level variability in measures of cost-effectiveness is particularly high. 

 

 

5.4.3. Results 

 

Table 5.29 below summarizes the results from gradually building up a multilevel 

model with random slopes and modelling the study-level variance as a function 

of total cholesterol level both for INMBs in the univariate model and ∆C and ∆E 

in the bivariate framework. The first row of Table 5.29 shows the predictions 
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from running an OLS regression. Against prior expectations but in full accord with 

pilot study results reported in Chapter 3.4, a negative relationship is obtained 

between INMB and TCL and a positive relationship between ∆C and TCL. As 

elaborated on in Chapter 3.4, the result is likely to be explained by the failure of 

the OLS regression model to capture the difference between within and between 

study effects. Precisely, the relationship between INMB and TCL may be positive 

within each study in the dataset and this is what one would expect to observe 

when running a regression analysis on the respective dataset. However, some 

studies refer to patient populations which are characterised by a poorer health 

status, and this also includes an elevated cholesterol level. Though the positive 

relationship between cholesterol level and statin cost-effectiveness holds within 

these studies, their overall result in terms of INMB may be lower than that of 

studies with otherwise healthier patient populations. As the OLS regression 

model is unable to capture this between-study effect, it results in an overall 

negative relationship between TCL and INMB, and for the same reason, an 

overall positive relationship between TCL and ∆C respectively.   

 

 

The random intercepts model, for which predictions are displayed in the second 

row of Table 5.29 below, takes into account within and between study effects 

and therefore shows the anticipated positive relationship between TCL and INMB 

as well as TCL and ∆E, and also the anticipated negative relationship between 

TCL and ∆C. The pooled regression lines are displayed in red for INMBs, green for 

∆Cs and yellow for ∆Es respectively. Around these pooled regression lines, we 

can see individual study predictions for each of the 67 studies included in the 

dataset. These predictions, however, are all parallel to the pooled regression line 

and therefore only differ by their respective intercepts, which also explains the 

term ‘random intercepts model’ for this class of multilevel models (e.g. Steele, 

2008). In other words, the relationship between TCL and the response variable 

(INMB, ∆C and ∆E) is assumed to be identical between all 67 studies, and this is 

also what has been assumed in Sections 5.2 and 5.3 of this empirical exercise.  
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Table 5.29: Gradually building up a multilevel model with random slopes and modelling study-level variance as a function of explanatory variables 
 

 INMB (univariate model) Incremental cost (bivariate model) Incremental effects (bivariate model) 
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This assumption of zero variation in the relationship between TCL and the 

response variable between studies has been relaxed in the third row of Table 

5.29. By allowing the slope of the data-level covariate TCL to differ between 

studies included in the dataset, we now obtain individual study predictions which 

are no longer parallel to each other (e.g. Steele, 2008). Some studies, for 

instance, show a steeper relationship between TCL and INMB than others, which 

results in a pattern of study-predictions which is ‘fanning out’ for INMBs over the 

range of the explanatory variable. The same fanning out pattern is observed for 

the relationship between TCL and ∆E, whilst the pattern for the relationship 

between TCL and ∆C appears to be ‘fanning in’ at first, but then fanning out 

again for higher values of TCL.  

 

 

Random slopes have been fitted to economic evaluation datasets before, for 

instance by Sculpher et al. (2004), Manca et al. (2005), Thompson et al. (2006) or 

Bachmann et al.  (2007). The covariate most commonly modelled with a random 

slope was the treatment effect across centres in multicentre studies, however, 

Thompson et al (2006) also assumed random slopes for the patient covariate 

‘incontinence status’ across centres in a multicentre observational study. The 

idea was analogous to what is being modelled in this exercise, namely to 

consider variation in patient characteristics between centres which may cause 

variability in cost-effectiveness data across centres participating in the study.  

 

 

Most importantly for the purposes of this particular exercise, the variation 

between individual study predictions for the relationship between TCL and the 

response variable is no longer assumed to be zero, and this variation changes 

with the value of the explanatory variable. The study-level variance is now a 

quadratic function of TCL, and this has been plotted in the fourth row of Table 

5.29 above. For INMBs and ∆Es, we observe constantly increasing study-level 

variation in the relationship between TCL and the response variable, and for ∆Cs 

we can see a concave function where variation in the relationship between TCL 

and incremental cost decreases up to a TCL level of 7.5 mmol/L. Beyond that 

level of TCL, however, study-level variability is beginning to increase again.  
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Next, the same analysis was repeated for the continuous patient and disease 

characteristics systolic blood pressure (SBP) and the percentage of smokers in 

the sample (smoking). Respective variance functions (including the function for 

TCL which was already displayed in Table 5.29 above)) are shown in Table 5.30 

below. To enhance comparability of results, functions for INMB and ∆C were all 

plotted on the same scale.  

 

 

From Table 5.30 below we may draw several conclusions with respect to the 

transferability of measures of cost-effectiveness for the primary and secondary 

prevention of CVD. First of all, variability between studies is constantly increasing 

for the relationship between INMBs and TCL and ∆E’s and TCL respectively, so 

that results may be less transferable the higher the total cholesterol level of the 

study population. The concave variance function for study-level variability in the 

relationship between TCL and ∆C indicates that results may be most transferable 

at a TCL level of around 7.5 mmol/L as variability between studies in measures of 

cost-effectiveness is lowest at this level of total cholesterol. Moving on to SBP, 

there are two important observations to make. First of all, variance functions are 

almost flat, indicating that variability in measures of cost-effectiveness between 

studies is pretty much the same over the whole range of values for SBP. 

However, as the scale used for plotting variance functions both for TCL and SBP 

are the same, we also observe that the variance function is at a much higher 

level for SBP. This demonstrates an important issue when using the variance 

function to make judgements regarding the transferability of results. One has to 

make a judgement regarding the ‘tolerable level of variation’ to accept 

transferred evidence for the target domain. In other words, one has to decide on 

a ‘threshold value’ for variability. Once the variance function exceeds this 

threshold, one may regard the existing evidence as non-transferable and 

therefore consider the conduct of a new study for the target country. 
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Table 5.30: Variance functions for TCL, SBP and smoking 

 INMB (univariate model) Incremental cost (bivariate model) Incremental effects (bivariate model) 
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Finally, variance functions for smoking indicate that agreement between studies 

is highest at around 30% of smokers in the study sample. Beyond that, study-

level variability increases drastically. However, the same problem as mentioned 

for systolic blood pressure applies, and this has been demonstrated in Figure 

5.15 below. As already detailed for SBP, it is unclear where to place the 

horizontal line which represents the threshold for level-two variability. Several 

questions follow. First of all, is there a way to determine such a threshold value 

for study-level variability which may be helpful to guide the decision on whether 

or not to transfer existing evidence to the target country. Secondly, if this 

threshold value may not be determined, is the concept of the variance function 

still helpful to guide transferability decisions, for instance by comparing variance 

functions for several explanatory variables with respect to their relative location 

and shape and thereby determining research priorities for the target country. 

Finally, this exercise utilised data from published economic evaluation studies 

and integrates this data using MLM methodology. Hence, are there alternative 

application areas for the methodology demonstrated above, for instance using 

individual patient data from randomized controlled trials? These questions 

constitute important areas for future research and are addressed further in the 

discussion reported in Chapter 6.  

 

 

Figure 5.15: Determining a threshold value for study-level variance 

 

 

Reject existing 

evidence for target 

country 

Accept existing 

evidence for target 

country 

? 
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5.4.4. Summary and conclusions for part four of this empirical 

exercise 

 

 

The primary aim of this section was to demonstrate a methodological feature of 

the MLM framework which allows modelling variation in international cost-

effectiveness data directly as a function of explanatory variables. Starting off 

from an OLS regression equation, multilevel models were gradually built up both 

in the univariate and bivariate framework. Random slopes were then introduced 

for patient and disease characteristics (TCL, SBP and smoking), and slopes were 

allowed to vary randomly on study-level. This follows the thought that the 

decision makers choice with respect to the transferability problem is one 

between existing studies, and only once the decision maker has identified a 

number of candidate studies which meet the requirements of the target 

jurisdiction, country characteristics may be considered to the extent to which 

they are reflected in the economic evaluation in question. However, the analysis 

in this thesis has shown that the geographic context within which the available 

evidence was originally produced for is a far less important source of variability 

in international cost-effectiveness data than differences between economic 

evaluation studies. This, in conclusion, constitutes a compelling argument for 

fitting random slopes on study-level.  

 

 

After random slopes were fitted to patient and disease characteristics, variation 

in cost-effectiveness data was plotted as a function of explanatory variables. It 

turned out, for instance, that variability between studies is constantly increasing 

for the relationship between INMBs and TCL and ∆E’s and TCL respectively, so 

that results may be less transferable the higher the total cholesterol level of the 

study population. In addition, variance functions turned out to be almost flat for 

SBP, indicating that variability in measures of cost-effectiveness between studies 

is pretty much the same over the whole range of values for SBP. However, the 

overall level of variability in measures of cost-effectiveness with respect to SBP 

was much higher compared to other explanatory variables, so that it may be 

more indicated to focus research resources on this particular patient 

characteristic for the target domain. Finally, variance functions for smoking 

showed that study-level variability increases drastically with an increasing 
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percentage of smokers in the study sample, indicating that cost-effectiveness 

data for populations with a high percentage of smokers may not be transferable 

as evidence from existing studies is not conclusive.  

 

 

Finally, a number of issues have been identified which ought to be addressed in 

future research and are therefore discussed in more detail in Chapter 6. For 

instance, is there a way to determine a ‘threshold value’ for study-level variability 

which may be helpful to guide the decision on whether or not to transfer existing 

evidence to the target country. The discussion section addresses this question by 

drawing an analogy to the ‘value of information’ concept (Claxton et al., 2000) 

Secondly, if there is no rational for determining a threshold value, could the 

concept of the variance function still be helpful to guide transferability decisions, 

for instance by comparing variance functions for several explanatory variables 

with respect to their relative location and shape, and thereby determining 

research priorities for the target country. Finally, are there additional application 

areas where modelling the variance function may be useful which go beyond the 

scope of the integration of secondary cost-effectiveness data from existing 

economic evaluation studies (e.g. applying this concept to individual patient data 

from international multicentre RCTs). These questions are addressed in more 

detail in the next Chapter 6, which entails the overall discussion of this thesis.  
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6. Discussion 
 

 

This chapter provides a discussion of the results generated in this thesis. Findings 

across all chapters are summarised in Section 6.1, before strength and 

weaknesses of the work carried out are being discussed in Section 6.2. Section 

6.3 then discusses findings in the context of existing research in the field. Policy 

implications are summarized in Section 6.4 and recommendations for further 

research are given in Section 6.5. Concluding remarks are provided in the final 

Section 6.6 of this chapter.  

 

 

6.1. Summary of findings 

 

 

The primary aim of this thesis was to address the transferability problem of 

economic evaluation in health by analysing what causes variability in measures 

of cost-effectiveness within and between studies, and ultimately, between 

geographic domains. The review of the economic evaluation literature in Chapter 

2 confirmed that ‘the methods that have been proposed to address the 

transferability issue have often been relatively ad hoc, with the obvious 

consequence that the methodological literature in this area has evolved 

somewhat nonlinearly over time’ (Manca, 2009). In addition, the available 

literature confirms that ‘there is a lack of empirical studies which prevents 

stronger conclusions regarding which transferability factors are most important 

to consider and under which circumstances’ (Goeree et al., 2007). To address 

these issues, MLM was used to analyse variability factors for measures of cost-

effectiveness.  

 

 

In Chapter 2, the transferability problem was defined as an ‘analogical inference’, 

within which a mapping of relevant attributes between a source domain, about 

which more is apparently known, and a, less studied, target domain is produced 

to infer whether the information of interest may also hold in the target setting 
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(Gentner & Markman, 1997; Forbus, 2001; French, 2002). This theoretical 

framework was then linked to the statistical concept of ‘exchangeability’, which 

forms the conceptual basis of multilevel statistical modelling. MLM makes 

explicit the exchangeability assumption and allows for the assessment of 

variability factors of measures of cost-effectiveness within studies, between 

studies, and ultimately, between geographic domains through the assumption of 

conditional independence (Drummond et al., 2009). Chapter 2 concluded with a 

review of the use and applications of MLM within the area of economic 

evaluation in health, and showed that all applications of MLM in this area focus 

on the analysis of IPD from multicentre trials or observational studies, within 

which a strict two-level hierarchical data structure is commonly assumed.  

 

 

In other words, using MLM as a mode for meta-regressing secondary cost-

effectiveness data from published economic evaluation studies is a novelty in 

this area, which is why methods to integrate cost-effectiveness data from 

different studies and across different geographic domains were developed and 

tested in Chapter 3. Starting off from a simple OLS regression equation, complex 

data structures were gradually introduced, resulting in a number of strictly 

hierarchical as well as cross-classified models. Within these models, INMB as a 

single response variable was considered in a univariate framework, as well as the 

stochastic components of the INMB statistic ∆C and ∆E as a vector of response 

variables in a bivariate MLM. Chapter 3 concluded with a pilot study to test these 

models using a subset of cost-effectiveness data on statins for the primary and 

secondary prevention of CVD; as this is an extensively studied area which allows 

for the assumption of random parameters on study and country-level (Snijders, 

2005). Results from the pilot study were promising, and in line with Gelman et al. 

(2004), who state that ‘the valid concern is not about exchangeability, but 

encoding relevant knowledge as explanatory variables where possible.’ However, 

results also showed negligible country-level variation in the cross-classified 

model, and it was suspected that data from multinational studies may disguise 

actual country-level variability. This idea was supported by existing literature, 

which found lower levels of country-level variation in multinational study data 

(e.g. Barbieri et al., 2005), and also the invaluable feedback received from 

presenting pilot study results at various conferences and seminars.  
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After carrying out the pilot study, a systematic literature review was conducted 

to populate a dataset of cost-effectiveness estimates (∆C, ∆E and INMBs), as well 

as additional data encoding potential variability factors. This was the focus of 

Chapter 4. As in the pilot study, statins for the primary and secondary prevention 

of CVD were the focus of assessment, and the dataset previously developed for 

the pilot was complemented with information from a large number of additional 

studies, as well as an extensive list of potential explanatory variables. In total, 67 

studies were included in this empirical exercise, reporting 2094 cost-

effectiveness estimates applicable to 23 geographic domains. Covariates were 

defined from a long list of potential variability factors, as previously reported in 

the literature (Sculpher et al., 2004; Goeree et al., 2007). Results of most studies 

referred to one geographic domain only, whilst six studies were multinational in 

nature, hence causing the strict hierarchical data structure with data clustered in 

studies and studies clustered in countries to break down.  

 

 

Systematically reviewing this literature revealed that studies may be related to 

each other, for instance, through common authorship, the use of identical data 

sources, reuse of a previously published DAM, or simply a common source of 

funding. This, however, may violate the assumption of independence between 

studies, which is necessary to fit the MLMs developed in Chapter 3. If studies are 

related, it might therefore be more appropriate to pool them in one group on 

the study-level. Though this may reduce the number of level-two units, it may be 

more appropriate to fit MLMs to the data, especially when studies are very 

similar. Therefore, the aim of the final section of Chapter 4 was to look into the 

‘genealogy’ of economic evaluation studies on the cost-effectiveness of statins. 

Multiple correspondence analysis was used to ascertain whether studies are 

similar with respect to key characteristics, and once a ‘phenotypic’ similarity was 

disclosed, a ‘genotypic’ relationship between studies was sought. As a result, 

some relationships amongst studies were identified, however, the method did 

not (yet) prove accurate enough to justify the use of alternative MLM structures 

based upon its results. Instead, further explanatory variables were derived with 

the aim of encoding relationships between studies. This exploration into possible 

relationships between published evidence and potential similarities between 

studies’ results may be followed up in future research.   



 

320 
 

Chapter 5 presented the main empirical analysis, and the first section of this 

chapter was predominantly concerned with determining the appropriate MLM 

structure for the integration of published cost-effectiveness data. Starting off 

with the models developed and tested in Chapter 3, Section 5.1 showed that 

appropriate assumptions regarding dependencies in the data are crucial for 

making correct inferences. The pilot study already showed the importance of 

explicitly acknowledging the existence of a study-level in the model, and this 

finding was clearly confirmed by the analysis reported in this section. However, 

the pilot study also showed negligible country-level variability in the cross-

classified model, and as a potential reason, it was hypothesized that the 

assumption of independence between geographic domains may not be adequate 

for multinational study data. If data from multinational studies underestimates 

country-level variation, this potentially disguises country-level variability in the 

rest of the data. Therefore, a three-level hierarchical model, which groups data 

in studies and studies in countries, was run both on a reduced dataset without 

multinational studies, as well as on the full dataset, where data from 

multinational studies was grouped in a separate cluster on country-level. To 

confirm that the lack of country-level variability in the cross-classified model 

results from the data and not from technical issues with model specification and 

implementation, a cross-classified model was also run on an ‘intermediate’ 

dataset, where some multinational study data was assigned to its respective 

target countries, and the rest of the data clustered in a separate group on 

country-level, thereby introducing the cross-classification problem on ‘a lower 

scale’.  

 

As a result, whilst country-level variability was negligible for the cross-classified 

model, it increased dramatically within the bivariate three-level hierarchical 

framework, both for the full as well as for the reduced dataset. In addition, 

running the cross-classified model for the intermediate dataset resulted in 

country-level variability somewhere in between the fully cross-classified model 

and the three-level hierarchical structure. These results clearly confirm that 

country-level variability may be underestimated in multinational studies. 

Potential reasons could be identical trial protocols across centres and countries 

in multinational RCTs (e.g. Ramsey et al., 2005), or assuming transferability of 

input parameters between countries, which consequently results in lower 



 

321 
 

country-level variation in measures of cost-effectiveness (e.g. Barbieri et al., 

2005). As a result, it was decided to take forward the three-level hierarchical 

model to the second part of this empirical exercise, as only this model makes 

appropriate assumptions regarding dependencies in the dataset, permits the 

simultaneous assessment of covariates on data, study, and country-level, and 

allows use of the full dataset by grouping multinational study data in a separate 

group on country-level.  

 

Finally, Section 5.1 assessed, in depth, whether ‘empirical Bayes shrinkage 

estimation’ may be regarded as appropriate in a model which integrates 

secondary data from published economic evaluation studies, where the weight 

of a particular study does not depend on the number of individual patients in the 

sample, but rather on the extent to which subgroup and sensitivity analyses have 

been reported. It could be shown that, due to high between-group variability, 

shrinkage factors are generally very high in this case study, which means that 

shrinkage is, at most, moderate. More importantly, however, this section argued 

that the impact of shrinkage on study means in this exercise depends not just on 

the number of data points abstracted from each study, but also on the within 

and between group variability in the data (i.e. dependencies) and the location of 

each study mean relative to the overall regression mean. This issue is further 

discussed in Section 6.2 of this chapter, which is concerned with the main 

strength and weaknesses of this empirical exercise.  

 

Section 5.2 was concerned with testing covariates on data and study-level and 

determining a model which best controls for variability on these levels; thereby 

disclosing the maximum amount of country-level variability Covariates were 

drawn from a long list of possible variability factors suggested in the literature 

(Sculpher et al., 2004; Goeree et al., 2007). Following descriptive statistics, 

regression based imputation of missing values and a detailed assessment of 

correlations between potential explanatory variables were applied. Further, data 

reduction techniques were used to derive further covariates, including principal 

components factor analysis (Rencher, 2002; Acock, 2010) and multiple 

correspondence analysis (Le Roux & Rouanet, 2010). Thereafter, covariates were 

analysed in a random intercepts model (Steele, 2008; Rasbash et al., 2009, Hox, 
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2010) First, covariates were tested individually in the MLM. Secondly, a model 

with multiple covariates on data and study-level was constructed to reveal the 

maximum amount of country-level variability. This model was also carried 

forward to the analysis of country-level variability in Section 5.3 of the empirical 

chapter.  

 

Adding covariates to the model on the data and study-levels successfully 

disclosed further variability on the country-level. Hence, the model could show 

that lower-level variability factors may feed through to higher levels, which 

demonstrates impressively the importance of both appropriately reflecting 

complex data structures and controlling for variability on lower levels, even if the 

main focus is on higher-level (i.e. country-level) variability (Sculpher et al., 2004). 

The analysis also showed that country-level variability was constantly increasing 

with the inclusion of lower-level covariates in the bivariate (∆C, ∆E) model, 

allowing assessment of covariates on country-level. However, a different 

conclusion was reached for the univariate (INMB) framework, where country-

level variability remained negligible throughout the course of this exercise. This 

finding was assessed in much more detail in Section 5.3 of the empirical chapter 

and is summarized further below.  

 

 In terms of covariates, the analysis carried out in Section 5.2 showed, for 

instance, the importance of patient and disease characteristics for variability in 

measures of cost-effectiveness, which also feeds through to the study and 

country-level. Further, testing intervention and comparator characteristics in the 

model showed that NICE’s view on statins is essentially confirmed, which says 

that ‘for the purposes of initiating therapy, there were no data on clinical events 

to suggest the superiority of any one statin over all the others in reducing 

cardiovascular events’ (NICE, 2006). On the other hand, controlling for study-

level variability factors proved far more difficult, especially with respect to 

methodological characteristics; even though the study-level turned out to be a 

major source of variability in cost-effectiveness data. Only few variables on 

study-level were statistically significant, amongst them a binary which captures if 

effectiveness data was obtained from the 4S study, as well as a binary which 

captures whether the study uses the ‘CVD life-expectancy model’ by Grover et al 
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(1998). Using 4S data significantly increased estimates of ∆E in the bivariate 

model and INMB in the univariate model, whilst papers by Grover et al., which all 

use the CVD life-expectancy model, showed higher levels in all outcome 

variables. The discussion in Section 6.2 elaborates in more detail why studies 

utilising 4S data or the CVD life-expectancy model provide results which are so 

different to other studies included in this empirical exercise.  

 

 

Section 5.3 addressed variability in measures of cost-effectiveness between 

countries. The first objective was to analyse potential causes for a lack of 

country-level variability in the univariate MLM with INMB as single response 

variable. The second objective was to analyse covariates on country-level in the 

bivariate framework with ∆C and ∆E as response variables, within which 

considerably more country-level variability was disclosed in Sections 5.1 and 5.2.  

 

 

Two potential reasons were considered for a lack of country-level variability in 

the univariate framework. First, the threshold value λ, which was set constant in 

previous analyses, was altered and models were run at different threshold 

values. For extreme values, this analysis showed similar country-level variability 

as for ∆C and ∆E in the bivariate model. This makes intuitive sense, as variability 

in INMBs stems from ∆C alone if λ equals zero, and ∆E alone if λ tends towards 

infinity. However, for the continuum between these extreme cases, variability on 

country-level remained negligibly low, so that we may exclude λ as a potential 

reason for a lack of country-level variability in the univariate model. Secondly, 

based on analyses carried out in Sections 5.1 and 5.2, it was suspected that 

variability in one component of the INMB statistic may be partly offset by 

variability in the other component. For this reason, forest plots with country 

means and their respective confidence intervals were produced for each 

response variable both from the raw data and using country-residuals from the 

three-level hierarchical model. In addition, Pearson correlations were calculated 

for the raw data as well as the country means obtained from the three-level 

MLM. Forest plots showed similar patterns in ∆C and ∆E and correlations were 

well above 0.9 and highly significant. It may hence be concluded that the lack of 

country-level variability in INMBs results from combining ∆C and ∆E, which have 

similar patterns of variability, so that variability in one component of the INMB 
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statistic is partly offset by variability in the other component. Potential reasons 

for this observation are considered further below.  

 

 

Finally, this section was also concerned with country-level covariates for the 

bivariate model. To test whether ‘lumping’ country-level data from multinational 

studies in a separate group on country-level distorts results, this analysis was 

performed both with the full dataset, and a reduced dataset in which data points 

from multinational studies were dropped. Results were almost identical for both 

datasets. Testing country-level covariates individually in the model did not result 

in any significant covariates for ∆C, whilst government expenditure on health as 

a percentage of total health expenditure, the number of GPs and pharmacists 

per 10,000 inhabitants, the mean population age, as well as measures of BMI and 

blood glucose showed significant relationships to ∆E. When covariates were 

simultaneously assessed in the final random intercepts model with variability 

factors considered on each hierarchical level, GDP per capita and the 

government expenditure on health as a percentage of total health expenditure 

was significantly related to incremental cost, whilst coefficients for total health 

expenditure as a percentage of GDP and mean population age were highly 

significant for ∆E. These results are also discussed below.  

 

 

Section 5.4 shifted the focus towards a methodological feature of the MLM 

framework. The primary aim was to demonstrate how modelling variation in 

international cost-effectiveness data directly as a function of explanatory 

variables relates to the transferability problem. First, random slopes were 

modelled for patient and disease characteristics (TCL, SBP and smoking). Then, 

variation in cost-effectiveness data was plotted as a function of explanatory 

variables. It turned out, for instance, that variability between studies is 

constantly increasing for the relationship between INMBs and TCL and ∆E’s and 

TCL respectively, so that results may be less transferable the higher the total 

cholesterol level of the study population. In addition, variance functions were 

almost flat for SBP, indicating that variability in measures of cost-effectiveness 

between studies is pretty much the same over the whole range of values for SBP. 

However, the overall level of variability in measures of cost-effectiveness with 

respect to SBP was much higher compared to other explanatory variables, so 
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that it may be more indicated to focus research resources for the target domain 

on this particular patient characteristic. Finally, variance functions for smoking 

showed that study-level variability increases drastically with an increasing 

percentage of smokers in the study sample, indicating that cost-effectiveness 

data for populations with a high percentage of smokers may not be transferable 

as evidence from existing studies shows high variability.  

 

 

The following section discusses the strength and weaknesses of the empirical 

analysis. Thereafter, findings are discussed in the context of existing research in 

the field in Section 6.3, before summarizing policy implications in Section 6.4. 

Finally, Section 6.5 discusses potential areas for further research, before a 

conclusion is provided in Section 6.6.  

 

 

6.2. Strength and weaknesses of the analysis 

 

 

Probably the biggest strength of the empirical analysis also constitutes its main 

weakness, namely the use of secondary cost-effectiveness data from published 

economic evaluation studies. On the one hand, this ensured quick access to the 

data required to carry out this research. More importantly, however, secondary 

data from published studies may be more appropriate for analysing variability 

factors than the use of IPD from multinational trials. Trials usually implement 

strict protocols which may be identical across centres and countries (e.g. Ramsey 

et al., 2005). These protocols, though crucial to ensure the internal validity of 

trial results, artificially reduce the variability which may exist between centres 

and countries under real world conditions (Ramsey et al., 2005; Barbieri et al., 

2005). Secondary data from published economic evaluation studies, which are 

more likely to have been designed to inform decisions under real world 

conditions, may better reflect this variability. Furthermore, using IPD from one 

trial may not allow for the assessment of factors causing variability in cost-

effectiveness between studies, which has been identified as an overriding source 

of variability within this project.  
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However, several problems arise when using secondary data from published 

economic evaluation studies in a multilevel statistical analysis of factors causing 

variability in measures of cost-effectiveness. For instance, the assumption of 

random parameters on study and country level, which is necessary to fit 

multilevel models, may be violated for the current exercise. On study level, strict 

inclusion and exclusion criteria specified, for instance, that only studies which 

explicitly report values for components of the INMB statistic may be considered. 

However, as earlier studies may be more likely to report their results in terms of 

ICERs (without making explicit values for ∆E and ∆C), this may bias the dataset 

towards studies which were published more recently. This, in turn, may affect 

results as evidence suggests that not just study methods evolved, but statins also 

became cheaper and more effective over time. It may also affect the variability 

observed between studies, as more recent studies may build upon experiences 

(and results) of earlier studies, which may lead to a converging effect in terms of 

variability over time.  

 

 

Methodological standards may be more widely adapted in some countries 

compared with others and therefore favour the inclusion of studies from 

particular countries into this exercise. This may bias the dataset towards 

particular jurisdictions, (e.g. Canada, UK). On the other hand, it was not possible 

to acquire data for countries of low or medium levels of economic attainment, 

with the exception of Hungary. As a result, the low country-level variability 

observed in the empirical analysis may partly be a result of the fact that only high 

income countries were represented in the data. Finally, issues with the 

assumption of randomness may not only relate to higher level units. Problems 

did arise, for instance, if a study reported cost-effectiveness as ICERS and data on 

either ∆C or ∆E was available, which allowed decomposing the ICER-statistic. If, 

however, the use of statins resulted in cost-savings, studies rightly omitted 

resulting negative ICERs, which meant that ∆C and ∆E could not be calculated 

and the respective data point had to be dropped. This resulted in a loss of data 

points providing evidence in strong support of statins, which in turn, may have 

biased response variables downwards in the current exercise.  
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Apart from issues with the assumption of randomness, the problem of ‘empirical 

Bayes shrinkage estimation’ was identified as a major cause for concern within 

the MLM framework if data stems from published economic evaluation studies. 

Shrinkage may only be a consequence of differences in the way subgroup or 

sensitivity analyses were performed and reported, which is not indicative of the 

size of the underlying study sample. This problem was considered and 

extensively discussed in Section 5.1.5 of the empirical chapter. In brief, due to 

high between study variability, shrinkage factors are generally high in this 

exercise, which means that shrinkage is, at most, moderate. More importantly, 

however, the impact of shrinkage on study means depends not just on the 

number of data points per study, but also the within and between study 

variability in the data (i.e. dependencies) and the location of study means 

relative to the overall regression mean. With respect to ‘dependency’, shrinkage 

makes sense as one would rather drag studies towards each other if between-

study variability is low. With respect to location, shrinkage may also be justified 

as one would not want outlying studies to bias regression results. For ‘group 

size’, however, a distinction was made between country groups and study 

groups. With respect to countries, giving higher gravity to countries for which 

more evidence is available, may also be justified, even if the underlying data 

stems from published economic evaluation studies. With respect to studies, 

there may be arguments both in favour as well as against the appropriateness of 

shrinkage and it is recommended to further look into methodologies for 

assigning weights to studies and to implement this information within the MLM 

framework.  

 

 

Despite these issues, the use of MLM is considered a major strength of this 

thesis. MLM makes explicit the exchangeability assumption, which ‘mediates’ 

between assumptions of either identical or independent parameters (e.g. 

Spiegelhalter et al., 2000 & 2004), and allows integrating secondary cost-

effectiveness data from different studies and different countries without ignoring 

that study and country residuals are not independent. Further, through the 

assumption of conditional independence, one may assess the impact of 

variability factors modelled as covariates on each level of the data hierarchy. As 

Gelman et al. (2004) put it ‘in this way exchangeable models become almost 

universally applicable, because any information to distinguish different units 
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should be encoded.’ (Gelman et al., 2004 cited from Manca et al., 2007). As 

multilevel models treat country-parameters as randomly drawn from a common, 

prior distribution, we have to ask ourselves, however, about the potential 

consequences of violations to this assumption within the current exercise. On 

study-level and country-level, bias may occur if some studies did have a greater 

chance to be selected into the sample than others, and potential reasons for this 

to happen have been considered further above. However, unlike OLS regression, 

which treats β coefficient as if they were fixed constants, the MLM approach 

controls for systematic differences between higher level units if they are 

reflected in the dataset. And even if these differences are not reflected in the 

data collected (as it is, for instance, the case with the level of economic 

attainment on country-level) the MLM approach ensures at least that parameter 

estimates do not suffer from wrongly estimated precision (i.e. suggesting a 

relationship, when in fact, there is none).  

 

 

In this respect, the analysis carried out in this thesis goes far beyond the work of 

other researchers in the field. In particular, Barbieri et al. (2005) shared a similar 

aim and the authors claim to have provided ‘the most comprehensive analysis to 

date of the variation in the results of cost-effectiveness studies, of drugs, in 

Europe’. Nevertheless, their approach was based on a rather descriptive analysis 

of relevant studies with the major limitation that all variability in cost-

effectiveness data was assigned to the country-level. This may be misleading as 

the results of this project show that differences within and between studies 

account for most of the variability in measures of cost-effectiveness. 

Furthermore, Barbieri et al. (2005) were not able to control for a number of 

variability factors simultaneously. However, there may be complicated 

interactions between different variability factors, which require careful 

consideration and systematic assessment. MLM allows simultaneous assessment 

of variability factors within studies, between studies and between countries, and 

therefore provides a more appropriate methodological framework for the 

analysis of factors causing variability in cost-effectiveness data.  

 

 

Further to that, MLMs were also specified in a bivariate framework, hence 

allowing for the simultaneous assessment of ∆C and ∆E as a vector of response 
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variables (Bartholomew et al., 2008; Nixon et al., 2005; Pinto et al., 2005; Manca 

et al., 2007; Grieve et al., 2007; Bachmann et al., 2007; Willan et al., 2008; Grieve 

et al., 2010). This has several advantages: First, the approach does not require a 

new regression to be estimated for each value of the cost-effectiveness 

threshold (Manca et al., 2007). Secondly, the correlation between the two 

stochastic components of the INMB statistic is explicitly modelled. Finally, the 

bivariate model allows assessing the differential impact of covariates on each 

response variable whilst acknowledging that ∆C and ∆E are, themselves, 

correlated.  

 

 

Finally, the method applied in this thesis allows explicit modelling of variability in 

measures of cost-effectiveness as a function of explanatory variables (e.g. 

Rasbash et al., 2009). Allowing slopes of covariates to vary randomly in the MLM 

framework is something other health economists have implemented before 

within their applications of MLM to IPD from multinational trials or observational 

studies (Sculpher et al., 2004; Manca et al., 2005; Thompson et al., 2006; 

Bachmann et al., 2007). However, doing so also allows modelling variation in the 

response variable as a function of explanatory variables and this is, to the 

knowledge of the author, something which has neither been considered in the 

area of health economics in general, nor in health economic evaluation in 

particular. The MLM literature refers to this concept as the ‘variance function’ 

(e.g. Steele, 2008; Rasbash et al., 2009) and Section 5.4 of the empirical chapter 

showed how the variance function relates to the transferability problem. A 

number of questions were phrased with respect to the variance function, and 

these are discussed further as potential areas for future research in Section 6.5 

of this chapter.  

 

 

Moving on from the methodological framework of MLM, a further strength of 

the analysis is that explanatory variables were systematically derived from a list 

of factors previously suggested in the literature as possible constraints on the 

transferability of cost-effectiveness evidence (Sculpher et al., 2004; Goeree et al., 

2007). This is believed to be the first attempt of a systematic assessment of such 

variability factors. Other researchers have tested selected covariates on patient, 

centre or country-level within a two-level hierarchical model applied to IPD (e.g. 
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Grieve et al., 2005 & 2007; Thompson et al., 2006; Manca et al., 2007; Petrinco 

et al., 2009; Edbrooke et al., 2011), and only one study (Barbieri et al., 2005) 

aimed to analyse country-level variability in cost-effectiveness data. However, all 

of these studies limited their analysis to a small number of selected variables. 

The research carried out within this thesis, however, began with a long list of 

candidates ascertained from the literature (Sculpher et al., 2004; Goeree et al., 

2007) to develop and test a data abstraction form to populate a dataset for the 

empirical analysis. This resulted in an extensive list of covariates on data, study 

and country-level, and a random intercepts model with multiple covariates on 

each hierarchical level was specified which best controls for variability in cost-

effectiveness data for statins in the primary and secondary prevention of CVD.  

 

 

Before moving on to a discussion of the findings generated in this project, it 

should be highlighted that the empirical analysis was based on data collected for 

one intervention area only. The intervention of statins for the primary and 

secondary prevention of CVD was chosen as it has been extensively researched 

in the past, meaning that a sufficient number of includable studies and countries 

was hypothesized to be present to justify the assumption of random parameters 

on study and country-level. This resulted in a large dataset with a 2094 data 

points referring to 67 studies and 23 geographic domains. Nevertheless, all 

results are intervention specific, and though it was not feasible to carry out 

another case study within this project, this may be regarded as a general 

weakness of this thesis. Furthermore, all countries represented in the dataset 

have high levels of economic attainment and even variation in health related 

indicators was generally low. The implication is that the quantitative results 

should be interpreted with caution. Section 6.4 below will provide examples of 

how the results of this thesis may be used in a policy environment and elaborate 

on the potential pitfalls in doing so. However, the generalisability of findings 

beyond statins in particular and pharmacological interventions more generally 

should be established in future analysis through replication in other intervention 

areas and a wider range of countries at different levels of economic attainment. 

The generalisability of the method may be limited to those intervention areas 

which received similar attention than statins in the primary and secondary 

prevention of CVD.  
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6.3. Discussion of findings  

 

6.3.1. Variability in measures of cost-effectiveness on data, study 

and country-level  

 

Probably one of the most important findings of both the pilot study and the 

empirical analysis is low country-level variation across all models and subsets of 

the data analysed. Or put differently, whilst country-level variation was present, 

its proportion compared to variability within and between studies was low for ∆C 

and ∆E in the bivariate model, and negligible for INMB in the univariate model. A 

number of potential reasons for this observation were considered throughout 

the analysis carried out within this project.   

 

First of all, a negligible country VPC in the cross-classified MLMs relates to 

inappropriate assumptions about the independence of data from multinational 

studies on country-level. Due to much lower country-level variability in data from 

multinational studies, this data should not be treated as independent on 

country-level. Rather, pooling it in a separate group on country-level, thereby 

removing its disguising effect from other country-parameters, disclosed further 

country-level variability in the bivariate model. In 2005, Barbieri et al. reached a 

similar conclusion, stating that ‘it can be seen that the extent of variability is 

lower for multicounty studies than single country studies’ and ‘this may be 

because, in a multicounty study, the analysts give more active consideration to 

the harmonization of data and analyses.’  

 

 

Related to that, two of the six multinational studies are primary modelling 

studies, i.e. directly assessing the cost-effectiveness of statins using IPD from 

multinational RCTs. The remaining four studies are secondary modelling studies, 

employing DAM to estimate the cost-effectiveness of statins. With respect to 

primary modelling studies (Johannesson et al., 1996; Jonnsson et al, 1999), the 

lack of country-level variation may relate to a widely discussed trade-off 

between the internal and external validity of trial evidence. For instance, 

Baltussen et al. stated already in 1999 that ‘policy-makers need cost-effectiveness 

information that is both internally and externally valid. The latter aspect is often 
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ignored and refers to the relevance of the results of economic trials to the specific 

decision-making context of the policy-maker’. Increasing internal validity in a trial 

may, however, come at the cost of lower external validity for each target 

jurisdiction. For instance, stringent inclusion and exclusion criteria, which are 

identical across centres, increase the internal validity of results - but treatment 

populations may not reflect target populations in any of the trial countries 

(Marshal & Hux, 2009). Likewise, standardised trial protocols minimise the 

potential for bias. However, variability with respect to differences in clinical 

practice between countries is literally non-existent in the data. As a result, a 

multinational RCT ‘doesn’t have any value or existence except in the degree to 

which it captures the reality as observed in the original setting’ (Sleigh, 1997).  

 

 

Further to that, two of the six multinational studies in question (Johannesson et 

al., 1996; Jonnsson et al., 1999) achieve ‘context specificity’ of their results only 

through the use of country-specific unit cost data, whilst all other input 

parameters are identical across the jurisdictions included. Three studies (Grover 

et al., 2001; Szucs et al., 2004; Taylor et al., 2009) vary both unit cost and 

resource use data to achieve context-specificity, whilst one study (Lindgren et al., 

2007) applies context-specific unit cost and utility values, whilst resource use 

data and effectiveness data was transferred from a different country. In 

conclusion, as Barbieri et al (2005) already emphasized, this practice may lead to 

differing degrees of country-level variability within the affected data. As a result, 

decision makers ought to be very critical about the applicability of multinational 

study data to their particular context, even if their country is explicitly 

considered in the study. A careful consideration of each aspect of the study 

which potentially impacts on the context-specificity of its results may be 

indicated.  

 

 

Another reason for low country-level variation, especially in the univariate 

model, relates to the INMB statistic itself. This exercise showed that country-

level variability is much higher in ∆C and ∆E than it is in the INMB statistic. 

Section 5.3 provides an explanation for this observation, as variability for both ∆C 

and ∆E share a similar pattern, which means that variability in one component of 

the INMB statistic is partly ‘being offset’ by variability in the other component, 
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hence leading to reduced country-level variability in INMBs. The author is not 

aware of studies which hypothesized or empirically looked into this issue, which 

is why, at this point, we can only guess about potential causes for this ‘similar 

pattern’ in the country-level variability of ∆C and ∆E. A potential reason may be a 

structural relationship between the two components of the INMB statistic. CVD 

prevention with statins may lead to an increased life expectancy, which, in turn, 

may expand the period within which statins are consumed. Hence, higher ∆E 

may naturally be associated with higher ∆C, which would explain a common 

pattern in their variability. As a result, variability in one component may partly be 

offset by variability in the other component of the INMB statistic. Future 

research should assess whether this common pattern in the components of the 

INMB statistic is specifically related to statins, or more generally present in 

pharmacological interventions, preventative interventions or even other 

intervention areas.  

 

 

If the proportion of country-level variability is low in all models run within the 

empirical analysis, this also means that the proportion of variability in cost-

effectiveness data due to within and between-study differences must be high. 

Hence, another key message from the empirical analysis is that, for statins in the 

primary and secondary prevention of CVD, differences within studies (e.g. 

relating to subgroup and sensitivity analyses) and differences between studies 

(e.g. methodological study characteristics), are far more important sources of 

variability in published cost-effectiveness data than differences between the 

countries reflected in that data. However, whilst the analysis in Section 5.2 of 

this empirical chapter was very successful in controlling for within-study 

variability, it was generally difficult to ascertain significant covariates on study-

level.  

 

 

6.3.2. Variability factors on data-level 

 

 

Starting off with data-level covariates, patient and disease characteristics turned 

out to be key variability factors, feeding through to variability between studies 

and countries in the dataset as previously hypothesized by Sculpher et al. (2004). 
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MLM provides an excellent framework to make explicit the impact of patient and 

disease characteristics on study and country-level variability, as it assigns 

respective variance partitions to each hierarchical level modelled (e.g. Steele, 

2008). Further, testing intervention and comparator characteristics in the model 

showed that this is also an important source of variability on data-level, 

especially with respect to annual drug cost. However, on the effectiveness side, 

NICE’s view on statins was essentially confirmed, which says that ‘for the 

purposes of initiating therapy, there were no data on clinical events to suggest 

the superiority of any one statin over all the others in reducing cardiovascular 

events’ (NICE, 2006).  

 

 

Some data-level covariates may also be discussed in the light of the little existing 

empirical evidence on variability factors for measures of cost-effectiveness. 

Barbieri et al. (2005) explored issues surrounding variability of economic 

evaluations of pharmaceuticals in Western Europe and concluded that ‘the 

extent of variation across countries in effectiveness, resource use or unit costs, 

allowed by the researcher’s chosen methodology was the most important 

variability factor for measures of cost-effectiveness.’ In other words, the more 

studies utilize context-specific data, the higher the variability in measures of 

cost-effectiveness between countries. To confirm this hypothesis, categorical 

variables were developed and tested which classify data points with respect to 

their degree of ‘context specificity’ of input parameters. Descriptive statistics 

showed that, within this exercise, by far the most common way to populate a 

model was to use country specific unit cost and resource use data, but 

effectiveness data and utility weights from other geographic domains (type CR: 

1033 data points, 49.33%). Only 56 data points (2.67%) were generated with a 

model fully populated with target specific data. Within the final random 

intercepts model specified with covariates on data and study-level, coefficients 

of this categorical variable were significant at least at the 5%-level, negative and 

constantly decreasing for ∆C in the bivariate model. This indicates lower 

incremental cost with higher context specificity.  

 

 

Hence, results of this thesis essentially confirm the conclusions of Barbieri et al 

(2005). However, the analysis within this thesis goes much further. The impact of 
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‘context Specificity’ was actually quantified after controlling for a number of 

potential confounders. This means that, after controlling for differences in study 

populations, intervention cost and methods on data-level, significant coefficients 

could be ascertained for context specificity. Secondly, by decomposing the INMB 

statistic, it could be shown that the impact of context specificity is strongest for 

∆C, whilst coefficients were not significant for ∆E or INMBs. It may be the case 

that transferring effectiveness data is much more common than transferring 

economic data, so that there is simply no systematic country variation on the 

effectiveness side of the INMB statistic. This may then feed through to INMBs, so 

that the univariate model also fails to show significant relationships between 

context specificity and measures of cost-effectiveness. Finally, whilst the analysis 

of Barbieri et al. (2005) relied on a rather descriptive analysis of ICERS within 

multinational studies, the analysis within this thesis utilised data from both single 

country and multinational studies within a quantitative analysis accounting for 

the hierarchical structure of the underlying data, confounding effects of other 

explanatory variables in the model, and the fact that multinational study-data 

does not justify the assumption of independence on country-level, thereby 

producing much more reliable results.  

 

 

6.3.3. Variability factors on study-level 

 

 

Moving on to the study-level, the ‘appropriate set of covariates’ proved to be a 

far more difficult to determine. Out of a large number of candidate variables, 

there were only few significant results: a binary capturing whether the study 

used the ‘CHD life expectancy model’ by Grover et al. (1998); a binary capturing 

whether effectiveness data was elicited from the 4S study; and a categorical 

encoding the scope of assessment (i.e. whether studies looked into CHD only, 

CHD and stroke, or CHD, stroke and PAD). Whilst it makes intuitive sense that the 

scope of assessment alters cost-effectiveness results, it may be indicated to look 

into potential reasons why 4S and studies by Grover et al. resulted in significant 

coefficients.   
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With respect to studies published by Grover et al., features of the CVD life-

expectancy model as well as other study characteristics were analysed to elicit 

potential explanations for elevated cost-effectiveness results. One reason may 

be that the CVD life-expectancy model combines a number of features which all 

turned out to be positively related to measures of cost-effectiveness when 

individually tested in the MLM. In particular, the CVD life-expectancy model is a 

Markov model and the authors estimated treatment effectiveness by modelling 

the effect of statin treatment on cholesterol reduction and multivariate 

regression was used to estimate the effect of cholesterol reduction on CVD 

related mortality (e.g. Grover et al., 1998). More importantly, however, when 

validating their model, Grover et al (1998) compare the difference in CHD and 

stroke related mortality between intervention and control arms predicted by the 

model with the mortality observed in a number of clinical trials. Whilst predicted 

values were almost all within the range of CIs generated from trial data, these CIs 

were large and almost all of the predicted values exceeded observed trial results. 

Hence, the CVD life-expectancy model may overestimate the impact of statin 

treatment on CVD related mortality, which may lead to higher ∆C, ∆E and INMBs 

compared to other studies. 

 

 

Moving on to 4S data, existing meta-analyses on the effectiveness of statins in 

the primary and secondary prevention of CVD do not provide an indication of 

higher effectiveness estimates. (Ward et al., 2007). In other words, whilst 4S data 

favours treatment over control, estimates were well within the range of other 

statin trials (RR for 4S: 0.71, 95%CI: 0.59-0.85 versus all placebo controlled trials 

in Ward et al., 2007, RR: 0.84, 95%CI: 0.78-0.9). Hence, there must be other 

reasons for elevated ∆C observed in the bivariate model for 4S related data. One 

reason could relate to the prevention category, as 4S relates to secondary 

prevention for which statin effectiveness is well established. However, respective 

covariates have been tested extensively within this exercise so that this should 

have been picked up before. In addition, other data points within the analysis 

also refer to secondary prevention, whilst they elicited effectiveness data from 

other sources (e.g. CARE, LIPID or PLAC I & II). In conclusion, it was not possible 

to identify potential causes for elevated estimates of ∆E for 4S in the bivariate 

model. It may hence be indicated to further assess differences between 
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economic evaluation studies relying on 4S and those which elicited effectiveness 

data from other sources to find out what causes this significant difference in ∆E.  

 

 

A number of covariates on study-level expected to be related to variability in 

measures of cost-effectiveness were not included in the final model. For 

instance, industry funding was positively related to INMBs at the 5% level, whilst 

coefficients were not significant for ∆C or ∆E in the bivariate model. A positive 

relationship between industry funding and the cost-effectiveness of health 

technologies has previously been discovered by Miners et al. (2005). The authors 

undertook a retrospective pairwise comparison of evidence submitted to NICE’s 

technology appraisal programme by manufacturers of the relevant health 

technologies and by contracted university based assessment groups and 

conclude that ‘the estimated incremental cost-effectiveness ratios submitted by 

manufacturers were on average significantly lower than those submitted by the 

assessment groups. These results show that an important role of NICE’s appraisal 

committee, and of decision makers in general, is to determine which economic 

evaluations, or parts of evaluations, should be given more credence’.  

 

 

One variability factor on study-level, which has been previously identified by 

Barbieri et al (2005), was not significantly related to measures of cost-

effectiveness within the empirical analysis of this project. Precisely, Barbieri et al 

(2005) showed that the general study design (i.e. trial based or model based) 

explains some of the variability in measures of cost-effectiveness across 

countries. This was not confirmed within the current analysis. Further to that, 

results were especially disappointing with respect to the QHES instrument. 

Considerable effort was undertaken to operationalize this instrument and apply 

this quality checklist to all 67 studies included in this dataset. Though bivariate 

statistics showed statistically significant negative relationships to both 

components of the INMB statistic, results were very sensitive to small variations 

in the way QHES was operationalized for this empirical exercise, so that results 

may be interpreted with highest caution.  
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6.3.4. Variability factors on country-level 

 

 

As mentioned, country-level variability was negligible in the univariate 

framework, and though considerably higher in the bivariate model, the country 

VPC did not exceed 21% for ∆C and 15% for ∆E respectively. Nevertheless, a 

number of country-level covariates were tested in the bivariate model, and very 

small but statistically significant negative relationship between ∆C and GDP per 

capita as well as between ∆C and government spending as a percentage of total 

health expenditure were found. Likewise, a number of explanatory variables 

showed significant positive relationships with ∆E, amongst them total health 

expenditure as a percentage of GDP per capita, the number of GPs and 

pharmacists per 10,000 population, as well as population age, BMI and blood 

glucose levels. Though coefficients of country-covariates were mostly 

moderately significant and in accord with prior expectations, results should be 

interpreted with some caution. As mentioned, the country VPC was low, even for 

∆C and ∆E in the bivariate model. This may not accord findings of Barbieri et al. 

(2005) who found considerable variation between countries. However, in their 

study, the authors did not assign variation in measures of cost-effectiveness to 

their respective levels (i.e. data, study, and country) and therefore, assign all 

variability observed to the country-level. This exercise applied a more 

sophisticated method using MLM, which allows partitioning the variation in the 

data, thereby making explicit how much variability refers to differences within 

studies, between studies and between geographic domains.  

 

 

Barbieri et al. (2005) conclude that ‘differences in cost-effectiveness results 

between countries are not systematic’. Though only few significant country-

coefficients were found in this thesis and country-level variability was generally 

low, a different conclusion has been reached within this thesis. The observation 

of small country-coefficients may be explained by the fact that countries 

included in this empirical exercise were quite similar with respect to the country-

characteristics tested in the model. In particular, only developed countries were 

considered, showing mostly similar levels of economic attainment and variation 

in health related indicators is also generally low. In addition, unlike single level 

OLS regression models, MLMs ensure that standard errors for higher-level 
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covariates are not underestimated (Steele, 2008; Rasbash et al., 2009; Hox, 

2010). Hence, if country-level covariates still turn out to be significant in the 

three-level hierarchical model, this provides a strong indication that there may 

be systematic differences between countries. In conclusion, whilst differences 

within and between studies constitute the overriding source of variability in 

measures of cost-effectiveness, this project did show that there may be small but 

statistically significant systematic differences in measures of cost-effectiveness 

between countries. Further research may replicate this analysis within other 

intervention areas which also allows the inclusion of a wider range of countries 

at different levels of economic attainment.   

 

 

 

6.4. Key policy implications 

 

A number of researchers concerned with the transferability of economic 

evaluation results believe that ‘the economic question of whether an activity 

adds more to well-being than the alternative uses of the same resources in a 

particular community cannot be answered by reference to the costs and 

consequences of the same activity in a different community (Birch & Gafni, 2003). 

Other researchers argue that economic evaluation is transferable if ‘(a) potential 

users can assess their applicability to their setting and (b) they are applicable to 

that setting’ (e.g. Späth et al., 1999; Boulenger et al., 2005) 

 

 

Nevertheless, as Birch and Gafni further state, the validity of the method of 

valuation cannot be established independent of the setting in which it is to be 

used’ and even if the methods of valuation are valid in each setting, the authors 

pose the question of whether this implies that ‘numbers produced by application 

of the methods are generalisable across individuals and settings.’ Birch & Gafni 

(2003) conclude that the ‘generalisability of the validity of a method of valuation 

does not imply generalisability of the resulting valuations’ A similar opinion is 

being shared by Vale (2010).  
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However, one may argue that findings of this thesis mediate between these 

extreme viewpoints; just like the exchangeability assumption, which provides the 

theoretical foundation for MLM, mediates between the opposing assumptions of 

either identical or independent study and country parameters in a multilevel 

model. In line with Drummond et al (2009), this research builds up from the 

believe that the transfer of evidence from one country to another may hold if 

‘the analyst has identified the appropriate set of covariates for the 

exchangeability assumption to hold; and the characteristics of the country of 

interest are represented appropriately by countries in the dataset’ (Drummond et 

al., 2009).  

 

 

The question is then how the results generated within the empirical exercise may 

be used and interpreted for policy purposes. Having quantified variability factors 

for measures of cost-effectiveness, one may use the bivariate random intercepts 

model with covariates on data, study and country level developed in chapter 5.3 

to predict incremental cost and incremental effects for countries for which data 

is missing. For instance, for a male patient within the age cohort of 56 to 65, with 

a mean TCL of 6.5, HDL of 1.02, SBP of 133 and a history of CVD, predicting ∆C 

and ∆E for a country with a mean population age of 39, an annual GDP per capita 

of £25.000, 75% government expenditure on health as a percentage on total 

health expenditure and 11% of total health expenditure as percentage of GDP, 

results in 1.63 ∆E and £6,727 ∆C respectively. This result refers to either LYS or 

QALYS (as the outcome measure was not a significant variability factor for 

statins) and further assumes annual drug cost for statins of £520, a lifetime 

horizon and a health insurance perspective, and that statins are compared to 

‘doing nothing’ at a 3.5% discount rate on incremental effects. Having predicted 

both components of the INMB statistic for the country of interest, we can now 

calculate the cost-effectiveness for statins for the above specified patient cohort 

in this country, resulting in an ICER of £4,128, or an INMB of £42,165 at a WTP 

threshold for a unit of health gain of £30,000. (Likewise, for a WTP threshold of 

say 15.000, the respective INMB would be £17.723) Hence, in the absence of 

location specific data, prediction results support the use of statins for the 

specified patient cohort in the country of interest.  
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However, these results should be interpreted with caution. Most importantly, 

immense uncertainty results from high variability in measures of cost-

effectiveness observed in the data. This uncertainty may be quantified for the 

prediction results by applying statistical simulation methods which allow 

computation of the predicted values, their standard deviation as well as 

confidence intervals around predicted values (Taghreed et al., 2003). However, 

additional work would be required to allow performing such a simulation 

exercise within the bivariate MLM to obtain relevant parameters for predicting 

uncertainty. In this context, the concept of the variance function may be 

considered as in interesting alternative. The MLM framework allows modelling 

variability in measures of cost-effectiveness explicitly as a function of covariates, 

and chapter 5.4 introduced examples of plotting variability in INMB, ∆C and ∆E as 

a function of TCL, SBP, smoking status and diabetes status. It could be shown, for 

instance, that variability in measures of cost effectiveness increases with 

increasing blood pressure, and this could be utilised to focus research resources 

on further work for high blood pressure patients. The variance function will also 

be addressed as a potential area for future research below.  

 

 

Nevertheless, variability in the existing data is vast, and this exercise showed the 

difficulties of finding the “appropriate set of covariates” for the exchangeability 

assumption to hold. This proved to be a major challenge in this empirical 

exercise, especially with respect to differences between studies, which account 

for a large proportion of the overall variability in international cost-effectiveness 

data. In addition, potential violations of the MLM assumptions, for instance with 

respect to random parameters, or the appropriateness of shrinkage estimation 

within secondary data analysis, may lead to biased coefficients, which may 

ultimately lead to biased prediction results for ∆C and ∆E if one was using the 

models generated within this exercise for prediction. The policy implication 

which follows with respect to using the models developed for prediction is that 

after careful consideration of factors potentially causing variability in cost-

effectiveness data, one may use prediction results to inform decisions in 

countries for which this data is missing. However, because of the immense 

variability in the data, the problem of defining the ‘appropriate set of covariates’ 

and additional uncertainty from transferring data to locations for which it was 

not originally produced, decision makers ought to be very critical about the 
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information provided from prediction. Finally, the aim of this thesis was not to 

provide a tool for prediction, but – more fundamentally - to assess potential 

variability factors for cost-effectiveness data and to provide a method with which 

this could be done using secondary data from published economic evaluation 

studies.  

When considering transferability problems in practice, decision makers may have 

to choose from a number of existing economic evaluation studies applicable to 

different geographic domains. This choice should be based on the ‘degree of 

similarity’ between study characteristics and the target location, which accords 

the principles of analogical reasoning as outlined in Chapter 2. To assess the 

extent to which available studies meet the requirements of the target 

jurisdiction, decision makers ought to compare attributes of the studies available 

with attributes of the target country, and decide which of the available 

international cost-effectiveness studies may be most appropriate to inform 

decisions in the target country. In short, the choice within the existing data is, 

first of all, a choice between existing studies, not countries. Only once the 

decision maker has identified a number of candidate studies which meet the 

minimum requirements of the target jurisdiction, country characteristics may be 

considered to the extent to which they are reflected in the economic evaluation 

in question. However, the analysis within the empirical exercise of this thesis 

showed that the proportion of country-level variability is low, even after 

controlling for a large number of potential variability factors on data and study-

level. Hence, the geographic context within which the available evidence was 

originally produced turned out to be a less important source of variability in 

international cost-effectiveness data than differences between economic 

evaluation studies. This constitutes a key take home of this thesis, though it 

needs to be emphasized that the generalizability of these results should be 

evaluated in future research.  

 

 

Testing the generalisabilty of the results outside of statins could be done by 

replicating this analysis for different interventions to test the findings of this 

thesis, and a number of recommendations may simplify such a potential future 

exercise. For instance, a future study could, on the basis of this thesis, focus only 

on bivariate multilevel models for secondary data integration which cluster data 

in studies and countries, either with or without considering cross-classified data 
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structures. Secondly, populating a dataset may be simplified. For instance, 

experiences from this thesis may be used to more rapidly develop an appropriate 

data abstraction form for a similar exercise.  However, this thesis also showed 

that such an exercise crucially depends on a certain degree of consistency across 

studies with respect to the reporting of economic evaluation data.  Improving 

consistency would also improve the transparency and comparability of economic 

evaluation results in general, which is why it is strongly recommended to further 

develop and improve the acceptance of international standards for conducting 

and reporting economic evaluation studies in health.  

 

 

6.5. Areas for future research  

 

Probably one of the most interesting methodological areas for future research 

relates to the use of the variance function to express variability in measures of 

cost-effectiveness as a function of explanatory variables. In Section 5.4 of the 

empirical chapter, random slopes were fitted to the model, and variation in cost-

effectiveness data was plotted as a function of explanatory variables. It turned 

out, for instance, that variability between studies is constantly increasing for the 

relationship between INMBs and TCL and ∆E’s and TCL, so that results may be 

less transferable from the existing data to out of sample locations the higher the 

TCL of the target population. In addition, variance functions were almost flat for 

SBP, though the overall level of variability was much higher, suggesting to focus 

research resources on this patient characteristic in the target domain. In 

conclusion, for ranges of values of explanatory variables where variation in cost-

effectiveness data is high, uncertainty increases when transferring cost-

effectiveness results, which also increases the value of new evidence for the 

target country 

 

 

A number of issues for future research have been identified with respect to the 

variance function. For instance, is there a way to determine a ‘threshold value’ 

for variability in cost-effectiveness data which may guide decisions on whether or 

not to transfer existing evidence to the target country? To address this issue, it 

may be helpful to draw an analogy to the ‘value of information’ concept. 
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Precisely, Claxton et al. (2000) state that ‘the expected costs of uncertainty can 

also be interpreted as the expected value of perfect information (EVPI) since 

perfect information (an infinite sample) can eliminate the possibility of making 

the wrong decision. It is also the maximum a decision maker should be willing to 

pay for additional evidence to inform this decision in the future. If the EVPI 

exceeds the expected costs of additional research then it is potentially cost-

effective to acquire more information by conducting additional research’. In the 

context of transferability of economic evaluation data, one may interpret higher 

variability in measures of cost-effectiveness as higher uncertainty for the target 

setting. In other words, if variability in measures of cost-effectiveness in the 

existing evidence increases, so does the expected cost of uncertainty within the 

target country. Hence, one may transfer evidence for ranges of explanatory 

variables for which variability in measures of cost-effectiveness is low, and 

consider additional research for ranges of explanatory variables which show high 

variability in cost-effectiveness data. However, how to assign monetary values to 

different levels of variability, or how else to determine a threshold value for 

variability to decide upon the transfer of evidence to the target setting, are 

future research questions. 

 

 

In addition to that, one may also consider the application of the variance 

function in different research contexts, for instance within economic evaluation 

using IPD collected alongside multinational multicentre studies. A number of 

researchers already considered two-level hierarchical models for the analysis of 

multicentre trial or observational data (Sculpher et al., 2004; Grieve et al., 2005; 

Willan et al., 2005; Manca et al., 2005; Nixon et al., 2005; Pinto et al, 2005; 

Thompson et al., 2006; Manca et al., 2007; Grieve et al., 2007; Bachmann et al., 

2007; Coupe et al., 2007; Willan et al., 2008; Petrinco et al., 2009; Grieve et al., 

2010; Edbrooke et al., 2011). Some of these applications also allowed for random 

slopes of explanatory variables (Sculpher et al., 2004; Manca et al., 2005; 

Thompson et al., 2006; Bachmann et al., 2007). However, none of the existing 

studies modelled the variance function to show how variability in measures of 

cost-effectiveness changes as a function of explanatory variables. This, however, 

could be very informative within the context of a multicentre study, as it makes 

explicit how variability changes between centres, or countries, with respect to 

explanatory variables. In conclusion, heterogeneity between patients, centres 
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and countries with respect to explanatory variables could be made explicit 

through the use of the variance function within the MLM framework, and it is 

suggested to address this issue in future research. 

 

 

Another area for future research has been identified when systematically 

reviewing the economic evaluation literature on statins in the primary and 

secondary prevention of CVD. Studies within this area seemed to be strongly 

related through common authorship, identical data sources, re-use of a 

previously published DAM, etc. As such relationships may cast into question the 

independence assumption of data on study-level, a ‘genealogy study’ was 

conducted which has been reported in Section 4.3. This exercise used MCA to 

explore ‘phenotypic similarities’ between published economic evaluation studies, 

and subsequently, it was aimed to identify ‘genotypic relationships’ which may 

explain the similarities across studies. The initial aim of this exercise was to 

confirm the appropriate MLM structure and to make sensible assumptions 

regarding dependencies of data on study-level. However, though the method 

was not (yet) accurate enough to base alternative MLM structures upon its 

findings, the method did show some potential so that future research should 

look into the use of MCA within the context of study-genealogy.  

 

 

Two technical issues for further research were identified with respect to MLM. 

First, the issue of shrinkage has been discussed earlier within the context of 

integrating secondary data from published economic evaluation studies. Within 

this discussion, the use of MLwiN’s weighting facility was mentioned. The idea is 

that information from particular studies could be regarded as being 

‘oversampled’ in the current dataset as it stems from studies where subgroup 

and sensitivity analyses were carried out more extensively. Hence, one may 

argue that out of the space of cost-effectiveness estimates, some estimates did 

have a greater ‘probability’ of being selected into the sample than others. 

Without weighting, however, the model assumes that each data point did have 

the same chance of being selected into the sample (CMM, 2011). As MLwiNs 

weighting facility is currently not available within MCMC estimation, it is 

suggested to pick up on the issue of weighting to ‘counteract’ shrinkage when 

using MLM for secondary data integration in future research.  
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The second technical issue within the MLM framework to be addressed in future 

research relates to multilevel multiple imputation of missing data. It has been 

previously pointed out that an imputation model ‘must have the right variance 

structure’. Hence, ‘if a dataset is multilevel, then the imputation model must be 

multilevel too’ (Carpenter & Goldstein). Therefore, a number of software tools 

were considered which may allow multilevel multiple imputation, for instance, 

MI macros for MLwiN (Carpenter & Goldstein) or Realcom IMPUTE (Goldstein, 

2009). However, none of these tools were capable of dealing with more 

complicated data structures like the bivariate three-level model. This is an area 

of on-going research, and it would also constitute an interesting area for future 

research which goes beyond the scope of this project. 

 

 

Finally, with respect to the empirical findings, the overriding priority for future 

research is, as mentioned above, to replicate this work within other intervention 

areas to test the robustness of its results. As previously highlighted, the empirical 

analysis was based on data collected for one intervention area only. Hence, 

results are intervention specific. Further to that, all countries represented in the 

dataset are developed countries, showing mostly similar levels of economic 

attainment and even variation in health related indicators was generally low. In 

conclusion, it is strongly recommended to replicate this research in other 

intervention areas to test its key findings. For instance, is there is the same 

‘disguising effect’ of multinational study data on variability in measures of cost-

effectiveness between countries in other intervention areas? Secondly, how does 

variability in measures of cost-effectiveness spread across different levels of the 

data hierarchy. In particular, does the finding that variability in measures of cost-

effectiveness is primarily due to differences within and between studies, not 

countries, also hold for other intervention areas? Third, is there a similar pattern 

in country-level variability in ∆C and ∆E which reduces country-level variation in 

INMBs in other disease areas, e.g. outside the area of disease prevention, or 

pharmacological interventions? If so, what may be potential reasons for such a 

similar pattern in variability within the components of the INMB statistic. Finally, 

what are the most important variability factors for measures of cost-

effectiveness in different intervention areas, and to which level do they belong. 

All these questions should be addressed when replicating this research within 

other intervention areas in future research.  
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6.6. Concluding remarks 

 

 

The aim of this thesis was to explore the transferability of economic evaluation 

results produced for one geographic area to another location of interest. 

Multilevel statistical models were developed for the integration of published 

international cost-effectiveness data to assess the impact of contextual effects 

on country-level; whilst controlling for baseline characteristics within, and across, 

a set of economic evaluation studies. Explanatory variables were derived from a 

list of factors suggested in the literature as possible constraints on the 

transferability of cost-effectiveness evidence. The approach was illustrated using 

published estimates of the cost-effectiveness of statins for the primary and 

secondary prevention of cardiovascular disease Results show that the proportion 

of variation at the country-level observed depends on the appropriate multilevel 

model structure and never exceeds 15% for incremental effects and 21% for 

incremental cost respectively. Key sources of variability are patient and disease 

characteristics, intervention cost and a number of methodological characteristics 

defined on the data-level. There were fewer significant covariates on the study 

and country-levels. The findings of the empirical work carried out within this 

thesis suggest that variability in cost-effectiveness data is primarily due to 

differences between studies, not countries. Further, comparing different models 

suggests that data from multinational studies severely underestimates country-

level variability. Additional research is needed to test the robustness of these 

conclusions on other sets of cost-effectiveness data, to further explore the 

appropriate set of covariates, and to foster the development of multilevel 

statistical modelling for economic evaluation data in health.  
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Appendices 
 

 

Appendices for Chapter 2 

 

Appendix 2.1: Search strategy for SCOPUS (Medline, Embase, 

Science Direct) 
 

Initial search performed in SCOPUS on September 13th 2010 and updated on May, 23rd 

2012. 166 hits exported from SCOPUS to RefWorks 
 

1 ALL(multilevel OR hierarchical OR empirical bayes OR shrinkage OR random effects)  70696 

2 TITLE-ABS-KEY-AUTH(economics OR economic evaluation OR cost-effectiveness OR 
cost effectiveness OR cost OR effectiveness  or technology assessment)  

40224 

3 #1 and #2 166 

 

 

Appendix 2.2: Search strategy for Web of Knowledge  
 

Initial search performed in Web of Science on September 13th 2010 and updated on 

May, 23rd 2012. 246 hits exported from SCOPUS to Rewforks 
 

1 TITLE(multilevel OR hierarchical OR empirical bayes OR shrinkage OR random effects)  246 

2 TITLE(economics OR economic evaluation OR cost-effectiveness OR cost effectiveness 
OR cost OR effectiveness  or technology assessment)  

254945 

3 #1 and #2 246 

 

 

Appendix 2.3: Search strategy for HEED  
 

Initial search performed in HEED on September 13th 2010 and updated on May, 23rd 

2012. 246 hits exported from SCOPUS to Rewforks 
 

1 ALL(multilevel OR hierarchical OR empirical bayes OR shrinkage OR random effects)  51 
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Appendices for Chapter 3 

 

Appendix 3.1: Step by step guide for implementing univariate 

models in MLwiN using MCMC estimation 

 

1. If not already included, create data-id variable which is a vector of consecutive 

numbers from 1 to 2094. (using data manipulation / generate) 

2. sort data on ‘data_ID’ within ‘Study ID’ within ‘Country ID’ (using data 

manipulation / sort)  

3. Create a constant vector taking the value 1 for every data point in the dataset. 

This will be needed to model the intercepts. (using data manipulation, generate 

vector, constant vector, copies (1) value (1)  

4. Set up a two-level hierarchical model with data clustered in studies 

5. Run the two-level model in IGLS to obtain starting values 

6. Add random structure at level 3 (country) 

7. Change to MCMC estimation 

8. Click on model/MCMC/classifications and tick ‘treat levels as cross-classified (for 

the cross-classified model only) 

9. Go to C1096 and change country-level variance from 0 to 0.001 

10. Click start 

 

 

Appendix 3.2: Step by step guide for implementing bivariate models 

in MLwiN using MCMC estimation 

 

1. If not already included, create data-id variable which is a vector of consecutive 

numbers from 1 to 2094. (using data manipulation / generate) 

2. Divide incremental cost by 100. Though in theory irrelevant, a vast difference in 

the error variance between both response variables may distort the estimation 

process.  

3. Sort data on ‘data_ID’ within ‘country-ID’ within ‘study-ID’ (using data 

manipulation / sort)  

4. create a constant variable, taking the value 1 for every individual in the dataset. 

This will be needed to model the intercepts. 

5. Press the ‘responses’ button and select ‘incr_cost_div’ and ‘incr_effect’ in 

equations window. This will set up the bivariate model 
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6. Click on ‘resp’ in the Equations window and specify a 4 level structure with level 

4 being ‘Study ID’, level 3 being ‘Country ID’, level 2 being the sequence 

generated in Step 4, and level 1 being the ‘resp_indicator’ (which is already 

specified as level 1 since we are fitting a multivariate model) 

7. Press Add Term, selected ‘cons’, and click ‘add separate coefficients’.  

8. Click on each of the newly entered terms and tick all the boxes so that there will 

be a random effect at all three conceptual levels of the model (study, country, 

and data). 

9. Click on ‘Add Term’ and add explanatory variables with separate coefficients for 

each response and centred around the grand mean of the variable.  

10. Run the model in IGLS 

11. If a warning appears about the variance-covariance matrix not being positive 

definite several times: this happens sometimes during IGLS estimation and the 

model may not converge, but sometimes if pressing Yes (perhaps several times) 

to continue estimation the model will eventually converge.   

12. Some variances in the model were estimated zero. Zero variances are not 

acceptable starting values for MCMC. Go to the names window, column 1096, 

click on view data. This will display the variances and covariances calculated. If 

there are zero values, edit them to 0.001 as MCMC estimation requires a 

positive definite starting value of the variances.  

13. Change to MCMC estimation 

14. Click on Model, MCMC, classifications, tick the box ‘treat levels as cross-

classified’ (for the cross-classified model only) 

15. Click on model, hierarchy viewer to check model structure: Model should display 

2094 units in 67 studies and 23 countries.  

16. Click on start in the equations window, model will run 5000 iterations. However 

burning in and iterations may be changed when switching to MCMC estimation.  
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Appendices for Chapter 4 

 

Appendix 4.1: Search strategy for OVID (Medline and British Nursing 

Index) 
 

Search performed in OVID on April, 15th, 2011. Search strategy adapted from Ward et al 

(2007). 703 hits exported from OVID to Rewforks 
 

1 statin$.tw. 17605 

2 simvastatin.tw. 4709 

3 pravastatin.tw. 2802 

4 lovastatin.tw. 1232 

5 fluvastatin.tw. 2706 

6 atorvastatin.tw. 3620 

7 rosuvastatin.tw. 1043 

8 Hmg$.tw. 13658 

9 Co-reductase inhibitor$.tw. 3 

10 Hydroxymethylglutaryl-CoA Reductase Inhibitors/ 15387 

11 Anticholesteremic Agents/ or pravastatin/ or simvastatin/ or lovastatin.mp. (mp=title, 
original title, abstract, name of substance word, subject heading word, unique 
identifier) 

19281 

12 Lipid lowering.tw. 8035 

13 Or/1-12 48550 

14 Coronary disease/ 120990 

15 (coronary or heart or arter$).mp. (mp=title, original title, abstract, name of substance 
word, subject heading word, unique identifier) 

1516737 

16 Cerebrovascular disorders/ 41308 

17 Stroke.tw. 103629 

18 Or/14/17 1585408 

19 13 and 18 15788 

20 Economics/ 25995 

21 Exp “Costs and Cost Analysis”/ 38645 

22 Cost allocation/ 1893 

23 Cost-benefit analysis/ 50450 

24 Cost control/ 18629 

25 Cost savings/ 6959 

26 Exp “cost of Illness”/ 52112 

27 Health care costs/ 20932 

28 Drug costs/ 10226 

29 Health expenditures 11814 

30 Exp economics, pharmaceutical/ or exp economics/ or exp economics, medical 434969 

31 Exp”Fees and Charges”/  7674 

32 Exp Budgets/ 10867 

33 (high adj cost).tw. 4938 

34 (low adj cost).tw. 14369 

35 Cost utility.tw. 1626 

36 (fiscal or funding or financial or finance).tw. 58679 

37 (health?care adj cost).tw. 612 

38 (cost adj estimate).tw. 119 

39 (cost adj variable).tw. 27 

40 (unit adj cost).tw. 461 

41 (economics$ or pharmacoeconomics$ or price$ or pricing).tw. 26902 

42 Or/20-41 492126 

43 19 and 42 703 
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Appendix 4.2: Search Strategy for SCOPUS (Medline, Embase and 

Science Direct) 
 

Search performed in SCOPUS on April, 16th, 2011. 883 hits exported from SCOPUS to 

Refworks 
 

((statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR 

rosuvastatin OR hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase 

inhibitors OR anticholesteremic agents OR lipid lowering) AND (TITLE-ABS-KEY(cost OR cost-

effectiveness OR cost-utility OR cost-benefit)) AND (coronary disease OR heart disease OR 

cerebrovascular disorders OR stroke)) 

 

 

Appendix 4.3: Search strategy for Academic Search Complete 

(Business Source Premier and CINAHL) 
 

Search performed in Academic Search Complete on April, 16th, 2011. 305 hits exported 

from Academic search complete to Refworks 
 

(statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin OR 

hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR anticholesteremic 

agents OR lipid lowering ) and ( cost OR cost-effectiveness OR cost-utility OR cost-benefit ) and ( coronary 

disease OR heart disease OR cerebrovascular disorders OR stroke)  
 

Limiters - Exclude MEDLINE records  

Search modes - Boolean/Phrase  

 

 

Appendix 4.4: Search strategy for Health Economics Evaluation 

Database (HEED) 
 

Search performed in HEED on April, 19th, 2011. 226 hits exported from HEED to Refworks 
 

((statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin OR 

hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR anticholesteremic 

agents OR lipid lowering ) and (cost OR cost-effectiveness OR cost-utility OR cost-benefit) and (coronary 

disease OR heart disease OR cerebrovascular disorders OR stroke))  

 

 

Appendix 4.5: Search strategy for JStor 
 

Search performed in JStor on April, 19th, 2011. 569 hits exported from JStor to Refworks 
 

((anticholesteremic agents OR lipid lowering OR statin OR simvastatin OR pravastatin OR lovastatin OR 

fluvastatin OR atorvastatin OR rosuvastatin OR hmg OR coa-reductase inhibitor) AND (cost OR cost-
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effectiveness OR cost-utility OR cost-benefit) AND (coronary disease OR heart disease OR cerebrovascular 

disorders OR stroke)) 

 

Search was restricted to articles and reviews only (no pamphlets or ‘miscellaneous’) The 

reason was that the search engine provides a high number of non-relevant hits (e.g. 

front and back matters of journals, provided that the search terms appear on them) This 

restriction limited the number of hits from 1366 to 569. Secondly, all search terms were 

applied to ‘full text’ as Jstor only stores abstracts for about 10% of their papers listed.   

 

 

Appendix 4.6: Search strategy for Pubmed 
 

Search performed in Pubmed on April, 19th, 2011. 843 hits exported from Pubmed to 

Refworks 

#1 statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR 
rosuvastatin OR hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa 
reductase inhibitors OR anticholesteremic agents OR lipid lowering 

69648 

#2 cost OR cost-effectiveness OR cost-utility OR cost-benefit 480968 

#3 coronary disease OR heart disease OR cerebrovascular disorders OR stroke 1141994 

#4 #1 and #2 and #3 843 

 

 

Appendix 4.7: Search strategy for Web of knowledge  
 

Search performed in Web of Knowledge on April, 19th, 2011 

- 676 hits exported from Web of Science to Refworks 

- 292 hits exported from Biosis Previews to Refworks 

-  

Topic=(statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin 

OR hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR 

anticholesteremic agents OR lipid lowering) AND Topic=(cost OR cost-effectiveness OR cost-utility OR cost-

benefit) AND Topic=(coronary disease OR heart disease OR cerebrovascular disorders OR stroke) 
 

Web of knowledge hosts the databases Web of science, Medline and Biosis Previews. 

The search was conducted separately for Web of Science and Biosis Previews and 

subsequently exported to RefWorks. As Medline was covered by previous searches, this 

database was excluded here.  
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Appendix 4.8: Search strategy for CRD (includes DARE, HTA and 

NHS-EED) 
 

Search performed in CRD on April, 19th, 2011. 177 hits exported from CRD to Refworks 
 

(statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin OR 

hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR anticholesteremic 

agents OR lipid lowering) AND (cost OR cost-effectiveness OR cost-utility OR cost-benefit) AND (coronary 

disease OR heart disease OR cerebrovascular disorders OR stroke) 

 

Appendix 4.9: Search strategy for Wiley Online Library 
 

Search performed in Wiley Online Library on April, 20th, 2011. 537 hits exported from 

Wiley Online Library to Refworks 
 

statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin OR hmg 

OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR anticholesteremic agents 

OR lipid lowering in Abstract OR statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR 

atorvastatin OR rosuvastatin OR hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase 

inhibitors OR anticholesteremic agents OR lipid lowering in Publication Titles AND coronary disease OR 

heart disease OR cerebrovascular disorders OR stroke in FullText AND cost OR cost-effectiveness OR cost-

utility OR cost-benefit in FullText 

 

Search was limited to title and abstract (Statin search terms) and full text for other 

search terms as the Wiley search engine searches in all fields otherwise (including 

references). Hence, without this limiter the search would have resulted in more than 

15000 hits. 

 

Appendix 4.10: Search strategy for Cochrane Library 
 

Search performed in Cochrane Library on April, 21th, 2011 

• 71 hits exported to RefWorks from Cochrane Database of Systematic 

Reviews(CDSR) 

• 24 hits exported to RefWorks from Cochrane Central Register of Controlled Trials 

• 81 hits exported to RefWorks from Cochrane Methodology Register 

• 2 hits exported to RefWorks from Database of Abstracts of Reviews of Effects 

(DARE) 

• 17 hits exported to RefWorks from Health Technology Assessment Database (HTA) 

• 216 hits exported to RefWorks from NHS Economic Evaluation Database (NHS EED) 
 

(statin OR simvastatin OR pravastatin OR lovastatin OR fluvastatin OR atorvastatin OR rosuvastatin OR 

hmg OR co-reductase inhibitor OR hydroxymethylglutaryl-coa reductase inhibitors OR anticholesteremic 

agents OR lipid lowering) and (cost OR cost-effectiveness OR cost-utility OR cost-benefit) and (coronary 

disease OR heart disease OR cerebrovascular disorders OR stroke) 
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Appendix 4.11: Systematic reviews, meta-analyses, opinion pieces, 

etc. on the cost-effectiveness of statins which were hand-searched 

for relevant references (in alphabetical order of the first author) 

 
 

ID Reference 

R1 

ARA, R., RAFIA, R., WARD, S.E., WIERZBICKI, A.S., REYNOLDS, T.M., REES, A. & PANDOR, A., 2009. 
Are intensive lipid-lowering regimens an optimal economic strategy in patients with ACS? An acute 
and chronic perspective. Expert Review of Pharmacoeconomics & Outcomes Research, 9(5), pp. 
423-433.  

R2 

BROWN A D & GARBER, A.M., 1998. Cost effectiveness of coronary heart disease prevention 
strategies in adults. In: Aspects of Hypertension Management; Mallarkey, G., eds., ADIS 
International Ltd; Auckland, New Zealand 

R3 
COUKELL, A.J. & WILDE, M.I., 1998. Pravastatin - A pharmacoeconomic review of its use in primary 
and secondary prevention of coronary heart disease. PharmacoEconomics, 14(2), pp. 217-236.  

R4 
FARMER, J.A., 1998. Economic implications of lipid-lowering trials: current considerations in 
selecting a statin. American Journal of Cardiology, 82(6A), pp. 26M-31M.  

R5 
FRANCO, O.H., PEETERS, A., LOOMAN, C.W. & BONNEUX, L., 2005. Cost effectiveness of statins in 
coronary heart disease. Journal of Epidemiology & Community Health, 59(11), pp. 927-933 

R6 

GREENHELD, W., WILSON, J., BAYLISS, S. & HYDE, C., 2008. The clinical and cost-effectiveness of 

intensive versus standard lipid lowering with statins in the prevention of cardiovascular events 

amongst patients with acute coronary syndromes: a systematic review (Structured abstract). West 
Midlands Health Technology Assessment Collaboration.  

R7 
GROVER, S.A., 1999. The cost effectiveness of preventing cardiovascular diseases. Canadian Journal 

of Cardiology, 15, pp. 114G-116G.  

R8 

GUMBS, P.D., VERSCHUREN, M.W.M., MANTEL-TEEUWISSE, A., DE WIT, A.G., DE BOER, A. & 
KLUNGEL, O.H., 2007. Economic evaluations of cholesterol-lowering drugs: a critical and systematic 
review. PharmacoEconomics, 25(3), pp. 187-199.  

R9 
HAY, J.W., YU, W.M. & ASHRAF, T., 1999. Pharmacoeconomics of lipid-lowering agents for primary 
and secondary prevention of coronary artery disease. PharmacoEconomics, 15(1), pp. 47-74.  

R10 

JACOBSON, T.A., 1997. Preventing coronary heart disease in the managed care era: improving the 
cost-effectiveness of lipid-lowering therapy with HMG-CoA reductase inhibitors. The American 

Journal of Managed Care, 3, pp. 29-41. 

R11 
JACOBSON, T.A., SCHEIN, J.R., WILLIAMSON, A. & BALLANTYNE, C.M., 1998. Maximizing the cost-
effectiveness of lipid-lowering therapy. Archives of Internal Medicine, 158(18), pp. 1977-1989.  

R12 
KORTT M A & ARMSTRONG.,E.P., 1998. Cholesterol-lowering therapy interventions: a 
pharmacoeconomic assessment. Disease Management and Health Outcomes, 4(4), pp. 193-203. 

R13 
KREUZER, J. & KUBLER, W., 2001. Secondary prevention after cardiac infarct; therapeutic efficiency-
-cost-benefit ratio. Internist, 42(5), pp. 713-719.  

R14 
LINDGREN, P. & JÖ¶NSSON, B., 2009. From 4S to IDEAL: The health economics of the statin trials. 
European Journal of Cardiovascular Prevention and Rehabilitation, 16(2), pp. 138-143.  

R15 

MAC NEIL, P., 1998. Economic aspects of hypercholesterolemia treatment with HMG-CoA 
reductase inhibitors: a review of recent developments. Canadian Journal of Cardiology, 14, pp. 14A-
16A.  

R16 
MALHOTRA, H.S. & GOA, K.L., 2001. Atorvastatin: An updated review of its pharmacological 
properties and use in dyslipidaemia. Drugs, 61(12), pp. 1835-1881.  

R17 
MORRIS, S., MCGUIRE, A., CARO, J. & PETTITT, D., 1997. Strategies for the management of 
hypercholesterolaemia: a systematic review of the cost-effectiveness literature (Brief record). 
Journal of Health Service Research & Policy, 2(4), pp. 231-250 

R18 
NEYT, M., DE LAET, C., VAN BRABANDT, H., FRANCO, O. & RAMAEKERS, D., 2009. Cost-effectiveness 
of statins in the primary prevention of cardiovascular disease: a systematic review and economic 
analysis for Belgium. Acta Cardiologica, 64 (1), pp. 1-10 
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R19 THOMPSON, D. & OSTER, G., 1992. Cost-effectiveness of drug therapy for hypercholesterolaemia: a 
review of the literature. PharmacoEconomics, 2(1), pp. 34-42 

R20 
PERRAS, C. & BALADI, J.F., 1998. A clinical and economic review of HMG-CoA reductase inhibitors in 
coronary heart disease - summary. Canadian Coordinating Office for Health Technology Assessment 
(CCOHTA). Technology Overview: Pharmaceuticals Issue 12 

R21 
PERRAS, C. and BALADI, J., 1997. HMG-CoA reductase inhibitors: a review of published clinical trials 
and pharmacoeconomic evaluations - nonsystematic review. Canadian Coordinating Office for 
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Appendix 4.13: final data abstraction form  

1/3 - study-level information 
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Final data abstraction form  

2/3 – QHES-assignment 
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Final data abstraction form  

3/3 - data-level information 
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Appendices for Chapter 5 

 

 

Appendix 5.1: Descriptive statistics of data and study-level 

covariates 

 

Appendix 5.1.1:  Descriptive statistics of patient and disease characteristics – 

continuous variables 
 

Variable Obs. missing in % Min Max Mean Std. Dev. 

tcl 1193 901 43.03% 4.5 10.35 6.676 1.204 

hdl 1147 947 45.22% 0.9 1.55 1.168 0.102 

ldl 926 1168 55.78% 1.9 8.2 4.509 1.035 

hypert 826 1268 60.55% 0 1 0.317 0.381 

sbp 1140 954 45.56% 120 164.7 137.475 13.348 

smokers 1141 953 45.51% 0 1 0.291 0.335 

diab 1163 931 44.46% 0 1 0.178 0.349 

 

 

 

Appendix 5.1.2: Descriptive statistics of patient and disease characteristics – 

categorical variables 
 

Variable 

category 
Frequency 

(full sample: 2094) 
In % cummulative 

Age_cat 

- <45 
- 46 to 55 
- 56 to 65 
- 66 to 75  
- > 75 
- Unclear (missing) 

 
322 
439 
862 
299 
98 
74 

 
15.38% 
20.96% 
41.17% 
14.28% 
4.68% 
3.53% 

 
15.38% 
36.35% 
77.51% 
91.79% 
96.47% 
100% 

Gender_cat 

- Female 
- Male  
- Mixed study sample 
- Unclear (missing) 

 
576 
799 
556 
163 

 
27.51% 
38.16% 
26.55% 
7.78% 

 
27.51% 
65.56% 
92.22% 
100% 

CHD_history 

- No (primary prevention) 
- Yes (secondary prevention) 
- Mixed study sample 

 
1064 
958 
72 

 
50.81% 
45.75% 
3.44% 

 
50.81% 
96.56% 
100% 

Risk_cat* 

- Very low (<10%) 
- Low (<20%) 
- Medium (<30%) 
- High (<40%) 
- Very high (> 40%) 
- Secondary prevention 
- Unclear (missing)  

 
193 
367 
278 
140 
106 
958 
52 

 
9.22% 

17.53% 
13.28% 
6.69% 
5.06% 

45.75% 
2.48% 

 
9.22% 

26.75% 
40.02% 
46.71% 
51.77% 
97.52% 
100% 

* defined as 10 year CHD risk estimated using patient risk factors reported above using Framingham risk equation (reference)  
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Appendix 5.1.3 Descriptive statistics of intervention and comparator 

characteristics – continuous variables 
 

Variable   

(in 2010 £-Sterling) 
Obs. missing in % Min Max Mean Std. Dev. 

Cost_int 1957 137 6.54% 21.48 1917.56 521.59 335.10 

Unitcost_int 1738 356 17.00% 0.0012 0.1773 0.05 0.032 

Cost_comp 2092 2 0.10% 0 1002.36 26.06 115.37 

Unitcost_comp 2083 11 0.53% 0 0.156 0.0037 0.018 

Incr_int_cost 1727 367 17.53% -0.1255 0.1773 0.0461 0.039 

 

 

 

Appendix 5.1.4: Descriptive statistics of intervention and comparator 

characteristics– categorical variables 
 

Variable 

category 
Frequency 

(full sample: 2094) 
In % cumulative 

Intervention (brand name) 
- Simvastatin 
- Fluvastatin 
- Atorvastatin 
- Pravastatin 
- Lovastatin 
- Rosuvastatin 
- Unclear (missing) 

 
1080 

41 
184 
256 
125 
60 

348 

 
51.58% 
1.96% 
8.79% 

12.23% 
5.97% 
2.87% 

16.60% 

 
51.58% 
53.54% 
62.33% 
74.56% 
80.53% 
83.40% 
100% 

TDD-intervention (total daily dose) 
- Up to 10 mg 
- Up to 20 mg 
- Up to 30 mg 
- Up to 40 mg 
- > 60 mg 
- Unclear (missing) 

 
65 

259 
554 
654 
206 
356 

 
3.10% 

12.37% 
26.46% 
31.23% 
9.84% 

17.00% 

 
3.10% 

15.47% 
41.93% 
73.16% 
83.00% 
100% 

Comparator  
- Simvastatin 
- Fluvastatin 
- Atorvastatin 
- Pravastatin 
- Lovastatin 
- Rosuvastatin 
- Doing nothing 
- Unclear (missing) 

 
153 

3 
44 
19 
24 
15 

1834 
2 

 
7.31% 
0.14% 
2.10% 
0.91% 
1.15% 
0.72% 

87.58% 
0.1% 

 
7.31% 
7.45% 
9.55% 

10.46% 
11.61% 
12.33% 
99.90% 
100% 

Comparator_short 

- Doing nothing 
- Simvastatin 
- Other 

 
1834 
153 
107 

 
87.58% 
7.31% 
5.11% 

 
87.58% 
94.98% 
100% 

Active_comparator 

- yes 
- no (doing nothing) 
- unclear (missing) 

 
260 

1834 
0 

 
12.42% 
87.58% 

-- 

 
12.42% 
100% 

-- 

TDD-comp (total daily dose) 
- 0 mg (doing nothing) 
- Up to 10 mg 
- Up to 20 mg 
- Up to 30 mg 
- Up to 40 mg 
- Unclear (missing) 

 
1834 

44 
26 
24 

155 
11 

 
87.58% 
2.10% 
1.24% 
1.15% 
7.40% 
0.53% 

 
87.58% 
89.68% 
90.92% 
92.07% 
99.47% 
100% 
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Appendix 5.1.5: Descriptive statistics of methods on data-level – continuous 

variables 
 

Variable   

(in 2010 £-Sterling) 
Obs. missing in % Min Max Mean Std. Dev. 

DRC 2094 0 0% 0 10% 3.94% 1.66% 

DRB 2094 0 0% 0 10% 2.99% 1.81% 

 

 

 

Appendix 5.1.6: Descriptive statistics of methods on data-level – categorical 

variables 
 

Variable 

category 
Frequency 

(full sample: 2094) 
In % cumulative 

Outcome_measure 

- LYS 
- QALYs 

 
1319 
775 

 
62.99% 
37.01% 

 
62.99% 
100% 

Elicitation 

- N.a. (LYS) 
- TTO 
- EQ-5D 
- Other choice based method 
- Unclear (missing) 

 
1319 
112 
313 
333 
17 

 
62.99% 
5.35% 

14.95% 
15.90% 
0.81% 

 
62.99% 
68.34% 
83.29% 
99.19% 
100% 

Population 

- N.a. (LYS) 
- Patient 
- Population 
- Unclear (missing) 

 
1319 
215 
474 
86 

 
62.99% 
10.27% 
22.64% 
4.11% 

 
62.99% 
73.26% 
95.90% 
100% 

Duration 

- < 5years 
- 5 to <10 years 
- 10 to <15 years 
- 15 to <20 years  
- 20 to <25 years 
- > 25 years (lifetime) 
- Unclear (missing) 

 
66 

788 
175 
44 
87 

814 
120 

 
3.15% 

37.63% 
8.36% 
2.10% 
4.15% 

38.87% 
5.73% 

 
3.15% 

40.78% 
49.14% 
51.24% 
55.39% 
94.26% 
100% 

Duration_short 

- < 10 years 
- 10 to < 20 years 
- >20 years 
- Unclear (missing) 

 
854 
219 
901 
120 

 
40.78% 
10.46% 
43.03% 
5.73% 

 
40.78% 
51.24% 
94.27% 
100% 

Extrapolation beyond follow up? 

- Yes 
- No 

 
1942 
152 

 
92.74% 
7.26% 

 
92.74% 
100% 

Horizon 

- < 5 years 
- 5 to < 10 years 
- 10 to < 15 years 
- 15 to < 20 years 
- 20 to < 25 years 
- > 25 years (lifetime) 

 
17 

191 
330 
132 
91 

1333 

 
0.81% 
9.12% 

15.76% 
6.30% 
4.35% 

63.66% 

 
0.81% 
9.93% 

25.69% 
32.00% 
36.34% 
100% 

Horizon_short 

- ≤ 10 years 
- ≤ 20 years 
- > 20 years 

 
208 
462 

1424 

 
9.93% 

22.06% 
68.00% 

 
9.93% 

32.00% 
100% 

Horizon_eq_duration 

- Yes 
- No 

 
1328 
766 

 
63.42% 
36.58% 

 
63.42% 
100% 

Perspective_reported 

- Health insurance (NHS) 
- Societal 
- No perspective reported 

 
1369 
214 
511 

 
65.38% 
10.22% 
24.40% 

 
65.38% 
75.60% 
100% 

Perspective_cost_concluded 

- Provider 
- Health insurance (NHS) 
- Societal 

 
20 

1939 
135 

 
0.96% 

92.60% 
6.45% 

 
0.96% 

93.55% 
100% 

Perspective_benefits_concluded 

- Patient 
 

2094 
 

100% 
 

100% 

Perspective_discrepancy 

- No 
- yes 

 
1459 
635 

 
69.68% 
30.32% 

 
69.68% 
100% 

Data_class (sensitivity analysis) 

- base case 
 

1125 
 

53.72% 
 

53.72% 
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- efficiency of intervention 
- CVD risk at baseline 
- Cost (not intervention) 
- Cost of intervention 
- QALYs 
- Treatm. duration / time horizon 
- Discount rate 
- Other sensitivity analysis 

12 
49 
64 
86 
72 

288 
257 
141 

0.57% 
2.34% 
3.06% 
4.11% 
3.44% 

13.75% 
12.27% 
6.73% 

54.30% 
56.64% 
59.69% 
63.80% 
67.24% 
80.99% 
93.27% 
100% 

Basecase 
- Yes 
- No (sensitivity analysis) 

 
1125 
969 

 
46.28% 
53.72% 

 
46.28% 
100% 

Source_effectivenes data 

- Literature / meta analysis 
- PLAC I/II 
- CARE 
- WOSCOPS 
- 4S 
- 4S and WOSCOPS 
- EXCEL 
- LIPID 
- CURVES 
- CARDS 
- ASCOTT 
- HPS 
- SPARCL 
- TNT 
- LIPS 
- IDEAL 
- STELLAR 
- CELL 
- other 

 
652 
38 
88 
81 

509 
46 

120 
23 
12 
28 
6 

280 
8 

42 
33 
24 
62 
8 

34 

 
31.14% 
1.81% 
4.20% 
3.87% 

24.31% 
2.20% 
5.73% 
1.10% 
0.57% 
1.34% 
0.29% 

13.37% 
0.38% 
2.01% 
1.58% 
1.15% 
2.69% 
0.38% 
1.62% 

 
31.14% 
32.95% 
37.15% 
41.02% 
65.33% 
67.53% 
73.26% 
74.36% 
74.93% 
76.27% 
76.55% 
89.92% 
90.31% 
92.31% 
93.89% 
95.03% 
97.99% 
98.38% 
100% 

Barbieri_1 

- Type C 
- Type CR 
- Type CU 
- Type CRE 
- Type CRU 
- Type CREU 

 
186 

1033 
113 
193 
513 
56 

 
8.88% 

49.33% 
5.40% 
9.22% 

24.50% 
2.67% 

 
8.88% 

58.21% 
63.61% 
72.83% 
97.33% 
100% 

Barbieri_2 

- Type 1 
- Type 2 
- Type 3 
- Type 4 

 
186 

1146 
706 
56 

 
8.88% 

54.73% 
33.72% 
2.67% 

 
8.88% 

63.61% 
97.33% 
100% 

 

 

 

 

 

 

 

Appendix 5.1.7: Descriptive statistics of general study characteristics – 

continuous variables 
 

Variable   

(in 2010 £-Sterling) 
Obs. missing in % Min Max Mean Std. Dev. 

Timing_cont* 67 0 0% 1988 2009 2000 5.7 

* timing was also defined as a categorical variable (see table x.8 below) 
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Appendix 5.1.8: Descriptive statistics of general study characteristics – 

categorical variables 
 

Variable 

category 
Frequency 

(full sample: 67) 
In % cumulative 

Language 

- English 
- German 

 
61 
6 

 
91.04% 
8.96% 

 
91.04% 
100% 

Paper_origin 

- Australia 
- Belgium  
- Brazil 
- Canada 
- Finland 
- Germany 
- Hong Kong 
- Japan 
- Netherlands 
- Spain 
- Sweden 
- Switzerland 
- UK 
- UK (England / Wales) 
- UK (Scotland) 
- USA 
- Scandinavian countries 
- North America (USA / 

Canada) 
- Multi_country 

 
1 
2 
1 

13 
2 
6 
1 
1 
3 
1 
7 
1 
6 
6 
1 

12 
1 
1 
1 

 
1.49% 
2.99% 
1.49% 

19.40% 
2.99% 
8.96% 
1.49% 
1.49% 
4.48% 
1.49% 

10.45% 
1.49% 
8.96% 
8.96% 
1.49% 

17.91% 
1.49% 
1.49% 
1.49% 

 
1.49% 
4.48% 
5.97% 

25.37% 
28.36% 
37.31% 
38.81% 
40.30% 
44.78% 
47.27% 
56.72% 
58.21% 
67.16% 
76.12% 
77.61% 
95.52% 
97.01% 
98.51% 
100% 

Author_group_long 

- No relationships 
- Group 1 
- Group 2 
- Group 3 
- Group 4 
- Group 5 
- Group 6 
- Group 7 
- Group 8 
- Group 9 
- Group 10 
- Group 11 
- Group 12 

 
18 
4 
5 
8 
4 
7 
5 
3 
3 
3 
3 
2 
2 

 
26.87% 
5.97% 
7.46% 

11.94% 
5.97% 

10.45% 
7.46% 
4.48% 
4.48% 
4.48% 
4.48% 
2.99% 
2.99% 

 
26.87% 
32.84% 
40.30% 
52.24% 
58.21% 
68.66% 
76.12% 
80.60% 
85.07% 
89.55% 
94.03% 
97.01% 
100% 

Author_group_short 

- No relationships 
- Group 1 
- Group 2 
- Group 3 
- Group 4 
- Group 5 
- Group 6 
- Group 7 

 
18 
29 
8 
3 
2 
3 
2 
2 

 
26.87% 
43.28% 
11.94% 
4.48% 
2.99% 
4.48% 
2.99% 
2.99% 

 
26.87% 
70.15% 
82.09% 
86.57% 
89.55% 
94.03% 
97.01% 
100% 

Timing_cat 

- 1988 
- 1990 
- 1991 
- 1992 
- 1993 
- 1995 
- 1996 
- 1997 
- 1998 
- 1999 
- 2000 
- 2002 
- 2003 
- 2004 
- 2005 
- 2006 
- 2007 

 
2 
1 
1 
1 
2 
7 
8 
4 
6 
1 
1 
4 
2 
2 
9 
3 
7 

 
2.99% 
1.49% 
1.49% 
1.49% 
2.99% 

10.45% 
11.94% 
5.97% 
8.96% 
1.49% 
1.49% 
5.97% 
2.99% 
2.99% 

13.43% 
4.48% 

10.45% 

 
2.99% 
4.48% 
5.97% 
7.46% 

10.45% 
20.90% 
32.84% 
38.81% 
47.76% 
49.25% 
50.75% 
56.72% 
59.70% 
62.69% 
76.12% 
80.60% 
91.04% 
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- 2008 
- 2009 

3 
3 

4.48% 
4.48% 

95.52% 
100% 

Multinational 

- No (single country study) 
- Yes (multinational study) 

 
61 
6 

 
91.04% 
8.96% 

 
91.04% 
100% 

Funding_institution 

- Industry 
- RC/Government / University 
- Unclear  

 
39 
11 
17 

 
58.21% 
16.42% 
25.37% 

 

Funding_manufacturer 

- No manufacturer 
sponsoring 

- Bristol Myers Squibb 
- MERCK 
- Pfizer 
- Other (Sandoz / AZ / 

Novartis) 
- unclear 

 
11 
7 

12 
13 
9 

15 

 
16.42% 
10.45% 
17.91% 
19.40% 
13.43% 
22.39% 

 

 

 

 

 

Appendix 5.1.9: Descriptive statistics of methods variables on study-level – 

categorical variables 
 

Variable 

category 
Frequency 

(full sample: 67) 
In % cumulative 

General_design 

- primary modelling 
- secondary modelling 

 
6 

61 

 
8.96% 

91.04% 

 
8.96% 
100% 

Primary_design 

- n.a. (primary modelling) 
- RCT 

 
61 
6 

 
91.04% 
8.96% 

 
91.04% 
100% 

Secondary_design 

- N.a. (primary modelling) 
- Markov model 
- Decision tree 
- Other  

 
6 

41 
7 

13 

 
8.96% 

61.19% 
10.45% 
19.40% 

 
 

Effect_calculation 

- CHD risk reduction 
- Cholesterol reduction 

 
41 
26 

 
61.19% 
38.81% 

 
61.19% 
100% 

Infl_adjustent 

- n.a. 
- yes 
- no 
- unclear (missing) 

 
12 
18 
2 

35 

 
17.91% 
26.87% 
2.99% 

52.24% 

 

Adjustment_method 

- n.a. 
- simple consumer price 

index 
- healthcare component of 

CPI 
- no adjustment though 

indicated 
- unclear (missing) 

 
12 
8 

10 
2 

35 

 
17.91% 
11.94% 
14.93% 
2.99% 

52.24% 

 

Currency_conversion 

- no 
- yes 

 
52 
15 

 
77.61% 
22.39% 

 
77.61% 
100% 

Conversion_method 

- n.a. 
- exchange rates 
- unclear 

 
52 
11 
4 

 
77.61% 
16.42% 
5.97% 

 

Scope 

- CAD 
- CAD and CD 
- CAD, CD, and PAD 
- unclear 

 
18 
35 
11 
3 

 
26.87% 
52.24% 
16.42% 
4.48% 
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Appendix 5.1.10:  Descriptive statistics of study quality indicators – continuous 

variables 
 

Variable   

(in 2010 £-Sterling) 
Obs. missing in % Min Max Mean Std. Dev. 

QHES cont (a) 67 0 0% 27.00 100 59.36 16.33 

QHES cont (b) 67 0 0% 40.83 100 69.32 13.89 

 

 

 

 

Appendix 5.1.11: Descriptive statistics of study quality indicators– categorical 

variables 
 

Variable 

category 
Frequency 

(full sample: 2094) 
In % cumulative 

QHES_cat (a) 
- up to 40 pts 
- up to 60 pts 
- up to 80 pts 
- up to 100 pts 

 
7 

31 
22 
7 

 
10.45% 
46.27% 
32.84% 
10.45% 

 
10.45% 
56.72% 
89.55% 
100% 

QHES_cat (b) 
- up to 60 pts 
- up to 80 pts 
- up to 100 pts 

 
20 
40 
7 

 
29.85% 
59.70% 
10.45% 

 
29.85% 
89.55% 
100% 
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Appendix 5.2: Logit models to determine candidate variables for 

regression based missing data imputation.  

 

Appendix 5.2.1: Logit model for predicting missingness in TCL (d_tcl) 

 

Obs 880 

LR chi2(14) 155.99 

Prob > chi2 0.0000 

Pseudo R2 0.8508 

Log likelihood =  -13.672772 
 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB .0001087 .0001675 0.65 0.516 -.0002196 .000437 

incr_cost .0001818 .0002351 0.77 0.439 -.000279 .0006426 

incr_effect* 0 (omitted)     

ldl 2.848177 1.430478 1.99 0.046 .0444929 5.651862 

Hypert -.8160491 3.089475 -0.26 0.792 -6.871309 5.239211 

Smokers 2.205601 2.481486 0.89 0.374 -2.658022 7.069224 

Diab 5.205515 1.09153 4.77 0.000 3.066156 7.344874 

Risk_cat -.0364881 .0190707 -1.91 0.056 -.073866 .0008898 

age_cat 9.040136 3.042482 2.97 0.003 3.076982 15.00329 

gender_cat -13.5595 4.344545 -3.12 0.002 -22.07466 -5.044351 

intervention -.1216281 .5415385 -0.22 0.822 -1.183024 .9397679 

tdd_int .1155115 .4737433 0.24 0.807 -.8130083 1.044031 

source_effects -1.871774 .6713426 -2.79 0.005 -3.187582 -.5559669 

effect_loc 8.564003 2.342514 3.66 0.000 3.972761 13.15525 

effect_calc -32.63791 12.5298 -2.60 0.009 -57.19586 -8.07995 

timing -1.398225 .5252533 -2.66 0.008 -2.427703 -.3687474 

scope -.9660147 2.59417 -0.37 0.710 -6.050494 4.118465 

_cons 2541.819 996.2151 2.55 0.011 589.2737 4494.365 

*omitted because of collinearity 

 

 

Appendix 5.2.2: Logit model for predicting missingness in LDL (d_lcl) 
 

Obs 795 

LR chi2(14) 377.99 

Prob > chi2 0.0000 

Pseudo R2 0.8057 

Log likelihood =  -45.573484 
 

Explanatory Coefficient 
Standard 

Error 
Z P>|z| 95% CI lower 95%CI upper 

INMB -.0000233 .0000152 -1.53 0.125 -.0000531 6.47e-06 

incr_cost .0002016 .0000457 4.41 0.000 .0001121 .0002911 

incr_effect 0 (omitted)     

hdl 7.713941 4.228739 1.82 0.068 -.5742357 16.00212 

tcl .822659 .4027575 2.04 0.041 .0332689 1.612049 

hypert -4.220478 1.537086 -2.75 0.006 -7.233111 -1.207846 

smokers 6.507383 1.826005 3.56 0.000 2.928479 10.08629 

diab -.8737671 1.376445 -0.63 0.526 -3.57155 1.824015 

risk_cat -.4342001 .4188733 -1.04 0.300 -1.255177 .3867765 

age_cat 1.4256 .5339265 2.67 0.008 .3791233 2.472077 

gender_cat 1.64863 .7275759 2.27 0.023 .2226078 3.074653 

intervention .7144262 .2901476 2.46 0.014 .1457474 1.283105 

tdd_int -2.500186 .7446502 -3.36 0.001 -3.959673 -1.040698 

source_effects -.367101 .146308 -2.51 0.012 -.6538594 -.0803425 

effect_loc -.8106235 .2784211 -2.91 0.004 -1.356319 -.2649281 

effect_calc -1.863518 1.742071 -1.07 0.285 -5.277914 1.550878 

Timing .1152788 .0088053 13.09 0.000 .0980207 .1325368 

_cons 4.278564 9.612571 0.45 0.656 -14.56173 23.11886 

*omitted because of collinearity 
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Appendix 5.2.3: Logit model for predicting missingness in HDL (d_hdl) 

 

Obs 1156 

LR chi2(14) 190.63 

Prob > chi2 0.0000 

Pseudo R2 0.4929 

Log likelihood =  -98.063952 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB -.0004334 .0000807 -5.37 0.000 -.0005915 -.0002753 

incr_cost -.0005195 .0000951 -5.46 0.000 -.0007058 -.0003332 

incr_effect 0 (omitted)     

tcl .2634234 .1850258 1.42 0.155 -.0992205 .6260673 

age_cat -.8988485 .2469747 -3.64 0.000 -1.38291 -.4147869 

gender_cat -1.088738 .3228125 -3.37 0.001 -1.721439 -.4560372 

tdd_int -.4200735 .1622744 -2.59 0.010 -.7381255 -.1020215 

effect_loc -.0796008 .0674007 -1.18 0.238 -.2117039 .0525022 

timing -.1552515 .0659099 -2.36 0.018 -.2844325 -.0260705 

_cons 315.0081 133.1114 2.37 0.018 54.11462 575.9017 

*omitted because of collinearity 

 

 

 

Appendix 5.2.4: Logit model for predicting missingness in hypertension status 

(d_hypert) 

 

Obs 870 

LR chi2(14) 541.44 

Prob > chi2 0.0000 

Pseudo R2 0.6935 

Log likelihood =  -119.65464 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB .0000686 .0000707 0.97 0.332 -.00007 .0002071 

incr_cost -.0006677 .0001274 -5.24 0.000 -.0009173 -.0004181 

incr_effect 0 (omitted)     

tcl -8.352446 1.33393 -6.26 0.000 -10.9669 -5.737992 

hdl 27.93644 4.224154 6.61 0.000 19.65725 36.21563 

ldl 3.970261 1.108581 3.58 0.000 1.797483 6.143039 

smokers -1.13448 .7142796 -1.59 0.112 -2.534442 .2654823 

sbp .0116166 .0252213 0.46 0.645 -.0378163 .0610495 

diab .3329223 .7134978 0.47 0.641 -1.065508 1.731352 

risk_cat .4547893 .18705 2.43 0.015 .0881781 .8214004 

age_cat .5698994 .5308344 1.07 0.283 -.4705168 1.610316 

gender_cat 6.137617 1.015317 6.05 0.000 4.147632 8.127602 

intervention 1.503188 .3332428 4.51 0.000 .850044 2.156332 

tdd_int 1.498864 .2670696 5.61 0.000 .9754172 2.022311 

source_effects .5667746 .097632 5.81 0.000 .3754194 .7581297 

effect_loc -1.078352 .1925064 -5.60 0.000 -1.455658 -.7010466 

timing -2.439659 .3163449 -7.71 0.000 -3.059683 -1.819634 

_cons 4877.341 631.6731 7.72 0.000 3639.284 6115.397 

*omitted because of collinearity 
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Appendix 5.2.5: Logit model for predicting missingness in systolic blood 

pressure (d_sbp) 

 

Obs 1156 

LR chi2(14) 190.94 

Prob > chi2 0.0000 

Pseudo R2 0.4937 

Log likelihood =  -97.910332 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB -.0004355 .0000816 -5.34 0.000 -.0005954 -.0002756 

incr_cost -.000507 .0000951 -5.33 0.000 -.0006933 -.0003207 

incr_effect 0 (omitted)     

tcl .2822932 .188329 1.50 0.134 -.0868249 .6514113 

age_cat -.8940499 .25166 -3.55 0.000 -1.387294 -.4008054 

gender_cat -1.088431 .3247331 -3.35 0.001 -1.724896 -.4519657 

tdd_int -.4445926 .1783034 -2.49 0.013 -.7940608 -.0951243 

source_effects -.0372382 .0689759 -0.54 0.589 -.1724285 .0979521 

effect_loc -.1243427 .1103292 -1.13 0.260 -.3405841 .0918986 

timing -.134513 .0745366 -1.80 0.071 -.280602 .011576 

_cons 274.882 149.112 1.84 0.065 -17.37211 567.1362 

*omitted because of collinearity 

 

 

Appendix 5.2.6: Logit model for predicting missingness in smoking status 

(d_sbp) 

 

Obs 1156 

LR chi2(14) 178.38 

Prob > chi2 0.0000 

Pseudo R2 0.4612 

Log likelihood =  -104.19084 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB -.0004828 .0000867 -5.57 0.000 -.0006527 -.000313 

incr_cost -.0005183 .0000969 -5.35 0.000 -.0007082 -.0003284 

incr_effect 0 (omitted)     

tcl .2836354 .1835382 1.55 0.122 -.0760929 .6433636 

gender_cat -1.1206 .3096537 -3.62 0.000 -1.72751 -.5136898 

source_effects -.1210404 .0460367 -2.63 0.009 -.2112707 -.0308101 

effect_loc -.1490165 .082239 -1.81 0.070 -.310202 .012169 

timing .0042349 .0560054 0.08 0.940 -.1055337 .1140035 

_cons -4.790422 112.0651 -0.04 0.966 -224.4341 214.8532 

*omitted because of collinearity 
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Appendix 5.2.7: Logit model for predicting missingness in diabetes status 

(d_diab) 

 

Obs 1156 

LR chi2(14) 190.94 

Prob > chi2 0.0000 

Pseudo R2 0.4937 

Log likelihood =  -97.910332 
 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

INMB -.0004355 .0000816 -5.34 0.000 -.0005954 -.0002756 

incr_cost -.000507 .0000951 -5.33 0.000 -.0006933 -.0003207 

incr_effect 0 (omitted)     

tcl .2822932 .188329 1.50 0.134 -.0868249 .6514113 

age_cat -.8940499 .25166 -3.55 0.000 -1.387294 -.4008054 

gender_cat -1.088431 .3247331 -3.35 0.001 -1.724896 -.4519657 

tdd_int -.4445926 .1783034 -2.49 0.013 -.7940608 -.0951243 

source_effects -.0372382 .0689759 -0.54 0.589 -.1724285 .0979521 

effect_loc -.1243427 .1103292 -1.13 0.260 -.3405841 .0918986 

timing -.134513 .0745366 -1.80 0.071 -.280602 .011576 

_cons 274.882 149.112 1.84 0.065 -17.37211 567.1362 

*omitted because of collinearity 

 

 

 

Appendix 5.2.8: Logit model for predicting missingness in annual drug cost of 

the intervention (d_cost_int) 

 

Obs 1023 

LR chi2(14) 600.09 

Prob > chi2 0.0000 

Pseudo R2 0.8593 

Log likelihood =  -49.116343 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

tcl .726719 .7577476 0.96 0.338 -.7584391 2.211877 

country_id -.2816622 .0729227 -3.86 0.000 -.4245881 -.1387362 

source_effects -.3320263 .323819 -1.03 0.305 -.9666998 .3026472 

drc -20.06777 25.96249 -0.77 0.440 -70.95332 30.81779 

timing .3121932 .2199898 1.42 0.156 -.1189788 .7433653 

duration 1.584883 .6175211 2.57 0.010 .3745642 2.795202 

horizon -2.46523 .4960683 -4.97 0.000 -3.437506 -1.492954 

cur_conv .8132378 6.585694 0.12 0.902 -12.09449 13.72096 

conv_method 0 (omitted)*     

data_class -.1335485 .0814788 -1.64 0.101 -.2932441 .0261471 

incr_cost -.0002244 .0000791 -2.84 0.005 -.0003794 -.0000693 

INMB -.000273 .0000871 -3.13 0.002 -.0004437 -.0001023 

intervention -3.594461 .822772 -4.37 0.000 -5.207064 -1.981857 

tdd_int -.1106023 .7985756 -0.14 0.890 -1.675782 1.454577 

multinational 7.047884 6.490862 1.09 0.278 -5.673972 19.76974 

_cons -619.529 438.5537 -1.41 0.158 -1479.078 240.0204 

*omitted because of collinearity 
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Appendix 5.2.9: Logit model for predicting missingness in unit cost of the 

intervention (d_unitcost_int) 

 

Obs 1053 

LR chi2(14) 92.62 

Prob > chi2 0.0000 

Pseudo R2 0.3397 

Log likelihood =  -90.004987 
 

 

Explanatory Coefficient Standard Error Z P>|z| 95% CI lower 95%CI upper 

tcl .4250457 .2163829 1.96 0.049 .000943 .8491484 

Intervention .6177555 .2122761 2.91 0.004 .2017021 1.033809 

country_id -.1241907 .0342685 -3.62 0.000 -.1913558 -.0570257 

drc -46.91049 19.82648 -2.37 0.018 -85.76969 -8.0513 

timing -.1787341 .0575271 -3.11 0.002 -.2914852 -.0659831 

duration .9724997 .242166 4.02 0.000 .497863 1.447136 

cur_conv .8163021 .7922189 1.03 0.303 -.7364184 2.369023 

conv_method 0 (omitted)     

data_class -.2238029 .097233 -2.30 0.021 -.414376 -.0332297 

incr_cost -.0003556 .0001011 -3.52 0.000 -.0005538 -.0001574 

INMB -.000019 .0000203 -0.93 0.350 -.0000589 .0000209 

_cons 353.1313 115.2612 3.06 0.002 127.2236 579.0391 

*omitted because of collinearity 

 

 

 

Appendix 5.2.10: Logit model for predicting missingness in the annual drug cost 

of the comparator (d_cost_comp) 

 

Due to very few missing values, logit models did not converge for d_cost_comp. 

Therefore, imputation models for the cost of the comparator are based on the same set 

of explanatory variables as the model for the intervention cost, with the explanatory 

‘intervention’ replaced by the explanatory ‘comparator’.  

 

 

 

Appendix 5.2.11: Logit model for predicting missingness in the unit cost of the 

comparator (d_unitcost_comp) 

 

Due to very few missing values, logit models did not converge for d_unitcost_comp. 

Therefore, imputation models for the cost of the comparator are based on the same set 

of explanatory variables as the model for the intervention cost, with the explanatory 

‘intervention’ replaced by the explanatory ‘comparator’.  
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Appendix 5.3: Multiple correspondence analysis on ‘horizon’ 

‘extrapol’ and ‘hor_eq_dur’ 

 

 

Number of obs:  2094 / Total inertia: 0.26199  / Number of axes:  2 

  
 Principal Inertia Percent Cumulative 

Dimension 1 0.20677 78.92% 78.92% 

Dimension 2 0.00654 2.5% 81.42% 

Dimension 3 6.24e
-32

 0.00% 81.42% 

Dimension 4 6.93e
-33

 0.00% 81.42% 

 

 Overall Dimension 1 Dimension 2 

Categories Mass Quality %inertia Coord  sqcorr contrib Coord  sqcorr contrib 

horizon 
< 5 years 
5 to 10 years 
10 to 15 years 
15 to 20 years 
20 to 25 years 
>  25 years 

 
0.003 
0.030 
0.053 
0.021 
0.014 
0.212 

 
0.773 
0.799 
0.827 
0.774 
0.553 
0.764 

 
0.069 
0.336 
0.008 
0.019 
0.015 
0.033 

 
4.960 
3.342 
-0.370 
-0.747 
0.074 
-0.382 

 
0.762 
0.798 
0.698 
0.493 
0.004 
0.746 

 
0.067 
0.340 
0.007 
0.012 
0.000 
0.031 

 
3.402 
0.505 
0.893 
3.169 
-4.689 
-0.331 

 
0.011 
0.001 
0.128 
0.281 
0.548 
0.018 

 
0.031 
0.008 
0.042 
0.211 
0.319 
0.023 

extrapolation 
No 
Yes 

 
0.024 
0.309 

 
0.797 
0.797 

 
0.399 
0.031 

 
4.072 
-0.319 

 
0.794 
0.794 

 
0.401 
0.031 

 
1.297 
-0.102 

 
0.003 
0.003 

 
0.041 
0.003 

Hor_eq_dur 
No 
Yes  

 
0.211 
0.122 

 
1.052 
1.052 

 
0.033 
0.059 

 
0.439 
-0.761 

 
0.964 
0.964 

 
0.041 
0.071 

 
-0.747 
1.295 

 
0.088 
0.088 

 
0.118 
0.204 
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Appendix 5.4:  Gradually building up a random intercepts model 

with data and study-level covariates 
 

Appendix 5.4.1: Random intercepts model with patient and disease 

characteristics 
 

 

 
Univariate model Bivariate model 

 
INMB 

(2010 £ Sterling) 
∆C/100 

(2010 £ Sterling) 
∆E 

 

Fixed part: 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30.000) 
-25176 725  -0.621 

TCL (SE) 4153 (588)*** -28.32 (3.50)*** 0.037 (0.018)** 

HDL (SE) -26588 (10341)** 102.5 (55.57)* -0.629 (0.342)* 

SBP (SE) 706 (37.05)*** -3.31 (0.22)*** 0.012 (0.001)*** 

Diabetes (SE) 15261 (1750)*** -24.51 (9.23)*** 0.421 (0.005)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted 

98.73 (1162) 
-5976 (1131)*** 

-15240 (1206)*** 
-6692 (2047)*** 

5207 (8436) 

 
Omitted  

-93.92 (6.72)*** 
-133.2 (6.69)*** 
-167.4 (7.11)*** 
-130.3 (11.9)*** 

-97.02 (51.2)* 

 
Omitted 

-0.311 (0.037)*** 
-0.644 (0.036)*** 
-1.070 (0.038)*** 
-0.663 (0.065)*** 
-0.145 (0.280)*** 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

10330 (874)*** 
6839 (4122)* 

 
Omitted 

-34.0 (5.07)*** 
-57.6 (25.3)** 

 
Omitted 

0.228 (0.028)*** 
0.074 (0.131)*** 

CVD_history (SE) 

No 
Yes 

Mixed sample 

 
Omitted 

7090 (1589)*** 
9511 (7656) 

-- 

 
Omitted 

0.219 (0.049)*** 
0.260 (0.254) 

Random part: ����� 	(Country) 6274573 2452 0.117 

����� 	(Study) 299288384 8661 0.371 

���� 	(Data) 204568400 7077 0.201 

VPC - Country 

VPC – Study 

VPC - data 

1.23% 
58.67% 
40.10% 

13.48% 
47.61% 
38.91% 

16.98% 
53.85% 
29.17% 

DIC 

(benchmark) 
46013 

(46749) 
26993 

(28735) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Appendix 5.4.2: Random intercepts model with patient/disease and 

intervention/ comparator characteristics 
 

 

 
Univariate model Bivariate model 

 
INMB 

(2010 £ Sterling) 
∆C/100 

(2010 £ Sterling) 
∆E 

 

Fixed part: 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30.000) 
-24788 701 -0.549 

TCL (SE) 4236 (590)*** -30.62 (3.31)*** 0.035 (0.018)* 

HDL (SE) -26962 (10506)** 132.23 (53.66)** -0.567 (0.334)* 

SBP (SE) 705 (37.37)*** -3.29 (0.21)*** 0.012 (0.001)*** 

Diabetes (SE) 14941 (1753)*** -20.32 (8.89)** 0.424 (0.055)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted 

71.28 (1159) 
-5986 (1138)*** 

-15263 (1206)*** 
-6724 (2032)*** 

5369 (8531) 

 
Omitted  

-94.27 (6.62)*** 
-133.8 (6.36)*** 
-167.9 (6.80)*** 
-131.6 (11.6)*** 
-100.2 (44.69)** 

 
Omitted 

-0.312 (0.036)*** 
-0.645 (0.035)*** 
-1.070 (0.038)*** 
-0.664 (0.064)*** 

-0.184 (0.276) 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

10344 (876)*** 
6772 (2032)*** 

 
Omitted 

-33.89 (4.93)*** 
-48.48 (21.14)** 

 
Omitted 

0.228 (0.027)*** 
0.047 (0.130) 

CVD_history (SE) 

No 
Yes 

Mixed sample 

 
Omitted 

7032 (1606)*** 
10196 (7573) 

-- 

 
Omitted 

0.225 (0.050)*** 
0.2323 (0.262) 

Cost_intervention -8.932 (1.863)*** 0.133 (0.010)*** -- 

Cost_comparator -- -0.146 (0.024)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

 
Omitted 

-4729 (2468)* 
-- 

 
Omitted 

-(0.313 (0.078)*** 

    

Random part: ����� 	(Country) 6801933 2916 0.122 

����� 	(Study) 284972576 6543 0.345 

���� 	(Data) 202350848 6574 0.200 

VPC - Country 

VPC – Study 

VPC - data 

1.38% 
57.67% 
40.95% 

18.19% 
40.81% 
41.00% 

18.29% 
51.72% 
29.99% 

DIC 

(benchmark) 
45990 

(46013) 
26840 

(26993) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Appendix 5.4.3:  Random intercepts model with patient/disease characteristics, 

intervention/comparator characteristics and methodological characteristics on 

data-level.  
 

 

 
Univariate model Bivariate model 

 
INMB 

(2010 £ Sterling) 
∆C/100 

(2010 £ Sterling) 
∆E 

 

Fixed part: 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30.000) 
-36030 789 -0.881 

TCL (SE) 4447 (571)*** -33.47 (3.10)*** 0.041 (0.019)** 

HDL (SE) -27145 (10219)*** 125.32 (51.69)** -0.585 (0.330)* 

SBP (SE) 707 (35.76)*** -3.36 (0.19)*** 0.012 (0.001)*** 

Diabetes (SE) 14525 (1700)*** -21.48 (8.27)*** 0.409 (0.054)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted 

171.8 (1117) 
-5858 (1095)*** 

-15155 (1163)*** 
-6450 (1973)*** 

2810 (8729) 

 
Omitted  

-95.5 (6.01)*** 
-134.7 (5.99)*** 
-169.2 (6.31)*** 

-131.3 (10.51)*** 
-111.2 (47.52)** 

 
Omitted 

-0.311 (0.036)*** 
-0.643 (0.035)*** 
-1.067 (0.038)*** 
-0.653 (0.063)*** 

-0.299 (0.286) 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

10395 (849)*** 
6851 (4114)* 

 
Omitted 

-34.62 (4.50)*** 
-54.76 (23.95)** 

 
Omitted 

0.227 (0.027)*** 
0.028 (0.140) 

CVD_history (SE) 

No 
Yes 

Mixed sample 

 
Omitted 

5788 (1586)*** 
7541 (7474) 

-- 

 
Omitted 

0.195 (0.050)*** 
0.230 (0.249) 

Cost_intervention -8.64 (1.81)*** 0.128 (0.010)*** -- 

Cost_comparator -- -0.143 (0.023)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

 
Omitted 

-5040 (2425)** 
-- 

 
Omitted 

-(0.313 (0.078)*** 

DRB -131318 (29557)*** -- -3.674 (0.904)*** 

Persp_cost_concl. 

Health insurance (NHS) 
Provider 
Societal 

 
Omitted 

35105 (4421)*** 
17744 (3636)*** 

 
Omitted 

-397.6 (23.36)*** 
-175.13 (20.42)*** 

-- 

Horizon 

< 20 years 
>20 years (lifetime) 

 
Omitted 

4394 (1383)*** 
-- 

 
Omitted 

0.156 (0.044)*** 

Duration equals 

horizon 

yes 
No (treatment 

duration< horizon) 

 
Omitted 

9580 (2557)*** 
-- 

 
Omitted 

0.309 (0.084)*** 

Base case 

Yes 
No  

-- 
 

Omitted 
11.59 (5.01)** 

 
Omitted 

0.064 (0.030)** 

Barbieri_score_2 

Type 1 
Type 2 
Type 3 
Type 4 

-- 

 
Omitted 

-33.42 (15.37)** 
-62.43 (30.76)** 

-93.21 (33.19)*** 

-- 

Random part: ����� 	(Country) 5436921 3366 0.131 

����� 	(Study) 306533088 10845 0.334 

���� 	(Data) 188981600 5548 0.196 

VPC - Country 

VPC – Study 

VPC - data 

1.09% 
61.19% 
37.72% 

17.04% 
54.89% 
28.08% 

19.82% 
50.53% 
29.65% 

DIC 

(benchmark) 
45846 

(45990) 
26425 

(26840) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Appendix 5.4.4:  Random intercepts model fully specified on data-level and 

general study characteristics on study-level.  
 

 

 
Univariate model Bivariate model 

 
INMB 

(2010 £ Sterling) 
∆C/100 

(2010 £ Sterling) 
∆E 

 

Fixed part: 

N (countries) 

N (studies) 

N (data) 

18 
67 

2094 

18 
67 

2094 

18 
67 

2094 

Intercept 

(λ=£30.000) 
-43548 770 -1.315 

TCL (SE) 4333 (565)*** -33.90 (3.14)*** 0.040 (0.018)** 

HDL (SE) -27193 (9616)*** 130.73 (52.47)** -0.545 (0.308)* 

SBP (SE) 704 (35.76)*** -3.36 (0.19)*** 0.012 (0.001)*** 

Diabetes (SE) 14715 (1677)*** -21.80 (8.27)*** 0.417 (0.053)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted 

284.5 (1119) 
-5798 (1096)*** 

-15144 (1158)*** 
-6548 (1963)*** 

-1121 (7663) 

 
Omitted  

-95.62 (6.04)*** 
-134.5 (5.95)*** 
-169.3 (6.21)*** 

-131.6 (10.70)*** 
-117.7 (43.67)*** 

 
Omitted 

-0.307 (0.036)*** 
-0.638 (0.035)*** 
-1.065 (0.038)*** 
-0.651 (0.063)*** 

-0.424 (0.240)* 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

10434 (837.1)*** 
13315 (3721)*** 

 
Omitted 

-34.62 (4.50)*** 
-39.31 (24.91) 

 
Omitted 

0.231 (0.027)*** 
0.251 (0.116)** 

CVD_history (SE) 

No 
Yes 

Mixed sample 

 
Omitted 

6481 (1555)*** 
7085 (6512) 

-- 

 
Omitted 

0.225 (0.050)*** 
0.349 (0.199)* 

Cost_intervention -8.97 (1.78)*** 0.127 (0.010)*** -- 

Cost_comparator -- -0.138 (0.023)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

 
Omitted 

-4483 (2334)* 
-- 

 
Omitted 

-0.296 (0.073)*** 

DRB -131950 (29615)*** -- -3.372 (0.878)*** 

Persp_cost_concl. 

Health insurance (NHS) 
Provider 
Societal 

 
Omitted 

33077 (4423)*** 
15238 (3600)*** 

 
Omitted 

-399.6 (23.22)*** 
-175.9 (20.76)*** 

-- 

Horizon 

< 20 years 
>20 years (lifetime) 

 
Omitted 

3748 (1358)*** 
-- 

 
Omitted 

0.153 (0.043)*** 

Duration=horizon 

yes 
No (treatment 

duration< horizon) 

 
Omitted 

11093 (2423)*** 
-- 

 
Omitted 

0.326 (0.076)*** 

Base case 

Yes 
No  

-- 
 

Omitted 
11.58 (5.03)** 

 
Omitted 

0.067 (0.029)** 

Barbieri_score_2 

Type 1 
Type 2 
Type 3 
Type 4 

-- 

 
Omitted 

-35.19 (15.69)** 
-62.06 (32.57)* 

-93.38 (34.99)*** 

-- 

Author_Grover 

No  
Yes 

 
Omitted 

33704 (5909)*** 

 
Omitted 

161.7 (45.71)*** 

 
Omitted 

1.590 (0.192)*** 

Random part: ����� 	(Country) 974342 4041 0.074 

����� 	(Study) 194371968 8876 0.155 

���� 	(Data) 189051856 5547 0.196 

VPC - Country 

VPC – Study 

VPC - data 

0.25% 
50.57% 
49.18% 

21.89% 
48.07% 
30.04% 

17.41% 
36.47% 
46.12% 

DIC 

(benchmark) 
45844 

(45846) 
26423 

(26425) 

* 
** 

*** 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
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Appendix 5.5: Individually testing country-level covariates in the 

three-level bivariate random intercepts model (reduced dataset) 

Bivariate model 

 
Raw Mean (SD) / 

Proportion (%) 

∆C/100 

(2010 £ Sterling) 
∆E 

 

DIC (Benchmark: 22596  
(%-change)) 

GDP 37506 (3693) 0.001 (0.001) 0.000 (0.000) 22598 (0.009%) 

THE_GDP 10.83 (2.23) 0.346 (1.471) -0.024 (0.009)*** 22595 (-0.004%) 

GOV_EXP_THE 73.48 (11.77) -0.180 (0.280) -0.003 (0.002) 22599 (0.013%) 

PRIV_EXP_THE 25.73 (11.99) 0.213 (0.275) -0.003 (0.002) 22600 (0.018%) 

SOCSEC_GGE+ 12.78 (23.06) -0.096 (0.159) 0.001 (0.001) 22602 (0.027%) 

OOP_PRIV_EXP+ 55.59 (15.74) 0.061 (0.205) -0.000 (0.001) 22602 (0.022%) 

CVD_POLICY 

No 
Yes 
Unclear 

 
4 (23.52%) 

12 (70.59%) 
1 (5.88%) 

 
Omitted 

37.409 (25.48) 
2.563 (23.94) 

 
Omitted 

0.111 (0.119) 
-0.077 (0.117) 

22601 (0.000%) 

GPs 26.54 (4.91) -1.143 (1.411) 0.008 (0.007) 22601(-0.022%) 

NURSES 96.37 (23.59) 0.091 (0.145) 0.000 (0.001) 22602 (0.027%) 

PHARMACISTS 7.35 (1.59) 3.079 (2.249) 0.034 (0.011)*** 22991 (-0.022%) 

BEDS 36.24 (8.33) -0.053 (0.461) 0.001 (0.002) 22602 (-0.027%) 

AGE 39.53 (1.53) -2.063 (2.149) 0.050 (0.013)*** 22601 (-0.022%) 

URBAN 85.03 (5.45) -0.034 (0.779) -0.003 (0.004) 22602 (0.027%) 

LIFE_EXPECTANCY 80.18 (0.70) -8.164 (5.399) 0.020 (0.028) 22597 (0.004%) 

CVD_DEATH 134.98 (12.84) 0.399 (0.256) 0.000 (0.001) 22599 (0.013%) 

BMI_25+ 60.53 (5.20) 0.744 (0.931) 0.009 (0.005)* 22601 (-0.009%) 

BMI_30+ 26.52 (3.43) 0.907 (1.302) 0.017 (0.008)** 22599 (-0.018%) 

MEAN_BMI+ 27.37 (0.60) 3.915 (7.537) 0.114 (0.042)*** 22597 (-0.027%) 

TCL_6.2+ 20.72 (3.33) -0.655 (1.013) -0.006 (0.006) 22601 (0.022%) 

MEAN_TCL+ 5.33 (0.13) -22.124 (27.940) 0.112 (0.156) 22601 (-0.022%) 

SBP_140+ 39.92 (4.83) -0.084 (0.818) 0.005 (0.005) 22602 (0.027%) 

MEAN_SBP+ 126.99 (3.62) -0.156 (1.111) -0.008 (0.006) 22601 (0.022%) 

GLUCOSE_7+ 9.58 (1.65) 2.106 (2.249) 0.033 (0.013)** 22596 (-0.000%) 

MEAN_GLUCOSE+ 5.52 (0.12) 29.703 (28.329) 0.401 (0.161)** 22596 (-0.000%) 

* 
** 

*** 
 

+ 
 

significant at the 10%-level 
significant at the 5%-level 
significant at the 1%-level 
 

Eight data points referring to the special administrative region Hong Kong have been dropped due to country-level data 
missing for this geographic domain 
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Appendix 5.6: Bivariate random intercepts model fully specified on 

data, study and country-level (reduced dataset) 

 
∆C/100  

(2010 £ Sterling) 
∆E 

N (countries) 

N (studies) 

N (data) 

17 
61 

1806 

17 
61 

1806 

Intercept 

(λ=£30.000) 
261.65 -0.017 

TCL (SE) -32.91 (3.30)*** 0.067 (0.016)*** 

HDL (SE) 233.30 (61.89)*** -0.842 (0.311)*** 

SBP (SE) -3.45 (0.21)*** 0.012 (0.001)*** 

Diabetes (SE) -51.40 (14.67)*** 0.673 (0.073)*** 

Age_cat (SE) 

<45  
46-55 
56-65 
66-75 
>75 

Unclear 

 
Omitted  

-93.04 (6.75)*** 
-128.65 (6.59)*** 

-163.23 (7.041)*** 
-127.41 (11.43)*** 
-114.59 (44.59)** 

 
Omitted 

-0.258 (0.034)*** 
-0.523 (0.033)*** 
-0.853 (0.036)*** 
-0.568 (0.057)*** 

-0.416 (0.240)* 

Gender (SE) 

Female 
Male 

Mixed sample 

 
Omitted 

-32.55 (5.23)*** 
-25.02 (28.37) 

 
Omitted 

0.145 (0.026)*** 
0.123 (0.130) 

CVD_history (SE) 

No 
Yes 

Mixed sample 

-- 

 
Omitted 

0.371 (0.057)*** 
0.321 (0.201) 

Cost_intervention 0.119 (0.011)*** -- 

Cost_comparator -0.131 (0.024)*** -- 

Active_comparator 

No (doing nothing) 
Yes (statin) 

-- 
 

Omitted 
-0.306 (0.069)*** 

DRB -- -3.920 (0.843)*** 

Persp_cost_concl. 

Health insurance (NHS) 
Provider 
Societal 

 
Omitted 

-403.34 (24.11)*** 
-182.05 (21.27)*** 

-- 

Horizon 

< 20 years 
>20 years (lifetime) 

-- 
 

Omitted 
0.197 (0.060)*** 

Duration=horizon 

yes 
No (treatment duration< horizon) 

-- 
 

Omitted 
0.406 (0.072)*** 

Base case 

Yes 
No  

 
Omitted 

9.62 (5.94) 

 
Omitted 

0.099 (0.029)*** 

Barbieri_score_2 

Type 1 
Type 2 
Type 3 
Type 4 

 
Omitted 

-37.41 (39.85) 
-60.23 (44.82) 

-93.04 (46.48)** 

-- 

Author_Grover 

No  
Yes 

 
Omitted 

170.07 (62.28)*** 

 
Omitted 

1.439 (0.238)*** 

4S 

No 
yes 

-- 
 

Omitted 
0.441 (0.209) 

Scope 

CHD 
CHD and stroke 

CHD, stroke and PAD  
unclear 

 
Omitted 

-39.26 (9.30)*** 
-30.16 (37.59) 

-110.51 (72.56) 

-- 

GDP_CAPITA -0.003 (0.001)*** -- 

GOV_EXP_THE -1.029 (0.483)** -- 

THE_GDP -- 0.062 (0.013)*** 

AGE_POPULATION -- 0.070 (0.018)*** 

Random part: ����� 	(Country) 4010 0.086 ����� 	(Study) 8688 0.165 ���� 	(Data) 6232 0.159 

VPC - Country 

VPC – Study 

VPC - data 

23.45% 
50.80% 
36.44% 

21.50% 
41.25% 
39.75% 

DIC 

(benchmark) 
22571 

(22596) 

* significant at the 10%-level / ** significant at the 5%-level / ***significant at the 1%-level 
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