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Abstract—This paper introduces a tri-state logic Self Or- making it difficult to implement efficiently on FPGA, which
ganising Map (bSOM) designed and implemented on a Field jn general do not have specialized floating point hardware,

Programmable Gate Array (FPGA) chip. The bSOM takes nq therefore provide only inefficient implementationseils
binary inputs and maintains tri-state weights. A novel training numbers

rule is presented. The bSOM is well-suited to FPGA imple- ; .
mentation, trains quicker than the original SOM, and can Weightless Neural Networks (WNNSs) [6] are an alternative

be used in clustering and classification problems with binay neural network architecture that directly exploit hardevar
input data. Two practical applications, character recogntion and  capabilities (commercially available Random Access Mem-
appearance-based object identification, are used to illusite the ory) and use binary inputs and outputs. Instead of adjusting

performance of the implementation. The appearance-basediect h ST .
identification forms part of an end-to-end surveillance sygem weights, learning is implemented by changing look-up table

implemented wholly on FPGA. In both applications, binary €ntries, providing very rapid training [7]. In WNNs, memory
signatures extracted from the objects are processed by the3OM. blocks play the role of the ‘neurons’ in the system. This

The system performance is compared with a traditional SOM  approach to neural networks was pioneered by Aleksandgr [8]
with real-valued weights and a strictly binary weighted SOM [9], and has since been further developed by Austin [10], and
Index Terms—binary SOM, FPGA, object recognition, char- others [11]. AnN input RAM node (RAM-based neuron) has

acter recognition. 2N memory locations addressed by Mbit binary string. An
N-bit binary input string will access only one memory location
Learning in RAM node is accomplished by writing the desired
output into the corresponding look-up table. RAM networks
O NE of the original motivations for research into neuraje taught to respond with a “1” output for those patterns in
networks is the observation that neural systems &g training set and only for those patterns. Generaligatio
massively parallel and can therefore potentially escapeesojs achieved by sub-sampling the input space with multiple
of the inherent computational limitations of strictly s#ri RaM-nodes (with cross-sampling of inputs), and aggreggtin
architectures. However, most neural network research Uggs RAM-node outputs. A limitation of RAM-nodes is that
simulations on standard CPU architectures, and so does gotg- output may be ambiguous, indicating either lack of

address the architectural issues found in real paralleMee. 5 corresponding training example or existence of a counter-
This paper introduces an architecture for self-organinme®s example [7].
custom-designed for Field Programmable Gate Array (FPGA)To gvercome this ambiguity Aleksander and Myers [12]
implementation, that is designed to exploit the fine-grdinqjevemped the Probabilistic Logic Node (PLN) system. The
parallelism of the FPGA while respecting its architectlirat  p|_ N node uses a tri-state scheme with three levels (0, 0.5, 1)
itations. The FPGA platform is chosen as it is reconfigurablg \which the value of 0.5 means that an output of 0 or 1 can
allowing easy custom-design of each implementation, ard q§e expected with equal probability if that node is addressed
chip integration with other system functions. The three levels in PLN are represented using two bits. PLN
The original Self Organising Map (SOM) proposed byre initialized to 0.5 values; in training these are replace
Kohonen [1], [2] consists of two layers: the input and thgjth 0's or 1's. A further development is the Probabilistic
competitive layers. It is an unsupervised neural networth wig Am (PRAM) model [13] which uses fixed-point probability
competitive learning that captures the topology and priibab estimates as weights, which approximate the range [0,1].
distribution of input data, and can be used for a wide ran@gmilar to other RAM-based networks, ax input pRAM
of pattern recognition purposes including anomaly detecti node has 2 memory locations addressed by the input vector.
clustering and classification [3], [4], [5]. In the vast m@lp A number of nodes may be combined by aggregating the
of implementations the SOM input data and neurons are refippabilities. The probabilistic training is based on fregcy
resented by real numbers (with floating-point represesmigiti of class examples. In its basic form, the pRAM comprises
, . , , of a number of memory locations, a comparator and a noise
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Copyright (c) 2011 IEEE. Personal use of this material isnpited. input space, and therefore act as “prototype” vectors. mayri

However, permission to use this material for any other psgpomust be o ) Lo e >
obtained from the IEEE by sending an email to pubs-permisgieee.org. training and execution the “winning” neuron is identified as

I. INTRODUCTION
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that with the minimum distance from its prototype vectorte t Il. HARDWARE ARCHITECTURES FORSOM

input vector using an appropriate distance metkic,During . . i
execution, the winner-takes-all (WTA) algorithm is usedian Hardware implementations of neural networks are essential

the winning neuron stands for the input [1], [2]. Duringto take full advantage of the inherent parallelism of neural
training, the winning neuron and its topological neighboréf‘etwork [20]. Software simulations are useful for inveatigg

prototype vectors are adjusted towards the input vectdhao the c_apabilities of neural network models, an_d cree_lting new
the prototypes come to represent cluster centres. Thedeacli 2/90rithms, but they fall short where fast execution anthing

distance is most frequently used as the distance metric. 1S required [21], and fall short as problem size scales up,
creating a bottleneck [22]. There are two major approaches

Although the SOM uses real data inputs and outputs, i@ implementing neural networks in hardware: analogue and
some applications the data is either presented as a bingigital implementations. Digital neural networks are more
string, or may be conveniently recoded as such (a “binapppular due to their greater accuracy, flexibility and ey
signature”). For example, in image processing Haar filtérsensitivity to noise [23].
responses are often used to produce a (long) binary signatur FPGAs provide an appealing platform for the implementa-
In this case the real-number representation of prototypestion of digital neural networks, due to their reconfiguragpil
inefficient, and arguably inappropriate. Most proposed SORhd consequently small non-recurring engineering (NRB).co
hardware implementations have adopted a real valued Heural architectures invariably need to be “tuned” for $fec
chitectural model, modified to utilize the parallel nature capplications (e.g. number of inputs); this is difficult tocam-
FPGAs [15]. Manolakos and Logaras [15] presented a paraliebdate in a specialised neural ASIC chip, but easily handled
SOM architecture design following the systolic model, whicon an FPGA. Moreover, neural networks are rarely used alone,
is realized as a flexible soft IP core. Soft IP based FPGand can be integrated directly on the chip with other system
processor cores generally have lower performance levels danctions (e.g. video or image input, feature extractiamtool
higher resource utilization [16] than hard IP cores impldunctions).
menting the same functions, but they are highly flexible and However, a key limitation of FPGAs is the cost of imple-
can be customized for a specific application with relativenenting arithmetic — particularly floating point operason
ease [17]. In contrast, hard processor IP cores are generalhd most traditional neural networks are designed aroualel re
highly-optimized and fine tuned, but difficult to port to othevalued arithmetic. This suggests that either efficientespn-
targets with equivalent performance [16] and over-spetifigations of real-values must be used, or that the problemidhou
for restricted tasks. be recast to use a binary representation.

) _ . A popular approach is to use fixed point arithmetic to

This paper presents a tri-state Self Organising Map (thgoyimate real values. Pena and Vanegas [5] implemented a
bSOM), ‘_Nh'Ch takes a t_)lna_ry _mput vector and maintains trﬁxed-point version of the SOM on FPGA. They simplified the
state weights. The design is implemented as a soft 1P cQf&ghhourhood function and introduced a set of new learning
in Handel C, _where the number of neurons, the numb_er ﬁfaygoza—Pandur@t al. [24] presented a fixed-point SOM
elements per input vector elements and the number of bits {afse neuro-processor using a Xilinx Virtex 1l FPGA for the
data and weights are all tuneable parameters, maximizikg fi§ 4 \ysis and classification of tension deformation pasterh
ibility and minimizing complexity. The architecture is el knee ligaments, capable of recognising different sequente

suited to FPGAs, achieving very high training and executiqf,ement patterns for a knee joint with damage to the anterio
speeds, and is easily integrated into a wider on-chip systef\ ciate ligaments

The architecture may be used for various pattern recognitio
tasks, including clustering and classification. We denraiest
its use in two applications: hand-written character redogmn

Kurdthongmee [25] presented a modified SOM imple-
mented on FPGA, used for image quantisation. They used
) A o L unsigned integer arithmetic operations suitable for matgder
and moving object identificaiion. In the latter applicatiiwe density FPGAs. A similar implementation where the distance

bSOM is part of a larger on-chip system that includes featulrl(aeighbourhood and learning rate computation is replacéd wi

extraction from colour video sequences to produce binaéysimpliﬁed version, was presented by Chatgal. [26] and
signatures. Porrmanret al.[27]. An efficient SOM architecture based on a

Preliminary versions of this material have been presemted W Frequency Adaptive Learning algorithm, which efficignt
conference papers [18] [19]; this paper extends and imegrareplaces the nelghbou_rhood adaptatlo_n functhn of theraig
the presentation. SOI_\/_I, was presente_d in [26]. The deS|gn_ was |mpleme_nted on

a Xilinx FPGA and is capable of quantising a 54212 pixel

The remainder of this paper is divided into five sectionsolour image in about 1.003sec at 35MHz clock rate without
Section Il gives an overview of hardware solutions to thidae use of sub-sampling.
implementation of SOM. This is followed by the details and A design based on the universal rapid prototyping system
training rules of the proposed bSOM in section Ill. SectioRAPTOR2000 for the acceleration of SOM is presented in
IV describes the FPGA realisation of the proposed bSOM af@l7]. Using Xilinx FPGAs, the implementation achieves a
section V presents the two practical applications of the MSOspeed-up of up to 190 times (with five FPGA modules on
with experimental results. We conclude in section VI witthe RAPTOR2000 system) compared to a software imple-
suggested future work. mentation on a state-of-the-art personal computer. A amil
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system implemented on a Xilinx Virtex Il XC2V300, aimeda binary input vectoix = (z1,s,...,z,), all the units in
at reducing the training processing time of SOM, has be#ime competitive layer are “connected” by correspondinggro
presented in [28]. The design consists of 16 units in thetinptype vectorsw; = (w;1,wj2,. .., w;,). The bSOM training
layer. The number of neurons in the output layer is divided inalgorithm is discussed below, and compared and contrasted
three sections: the processing unit array, the addressagene with the original SOM algorithm [1], [2] and Yamakawa's [4]
and the controller. Compared with a software implementatioimplementation.
the design achieves approximately 89% speed-up. Howevern contrast to Yamakawa [4], we assume that the input is
these systems still have fairly low numbers of neurons asttictly binary, and we use a tri-state weight vector. Weduse
modest speed-up, reflecting the significant amount of silica specialised distance metric, and a specialised probtbili
area required to deal with the fixed-point arithmetic. update rule during training, both of which are necessary
Recognising these issues, Yamakaatal. [4] proposed a to reflect our tri-state weight structure. In contrast, i} [4
binary weighted vector SOM based on FPGA. The propos#te basic Hamming distance is used as a distance metric,
SOM used binary data for both input and weight vectorgespite its unsuitability for binary representation of fixe
The Hamming distance is used as the distance metric betw@eimt integer inputs, and the weight;(¢t + 1) is updated
input and weight vectors. However, as their input data digtuaby w;;(t + 1) = wj;(t) ® z;, for ¢ € [0..N] for N-bit input
consists of integers the weight vector was updated wittripyio vector, with ® representing the exclusive OR operation, but
given to the most significant bit (MSB), thus attempting tavith priority given to the MSB to reflect the integer encoding
utilise a hybrid scheme that treats the weights as a direct
representation of integer values in some functions, and &s Distance Computation

hinary strings in others. This produces some peculiarite We used a modified version of the Hamming distance to

in treating the least- and most-significant bits equallyhe t compare input to prototype vectors, as shown in Equation 1
Hamming-distance calculation). Nonetheless, the impteme for an input vectorz and weight vec'torw ’

tion was five times faster than the real number weighted SOM
in software andi40 times faster in hardware, and achieved

comparable results [4]. This highlights a key principlettthee H(z,w;) = Zn: { 0 if wj; = # }
most successful design will take account of the nature of the = 7" 4 | (Ti Awji) V (zi Awj;)  otherwise
hardware architecture, as demonstrated by Austin’s [2#fyab (1)

to implement a fast system on a low-cost digital hardware.wherez; andw;; are the bit inverse of; andw,; respectively.
This equation implies that any input bit value “matches”
a '# in the prototype vector. A consequence of this is that
prototype vectors may effectively represent a region retian
This paper introduces a tri-state SOM (the bSOM), whica point or, viewed alternatively, may be selective to diséan
combines concepts from the traditional SOM [1], [2] with thén some dimensions while ignoring others. This is a powerful
tri-state logic pioneered in the PLN. The bSOM has the sarfeature of the approach. We may think of tri-state protosype
essential structure as a standard SOM — an input layer asicorresponding to schemata in Holland’s Genetic Algorith
a competitive layer — and is capable of the same wide ran@], and so we refer to the modified distance metric as the
of applications as the SOM. The bSOM takes a binary vect8chema distancd).
input and maintains tri-state prototype vectors “weighéth
{0, 1, #} as the possible values. We use # to represent a “dog't Winner Take All (WTA)
icsarrr?atiaaéz \Svsrl]ge?rl]fg:r:?isthsagtt:]recI(:eoarrrf Sfr?er](rjelggl'ltir‘n%u;r\gu@tg T_he unit with the §mal|est Schema distance to the input is
. o y . .defined as the winning neuron. We use the #-count (number
implements very efficiently on FPGA, and the additional lx)glof #s in the weight string) as a tie-break when the Schema

state significantly improves performance compared to etri (%istances of multiple neurons to the input vector are theesam

binary architecture. In comparison with WNNs, the weight the winner is the neuron with the lowest #-count. This
vectors have the same length as the input binary vectar,

: . implies that we prioritise prototypes with a more specific
whereas a WNN uses™2memory locations per logic node; P . P P yp P
. ) r%p()jresentatlon.
moreover there is no need to sub-sample the input space a

combine outputs in a pyramid structure, so the input part of _ ) .
the architecture is relatively simple. C. Neighbourhood Selection and Weight Update

One of the functions of standard SOMs [1], [2] is to reflect As in the original SOM and in [4], a neighbourhogd of
topological information prevalent in high dimensional imp neurons around the winning neurenis selected and updated;
data in the organization of the one or two dimensional mdpe size of the neighbourhood progressively decreases.sé/e u
of neurons [29]. Each neuron in a SOM has a topolog® probabilistic update rule, as follows:
cal neighbourhood, typically one- or two-dimensional and « A bitin the weight vector is only updated if it is different
of a defined shape (e.g. circle, square or hexagon in two from its corresponding input vector bit.
dimensions), with size of the region specified by a “radius” « An update probability is used for each iteration during
parameterr. For ease of hardware implementation we have training. This value decreases linearly as training pro-
used a one-dimensional neighbourhoods in the bSOM. Given gresses.

Ill. THE TRI-STATE SOM
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Fig. 3. A block diagram of the bSOM design on FPGA.

blocks. The circuitry is parameterized by the input bit Wwidt
Fig. 2. The conditional Markov transition matrix after @ifent iterations. /N, and requires only a simple reconfiguration for a different
design. Three of the five blocks run in parallel: the pattern
input, Winner Take All and display (output) block. The wetigh
énitialisation block is triggered only at start-up. Sintilg the
neighbourhood update block is triggered when a winning node
is identified for an input binary vector. Details of the fivesiza

ocks are presented in the following sections.

« A bit is updated by changing its value from 1 to #, O t
# or # to (0 or 1) depending on the input bit value.

The behaviour of an individual bit can be modelled as
Markov chain with a conditional Markov transition matrix
(T). Figure 1(a) illustrates the case where the probability
that a particular bit is set, when that neuron wins, is 0.5. f Weight Initialisation block
the probability of applying the conditional Markov tranait This block is used to randomly initialize all the weight
matrix is given ap = 1 — o (wherea is the update rate), the vectors in the network. All the neurons in the network are
resulting effective Markov transition matrix/) for a bit to initialised in parallel bit-by-bit; hence, it takes as marigck
change is as shown in Figure 1(b).7Ifis a regular transition cycles as there are bits in the binary input vector to coraplet
matrix, then as» approaches infinity7™ — S, whereS is the initialisation. The hardware architecture presentze Ihas
a matrix with constant vectors, as shown in Figure 2. Thseen tested with binary image characters of stdex 28,
illustrated transition matrix settles after the 12th itema totalling N = 784 bits (and also with binary signatures from
This supports the observation that the bSOM requires fawoving objects with N = 768 bits). The sizes of the input and
iterations to converge, as compared to the original SOM amgight vectors are all set t&¥ bits and can easily be altered
that presented in [4]. for any input size. The presented implementation takestkyxac
N clock cycles to completely initialise all the neurons.

Network Size 40 neurons
Input vectors 784 bits
Neuron vectors 784 bits B. Pattern Input block
Initial weights Random . . . . .
Maximum neighbourhood| 4 neurons This block is used to acquire the binary input vector (or
binary image) from an external source. The size of the input
TABLE |

vector, N, is pre-configured and the input is complete when a
total of V bits is read from the input source. This binary data
is stored in the input vector and then passed onto the schema
distance computation unit for further processing.

SPECIFICATION OF THE ESOMAS IMPLEMENTED ONFPGA.

IV. TRI-STATESOMON FPGAARCHITECTURE

The most critical aspect of any hardware design is tife Winner Take All block
selection of an architecture which provides the most efficie This block is made up two parts, the distance computation
and effective implementation [26]. The specifications of thunit and the winning neuron unit. The distance computation
circuit implemented on FPGA is given in Table |, with itsunit is used to compute the Schema distance between the
corresponding block diagram in Figure 3. The circuitry igput binary vector and all neurons in the bSOM. The Schema
made up of five basic blocks: the weight initialisation, pait distance between the input vecter and a neuronw;, as
input, Winner Take All, neighbourhood update and displashown in Equation 1 is a bitwise operation, and hence takes
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[HDL|—f F. Implementation Platform
HD2 . —L The bSOM architecture discussed here has been imple-
N | mented on a Xilinx Virtex-4 FPGA chip (XC4VLX160) with
oy i j o o approximately 152,064 logic cells with embedded RAM to-
talling 5,184 Kbits. The design and verification was accom-
HD4 c oe plished using the Handel-C high level descriptive language

Compilation and simulation were achieved using the Agility
c oo DK design suite. Synthesis — the translation of abstradi-hig

[HD37| e _ level code into a gate-level net-list — was accomplishedgusi
. hammine Xilinx ISE tools.
o Mulipleser distance and
s o address of the
s, corresponding ..
e neuron G. Training Speed
L] To compare the training speeds of bSOM and cSOM on the
c FPGA architecture, a simplified version of the cSOM has been

implemented on the Xilinx Virtex-4 FPGA. In the simplified
7 clock cycles version of the cSOM the Manhattan distance is used instead
of the Euclidean distance. Also to accommodate the fine grain
Fig. 4. Structure of the minimum Schema distance unit in tHBAWnit.  learning in cSOM, 8 bits are used to represent values ranging
from O to 1 in fixed point format. The design for the bSOM
can be clocked at 40MHz and 25MHz for the cSOM. The
as many clock cycles as there are bits in the input vectegsource utilisation of the two implementations are given i
Since the Schema distances for all the neurons are computgisle Il. The cSOM implementation takes 3 times as many
in parallel, it takes exactlyV clock cycles to complete the clock cycles as the bSOM, due to the intermediate arithmetic
distance computations for all the neurons in the network. operations required for updating the 8-bit fixed point meynor
The winning neuron unit uses the results from the Schemations. At 25MHz the ¢cSOM is capable of training the
distance computed in the distance computation unit to iffentsystem with approximately 10,000 patterns per second.,Also
the winning neuron. The design, as shown in Figure 4, usegt@40MHz the bSOM implementation can be trained with
tree-structured series of comparators to select the mmimiu  approximately 25,000 patterns per second; representing a 2
a pair of two inputs. For an implementation with neurons, fold improvement over the training time of the cSOM on
the design takes exactly seven clock cycles to compute $hBGA. The clock frequencies of 40MHz and 25MHz also

\

node with the minimum Schema distance. include the design for controlling the external logic foeth
VGA and the camera. This is the actual hardware test and
D. Neighbourhood update block the most stable clock frequencies for the two implementatio

This block is used to select the neighbourhood of the'€ frequencies could be much higher without the requirémen
interface these devices. Table Il gives the details of the

winning neuron and to update the neurons in the specifig?j e . .
region. The size of the neighbourhood reduces as trainiheﬁsoﬁrce l:t'l'sat'on o{_the FPSA implementations for thd-78
progresses. In the hardware implementation the neighbodrh character recognition probiem.

size is initialized to 4, and decrements evdry iterations

. . : Resource bSOM cSOM
until it reaches a minimum of 1, whetkis the total number ["Name [ Total Used | Per(%) | Used | Per(%)
of iterations. The update requires a random number gengeraforip Flops 135,168 4,095 3 7,522 5
which is complex to implement in hardware and compute-ﬁ inguIj nggs 13%;68 1?,%87 ig 31?747 ig
. . . . onade S
tionally expensive. To avoid these costs, a Ioolk—up tablé wi Occupied Slices| 67,584 | 11,468 16 23,413 34
2000 randomly generated numbers has been implemented oRAaM16s 288 43 14 64 22
the FPGA. For a mismatched bit between the input vectprBlockRAM 5,184 | 790 1525 | 1,145 | 22.09
and the neuron to be updated, one of the 2000 values is TABLE I
selected using the iteration .count. If 'Fhe ngmber of !term RESOURCE UTILISATION OF ESOM AND CSOM, USING VIRTEX-4
exceeds 2000, the last 10 bits of the iteration count is used t XC4VLX160Q PACKAGE FF1148AND SPEED GRADE-10.

address the random number in the LUT. Mismatching bits in
the neuron vector are updated as discussed in Section I1I-C.
A # is implemented as binary ‘10’.

V. APPLICATIONS AND EXPERIMENTAL RESULTS

E. Output display blocks The performance of the bSOM has been verified using two
The output display block displays the neurons (weights) gsactical applications: handwritten character recognitiand

an image on an external Video Graphics Array (VGA) fomoving object identification. To verify the performance bét

visual verification. It runs in parallel with the input and WT bSOM, the MNIST database of handwritten digits [31], sample

blocks, at the refresh rate for the VGA used (typically 6QHzEhown in Figure 5, was used to test the implementation both
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OBb S Iterations | No. of Nodes || Correct Classification (%)
R cSOM | bSOM
Z =3 1 100 11.35 59.8
3 ;‘:.,) 2 100 67.47 77.82
3 100 74.36 76.37
4y 4 100 75.95 81.15
S 5 a 5 100 78.38 81.69
& & 6 6 100 79.49 82.86
227 7 100 79.87 81.22
557 8 100 78.96 80.87
9 100 79.64 81.43
Z2 8 9 200 86.27 88.30
9 300 86.81 89.46
- 10 50 75.67 76.22
Fig. 5. Sample of the MNIST database. 10 &0 76.20 7529
10 70 76.71 76.11
10 80 77.90 77.97
in PC simulations and on the FPGA hardware architecture. A 10 90 78.82 80.35
comparison on the PC between the original SOM as presented
TABLE Il

by_Koho_nen in [1]’ [2] (herein referred to as the CSOM)’ aI'HE PERFORMANCE OF THE SOMAND BSOM FOR VARIOUS NETWORK
strictly binary SOM (BSOM) and the proposed tri-state SOM SIZES AND NUMBERS OF ITERATIONS

(bSOM) algorithms is also given in this section. Althougk th
bSOM is meant for hardware implementation, it has been im-
plemented on a PC using MATLAB to enable comparison with
the original SOM. To illustrate the importance of the tidist 8
(0,1, #) rather than binary0,1) representation, the BSOM 84l
version uses the Hamming distance metric, but otherwise is
implemented with the same parameters as the bSOM.

82

80

781 —#*—cSOM | |
—&— BSOM

A. Handwritten Character Recognition

To illustrate the comparative performance of the bSOM in
cluster analysis and topological ordering, we have tedted t 74} a
system on the MNIST handwritten character dataset [31]. To 2l R @S N
evaluate how effective the clustering is, after training treu- &
rons were visually inspected and labels (0 to 9) were asdigne
to each neuron. A labelled independent test data (10,000 8o 50 a9 20 5 & 70 89 90 100 200 500 o0 700
numeric characters) was then used to test the classificatior Number of iterations
accuracy of the three hand-labelled SOMs.

The software based simulation of the bSOM was aChiEV%. 6. Performance of the three different SOM implemeatetifor different
on a PC with a general purpose processor clocked at 2.8Gtd@tion counts. The average correct classification iitustrated with error
and 2GB of SDRAM. Initial experiments were conducted t8ars-
empirically select control parameters — number of neurons,
neighbourhood size and learning rate — for all three models,
to determine the number of neurons required to represent @ch iteration count with the exception of 500, which (due to
60,000 patterns in the dataset (see Figure 5). computational load) was repeated only five times. In the case

Table Il illustrates the influence of the different paraerst Of the original SOM, repetitions did not make any significant
of the cSOM and bSOM performance. Although the bsomlifference to the results, whereas the results of the stimetry
performs better than the cSOM, there is significant improv@nd tri-state SOM showed some variability.
ment in performance for the cSOM as the number of iterationsFigure 6 illustrates the results. The BSOM has markedly
increases. Increasing the number of neurons in the netwdnkerior performance. The cSOM and bSOM appear to have
increases the performance of both the cSOM and bSOM, waiiilar performance at high iteration counts; however, the
some of the neurons left unused for larger networks. bSOM performs better at low iteration counts and plateaus

Experiments were conducted with the number of neuroagound 50 iterations; increasing the number of iterations
ranging from 10 to 100 in steps of 10. The bSOM resulf3eyond this point does not make a significant difference. The
improve with increasing numbers of neurons until perforoeanCSOM appears to plateau after 700 iterations (not illusthat
plateaus at 80 neurons (with minimal improvement thereaftewith a performance level 089%; it took approximately 50
The initial neighbourhood size (4) was determined using ti@urs to complete one training run at this number of iteregjo
cSOM, and adopted for the other implementations. and we did not repeat the experiment.

After empirically selecting parameter values, tests were Samples of the resulting topological maps with 100 neu-
conducted to compare the convergence of the bSOM, cSQbhs in each network (after 100 iterations) are illustraited
and BSOM at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 2@dgure 7 for cSOM, BSOM and bSOM. We note that the
and 500 iterations. The experiment was repeated ten timesjpécific assignment of neurons to patterns is not significant

76
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160.0101010,0,0:0,0,0] ¢ | [[[ Tter. | FN% [ FP% [ TN% | TP% | PCC% [ JC% |
tSOM 10 | 3.64 | 2.89 | 82.72 | 10.75 | 93.47 | 62.24
CSOM || 10 | 4.23 | 3.36 | 82.25 | 10.16 | 92.42 | 57.27

ﬂm)ml BSOM 10 522 | 564 | 79.97| 9.17 | 89.15 | 45.82

tSOM 100 | 358 | 291 | 82.70 | 10.81 | 93.51 | 62.50
cSOM 100 | 4.16 | 3.42 | 82.19| 10.23 | 92.43 | 57.49
BSOM [[ 100 | 5.27 | 5.37 | 80.24| 9.12 | 89.36 | 46.18
tSOM 200 | 359 | 2.87 | 82.73| 10.81 | 93.54 | 62.56
cSOM 200 | 418 | 3.40 | 82.21| 10.21 | 92.42 | 57.39
BSOM [[ 200 | 5.16 | 5.76 | 79.85| 9.23 | 89.08 | 45.84
Fig. 7. Results of the three implementations using the [3thset. Left: tSOM 300 | 3.63 | 2.87 | 82.73| 10.77 | 93.50 | 62.37
original SOM (cSOM); middle: tri-state SOM (bSOM); rightrist binary cSOM 300 | 525 | 531 | 80.29 | 9.15 89.44 | 46.41
SOM (BSOM). In cSOM grey-levels are used to illustrate weigtagnitude; BSOM 300 | 5.15 | 5.75 | 80.03| 9.07 89.10 | 45.41
in BSOM # is represented by mid-grey.

AN L NOR WX

TABLE V
Iter. MNIST dataset Binary Signatures THE PIXEL LEVEL ACCURACY MEASURE FOR DIFFERENT ITERATIONS
cSOM bSOM | BSOM cSOM bSOM | BSOM USING THE 3 IMPLEMENTATIONS. ITER. IS THE NUMBER OF ITERATIONS

10 78.38% | 81.86% | 70.28% || 81.84% | 84.41% | 68.92%
20 79.57% | 81.35% | 69.89% || 83.06% | 84.56% | 68.99%
30 79.91% | 82.15% | 71.18% || 84.50% | 84.85% | 75.81%

—| = [

40 | 80.38% | 82.24% | 72.12% || 84.05% | 84.05% | 69.00%
50 | 80.84% | 83.54% | 71.94% || 83.98% | 85.03% | 74.49%
60 | 82.34% | 83.62% | 72.25% || 84.70% | 85.91% | 77.94% Mean
70 | 82.96% | 83.60% | 72.28% || 85.03% | 85.74% | 79.80% value —————1L
80 | 83.03% | 83.08% | 71.86% || 85.01% | 84.58% | 70.35%
90 | 83.43% | 83.21% | 73.82% || 85.20% | 84.40% | 77.12%

7

100 | 83.58% | 83.63% | 72.38% || 85.15% | 84.58% | 76.79% 1110101011000010

200 | 83.77% | 83.69% | 72.86% || 84.68% | 86.44% | 76.13%

300 - - - 86.71% | 84.23% | 69.17%

400 - - - 87.33% | 86.05% | 83.17% | Fig. 8. A sample 16 bin histogram. The binary signature isaexed by

500 | 84.59% | 84.57% | 73.68% || 87.42% | 86.89% | 78.56% | thresholding at the mean bin frequency value.

TABLE IV
LEFT. AVERAGE PERFORMANCE OF THE THREESOM IMPLEMENTATIONS . -
FOR 12 DIFFERENT ITERATION COUNTS USING THEMNIST paTaseT[31].  (TN) and True Positive (TP). The Jaccard Coefficient (JC)

RIGHT: AVERAGE PERFORMANCE FORL4 DIFFERENT ITERATIONS USING neat]y Characterizes the performance in a Sing|e measure
THE TARGET IDENTIFICATION DATABASE. that takes into account both FP and FN errors and it is

computed ass—++— - Percentage Correct Classification
(PCC), a widely used method for assessing a classifiers

although the one-dimensional topological ordering is céfie performance has also been give in table V and is computed as
TP+TN x100.

(neighbourhood runs across rows in a scan-line fashiorfj@n tTP+FP+TN+FN
clustering. The cSOM captures ambiguities well (appeaamg
“blurring” of the pattern in some nodes). The bSOM can al . .
achieve this to some extent, whereas the BSOM reflects only Target identification.
specific patterns. It is the ability of the bSOM to capture at Our second implementation illustrates the bSOM as a
least some level of ambiguity which distinguishes it frore thcomponent of a surveillance system. The system, fully im-
BSOM in terms of performance. plemented on FPGA, analyzes real-time video, applies back-
Table IV (left hand side of table) shows the average perfaground differencing [34], segments multiple objects aradhs
mance level from figure 6 numerically. Although in this expetthem. The tracking and segmentation modules yield indaidu
iment the SOM’s have been used for clustering and a post-r@gjects, represented using a bounding box. The bSOM is used
analysis of correct classification conducted, for comparise to perform appearance-based target identification — a numbe
list the performance of various classifiers on this dataset, of known objects (individuals) are learned by the systend, an
presented in the literature. Reported accuracy levelsSgfe during tracking the bSOM is used identify which object(s)
using a linear classifier (1-layer NN) [31§4% using Sparse is/are in view.
Distributed Memory [32]94% using Support Vector Machine The objects are represented using a simple binary signature
and99.5% using a two stage pattern recognition architectuextracted from the colour histograms — this is frequently
using feature extraction (a large convolutional neuralvoek  sufficient to identify individual objects from a reasonasiyall
with unsupervised pre-training) [33]. set. However, the approach generalises to more sophésficat
The performance measure in table 1V is the object levégdature extraction techniques. A 768 bin histogram is gener
classification measure. Table V gives the pixel level aanuraated; 256 bins for each of the RGB colour components. To
measure using the MNIST dataset for four different iteragio convert this into a binary signature the average bin frequen
with the three implementations. This is the pixel level coms:n, is computed; any bin with a value greater than or equal
parison of the 10,000 test data and the represented neurd®dsii, is represented as binary 1, O otherwise (see Figure 8).
Table V also gives two statistical measures derived fromA  binary feature  vector (binary  signature),
the False Negative (FN), False Positive (FP), True Negatixe- {z1,x2,...,2y} for N = 768 is generated as in
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Fig. 9. Processing of objects for identification. The tragksystem detects
objects and constructs a bounding box. A binary signatuexisacted from Fig. 11.

Performance of the three different SOM impleméuntat for 10,
the colour histogram of each object, and fed to the bSOM fentidication. ! "mp

20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 and 500 iGgamusing
binary signatures extracted from the colour histogram foe robjects.

Equation 2.
o pixels of all moving objects as shown in figure 9. Objects with
i = { L if bin; >= Hoin (2) less than 768 pixels are filtered as noise, which also avoids
’ 0 otherwise values ofus;,, less tharl in Equation 2. Figure 10 shows three

To test the short term-recognition of the bSOM with signa?—f the nine objepts used to _train the bSOM. In the f!gurg, the
tures extracted from the colour histogram, a limited numb@Ftual object being trac!<ed IS s_hown to _the left W'th its bna
of objects (nine people) have been used to train a fixed siygnatures over the perlo_d of t|r_ne that it appears in the_escen
bSOM. The bSOM is trained using binary signatures collect§§©Wn t© the right. The binary signatures are shown as images
from all moving objects in a training sequence. The numb@Fd €ach row in the image to the right corresponds to the 768
of unique objects that appear in the scene determines fHE '€Presenting the binary signature for its colour fysam.
number of neurons required in the bSOM. Ideally, the numb ests were C‘?”‘?“Cted with the number of neurons ranging
of neurons should be the same as the total number of unicf 10to 100 in increments (.JT 10. For networks with more
objects. However, due to partial occlusion, camera jitiger han 50 neurons, the recognition level for both the bSOM
segmentation and under segmentation, the appearance cSOM exceeds 90%, but some neurons do not get used;
hence the histogram for an object may vary from frame 0 neurons was adequate for good performance. Thgre were
frame, so that each individual is represented by multipkeso plne_d|st|nc;t objects, therefore roughly four neurons figect

After training the network with binary signatures extratte" this environment. The average performance of the CSO.M’
from 2, 248 manually-labelled objects, we use a win-frequen SOM and BSOM using 40 neurons are presented to the right

based algorithm to automatically label nodes for objechide f Table 1V; thesg f'gu“?s are ?"SO lllustrated in f'gufe 11
tification. For each node, we count how many of the trainT_he performance is consistent with the overall observatam

ing patterns for which it “wins” the competition corresponcﬁhe MNIST dataset; the b.SO'.v.l and cSOM have comparable
to each known object. The node is labelled as the m rformance; BSOM has significantly worse performance; the

frequently-assigned object. To test the performaricd39 OM trains rela}tlvely quickly, although the differencenist

manually labelled independent test data are used. Duriag {if marked on this dataset.

testing phase, the winning neuron is identified. If the mimm

Schema distance exceeds a threshold value set duringigairfe- Statistical Significance of Results

the object is classified as unknown; otherwise it is idemtifie This section examines the statistical significance of thre pe

using the node label. formance of the three SOM implementations (cSOM, bSOM
The object identification system has been tested with videad BSOM) presented in the sections V-A and V-B. We used

data recorded over a period of two hours with a total of 18,122e Wilcoxon rank-sum test to determine whether there is any

frames. The video was recorded in an indoor environmesignificant difference between the classification perfarcea

very close to the exit of a building. Typically people enteof the three algorithms. A one-tailed test was used to test

the building and leave at the same exit point. The scene halsether higher average performance by one algorithm over

normal office furniture, which partially occlude the movinganother was statistically significant.

object in some locations. There is some variation in ligitin Table VI shows the Wilcoxon statistic (zp, (the asymp-

conditions, particularly around the wide transparent wing, totic significance) values and the significance for all the 12

see Figure 9. Frames from the first 30 minutes with niriterations for the MNIST dataset. Thevalues from Table VI

different persons entering the building were used to trag tsuggest that bSOM significantly outperform ¢cSOM for itera-

system. A tracking system is used to segment and extract tloms less than 80 at th&% significance level. There is no
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Fig. 10. Sample binary signatures from three of the nine nwbjects. A representative frame for each object is shamine left. The corresponding
binary signature and its time evolution is shown to the riglaich 768-bit wide row represents the signature on a singied. The signature varies over time
but shows fairly high level of consistency, and signaturedifferent objects are distinctly different.

Mean Rank Significance Mean Rank Significance
Iter. | cSOM | bSOM | Rank Sum z 1-tailed (o) Iter. | cSOM | bSOM | Rank Sum z 1-tailed (o)
10 5.50 15.50 55 -3.99 0.000 - 10 5.50 15.50 55 -4.00 0.000 -
20 5.50 15.50 55 -3.99 0.000 - 20 6.50 14.50 65 -3.19 0.000 -
30 5.50 15.50 55 -4.01 0.000 - 30 5.50 15.50 55 -4.00 0.000 -
40 5.50 15.50 55 -4.01 0.000 - 40 12.50 8.50 125 1.66 0.041 =<
50 5.50 15.50 55 -4.01 0.000 - 50 6.50 14.50 65 -3.19 0.000 -
60 5.50 15.50 55 -3.99 0.000 - 60 5.50 15.50 55 -4.00 0.000 -
70 6.50 14.50 65 -3.19 0.000 - 70 6.50 14.50 65 -3.19 0.000 -
80 10.50 | 10.50 105 0 0.519 — 80 15.50 5.50 155 4.00 0.000 =<
90 12.50 8.50 125 1.58 0.057 — 90 14.50 6.50 145 3.19 0.000 =<
100 12.50 8.50 125 1.57 0.057 — 100 12.50 8.50 125 1.58 0.057 —
200 11.50 9.50 115 0.7673 0.222 — 200 5.50 15.50 55 -4.00 0.000 >
500 10.50 | 10.50 105 0 0.519 — 300 14.50 6.50 145 3.19 0.000 =<
400 15.50 5.50 155 4.00 0.000 <
TABLE VI 500 15.50 5.50 155 4.00 0.000 <
WILCOXON RANK-SUM TEST FOR THEMNIST DATASET. SIGNIFICANT
DIFFERENCES ARE INDICATED BYp LESS THANO0.05, > INDICATES TABLE VII
WHERE BSOM OUTPERFORMS GOM; — INDICATES NO SIGNIFICANT WILCOXON RANK-SUM TEST FOR THE OBJECT IDENTIFICATION BINARY
DIFFERENCE BETWEEN EEOMAND CSOM. SIGNATURES. SIGNIFICANT DIFFERENCES ARE INDICATED BYp LESS

THAN 0.05, > INDICATES WHERE BSOM OUTPERFORMS SOM; —
INDICATES NO SIGNIFICANT DIFFERENCE BETWEEN SOMAND cSOM;
< INDICATES CSOM OUTPERFORMS ESOM.

statistical significance between the performance for tiema
greater than or equal to 80. This test shows that bSOM trains
more quickly than ¢SOM, but that ultimate performance is
comparable.

Table Table VIl shows the Wilcoxon rank-sum test re-
sults for the object identification problem. As with MNIST,teration 100 and 200. There is no statistically significant
bSOM outperforms cSOM for smaller iterations (10—-70), witdifference at iteration 100. We conclude that bSOM trains
the exception of iteration 40. However, cSOM outperformmore quickly than cSOM on this dataset, but ultimately cSOM
bSOM for higher iterations (80-500), with the exception dias marginally higher performance.
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