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Abstract

Multi-robot cooperative localization serves as an essential task for a team of mobile robots to work within an unknown

environment. Based on the real-time laser scanning data interaction, a robust approach is proposed to obtain optimal

multi-robot relative observations by using the Metric-based Iterative Closest Point (MbICP) algorithm, which makes it

possible to utilize the surrounding environment information directly instead of placing a localization-mark on the robots.

To meet the demand of dealing with the inherent nonlinearities existing in the multi-robot kinematic models and the

relative observations, a robust extended H∞ filtering (REHF) approach is developed for the multi-robot cooperative

localization system, which could handle non-Gaussian process and measurement noises with respect to robot navigation

in unknown dynamic scenes. Compared with the conventional multi-robot localization system using extended Kalman

filtering (EKF) approach, the proposed filtering algorithm is capable of providing superior performance in a dynamic

indoor environment with outlier disturbances. Both numerical experiments and experiments conducted for the Pioneer

3-DX robots show that the proposed localization scheme is effective in improving both the accuracy and reliability of

the performance within a complex environment.
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I. Introduction

With the fast development of mobile robotics and advanced techniques in practical applications, single robot

is usually unable to fulfil more and more sophisticated tasks in a large-scale dynamic environment. In recent

years, cooperative robotics has emerged as a new research branch that focuses on the problem of coordinating

teams of mobile robots, such as multi-robot exploration and coordination of robotic networks in Rooker and

Birk (2007) and Nowzari and Cortes (2012). In particular, the multi-robot cooperative localization problem
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is fundamental to cooperative robotics. In a multi-robot cooperative localization system, each robot’s position

and orientation would need to be estimated effectively in the composite state space by using information sens-

ing of the environment and communication between different robots, which gives rise to significant challenges

and complexities (Fox, Burgard, Kruppa, & Thrun 2000 and Mourikis & Roumeliotis 2006b).

Recently, a variety of approaches have been developed for multi-robot cooperative localization. In the case

that only the robots themselves are considered as landmarks, a method using a combination of maximum

likelihood estimation and numerical optimization was proposed for localizing the members of a mobile robot

team in Howard, Mataric, and Sukhatme (2002). As reported in some multi-robot cooperative localization

systems, a group of robots were divided into several teams and only one team was moving while all the other

teams were taken as landmarks for cooperative localization in Rekleitis, Dudek, and Milios (2002). Among

others, the extended Kalman filter (EKF) has proven to be most popular for multi-robot localization problems

in the case that the process and measurement noises are of the Gaussian type. A centralized extended Kalman

filtering method for multi-robot localization was analyzed in Kondaxakis, Ruiz, and Harwin (2004), where

detailed localization equations were derived in a matrix expression. By writing the equations for centralized

estimator in a decentralized form, the single Kalman filter was allowed to be decomposed into a number of

smaller communicating filters. A distributed extended Kalman filtering method for multi-robot localization

was proposed in Roumeliotis and Bekey (2002), where the uncertainty of robot pose and the update process

for robot position estimation were discussed in detail. In order to exploit the information contained in any

relative observation between two robots, a generic relative observation was integrated into EKF equations to

accomplish cooperative localization in Martinelli, Pont, and Siegwart (2005). Some alternative approaches

were also used in the robotics literature, for example, Fox, Burgard, Kruppa, and Thrun (2000) proposed

a statistical algorithm for multi-robot cooperative localization by using the sample-based version of Markov

localization, where the probability distribution updating through relative observations was used to describe

robots’ positioning accuracy.

In this paper, a new approach based on real-time laser data interaction and robust extended H∞ filtering

(REHF) is presented to solve multi-robot cooperative localization problem in dynamic indoor scenes. The

new relative observation technique between any two robots without placing a special localization-mark on the

robots stems from the actual needs in our work. Generally speaking, mobile robots should be large enough

so that they can detect each other effectively. As introduced in Huang, Farritor, Qadi, and Goddard (2006),

the robot platform was approximately 130-cm high and 50-cm diameter, and a SICK laser scanner LMS200

mounted on the robot was used to estimate the relative position between two robots. However, if only a

middle-sized robot (eg. Pioneer3-DX) is available, a special localization-mark is often placed in the top of

mobile robot platform and the robot should carry it in the course of localization (Mourikis & Roumeliotis

2006a), which would increase the robot’s load and make it inconvenient in some applications. In addition,

a vision system installed on the ceiling of laboratory was used to obtain relative observations in Mourikis
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and Roumeliotis (2006b). Unfortunately, such a system is expensive and the experimental scene should be

structured and customized. In Chen, Sun, Yang, and Chen (2010), a ceiling vision-based localization approach

was used to perform the global localization, but the validity of its feature detection algorithm had to depend

on the regular pattern in a clear ceiling. There have been also many successful applications of multi-robot

localization in robot soccer, but the working environment of multiple soccer robots is required to be completely

structured and pre-arranged. To provide accurate relative observations even when there are dynamic obstacles

in the environment, an alternative cooperative measurement approach is designed without adding any other

equipments in the multi-robot cooperative localization system. By using a Metric-based Iterative Closest

Point (MbICP) algorithm proposed in Minguez, Montesano, and Lamiraux (2006) to perform 2D laser data

matching, an optimal relative observations (relative distance and orientation) can be derived between any

two robots equipped with laser range finders. The advantage of the MbICP-based measurement approach

lies in that it could use the information obtained from the surrounding environment instead of the direct

measurement from a special localization-mark used in the traditional methods.

How to make a multi-robot cooperative localization system capable of adapting the unknown dynamic

environment is another problem stemming from the real applications. The mainstream approach for mobile

robot localization is Bayesian estimation. When the process and measurement error are assumed Gaussian,

the Bayesian approach results in the classical extended Kalman filtering (EKF) framework. However, EKF

is not designed to solve outlier disturbance such as unexpected collisions and wheel-slippage, which are all

the typical non-Gaussian noises in the multi-robot cooperative localization stytem. Therefore, an alternative

filtering algorithm to the conventional EKF approach should be proposed to estimate each robot’s pose in this

work. To handle this problem, the REHF algorithm is used in this paper to implement multi-robot cooperative

localization, which could deal with the nonlinear kinematic models of the multi-robot systems, the nonlinear

relative distance and orientation measurement, as well as the non-Gaussian noises resulted from the unexpected

collisions with passersby (or other dynamic obstacles) while service robot is navigating in unknown indoor

environment (such as hospitals and offices). The superior performances of multi-robot cooperative localization

based on laser data interaction and REHF are confirmed through experimental results.

The remainder of this paper is organized as follows. Section II shows the kinematics of the multi-robot

system and the relative observations. Section III presents multi-robot relative observation approach based on

MbICP algorithm. The design of multi-robot cooperative localization system using the REHF algorithm is

introduced in Section IV. Section V gives the results of numerical experiments and the experiment implemented

on two Pioneer 3-DX mobile robots, which demonstrate the effectiveness of the proposed design method.

Concluding remarks and future work are given in Section VI.

Notation The notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semi-definite (respectively, positive definite). The superscript T stands for matrix

transposition. ‖fk‖2R means the product fTk Rfk. Gramian matrix is denoted by Rx = 〈x, x〉, where x is a



SUBMITTED 4

X

Y

O

R

x

y
 

R
X

R
Y

1
X

1
Y d

 

XO

Y 2
X

2
Y

!

1
R

2
R

(a) (b)

Fig. 1. (a) Position and orientation of robot Ri in global coordinate system; (b) Relative observation between two

robots.

vector and 〈x, x〉 stands for the inner product of x, i.e. 〈x, x〉 = xxT .

II. Kinematics Model and Relative Observation

Let XOY be the global coordinate system and the pose of robot Ri in XOY be zi = [xi, yi, θi]
T as shown

in Fig. 1(a) where xi and yi are the coordinates of robot Ri on X-axis and Y -axis, respectively, and θi is the

angle between X-direction and XR-direction. ui = [vi, ωi]
T is the estimate of input for Ri using odometer,

where vi and ωi are, respectively, the estimates of linear velocity input and angular velocity input for Ri.

ξi,k = [ξxi,k, ξyi,k, ξθi,k]
T is the state error. Then, the multi-robot system formed by R1 and R2 can be

described by the following equations:



















xi,k+1 = xi,k +∆Tvi,k cos θi,k + ξxi,k

yi,k+1 = yi,k +∆Tvi,k sin θi,k + ξyi,k i = 1, 2.

θi,k+1 = θi,k +∆Tωi,k + ξθi,k

(1)

Denoting zk =





z1,k

z2,k



, uk =





u1,k

u2,k



, ξk =





ξ1,k

ξ2,k



 and k ∈ [0, N ], (1) can be rewritten as

zk+1 = f(zk, uk, ξk), (2)

where

f(zk, uk, ξk) =






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


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


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










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For the single robot localization, a localization-mark is usually used, then the distance and angle between

the robot and the mark are treated as the observation, which is an absolute measurement. Here, for the

multi-robot localization, the robots observe each other and treat the relative observation as the measurement

(see Fig. 1(b)).

Denote d, ϕ, ψ as the measurement of robot R1 to R2, where

d =
√

(x2 − x1)2 + (y2 − y1)2 (4)

is the distance between R1 and R2,

ϕ = arctan
−(x2 − x1) sin θ1 + (y2 − y1) cos θ1
(x2 − x1) cos θ1 + (y2 − y1) sin θ1

(5)

is the azimuth of R2 relative to X1-direction, and

ψ = θ2 − θ1 (6)

is the angle between X1-direction and X2-direction. Supposing ηk = [ηd,k, ηϕ,k, ηψ,k]
T is the measurement

errors at moment k, (4)-(6) can be rewritten in a compact from as mk = g(zk, ηk) where

g(zk, ηk) =











dk + ηd,k

ϕk + ηϕ,k

ψk + ηψ,k











. (7)

To this end, the system state equation and measurement equation for the multi-robot system have been

obtained and expressed as follows:

zk+1 = f(zk, uk, ξk),

mk = g(zk, ηk).

In an ideal situation, the nature of the process and observation errors could be assumed to be Gaussian

white noises (for example, in a typical extended Kalman filtering approach). However, in many robotics

applications, these assumptions are unpractical and may seriously degrade the localization accuracy. In fact,

the distribution of the sensor and process noise is generally multi-modal and imprecisely known in the multi-

robot cooperative localization task in this work, especially when the unexpected collisions with passersby or

other dynamic obstacles were happened while a robot is navigating in an unknown indoor environment.

III. Laser Data Interaction Based on MbICP Algorithm

ICP (Iterative Closest Point) algorithm is a straightforward method to align two free-form shapes, which

was presented by Besl and McKay (1992). Among many variants of ICP proposed in recent years, MbICP

algorithm is a new scan matching technique for mobile robot displacement estimation, which was proposed

by Minguez, Montesano, and Lamiraux (2006) and is usually used in matching dense two-dimensional range
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scans. By using the MbICP algorithm, an optimal analytical solution can be derived for the translation and

rotation between two groups of scanning data if the overlapping scanning region is large enough. Compared

with classical ICP algorithm, MbICP algorithm uses a new metric distance (‖q‖ :=
√

x2 + y2 + L2θ2, where

L is a constant factor) defined in the configuration space of the sensor, which pays more attention to the

influencing factor of rotational displacement and can rectify the rotation error more precisely than the ICP

algorithm.

In the process of multi-robot cooperative localization, it is necessary to obtain the relative pose between

different robots. Each robot in the cooperative localization system is equipped with a laser range finder and

wireless network adapter, which can acquire laser scanning data and communicate with each other in real

time. While multiple robots are working in the same scene, they can utilize the surrounding environment as

the intermediary to obtain the relative pose indirectly through the real-time laser data matching.

Suppose that M1,M2 are the laser scanning data sets obtained by robot R1 and R2. MbICP algorithm is

applied to accomplish the optimal scanning data matching, and z̃12 = (x̃12, ỹ12, θ̃12)
T is obtained and defined

as the optimal relative pose. The corresponding error covariance is also calculated simultaneously. The process

of a coarse-to-fine laser scanning data registration based on MbICP consists of the following steps:

(1) Denote M1 = {p1, · · · , pn}, M2 = {q1, · · · , qn}. Carry out coarse registration by sampling rotation angle

from −90◦ to 90◦ every 10◦. The closest points correspondences C(M1, M̃2,j , θ̂12,j) = {(pi, q̂i,j) | pi ∈M1, q̂i,j ∈

M̃2,j , i = 1, · · · , n} is obtained at the j-th sample, where M̃2,j =

{

q̂i,j | q̂i,j = qi





cos θ̂12,j sin θ̂12,j

− sin θ̂12,j cos θ̂12,j



 , qi ∈

M2, i = 1, · · · , n, θ̂12,j = −90◦ + j × 10◦

}

, j = 0, 1, · · · , 18.

(2) Find j̄ ∈ {0, 1, · · · , 18} that minimizes E(θ̂12,j) =
n
∑

i=1
d(pi, q̂i,j)

2, then calculate the translation t =

(x̂12, ŷ12) =
1
n

n
∑

i=1
pi − 1

n

n
∑

i=1
q̂i,j̄ and obtain the pre-estimation relative pose ẑ12 = (x̂12, ŷ12, θ̂12,j̄)

T .

(3) Transform the laser data sets M1 and M̃2,j̄ from laser coordinate system to their own robot coordinate

system, then the new laser data set of robot R2 is transformed to the coordinate system of robot R1 according

to ẑ12. Two laser data sets M ′
1 and M ′

2 are derived after these transformations.

(4) Use MbICP algorithm to matchM ′
1 andM

′
2, then derive the optimal analytical solution S = [x′12, y

′
12, θ

′
12]

T

by several times of iterative calculation. Now, the optimal relative pose z̃12 between robots R1 and R2 can be

calculated in terms of the equation z̃12 = ẑ12 +ΛS, where Λ =











cos θ̂12,j̄ sin θ̂12,j̄ 0

− sin θ̂12,j̄ cos θ̂12,j̄ 0

0 0 1











.

A series of experiments of laser scanning data matching based on MbICP have been performed with the

SICK LMS 200 on Pioneer3-DX, the field of view is 180◦ in front of the robot and up to 8m distance. In

order to perform effective and accurate laser scanning data matching in actual experiment, two robots should

navigate in the same direction so that there is enough overlapping area between two robot’s laser scanning
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Fig. 2. An optimal matching result z̃12 is obtained by using MbICP algorithm.

fields. The results of multi-robot laser scanning data matching based on MbICP are shown in Fig. 2.

IV. A Robust Extended H∞ Filter Design

Since f(zk, uk, ξk) and g(zk, ηk) are nonlinear functions and ẑk =





ẑ1,k

ẑ2,k



 is supposed to be the filtered

estimates of zk at moment k, f(zk, uk, ξk) and g(zk, ηk) can be extended in a Taylor series around (ẑk, uk, 0)

and (ẑk, 0) as follows:

f(zk, uk, ξk) = f(ẑk, uk, 0) +Ak(zk − ẑk) +Wkξk + σ1, (8)

g(zk, ηk) = g(ẑk, 0) + Ck(zk − ẑk) + Vkηk + σ2, (9)

where

Wk =
∂f

∂ξk
|zk=ẑk,ξk=0 = I6, Vk =

∂g

∂ηk
|zk=ẑk,ηk=0 = I6,

and the matrices Ak and Ck are given in equations (10) and (11), respectively. σ1 and σ2 represent the higher

terms of the Taylor series expansions.

Rearrange (8) and (9) as follows:

zk+1 = Akzk + ξ̄k, (12)

mk = Ckzk + η̄k, (13)

where ξ̄k = ξk + f(ẑk, uk, 0) − Akẑk + σ1, η̄k = ηk + g(ẑk, 0) − Ckẑk + σ2. The random entries ξ̄k and η̄k

are considered to be the generalized noises which contain the process noise or measurement noise and the

nonlinear higher terms of the Taylor series expansions, so they are non-Gaussian type noises generally. In

other words, the nonlinear higher terms of the Taylor series expansions have been treated as a non-Gaussian

disturbance, which gives one of our motivations to think about the robust extended H∞ filtering approach.
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Ak =
∂f

∂zk
|zk=ẑk,ξk=0 =





























1 0 −∆Tv1,k sin θ1,k 0 0 0

0 1 ∆Tv1,k cos θ1,k 0 0 0

0 0 1 0 0 0

0 0 0 1 0 −∆Tv2,k sin θ2,k

0 0 0 0 1 ∆Tv2,k cos θ2,k

0 0 0 0 0 1





























|zk=ẑk,ξk=0, (10)

Ck =
[

C1,k C2,k

]

, (11)

where

C1,k =
∂g

∂z1,k
|zk=ẑk,ηk=0 =











x1,k−x2,k√
(x1,k−x2,k)2+(y1,k−y2,k)2

y1,k−y2,k√
(x1,k−x2,k)2+(y1,k−y2,k)2

0

−(y1,k−y2,k)
(x1,k−x2,k)2+(y1,k−y2,k)2

x1,k−x2,k
(x1,k−x2,k)2+(y1,k−y2,k)2

−1

0 0 −1











|zk=ẑk,ηk=0,

C2,k =
∂g

∂z2,k
|zk=ẑk,ηk=0 =











x2,k−x1,k√
(x2,k−x1,k)2+(y2,k−y1,k)2

y2,k−y1,k√
(x2,k−x1,k)2+(y2,k−y1,k)2

0

−(y2,k−y1,k)
(x2,k−x1,k)2+(y2,k−y1,k)2

x2,k−x1,k
(x2,k−x1,k)2+(y2,k−y1,k)2

0

0 0 1











|zk=ẑk,ηk=0.

Let us now build the REHF to estimate the state zk of multi-robot system. The following theorem guarantees

the existence of the filter and gives a practical filter design procedure.

Theorem 1: Let a discrete-time system be given by (12) and (13) with the Gramian matrix

〈











z0

ξ̄j

η̄j











,











z0

ξ̄k

η̄k











〉

=











P0|−1 0 0

0 Qkδjk 0

0 0 Rkδjk











, (14)

here δjk is Kronecker delta. For a given scalar γ > 0, if the matrix
[

Ak I
]

has full rank, then for all

nonzero ξ̄k and η̄k, there exists a filter achieving the following performance:

∑N
k=0 ‖z̃k‖2

‖z0 − z0|−1‖2P−1

0|−1

+
∑N−1

k=0 ‖ξ̄k‖2
Q−1

k

+
∑N

k=0 ‖η̄k‖2R−1

k

< γ2, (15)

where z̃k = zk − ẑk, if and only if the filtering error covariance matrix Pk|k satisfies

P−1
k|k = P−1

k|k−1 + CTk R
−1
k Ck − γ−2I > 0, 0 ≤ k ≤ N,

where the initial values is P0|−1, and the predicted error covariance matrix Pk|k−1 satisfies the Riccati recursion:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1. (16)
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The filtered estimates ẑk|k are recursively computed as

ẑk|k = ẑk|k−1 +Kk

(

mk − Ckẑk|k−1

)

, (17)

where

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1 (18)

and the predicted estimates

ẑk|k−1 = Ak−1ẑk−1|k−1. (19)

Proof: See the appendix.

V. Experimental Results

A. Numerical Experiments

Two criteria are used to evaluate the performance of the filter. Let Zi,k = [Xi,k, Yi,k,Θi,k]
T be the actual

position of robot Ri at moment k. Define

Ei :=
1

N

N
∑

k=1

√

(x̂i,k −Xi,k)2 + (ŷi,k − Yi,k)2, i = 1, 2, 3 (20)

which means the error mean of filtered estimates of Ri from moment 1 to N , and

Mi := max
1≤k≤N

√

(x̂i,k −Xi,k)2 + (ŷi,k − Yi,k)2, i = 1, 2, 3 (21)

which stands for the maximum deviation of filtered estimates of Ri from moment 1 to N .

In the following numerical experiment of multi-robot cooperative localization, the velocities of robots are

all set to range from 100mm/s to 120mm/s, and the process and the measurement errors are assumed

to be white Gaussian sequences with outlier disturbances. Z1,0 = [5, 15, π/6]T , Z2,0 = [−5, 10,−π/2]T ,
Z3,0 = [15,−15, π/6]T are set as the initial positions. The simulation results are shown in Table I, Fig. 3 and

Fig. 4.

TABLE I

Error accumulation and maximum deviation of EKF and REHF in numerical experiments

(Unit:Meter)

E1 E2 E3 M1 M2 M3

EKF 0.3502 0.3854 0.3050 0.5777 0.5580 0.4957

REHF 0.2001 0.2984 0.1671 0.4348 0.4740 0.4052

As shown in Fig. 3, the black lines are the actual trajectories, the blue lines are the trajectory estimations

using EKF, and the red lines are the trajectory estimations using REHF. The outliers on the process error

of robot R1, R2 and R3 occur from timestep 31 to 33, 101 to 103 and 201 to 203, respectively. The outliers

on the measurement error of robot R1, R2 and R3 occur from timestep 81 to 83, 151 to 153 and 251 to 253,
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REHF in the numerical experiment.
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Fig. 4. The position errors of three mobile robots’ trajectory estimations, where the blue ones are the filtering errors

using EKF and the red ones are the filtering errors using REHF.

respectively. When these outliers happen, the errors of process and measurement are all enlarged for at least

more than ten times. The center subfigure in Fig. 3 shows a selection area of the trajectories of robot R1

when outlier disturbances occur. The position errors of three mobile robots’ trajectory estimations are shown

in Fig. 4, where the blue ones are the filtering errors using EKF and the red ones are the filtering errors

using REHF. It can be seen clearly from the simulation results that REHF performs better than EKF, which

demonstrates that the REHF is more robust than EKF.
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B. Experimental results of multi-robot cooperative localization on Pioneer3-DX robots

The proposed multi-robot cooperative localization approach has been implemented and tested in an in-

door laboratory environment on two Pioneer3-DX mobile robots. For wireless communications, the robot

is integrated with IEEE 802.11 based wireless network adapter allows wireless transparent TCP/IP using

WaveLan. In our experiments, two mobile robots only use SICK LMS 200 laser range finder as sensor to

perceive environment information. Mobile robots’ odometry measurements come from wheel encoders. The

velocities of robot R1 and robot R2 are all set to be 100mm/s. The sampling period of robot’s odome-

ter is 50ms and the multi-robot cooperative localization period is set to be T = 0.5s. It is noted that

all parameters used in EKF and REHF are the same for all of the experiments with Pioneer3-DX. The

choice of these parameters is determined according to the realistic characteristics of the robots and exper-

imental scenes. Taking QEKF and QREHF for example, these parameters are determined by the hard-

ware configuration of Pioneer3-DX and the encoder’s characteristics installed in robot’s wheels, which are

QEKF = QREHF = diag
{

0.012, 0.012, 0.0042, 0.012, 0.012, 0.0042
}

. In EKF, REKF is updated according to

covariance calculated in MbICP matching. In contrast to EKF, RREHF is set as the same order of magni-

tude as REKF which is RREHF = diag
{

0.0042, 0.001742 , 0.001742
}

. Moreover, γ is determined by a series

of practical testing for parameter tuning and set to be γ = 1 in the REHF. The experimental scenes for our

multi-robot cooperative localization system are shown in Fig. 5.

(a) (b)

(c) (d)

Fig. 5. The experimental scenes in the laboratory (about 8.8m × 5.7m). Some students were present in the front of

two robots, which could be considered as dynamic obstacles. In order to simulate the unexpected collision in practical

applications, robot R1 in scene (c) was forced to rotate randomly for about 30◦ and lost its pose without being told.
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In practical applications, mobile robot should have the ability to tackle typical non-Gaussian noises (unex-

pected collisions with passersby or other dynamic obstacles) with a better localization performance. During

navigation, robots obtain and transmit the laser scanning data in real time. Two mobile robots’ trajectories

and the corresponding laser scanning data using dead reckoning, EKF and REHF are depicted in Fig. 6-8.

An estimation of relative pose (position and orientation), i.e. ẑ1,k − ẑ2,k, is obtained in each localization

period, and the laser scanning data of R1 is transformed to the coordinate of R2 by using the relative pose.

Since these two mobile robots are working in the same scene, the laser scanning data of robot R1 and robot

R2 should match perfectly if an accurately cooperative localization is implemented. However, filtering errors

give rise to corresponding deviation in the estimation of relative pose, which can also be represented in the

distribution of laser scanning data. In the experiment, robot R1 was forced to rotate randomly for about 30◦

and lost its pose without being told (see Fig. 5(c)). If a better filtering performance is demonstrated in the

experiment, a better convergence of the common areas composed of overlapping laser scanning data should be

shown in Fig. 6-8 (data of R1 and R2 are depicted in red and blue points, respectively). As shown in Fig. 6,

the laser scanning data of these two robots are dramatically separated because only dead reckoning is used.

While a filtering algorithm is utilized in cooperative localization, the separation of laser scanning data can be

overcome. Compared the experiment result in Fig. 7 with the one in Fig. 8, it can be seen clearly that REHF

shows a superior performance than EKF.

In order to demonstrate and compare the effects of dead reckoning, EKF and REHF in the experiment,

a bulletin board was arranged in the front of the experimental scene as a reference benchmark. The laser

scanning data associated with this bulletin board is extracted, then least square line fitting algorithm is used

Fig. 6. Two robots’ trajectories and the corresponding laser scanning data using dead reckoning in the laboratory scene.
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Fig. 7. Two robots’ trajectories and the corresponding laser scanning data using EKF in the laboratory scene.

Fig. 8. Two robots’ trajectories and the corresponding laser scanning data using REHF in the laboratory scene.

to estimate the reference benchmark in every localization period. As shown in Fig. 9, the numbers and

distributions of the extracted scanning points in different localization period are not the same due to the

different scanning distance and field of view, so the scanning data must be fitted in each localization period

(depicted by blue lines one by one). The mean of the slope and intercept obtained in each line fitting is used

to represent the final result of line fitting, which is defined as the reference line (depicted by the bold black
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Fig. 10. The distribution of angular errors between each fitted line and the reference line in benchmark test using dead

reckoning, EKF and REHF.

line in Fig. 9) in benchmark test.

In the experiment, robot R2 was running stably and the noises in its odometer can be supposed as Gaussian.

Furthermore, the trajectory of R2 in Fig. 6 is estimated only using dead reckoning, so the corresponding laser

scanning data of R2 is not affected by the filtering algorithm of multi-robot cooperative localization. Therefore,

the final result of line fitting of robot R2 by using dead reckoning (see Fig. 9) is the best candidate taken as
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the reference line. In order to compare the performance of EKF and REHF systematically and intensively,

the laser scanning data (obtained by both R1 and R2) associated with the bulletin board are extracted and

fitted in each localization period, and the distribution of angular errors between each fitted line and the

reference line are depicted in Fig. 10. As shown in upper figure in Fig. 10, there is an obvious increase in

angular errors of robots R1 after step 21 due to the unexpected collision of R1 in the experiment. When EKF

is used in cooperative localization, angular errors of both two robots will change dramatically during step

21-40. However, when REHF is used in cooperative localization, angular errors of both two robots will change

dramatically only during step 21-24, which shows that REHF yields better convergence rates than EKF in

cooperative localization. Moreover, it can be seen clearly from the middle and lower figures in Fig. 10 that,

as expected, angular errors in REHF are closer to zero than angular errors in EKF after step 40, which shows

that REHF yields much better localization performance than EKF.

A group of experimental results of multi-robot cooperative localization in corridor scenes are given in

Fig. 11-12. In the course of cooperative localization, a student in the corridor designedly made a collision with

robot R1 (the upper one with red trajectory) and robot R1 was forced to rotate randomly to a certian extent.

As shown in Fig. 11, there are still significant residual errors in the laser scanning data using EKF algorithm,

which are caused by the collision happened in the experiment. Since EKF is not able to solve typical non-

Gaussian noises such as unexpected collisions, these significant residual errors cannot be corrected successfully

by using EKF. The main contribution in this paper is to propose the REHF algorithm to accomplish a better

localization performance in dynamic environment. Compared with the laser scanning data matching result in

Fig. 11, the matching result using REHF algorithm shows much less residual errors in Fig. 12.

Fig. 11. Two mobile robots’ trajectories and the corresponding laser scanning data using EKF in a corridor scene.
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Fig. 12. Two mobile robots’ trajectories and the corresponding laser scanning data using REHF in a corridor scene.

VI. Conclusion and Future Work

This paper has focused on how to accomplish multi-robot cooperative localization using REHF and real-time

laser data interaction. Compared with conventional multi-robot relative observations techniques, the MbICP-

based 2D laser data matching algorithm could provide relative observations more accurately and conveniently,

even in dynamic or semi-structured indoor environment. Since EKF relies on Gaussian approximations, there

are considerable implementation difficulties in robotics applications when the system is highly nonlinear. In

this work, the REHF algorithm has been proposed to accomplish a better multi-robot cooperative localization

performance, which is shown to be robust against the dynamic disturbances in an unknown environment. Our

future work will further test and improve the practicability of this approach in large-scale unstructured scenes

and/or network-induced phenomena such as random sensor delays and sensor output missing (Shen, Wang,

Shu, & Wei 2009, Wei, Wang, & Shu 2009 and Yang, Wang, Feng, & Liu 2009 ).
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Appendix

The proof of Theorem 1

Before the proof of Theorem 1, we provide the following lemma.
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Lemma 1 (Krein Space Kalman filter (Hassibi, Sayed, & Kailath 1999 )) Given a Krein space discrete-time

system:

xk+1 = Akxk +Bkwk (22)

yk = Ckxk + vk (23)

with the Gramian matrix

〈











x0

wj

vj











,











x0

wk

vk











〉

=











P0|−1 0 0

0 Qkδjk 0

0 0 Rkδjk











, (24)

both of which can be obtained from Krein space mapping corresponding to the indefinite quadratic function:

J = ‖x0 − x̂0|−1‖2P−1

0|−1

+

N−1
∑

k=0

‖wk‖2Q−1

k

+

N
∑

k=0

‖(yk − Ckxk)‖2R−1

k

(25)

if P0|−1 > 0, Qk > 0, Rk is invertible, and
[

Ak Bk

]

has full rank for all k, the existence condition for the

Krein space Kalman filter is given by:

P−1
k|k = P−1

k|k−1 + CTk R
−1
k Ck > 0 (26)

In addition, if this existence condition is satisfied, then the Krein space Kalman filtering equations is governed

by:

Measurement update:

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (27)

Pk|k = Pk|k−1 − Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1CkPk|k−1 (28)

where the gain matrix Kk is defined by:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1 (29)

Time update:

x̂k+1|k = Akx̂k|k (30)

Pk+1|k = AkPk|kA
T
k +BkQkB

T
k (31)

and the minimum point of the indefinite quadratic function J is provided by:

minJ(x0, w, y) =

N
∑

k=0

‖ek‖2(CkPk|k−1C
T
k
+Rk)−1 (32)

where the innovations ek are defined by: ek = yk − ŷk|k−1 = yk − Ckx̂k|k−1
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Proof of Theorem 1: In order to apply the approach of Krein space Kalman filtering (Lemma 1) to the

robust extended H∞ filtering problem, we adopt a mapping from the Hilbert space to the Krein space to solve

the deterministic minimization problem. In Krein space, the minimization problem of a quadratic function

can be cast into the Krein space Kalman filtering problem. We now convert the H∞ performance (15) into

the form of (25). Define

J∞ = ‖z0 − ẑ0|−1‖2P−1

0|−1

+
N−1
∑

k=0

‖ξ̄k‖2Q−1

k

+
N
∑

k=0

‖η̄k‖2R−1

k

− γ−2
N
∑

k=0

‖z̃k‖2

= ‖z0 − ẑ0|−1‖2P−1

0|−1

+

N−1
∑

k=0

‖ξ̄k‖2Q−1

k

+

N
∑

k=0

‖mk − Ckzk‖2R−1

k

− γ−2
N
∑

k=0

‖zk − z̃k|k‖2

= ‖z0 − ẑ0|−1‖2P−1

0|−1

+

N−1
∑

k=0

‖ξ̄k‖2Q−1

k

+

N
∑

k=0

‖m̃k − C̃kzk‖2R̃−1

k

where

m̃k =





mk

ẑk|k



 , C̃k =





Ck

I



 , R̃k =





Rk 0

0 −γ2I



 . (33)

Denote η̃k := m̃k − C̃kzk. Then, by Lemma 1, we can introduce the following Krein space system:

zk+1 = Akzk + ξ̄k (34)

m̃k = C̃kzk + η̃k (35)

with the Gramian matrix

〈











z0

ξ̄j

η̃j











,











z0

ξ̄k

η̃k











〉

=











P0|−1 0 0

0 Qkδjk 0

0 0 R̃kδjk











, (36)

Now we are in a position to apply Lemma 1 to the robust extended H∞ filtering problem. Note that there

exist the following correspondences between the weighting matrixes in the cost function (25) of the Kalman

filtering and those of the robust extended H∞ filtering in (33): Qk 7−→ Qk, Rk 7−→ R̃k.

In addition the following correspondences also exist between the system matrices of the Kalman filtering

and those of the robust extended H∞ filtering: Ak 7−→ Ak, Bk 7−→ I, Ck 7−→ C̃k.

From the above correspondences, we can check that

P−1
k|k = P−1

k|k−1 + C̃Tk R̃
−1
k C̃k

= P−1
k|k−1 + CTk R

−1
k Ck − γ−2I, (37)
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which is identical to (16). On the other hand, by using Lemma 1, we have

ẑk|k = ẑk|k−1 + Pk|k−1C̃
T
k (C̃kPk|k−1C̃

T
k + R̃k)

−1(m̃k − C̃kẑk|k−1) (38)

= ẑk|k−1 + Pk|k−1

[

CTk I
]

×





I −R̂−1
k CkPk|k−1

0 I





×





R̂k 0

0 −γ−2I + (P−1
k|k−1 + CTk Ck)

−1





−1

×





I 0

−Pk|k−1C
T
k R̂

−1
k I





×





mk − Ckẑk|k−1

ẑk|k − ẑk|k−1



 (39)

where

R̂k = Rk + CkPk|k−1C
T
k . (40)

By tedious but direct matrix inverse manipulation, we get

ẑk|k = ẑk|k−1 + Pk|k−1C
T
k R̂

−1
k (mk − Ckẑk|k−1) (41)

which is same as (17). This completes the proof.


