Azimuthal anisotropy of charged particles at high transverse momenta in \(\text{PbPb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

The CMS Collaboration

Abstract

The azimuthal anisotropy of charged particles in \(\text{PbPb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) is measured over an extended transverse momentum (\(p_T \)) range up to approximately 60 GeV/\(c \). The data cover both the low-\(p_T \) region associated with hydrodynamic flow phenomena and the high-\(p_T \) region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. A data sample corresponding to an integrated luminosity of 150 \(\mu b^{-1} \) is analyzed with the CMS detector at the LHC. The anisotropy parameter (\(v_2 \)) of the particles is extracted by correlating charged tracks with respect to the event plane reconstructed using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60\% most-central events, the observed \(v_2 \) values are found to first increase with \(p_T \), reaching a maximum around \(p_T = 3 \text{ GeV}/c \), then gradually decrease to almost zero, with the decline persisting up to at least \(p_T = 40 \text{ GeV}/c \) over the full centrality range measured.

\textit{Submitted to Physical Review Letters}

*See Appendix A for the list of collaboration members
The experiments at the Relativistic Heavy Ion Collider (RHIC) have provided evidence for the formation of a strongly-coupled quantum chromodynamics (QCD) state of matter in ultra-relativistic nucleus-nucleus interactions [1–4]. One of the fundamental features of this matter is its opaqueness to high-energy partons. This “jet quenching” phenomenon was first observed as a suppression of the final-state particle yield at high transverse momentum (pT) compared to that expected from the scaling of pp collision yields [1–6]. The recent observation of a large momentum imbalance of reconstructed back-to-back jets [7–9] in PbPb collisions at the Large Hadron Collider (LHC) provides further evidence of jet quenching, suggesting a large energy loss of partons traversing the dense QCD medium.

Despite the progress made on the theoretical description of jet quenching in the past decade [10], some of its key properties, such as the detailed path-length dependence of parton energy loss, remain unknown. The measurement of hadron yield suppression alone is not sufficient to discriminate among various parton energy loss models. Additional observables, such as the azimuthal anisotropy of high-pT hadrons, are needed to differentiate between the theoretical approaches [11–17]. The anisotropy can be characterized by the coefficient of the second-order Fourier harmonic (v2) in the azimuthal angle (φ) distribution of the hadron yield, dN/dφ ∝ 1 + 2v2 cos(2(φ − ΨPP)), where ΨPP is the event-by-event azimuthal angle of the “participant plane”. In a non-central heavy-ion collision, the overlap region of the two colliding nuclei has a lenticular shape and the interacting nucleons in this region are known as “participants”. The “participant plane” is defined by the beam direction and the short direction of the lenticular region. In general, the participant plane will not contain the reaction impact parameter vector because of fluctuations that arise from having a finite number of nucleons. For high-pT particles, an azimuthal anisotropy can be induced if there is stronger suppression of the hadron yield along the long axis than the short axis of the overlap region. The importance of jet-quenching measurements taking into account the jet orientation relative to the geometry of the interaction region was first demonstrated by the PHENIX experiment [18], where the azimuthal anisotropy of high-pT π0 was studied up to pT ≈ 18 GeV/c in AuAu collisions at √sNN = 200 GeV.

This Letter presents a study of the azimuthal anisotropy extended to very high pT (up to pT ≈ 60 GeV/c) for PbPb collisions at √sNN = 2.76 TeV at the LHC using the Compact Muon Solenoid (CMS) detector. The v2 coefficient is determined as a function of charged particle pT and overlap of the colliding nuclei (centrality) in the pseudorapidity regions of |η| < 1 and 1 < |η| < 2, where η = −ln[tan(θ/2)] and θ is the polar angle relative to the counterclockwise beam direction. In the low momentum region (below a few GeV/c), v2 is generally associated with hydrodynamic flow [19], as distinct from the jet energy-loss mechanism believed to dominate at high pT (e.g., above 10 GeV/c). For the intermediate pT region, both processes are likely to contribute. Using a single-track high-level trigger, a significantly larger event sample of high-pT tracks than previously available is obtained. These results represent the first precise measurement of the v2 coefficient up to such high-pT above 20 GeV/c in heavy-ion collisions. Our results may impose quantitative constraints on models of the in-medium energy loss of high-pT partons, particularly the influence of the path length and the shape of the interaction region on the energy loss.

The data used in this analysis correspond to an integrated luminosity of 150 µb−1 and were recorded during the 2011 LHC heavy-ion running period. A detailed description of the CMS detector can be found in Ref. [20]. Its central feature is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter. In PbPb collisions, trajectories of charged particles with pT > 200 MeV/c
are reconstructed in the silicon tracker covering the pseudorapidity region $|\eta| < 2.5$, with a track momentum resolution of about 1% at $p_T = 100\text{ GeV}/c$. In addition, CMS has extensive forward calorimetry, in particular two steel/quartz-fiber Čerenkov hadronic forward (HF) calorimeters, which cover the pseudorapidity range $2.9 < |\eta| < 5.2$. The HF calorimeters are segmented into towers, each of which is a two-dimensional cell with a granularity of 0.5 unit in η and 0.349 rad in ϕ.

Minimum bias PbPb events were triggered by coincident signals from both ends of the detector in either the beam scintillator counters (BSC) at $3.23 < |\eta| < 4.65$ or in the HF calorimeters. Events due to noise, cosmic rays, out-of-time triggers, and beam backgrounds were suppressed by requiring a coincidence of the minimum bias trigger with bunches colliding in the interaction region. The trigger has an acceptance of $(97 \pm 3)\%$ for hadronic inelastic PbPb collisions. Because of hardware limits on the data acquisition rate, only a small fraction of all minimum bias triggered events were recorded. To maximize the event sample with high-p_T particles emitted in the PbPb collisions, a dedicated high-p_T single-track trigger was implemented using the CMS level-1 (L1) and high-level trigger system. The trajectories of charged particles from the silicon tracker were found online using a tracking algorithm identical to those employed in the offline track reconstruction, starting with a candidate from the three-layer silicon pixel tracker having $p_T > 11\text{ GeV}/c$. For PbPb events with total transverse energy at L1 (L1_ETT) above 100 GeV, a trigger efficiency of above 95% relative to offline reconstructed tracks was achieved for track p_T greater than 12 GeV/c. For the events with L1_ETT less than 100 GeV, an additional requirement of a calorimeter jet at L1 with $p_T > 16\text{ GeV}/c$ [8] was imposed in order to reduce the detector readout rate. This resulted in an efficiency of about 75% starting at $p_T \approx 12\text{ GeV}/c$ but increasing to almost 100% above $p_T \approx 20\text{ GeV}/c$. In this analysis, the minimum bias data sample is used for the v_2 measurement of tracks with $1 < p_T < 12\text{ GeV}/c$ (also $12 < p_T < 20\text{ GeV}/c$ for cross-check purpose), while the high-p_T track triggered sample is used in the range of $p_T > 12\text{ GeV}/c$.

Events are further selected offline by requiring energy deposits in at least three towers in each of the HF calorimeters, with at least 3 GeV of energy in each tower, and the presence of a reconstructed primary vertex containing at least two tracks. These criteria further reduce the background from single-beam interactions (e.g., beam-gas and beam-halo), cosmic muons, and large impact parameter, ultra peripheral collisions that lead to the electromagnetic breakup of one or both Pb nuclei [21]. The reconstructed primary vertex is required to be located within $\pm 15\text{ cm}$ of the average vertex position along the beam axis and within a radius of 0.02 cm in the transverse plane. The centrality of the PbPb reaction is determined by taking fractions of the total hadronic inelastic cross section, according to percentiles of the distribution of the total energy deposited in the HF calorimeters [8]. The centrality classes used in this analysis are 0–10% (most central), 10–20%, 20–30%, 30–40%, 40–50%, and 50–60%, ordered from the highest to the lowest HF energy deposited.

The reconstruction of the primary event vertex and the trajectories of charged particles in PbPb collisions is based on signals in the silicon pixel and strip detectors and described in detail in Ref. [6]. In selecting the charged primary tracks, a set of tight quality selections were imposed to minimize the contamination from misidentified tracks. These include requirements of a relative momentum uncertainty of less than 5%, at least 13 hits on the track, a normalized χ^2 for the track fit of less than 0.15 times the number of hits, and transverse and longitudinal impact parameters of less than three times the sum in quadrature of the uncertainties on the impact parameter and the primary vertex position. From studies based on PbPb events simulated using HYDJET [22] (version 1.6), the combined geometrical acceptance and reconstruction efficiency of the primary tracks reaches about 66% (50%) at $|\eta| < 1.0$ ($1.0 < |\eta| < 2.0$) for the 5% most
central PbPb events, with little dependence on p_T. For the peripheral PbPb events, the efficiency is improved by up to 5%, again largely independent of p_T. The fraction of misidentified tracks is kept at the 1-2% level at $p_T > 2$ GeV/c over almost the entire η and centrality ranges. It increases up to 10% for very low p_T (\approx1 GeV/c) particles in the forward ($|\eta| \approx 2$) region for for the 5% most central PbPb events.

The analysis follows closely the event-plane method described in Ref. [23]. The observed v_2 value for a given centrality and p_T range is defined by $v_2^{\text{obs}} = \langle \cos 2(\phi - \Psi_2) \rangle$, where the average is taken over all particles in all events within a centrality and p_T bin. The second-order "event-plane" angle Ψ_2 corresponds to the event-by-event azimuthal angle of maximum particle density in PbPb collisions. It is an approximation of the participant-plane angle Ψ_{pp}, which is not directly observable. The determination of Ψ_2 uses the energy deposited in the HF calorimeters with $\Psi_2 = \frac{1}{2} \tan^{-1} \left(\sum_i w_i \sin(2\phi_i) / \sum_i w_i \cos(2\phi_i) \right)$, where the weight factor w_i for the i^{th} tower at azimuthal angle ϕ_i is taken as the corresponding transverse energy. The sums are taken over all the towers within a slightly truncated η range of each HF calorimeter coverage. For the v_2 study in this analysis, charged particles detected in the tracker with $\eta > 0$ (< 0) are correlated with an event plane found using energy deposited in a region of the HF spanning $-5 < \eta < -3$ (3 < η < 5). In this manner, a minimum η gap of 3 units is guaranteed between particles used in the event-plane determination and those for which the v_2 value is being measured, thereby significantly reducing the effect of other correlations that might exist, such as that from dijets. This η gap is particularly important for the high-p_T particle studies.

The resolution of the event plane depends on the centrality and is limited by the finite number of particles used in its determination. The final v_2 coefficient in the event-plane method is evaluated by dividing the observed value v_2^{obs} by a "resolution-correction" factor, R, with $v_2 = v_2^{\text{obs}} / R$ and where R can range from 0 to 1 [24]. A better determination of the event-plane angle corresponds to a larger value of R. An event-averaged resolution correction factor can be found experimentally by extracting separate event-plane angles using particles emitted into three non-overlapping η regions. In this "three-sub-event" technique, which is described in more detail in Ref. [24], the resolution correction factor for a given η region (denoted A, with B and C used for the other two η ranges) is found using $R_A = \sqrt{\frac{\langle \cos(2(\Psi_A^2 - \Psi_B^2)) \rangle \langle \cos(2(\Psi_A^2 - \Psi_C^2)) \rangle}{\langle \cos(2(\Psi_B^2 - \Psi_C^2)) \rangle}}$.

The averages are over all events corresponding to a given centrality bin. Reconstructed tracks with $|\eta| < 0.8$ and $p_T > 1$ GeV/c are used for the "third" η range (denoted C) introduced to determine the resolution of the event planes found using the HF detectors at $-5 < \eta < -3$ (denoted A) and $3 < \eta < 5$ (denoted B). In the calculation of Ψ_2^C, the weight factor w_i of the i^{th} track at angle ϕ_i is taken as the corresponding transverse momentum. The extracted R values for the HF event planes are found to vary between 0.55 and 0.84, reaching a maximum value for events in the 20–30% centrality bin. The difference in the resolution correction factors found for the two HF event planes is less than 1%.

Non-uniformities in the detector acceptance can lead to artificial asymmetries in the event-plane angle distribution and thereby also affect the deduced v_2 values. Various methods have been developed to account for these instrumental artifacts. Here a Fourier-analysis-based "flattening" procedure is used [24], where each calculated event-plane angle is shifted slightly to recover a uniform azimuthal distribution of angles [23]. Monte Carlo studies have shown that this flattening procedure fully corrects for non-uniformities in the CMS detector response.

The sensitivity of the deduced v_2 values to the size of the minimum η-gap is explored by defining additional event planes with different pseudorapidity ranges. Varying the gap size from 3
to 4 units, the v_2 values are found to be consistent within $\pm 2.5\%$ (central) or $\pm 10\%$ (peripheral). For all systematic studies, relative uncertainties to v_2 are quoted. The influence of misidentified tracks is another source of systematic uncertainty at high-p_T. The v_2 of misidentified tracks in data is estimated using a very loose track selection. Taking the misidentified-track v_2 signal, together with the probability of reconstructing a fake track as determined from simulated events, the systematic uncertainty on the observed v_2 values is estimated to be $\pm 1\%$–3%, depending on p_T and centrality. Potential biases of the events triggered by the high-p_T track algorithm are investigated. A comparison of v_2 results for $12 < p_T < 20\text{ GeV/c}$ obtained from minimum bias and high-p_T track triggered samples shows a variation of less than $\pm 1\%$. Systematic uncertainties introduced by the analysis procedures, including the event-plane flattening procedure and resolution correction determination, are found to be less than $\pm 1\%$. Additional uncertainties due to track-quality requirements are examined by loosening or tightening the selection criteria described previously and are found to be less than $\pm 0.5\%$. The different systematic sources are added in quadrature to obtain the overall systematic uncertainty in v_2.

The results of v_2, as a function of p_T from 1 to 60 GeV/c for events with centralities ranging from 0–10% (central) to 50–60% (peripheral), are presented in Fig. [1] for $|\eta| < 1$ and $1 < |\eta| < 2$. The highest p_T bin covers a range from 48.0 to 60.8 GeV/c. The new CMS results in this paper significantly extend the p_T reach of v_2 measurements previously achieved by the ALICE [25], ATLAS [26] and CMS [23] collaborations. The CMS and ATLAS results based on event-plane analyses using forward calorimeters for the event-plane determination show a very good agreement within 2–3% up to $p_T \approx 20\text{ GeV/c}$. The v_2 values at low p_T (below a few GeV/c) follow the trend predicted by hydrodynamic calculations of a collectively expanding system [19]. The p_T dependence of v_2 shows a trend of rapid rise, reaching a maximum at $p_T \approx 3\text{ GeV/c}$, followed by a decrease for p_T values up to about 10 GeV/c. Beyond $p_T \approx 10\text{ GeV/c}$, the data show a much weaker v_2 dependence on p_T. The v_2 data reported in this paper gradually decrease but remain larger than zero up to at least $p_T \approx 40\text{ GeV/c}$ for all centrality classes and both $|\eta|$ regions. Above $p_T \approx 40\text{ GeV/c}$, the v_2 values become consistent with zero for mid-central (30–60%) events.

Figure 2 shows the dependence of v_2 on the number of participating nucleons (N_{part}) for different p_T and η ranges. The N_{part} values are related to the measured centrality through a Glauber-model calculation [27, 28]. The v_2 results appear to be independent of η in all p_T bins within the statistical uncertainties. Also, the results show a trend of decrease with increasing collision centrality (i.e., larger N_{part}) over a wide p_T range. This behavior is expected for low-p_T (below a few GeV/c) particles in the context of the relationship between hydrodynamic flow phenomena and eccentricity of the initial-state collision geometry. The similar trend in N_{part} dependence of v_2 values observed for very high-p_T particles to that for low-p_T particles reflects how the v_2 results at high p_T can be expected to give important insight to the initial geometry or path-length dependence of parton modification inside the hot QCD medium.

In summary, the azimuthal anisotropy of charged particles with respect to the participant plane has been studied in PbPb collisions at $\sqrt{s_{NN}} = 2.76\text{ TeV}$ using the CMS detector. The v_2 coefficient was determined over a wide range in p_T up to approximately 60 GeV/c, as a function of collision centrality. The results reported in this paper significantly improve the statistical precision of previous v_2 measurements for $12 < p_T < 20\text{ GeV/c}$, and explore for the first time the very high p_T region beyond 20 GeV/c. The $v_2(p_T)$ behavior shows a trend of rapid rise to a maximum at $p_T \approx 3\text{ GeV/c}$ and a subsequent fall for all centrality and $|\eta|$ ranges. Beyond $p_T \approx 10\text{ GeV/c}$, the observed v_2 values show a more moderate decrease with p_T, being consistent with zero only above $p_T \approx 40\text{ GeV/c}$ and for mid-central (30–60%) collisions. A common
Figure 1: The single-particle azimuthal anisotropy, v_2, as a function of the charged particle transverse momentum from 1 to 60 GeV/c with $|\eta| < 1$ (top two rows) and $1 < |\eta| < 2$ (bottom two rows) for six centrality ranges in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, measured by the CMS experiment (solid markers). Error bars denote the statistical uncertainties, while the grey bands correspond to the small systematic uncertainties. Comparison to results from the ATLAS (open squares) and CMS (open circles) experiments using data collected in 2010 is also shown.
trend in the centrality dependence of v_2 is observed for particles over a wide range of p_T up to approximately 48 GeV/c, suggesting a potential connection to the initial geometry. The precision data presented here should provide important constraints on models of parton energy loss.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] BRAHMS Collaboration, “Quark gluon plasma and color glass condensate at RHIC? The

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universität Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos3, C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia
C. Avila, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, GIF-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b,1, M. Diemoza, C. Fanellia,b, M. Grassia,1, E. Longoa,b, P. Meridiania,1, F. Michelia,b, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,1, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,1, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,1, D. Montaninoa,b,1, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilo, M. Kossov¹, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, V. Korotkikh, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva¹, V. Savrin, A. Snigirev, I. Vardanyan

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic⁰, M. Djordjevic, M. Ekmedzic, D. Krpic⁰, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiocchia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti
National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, E. G¨ulmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough
The University of Alabama, Tuscaloosa, USA
C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA
Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
V. Gaultney, D.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright
University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, P. Killewalde, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, S. Korjenevski, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
A The CMS Collaboration

2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Cairo University, Cairo, Egypt
8: Also at British University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Now at Ain Shams University, Cairo, Egypt
11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
12: Also at Université de Haute-Alsace, Mulhouse, France
13: Now at Joint Institute for Nuclear Research, Dubna, Russia
14: Also at Moscow State University, Moscow, Russia
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
19: Now at King Abdulaziz University, Jeddah, Saudi Arabia
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Sharif University of Technology, Tehran, Iran
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Shiraz University, Shiraz, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
25: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
26: Also at Università della Basilicata, Potenza, Italy
27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
28: Also at Università degli studi di Siena, Siena, Italy
29: Also at University of Bucharest, Bucuresti-Magurele, Romania
30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
31: Also at University of Florida, Gainesville, USA
32: Also at University of California, Los Angeles, Los Angeles, USA
33: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
34: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
37: Also at The University of Kansas, Lawrence, USA
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at The University of Iowa, Iowa City, USA
43: Also at Mersin University, Mersin, Turkey
44: Also at Kafkas University, Kars, Turkey
45: Also at Suleyman Demirel University, Isparta, Turkey
46: Also at Ege University, Izmir, Turkey
47: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
48: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
49: Also at University of Sydney, Sydney, Australia
50: Also at Utah Valley University, Orem, USA
51: Also at Institute for Nuclear Research, Moscow, Russia
52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
53: Also at Argonne National Laboratory, Argonne, USA
54: Also at Erzincan University, Erzincan, Turkey
55: Also at Kyungpook National University, Daegu, Korea