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Abstract

We propose two fully discrete mixed and Galerkin finite element approximations to

a system of equations describing the slow flow of a slightly compressible single phase

fluid in a viscoelastic porous medium. One of our schemes is the natural one for

the backward Euler time discretization but, due to the viscoelasticity, seems to be

stable only for small enough time steps. The other scheme contains a lagged term

in the viscous stress and pressure evolution equations and this is enough to prove

unconditional stability. For this lagged scheme we prove an optimal order a priori

error estimate under ideal regularity assumptions and demonstrate the convergence

rates by using a model problem with a manufactured solution. The model and

numerical scheme that we present are a natural extension to ‘poroviscoelasticity’

of the poroelasticity equations and scheme studied by Philips & Wheeler in (for

example) Comput. Geosci. 11, 145–158, 2007 although — importantly — their

algorithms and codes would need only minor modifications in order to include the

viscous effects. The equations and algorithms presented here have application to

oil reservoir simulations and also to the condition of hydrocephalus — ‘water on the

brain’. An illustrative example is given demonstrating that even small viscoelastic

effects can produce noticeable differences in long-time response. To the best of our

knowledge this is the first time a mixed and Galerkin scheme has been analysed and

implemented for viscoelastic porous media.

Keywords: porous media, viscoelasticity, finite element method, error estimates,

time stepping, geoengineering, bioengineering.

Sub. class: 65M15, 74D05, 76S05, 74L15

1 Introduction and motivation

In this article we consider an extension to the equations of poroelasticity by modelling

the flow of a slightly compressible single phase fluid in a viscoelastic porous medium. The

constitutive equations therefore allow for the presence of viscoelastic relaxation effects in

the porous media (but not the fluid). Fully discrete numerical schemes are derived based

on a lagged and non-lagged backward Euler time stepping method applied to a mixed

and Galerkin finite element spatial discretization. We show that the lagged scheme is

unconditionally stable and give an optimal a priori error bound for it. Furthermore, this

scheme is practical and useful in the sense that it can be easily implemented in existing

poroelasticity software because the coupling between the viscous stresses and pressures

and the elasticity and flow equations is ‘lagged’ by one time step. The required addi-

tional coding therefore takes the form of extra ‘right hand side loads’ together with some

updating subroutines for the viscoelastic internal variables, but the solver and assembly

engines remain intact. This idea of lagging has been used before for nonlinearly viscoelas-

tic diffusion problems in [3, 24] but, of course, is not new. Lagging in numerical schemes

is discussed more widely by Lowrie in [14].
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This work was originally motivated by geomechanics applications but during its develop-

ment we have become aware of its potential relevance to the modelling of cerebrospinal

fluid flow and its relation to the condition of hydrocephalus. To the best of our knowledge

this is the first time a mixed and Galerkin scheme has been analysed and implemented

for viscoelastic porous media.

1.1 Geomechanics

Reservoir simulators are built by computationally solving partial differential equations

that employ Darcy’s law to approximate the flow through porous media. The oil reservoirs

can be anywhere between 300m to 10 km below the earth’s surface in the lithosphere. At

the simplest level of modelling the lithosphere (the porous medium) can be considered as

pefectly rigid but, in practice, it is more accurately modelled as being either elastic or

viscoelastic as in, for example, [2, Chap. 2] and [18, 6, 31]. The point made by Lakes in

[12, § 7.4.1] is that although at room temperatures rock is not in general a ‘lossy’ medium,

at the elevated temperatures in the Earth’s interior the viscoelastic loss tangents can be

significant. Also in [12, § 8.3.1], an explanation of viscoelastic behaviour of porous media

even at cooler temperatures is given based on the time and frequency dependent drag

forces from the stress-induced fluid flow.

Recently Philips and Wheeler in [20, 21, 22] and then Wheeler and Gai in [32] described,

discretized and analysed a poroelasticity model in which the porous rock was allowed to

behave linear elastically (see for example [7, 5]). Rohan et al. in [25] then followed by

using homogenisation techniques to extend that poroelasticity model by including linear

viscoelastic effects. Under the assumption of slow fluid flow, that model — considered

below — is able to simulate relaxation and creep behaviour, as well capture damping and

frequency dependent behaviour (see the interesting article [4] for an idea of the importance

of viscoelastic damping in geology).

1.2 Cerebrospinal fluid (CSF) flow

Our original connection to this potential application came through exposure to the work

that now appears in [9]. Here the flow of CSF through the ventricles of an elastic-sponge-

like brain is modelled using essentially the same equations of poroelasticity as touched

on above. The work in [9] follows on from the developments presented in [28, 34] and is

related to the studies in [26, 27, 33]. The last authors note that brain tissue is in general

viscoelastic as described in, for example, [30, 17, 29, 19] and [12, § 7.5.7] and this provides

the connection to the work presented in [25] and below.

We should also mention that the model in [9] allows for nonlinear compression-dependent

effects, and also that [35] extends the model to finite strain hyperelasticity.

1.3 Poro-visco-elasticity

Although the idea of viscoelastic porous media modelling and numerics is not new (see

also [8] and the comprehensive [15] as well as the those above) we believe that this paper
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is the first to present it in a mixed and Galerkin framework.

The viscoelasticity of the porous media is introduced into the poroelasticity model by using

a stress relaxation ODE (ordinary differential equation) for an ‘internal stress variable’

rather than the using the equivalent (when a Prony series relaxation function is assumed)

notion of a ‘hereditary integral’. This extension of Hooke’s law to linear viscoelasticity is

classical and very well documented in the literature (see, for example, [11, 10]). What is

not so obvious is how the viscoelasticity of the skeleton influences the flow equation for

pressure. To reveal this mechanism Rohan et al. in [25] used homogenization arguments

to derive the governing equations that appear below.

Although for the reasons touched on earlier this viscoelastic porous media model is useful

in its own right, in another respect it serves (at least mathematically) as a starting

point for adding other forms of internal variable equations. These can represent more

complicated behaviour such as, for example, plasticity as formulated in [1]. We hope to

return to these extensions at a later time as well as to other important topics such as the

thermoporoelasticity model described in [13].

We now move on to describe the model with which we shall be concerned. This will

be followed in Section 3 with the numerical scheme; in Section 4 with a derivation of

error bounds; in Section 5 with an illustration of these bounds and in Section 6 with a

more practically-oriented demonstration of the model. We finish in Section 7 with some

concluding remarks.

In isotropic linear elasticity theory in R
d the symmetric stress tensor, σ = (σij)

d
i,j=1 is

related to the strain tensor, ε = (εij)
d
i,j=1 through the constitutive law,

σ = Dε or σij = λεkk(u)δij + 2µεij(u)

where εij(u) :=
1
2
(ui,j+uj,i) and with u = (ui)

d
i=1 the displacement and λ, µ the Lamé con-

stants. Unless explicitly stated otherwise the summation convention is in force throughout

and we usually suppress x dependence to enhance readability. Note that D is positive

definite on the symmetric second-order tensors and also that we are writing tensors of

order one (‘vectors’) in bold and tensors of order two or four in bold underline.

The simplest way of including viscoelastic effects such as stress relaxation and creep is to

introduce a history functional into the constitutive law (see e.g. [10],[11]). For this we

introduce the stress relaxation function ϕ(t) = ϕ0+ϕ1e
−t/τ , for constants ϕ0 > 0, ϕ1 > 0

and τ > 0 such that ϕ(0) = 1, and write the stress as,

σ = Dε(u(t)) +

∫ t

0

ϕ̇(t− s)Dε(u(s)) ds

where, here and below, the overdot signifies partial differentiation with respect to the

(time) argument. It is a fundamental observation that with ψ0 = 1/ϕ0 and ψ1 = ϕ1/ϕ0

this relationship can be inverted to give,

Dε(u(t)) = σ(t) +

∫ t

0

ψ̇(t− s)σ(t) ds

where ψ(t) = ψ0 − ψ1e
−ϕ0t/τ is the creep function. Furthermore, noting that ϕ̇(t − s) =

−τ−1ϕ1 exp(−(t− s)/τ) we define the internal stress variable

σ∗(t) :=

∫ t

0

ϕ1

τ
e−(t−s)/τDε(u(s)) ds (1)
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and get

τ σ̇∗ + σ∗ = ϕ1Dε(u) subject to σ∗(0) = 0.

With this we can write σ(t) =Dε(u(t))−σ∗(t) and thereby remove the explicit appear-

ance of the displacement history.

Now letting p denote the pressure field and assuming that p and u are zero at t = 0

we appeal to the simplest form of the model presented by Rohan et al. in [25] and, on

borrowing terminology from poroelasticity, find that the total stress, σ̃ij := σij −αδijp, is
given by,

σ̃ij =

∫ t

0

ϕ(t− s)Dijkl
∂

∂s
εkl(u(s)) ds− (βij + φδij)p (2)

where βij + φδij are the Biot stress coefficients with β symmetric and φ > 0 the volume

fraction of the fluid part. We will make the simplifying assumption that βij = βδij for a

positive real number β and then after integration by parts we obtain

σ̃ij = Dijklεkl(u(t))− αδijp+
∫ t

0

ϕ̇(t− s)Dijklεkl(u(s)) ds (3)

for a constant α = β + φ.

Again from [25] we have for the pressure equation that

∇ ·K∇p = (φγ + ζ)ṗ+ αδij ε̇ij + ζ

∫ t

0

ψ̇(t− s)ṗ(s) ds (4)

where γ > 0 denotes the fluid’s compressibility and ζ the magnitude of the skeleton’s

viscoelastic compressibility. We assume a compressible porous medium so that ζ > 0.

It is, perhaps, helpful to remark that we are using slightly different notation to that

introduced in [25]: in particular, ζ and η (see later) here correspond to µ̂ and µ̃ there.

Integrating by parts, recalling that p(0) = 0, and (to match with the material in the

Wheeler et al. papers cited earlier) setting M = (φγ + ζ)−1 we arrive at,

∇ ·K∇p = 1

M
ṗ+ α∇ · u̇+ ζψ̇(0)p(t) + ζp∗(t) (5)

where the internal pressure variable is defined by

p∗(t) :=

∫ t

0

ψ̈(t− s)p(s) ds = −
∫ t

0

ϕ0ϕ1

τ 2
e−ϕ0(t−s)/τp(s) ds (6)

and, setting ϕ2 := ϕ0ϕ1/τ > 0 for convenience, satisfies

τ ṗ∗ + ϕ0p
∗ = −ϕ2p subject to p∗(0) = 0.

With these preliminaries complete we now move on to a formal statement of the problem

that we want to consider.

Let Ω ⊂ R
d be a bounded domain with polygonal/polyhedral boundary and let I = (0, T ]

denote the time interval in which the solution is sought. With this viscoelastic modifica-

tion we formulate the equations of initially quiescent quasistatic poroviscoelasticity, based
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on the study in [25] and as an extension of the poroelasticity equations in [32], as,

∂

∂t

(

1

M
p+ α∇ · u

)

+∇ · z + ηp = q − ζp∗, (7)

z = −K∇p, (8)

−∇ · σ̃ = −∇ ·Dε(u) +∇ · σ∗ + α∇p = f , (9)

τ σ̇∗ + σ∗ = ϕ1Dε(u), (10)

τ ṗ∗ + ϕ0p
∗ = −ϕ2p (11)

where η = ζϕ1/τ and with given loads q, f , initial data

p = 0, z = 0, u = 0, p∗(0) = 0 and σ∗ = 0

in Ω at t = 0, and boundary data (with n̂ the unit outward normal to the boundary ∂Ω),

z · n̂ = z♭ · n̂ on Γz, p = p♭ on Γp,

u = u♭ on ΓD, σ̃ijn̂j = gi on ΓN

where ΓN ∪ ΓD = ∂Ω with |ΓD| > 0 and ΓN ∩ ΓD = ∅, and where Γp ∪ Γz = ∂Ω with

Γp ∩Γz = ∅. In this system we assume that ϕ0, M , ζ , α, K and τ are positive constants,

with ϕ1 non-negative, and we are assuming quasistatic conditions (as in [18]) by neglecting

the inertia term ̺ü in (9).

Our notation is standard and is introduced as we go along. We just note here that

‖ · ‖m := ‖ · ‖Hm(Ω) with no distinction being made for scalar-, vector- and tensor-valued

functions, and we recall Young’s inequality: 2ab 6 ǫa2 + ǫ−1b2 for all a, b ∈ R and for all

ǫ > 0. Also because we are interested for the moment only in the model problem we will

often assume that

z♭ = 0, u♭ = 0 and p♭ = 0. (12)

in order to simplify some of the arguments.

2 Weak formulation

Set L2(Ω) = L2(Ω)
d, H1(Ω) = H1(Ω)d and so on and define the linear and affine spaces,

Vg =
{

v ∈H1(Ω) : v|ΓD
= g

}

with V := V0,

H(div; Ω) =
{

v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)
}

,

Hg(div; Ω) =
{

v ∈H(div; Ω) : v · n̂ = g · n̂ on Γz

}

.

Recall also that with the graph norm, ‖w‖H(div;Ω) := (‖w‖20 + ‖∇ · w‖20)1/2 induced by

the obvious inner product, H(div; Ω) is a Hilbert space.

Recalling Green’s formula,
∫

Ω

w,jv dΩ = −
∫

Ω

wv,j dΩ +

∮

∂Ω

wvn̂j dΓ,

and applying it to (9) we obtain first that for v ∈ V ,

−
∫

Ω

v · (∇ · σ̃) dΩ =

∫

Ω

σ̃ijεij(v) dΩ−
∮

ΓN

givi dΓ,
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and for the pressure term note that δijεij(v) = ∇ · v. Second, for ψ ∈H0(div; Ω),

∫

Ω

ψ · ∇p dΩ = −
∫

Ω

ψj,jp dΩ+

∮

∂Ω

pψjn̂j dΓ.

Hence,
∫

Ω

ψ · ∇p dΩ = −
∫

Ω

p∇ ·ψ dΩ+

∮

Γp

p♭ψ · n̂ dΓ.

and we are now led naturally to the weak problem in the following form:

find (p, z,u,σ∗, p∗) : I → L2(Ω)×Hz♭(div; Ω)× Vu♭ × L2(Ω)× L2(Ω) such that,

( 1
M
ṗ, φ) + (α∇ · u̇, φ) + (∇ · z, φ) + (ηp, φ) + (ζp∗, φ) = (q, φ), (13)

(p,∇ ·ψ)− (K−1z,ψ) = (p♭,ψ · n̂)Γp, (14)

a(u,χ)− (σ∗, ε(χ))− (αp,∇ · χ) = 〈L,χ〉, (15)

(τ σ̇∗, θ) + (σ∗, θ)− (ϕ1Dε(u), θ) = 0, (16)

(τ ṗ∗, ̟) + (ϕ0p
∗, ̟) + (ϕ2p,̟) = 0, (17)

∀φ ∈ L2(Ω), ∀ψ ∈H0(div; Ω), ∀χ ∈ V, ∀θ ∈ L2(Ω), ∀̟ ∈ L2(Ω)

and where 〈L,χ〉 := (f ,χ) + (g,χ)ΓN
and a(u,χ) := (Dε(u), ε(χ)). For use below (as

is standard for elasticity problems) we define an energy norm via ‖ · ‖V := a(·, ·)1/2. Note
that we require f = g = 0 at t = 0.

Our first result is a basic stability estimate. As is usual for linear problems this will inform

the structure of the discrete stability estimate, Prop. 3.2, as well as the main error bound,

Lemma 4.1.

Proposition 2.1 (stability) With (12),

‖u(t)‖2V + ‖M−1/2p(t)‖20 + ‖σ∗(t)‖20 + ‖p∗(t)‖20 + η‖p‖2L2(0,t;L2(Ω))

+ ‖σ∗‖2L2(0,t;L2(Ω)) + ‖p∗‖2L2(0,t;L2(Ω)) + ‖τ 1/2σ̇∗‖2L2(0,t;L2(Ω)) + ‖ṗ∗‖2L2(0,t;L2(Ω))

+ ‖K−1/2z‖2L2(0,t;L2(Ω)) 6 C

(

‖M1/2q‖2L2(0,t;L2(Ω)) + ‖f‖2H1(0,t;V ′) + ‖g‖2H1(0,t;L2(ΓN ))

)

for all t ∈ I.

Proof. Choose χ = u̇, φ = p and ψ = −z in (13), (14) and (15), and add to get,

a(u, u̇)− (αp,∇ · u̇) + (M−1ṗ, p) + (α∇ · u̇, p)
+ (∇ · z, p) + η(p, p) + ζ(p, p∗) + (K−1z, z)− (p,∇ · z)

= (f , u̇) + (g, u̇)ΓN
+ (σ∗, ε(u̇)) + (q, p).

Hence, on noting the double cancellation, we get,

d

dt

(

‖u‖2V + ‖M−1/2p‖20
)

+ 2‖K−1/2z‖20 + 2η‖p‖20 = 2(f , u̇)

+ 2(g, u̇)ΓN
+ 2(σ∗, ε(u̇)) + 2(q, p)− 2ζ(p, p∗).
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Now we choose θ = 2σ∗ in (16) and arrive at

d

dt
‖τ 1/2σ∗‖20 + 2‖σ∗‖20 = 2(ϕ1Dε(u),σ

∗),

and then, for some constant ϑ ∈ R+, we may also choose θ = 2ϑσ̇∗ in (16) to get,

ϑ
d

dt
‖σ∗‖20 + 2ϑ‖τ 1/2σ̇∗‖20 = 2ϑ(ϕ1Dε(u), σ̇

∗).

Similarly, in (17) we choose first ̟ = 2p∗ to get

d

dt
‖τ 1/2p∗‖20 + 2ϕ0‖p∗‖20 = −2ϕ2(p, p

∗),

and then choose ̟ = 2ṗ∗ to get

d

dt
‖ϕ1/2

0 p∗‖20 + 2τ‖ṗ∗‖20 = −2ϕ2(p, ṗ
∗).

Incorporating both of these then yields,

d

dt

(

‖u‖2V + ‖M−1/2p‖20 + ϑ‖σ∗‖20 + ‖τ 1/2σ∗‖20 + ‖τ 1/2p∗‖20 + ‖ϕ
1/2
0 p∗‖20

)

+ 2‖K−1/2z‖20 + 2ϑ‖τ 1/2σ̇∗‖20 + 2‖σ∗‖20 + 2η‖p‖20 + 2ϕ0‖p∗‖20 + 2τ‖ṗ∗‖20 = 2(f , u̇)

+ 2(g, u̇)ΓN
+ 2(σ∗, ε(u̇)) + 2(q, p)− 2ζ(p, p∗)− 2ϕ2(p, p

∗)− 2ϕ2(p, ṗ
∗)

+ 2ϑ(ϕ1Dε(u), σ̇
∗) + 2(ϕ1Dε(u),σ

∗).

Integrating over (0, t) and then integrating by parts in the first three terms on the right

now gives,

2

∫ t

0

‖K−1/2z(s)‖20 + ϑ‖τ 1/2σ̇∗(s)‖20 + ‖σ∗(s)‖20 + η‖p(s)‖20 + ϕ0‖p∗(s)‖20 + τ‖ṗ∗(s)‖20 ds

+ ‖u(t)‖2V + ‖M−1/2p(t)‖20 + ϑ‖σ∗(t)‖20 + ‖τ 1/2σ∗(t)‖20 + ‖τ 1/2p∗(t)‖20 + ‖ϕ
1/2
0 p∗(t)‖20

= 2

∫ t

0

(q(s), p(s))− (ζ + ϕ2)(p(s), p
∗(s))− ϕ2(p(s), ṗ

∗(s)) ds

+ 2

∫ t

0

ϑ(ϕ1Dε(u(s)), σ̇
∗(s)) + (ϕ1Dε(u(s)),σ

∗(s)) ds

+ 2(f(t),u(t))− 2(f (0), ŭ) + 2(g(t),u(t))ΓN

− 2(g(0), ŭ)ΓN
+ 2(σ∗(t), ε(u(t))− 2

∫ t

0

(ḟ(s),u(s)) ds

− 2

∫ t

0

(ġ(s),u(s))ΓN
+ (σ̇∗(s), ε(u(s))) ds.

To finish the proof we will handle the first term on the right with Gronwall’s inequality,

the second and third (resp. fourth and fifth) terms with a Gronwall estimate for terms in

p (resp. u) and a kickback for the p∗ (resp. σ∗) terms. For terms six to nine we recall

that the initial data are zero and then can kick back u while the entire term ten can be

kicked-back with a suitable choice for ϑ. Terms eleven and twelve can be handled with
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Gronwall’s inequality again, as can term thirteen with a kickback on the internal variable.

Thus, by Young’s inequality, we have the following estimates,

2

∫ t

0

(q(s), p(s)) ds 6

∫ t

0

‖M1/2q(s)‖20 + ‖M−1/2p(s)‖20 ds,

2

∫ t

0

(ζ + ϕ2)(p(s), p
∗(s)) ds+ 2

∫ t

0

ϕ2(p(s), ṗ
∗(s)) ds 6

∫ t

0

ϕ0‖p∗(s)‖20 ds

+

∫ t

0

τ‖ṗ∗(s)‖20 ds+
(

(ζ + ϕ2)
2M

ϕ0
+
ϕ2
2M

τ

)
∫ t

0

‖M−1/2p(s)‖20 ds,

2ϑ

∫ t

0

(ϕ1Dε(u(s)), σ̇
∗(s)) ds 6 ǫ4ϑ

∫ t

0

‖τ 1/2σ̇∗(s)‖20 ds+
ϕ2
1ϑ‖D‖L∞(Ω)

τǫ4

∫ t

0

‖u(s)‖2V ds,

2

∫ t

0

(ϕ1Dε(u(s)),σ
∗(s)) ds 6

∫ t

0

‖σ∗(s)‖20 ds+ ϕ2
1‖D‖L∞(Ω)

∫ t

0

‖u(s)‖2V ds,

2(f(t),u(t))− 2(f(0), ŭ) 6 ǫ6‖u(t)‖2V +
1

ǫ6
‖f‖2L∞(0,t;V ′),

2(g(t),u(t))ΓN
− 2(g(0), ŭ)ΓN

6 ǫ8‖u(t)‖2V +
C

ǫ8
‖g‖2L∞(0,t;L2(ΓN )),

2(σ∗(t), ε(u)) 6
‖D−1‖L∞(Ω)

ǫ10
‖σ∗(t)‖20 + ǫ10‖u(t)‖2V ,

2

∫ t

0

(ḟ(s),u(s)) ds+ 2

∫ t

0

(ġ(s),u(s))ΓN
ds

6 ‖ḟ‖2L2(0,t;V ′) + C‖ġ‖2L2(0,t;L2(ΓN ) + 2

∫ t

0

‖u(s)‖2V ds,

2

∫ t

0

(σ̇∗(s), ε(u(s)) ds 6 ϑǫ13

∫ t

0

‖τ 1/2σ̇∗(s)‖20 ds+
‖τ−1D−1‖L∞(Ω)

ϑǫ13

∫ t

0

‖u(s)‖2V ds.

Hence,

(1− ǫ6 − ǫ8 − ǫ10)‖u(t)‖2V + ‖M−1/2p(t)‖20 +
(

ϑ− ‖D
−1‖L∞(Ω)

ǫ10

)

‖σ∗(t)‖20

+ ‖τ 1/2σ∗(t)‖20 + ‖τ 1/2p∗(t)‖20 + ‖ϕ
1/2
0 p∗(t)‖20 + 2

∫ t

0

‖K−1/2z(s)‖20 ds+
∫ t

0

‖σ∗(s)‖20 ds

+

∫ t

0

η‖p(s)‖20 + ϕ0‖p∗(s)‖20 + τ‖ṗ∗(s)‖20 ds+ (2ϑ− ǫ4ϑ− ǫ13ϑ)
∫ t

0

‖τ 1/2σ̇∗(s)‖20 ds

6
1

ǫ6
‖f‖2L∞(0,t;V ′) + ‖ḟ‖2L2(0,t;V ′) +

C

ǫ8
‖g‖2L∞(0,t;L2(ΓN )) + C‖ġ‖2L2(0,t;L2(ΓN ))

+ ‖M1/2q‖2L2(0,t;L2(Ω)) +

(

1 +
(ζ + ϕ2)

2M

ϕ0
+
ϕ2
2M

τ

)
∫ t

0

‖M−1/2p(s)‖20 ds

+

(

2 +
ϕ2
1ϑ‖D‖L∞(Ω)

τǫ4
+
‖τ−1D−1‖L∞(Ω)

ϑǫ13
+ ϕ2

1‖D‖L∞(Ω)

)
∫ t

0

‖u(s)‖2V ds.

9



We can now choose ǫ6 = ǫ8 = ǫ10 = 1/6 and ǫ4 = ǫ13 = 1/2, set ϑ = 1/2 + 6‖D−1‖L∞(Ω),

and then complete the proof by using the Sobolev estimate ‖ · ‖L∞(0,t;·) 6 C‖ · ‖H1(0,t;·)

and then applying Gronwall’s inequality. QPPPPPPR

Corollary 2.2 Under the same hypotheses as above we also have that ‖u‖L2(0,t;V ) is

bounded by data.

Proof. ‖u(t)‖2V 6 C(‖τ 1/2σ̇∗(t)‖20+‖σ∗(t)‖20) follows from (16) and the stability estimate

given above provides the desired bound. QPPPPPPR

3 Numerical scheme

For the time discretisation we choose an N ∈ N and set ti = ik where k = T/N is the time

step. We write w(ti) = wi and so on, define ∂t by the differencing rule ∂twi := (wi−wi−1)/k

and for later use recall the identity 2k(∂twi, wi) = k∂t‖wi‖20+k2‖∂twi‖20. The second term

on the right will play a useful role in establishing stability of the discrete problem—see

later in (23).

Relative to a given triangluation, T h, let: W h ⊂ L2(Ω) be the space of piecewise constants;

V h ⊂ V be the standard piecewise linear conforming finite element space; and RTh
z♭ ⊂

Hz♭(div; Ω) be the Raviart-Thomas lowest order space with RTh := RTh
0
. With all

initial data set to zero, our backward-Euler mixed and Galerkin finite element method

for the weak problem (13)—(17) is then: for i = 1, 2, . . . , N , find (phi , z
h
i ,u

h
i ,σ

∗h
i , p

∗h
i ) ∈

W h × RTh × V h
u♭ ×W h ×W h such that,

( 1
M
∂tp

h
i +∇ · zhi , φ) + (α∇ · ∂tuh

i , φ) + (ζp∗hi + ηphi , φ) = (qi, φ), (18)

(phi ,∇ ·ψ)− (K−1zhi ,ψ) = (p♭i,ψ · n̂)Γp , (19)

a(uh
i ,χ)− (σ∗h

i , ε(χ))− (αphi ,∇ · χ) = 〈Li,χ〉, (20)

(τ∂tσ
∗h
i , θ) + (σ∗h

i , θ) = (ϕ1Dε(`mu
h
i ), θ), (21)

(τ∂tp
∗h
i , ̟) + (ϕ0p

∗h
i , ̟) = −(ϕ2`mp

h
i , ̟), (22)

∀φ ∈ W h, ∀ψ ∈ RTh, ∀χ ∈ V h, ∀θ ∈W h, ∀̟ ∈ W h,

and where 〈Li,χ〉 := (f(ti),χ)+(g(ti),χ)ΓN
. Also, in (21) and (22), we have introduced a

shifting, or ‘lagging’, operator defined through `mvi := vi−m, but we will only be concerned

with the cases m = 0 and m = 1. The former is in some way the ‘natural’ choice for an

implicit Euler discretisation while the latter represents a ‘lagging’ (in the sense of Lowrie,

[14]). We shall see below in Prop. 3.2 that the lagged scheme is stable for all time step

sizes while the natural scheme appears to be only conditionally stable.

In the case of `1 it is clear that the viscoelastic stress and pressure calculations can be

performed independently of the displacement, pressure and flux calculations due to the

lagging. Also, for `0 we notice that this calculation can still be performed outside of the

displacement calculation since,

((τ + k)σ∗h
i , θ) = (kϕ1Dε(u

h
i ), θ) + (τσ∗h

i−1, θ),

10



(for all θ ∈ W h) yields σ∗h
i once uh

i is known. Taking θ = (τ + k)−1ε(χ) ∈ W h and

substituting into the displacement equation then produces,

a
(

τ+ϕ0k
τ+k

uh
i ,χ

)

− (αphi ,∇ · χ) = (f i,χ) + (gi,χ)ΓN

+
(

τ
τ+k
σ∗h

i−1, ε(χ)
)

∀χ ∈ V h,

since 1 − ϕ1k/(τ + k) = (τ + ϕ0k)/(τ + k) according to our earlier definition of the

stress relaxation function. Hence, at any given time level we can solve for displacement,

pressure and flux using the previous viscous stress, and then update the viscous stress

prior to advancing to the next time level.

In a similar way, (22) can be written in the case of `0 as

((τ + ϕ0k)p
∗h
i , ̟) = (τp∗hi−1 − kϕ2p

h
i , ̟)

and by choosing ̟ = ζφ/(τ + ϕ0k) and substituting into the pressure equation, (18), we

arrive at,

( 1
M
∂tp

h
i +∇ · zhi , φ) + (α∇ · ∂tuh

i , φ) +
((

η − ζkϕ2

τ+ϕ0k

)

phi , φ
)

= (qi, φ)−
(

ζτ
τ+ϕ0k

p∗hi−1, φ
)

.

Recalling that η = ζϕ1/τ and ϕ2 = ϕ0ϕ1/τ we easily obtain the simplification η −
ζkϕ2/(τ + kϕ0) = ζϕ1/(τ + kϕ0) > 0 with equality only when ϕ1 = 0 (since ζ > 0). This

re-formulation does not, therefore, affect the well-posedness of the problem.

Remark 3.1 First, notice that we can get back to poroelasticity simply by taking ϕ0 = 1

(so that ϕ1 = 0). Conversely, any poroelasticity solver can be turned into a poroviscoelas-

ticity solver by simply adding four functionalities.

1. The extra “reaction” term and viscous pressure load needs to be incorporated into

the pressure equation, (18).

2. The extra viscous stress loading needs to be included in the right hand side of the

displacement equation, (20).

3. For the `0 scheme the Lamé coefficients need to be replaced by modified vales ac-

cording to the replacements

λ← τ + ϕ0k

τ + k
λ and µ← τ + ϕ0k

τ + k
µ.

The lagged scheme does not need this modification.

4. The viscous stress (resp. pressure) update arising from (21) (resp. (22)) needs to be

coded. In the case considered here this is simply an L2(Ω) (resp. L2(Ω)) projection

on to tensor (resp. scalar) piecewise-constants.

We now give a stability estimate for the discrete scheme. The assumption ϕ1 > 0 (instead

of ϕ1 > 0) is made because (see Remark 3.1) with ϕ1 = 0 we are back to the known case

of poroelasticity.

11



Proposition 3.2 (discrete stability) With (12), ϕ1 > 0 and for small enough time

step in the case of `0, we have,

k

j
∑

i=1

(

‖K−1/2zhi ‖20 + ‖σ∗h
i ‖20 + ‖τ 1/2∂tσ∗h

i ‖20 + ‖phi ‖20 + ‖p∗hi ‖20 + ‖∂tp∗hi ‖20
)

+ k2
j
∑

i=1

(

‖M−1/2∂tp
h
i ‖20 + ‖∂tp∗hi ‖20 + ‖τ 1/2∂tσ∗h

i ‖20 + ‖∂tuh
i ‖2V
)

+ ‖uh
j ‖2V + ‖M−1/2phj ‖20 + ‖σ∗h

j ‖20 + ‖p∗hj ‖20

6 C

(

‖f‖2H1(0,tj ;V ′) + ‖g‖2H1(0,tj ;L2(ΓN )) + ‖M1/2q‖2L∞(0,tj ;L2(Ω))

)

for all j 6 N .

Proof. In (18), (19) and (20) we choose φ = phi , ψ = −zhi and χ = ∂tu
h
i , add the resulting

equations and multiply by 2k to get,

k∂t‖M−1/2phi ‖20 + k∂t‖uh
i ‖2V + 2k‖K−1/2zhi ‖20 + 2kη‖phi ‖20

+ k2‖M−1/2∂tp
h
i ‖20 + k2‖∂tuh

i ‖2V = 2k(qi, p
h
i )− 2kζ(phi , p

∗h
i )

+ 2k(f i, ∂tu
h
i ) + 2k(gi, ∂tu

h
i )ΓN

+ 2k(σ∗h
i , ε(∂tu

h
i )).

Now in (21) choose θ = 2kκσ∗h
i to get,

κk∂t‖τ 1/2σ∗h
i ‖20 + 2kκ‖σ∗h

i ‖20 + κk2‖τ 1/2∂tσ∗h
i ‖20 = 2kκ(ϕ1Dε(`mu

h
i ),σ

∗h
i ),

and then choose θ = 2kϑ∂tσ
∗h
i to get,

ϑk∂t‖σ∗h
i ‖20 + 2ϑk‖τ 1/2∂tσ∗h

i ‖20 + ϑk2‖∂tσ∗h
i ‖20 = 2ϑk(ϕ1Dε(`mu

h
i ), ∂tσ

∗h
i ).

Here κ, ϑ ∈ R+ are constants that will be specified later. Also, for two other positive

constants, ρ and ̺, we choose ̟ = 2ρkp∗hi in (22) to get

2kρϕ0‖p∗hi ‖20 + τρk∂t‖p∗hi ‖20 + τρk2‖∂tp∗hi ‖20 = −2kρϕ2(`mp
h
i , p

∗h
i ),

and then ̟ = 2̺k∂tp
∗h
i to get,

2̺τk‖∂tp∗hi ‖20 + ̺kϕ0∂t‖p∗hi ‖20 + ̺ϕ0k
2‖∂tp∗hi ‖20 = −2k̺ϕ2(`mp

h
i , ∂tp

∗h
i ).

Assembling these results into the main expression above then yields,

k∂t

(

‖M−1/2phi ‖20 + ‖uh
i ‖2V + κ‖τ 1/2σ∗h

i ‖20 + ϑ‖σ∗h
i ‖20 + (̺ϕ0 + ρτ)‖p∗hi ‖20

)

+ 2k

(

‖K−1/2zhi ‖20 + η‖phi ‖20 + κ‖σ∗h
i ‖20 + ϑ‖τ 1/2∂tσ∗h

i ‖20 + ̺τ‖∂tp∗hi ‖20 + ρϕ0‖p∗hi ‖20

)

+ k2

(

‖M−1/2∂tp
h
i ‖20 + ‖∂tuh

i ‖2V + κ‖τ 1/2∂tσ∗h
i ‖20 + ϑ‖∂tσ∗h

i ‖20 + (̺ϕ0 + ρτ)‖∂tp∗hi ‖20

)

= 2k(qi, p
h
i )− 2kζ(phi , p

∗h
i ) + 2k(f i, ∂tu

h
i ) + 2k(gi, ∂tu

h
i )ΓN

+ 2k(σ∗h
i , ε(∂tu

h
i ))

+ 2kκ(ϕ1Dε(`mu
h
i ),σ

∗h
i ) + 2kϑ(ϕ1Dε(`mu

h
i ), ∂tσ

∗h
i )

− 2̺kϕ2(`mp
h
i , ∂tp

∗h
i )− 2ρkϕ2(`mp

h
i , p

∗h
i ).

12



Summing over i = 1, 2, . . . , j 6 N then results in,

‖uh
j ‖2V + ‖M−1/2phj ‖20 + κ‖τ 1/2σ∗h

j ‖20 + ϑ‖σ∗h
j ‖20 + (̺ϕ0 + ρτ)‖p∗hj ‖20

+ 2k

j
∑

i=1

(

‖K−1/2zhi ‖20 + η‖phi ‖20 + κ‖σ∗h
i ‖20 + ϑ‖τ 1/2∂tσ∗h

i ‖20 + ̺τ‖∂tp∗hi ‖20 + ρϕ0‖p∗hi ‖20

)

+ k2
j
∑

i=1

(

‖M−1/2∂tp
h
i ‖20 + ‖∂tuh

i ‖2V + κ‖τ 1/2∂tσ∗h
i ‖20 + ϑ‖∂tσ∗h

i ‖20 + (̺ϕ0 + ρτ)‖∂tp∗hi ‖20

)

= −2̺kϕ2

j
∑

i=1

(`mp
h
i , ∂tp

∗h
i )− 2ρkϕ2

j
∑

i=1

(`mp
h
i , p

∗h
i ) + 2k

j
∑

i=1

(qi, p
h
i )

+ 2k

j
∑

i=1

(f i, ∂tu
h
i ) + 2k

j
∑

i=1

(gi, ∂tu
h
i )ΓN

+ 2k

j
∑

i=1

(σ∗h
i , ε(∂tu

h
i ))

+ 2kκ

j
∑

i=1

(ϕ1Dε(`mu
h
i ),σ

∗h
i ) + 2kϑ

j
∑

i=1

(ϕ1Dε(`mu
h
i ), ∂tσ

∗h
i )− 2kζ

j
∑

i=1

(phi , p
∗h
i ).

We now number the terms on the right as I, II, . . . , IX and will consider them in smaller

groups. Also since terms I and II contain the lagging operator we will leave them until

after we have dealt with terms V II and V III. To begin, and recalling that the initial

data are zero, for term III we have,

2k

j
∑

i=1

(qi, p
h
i ) = 2k2

j
∑

i=1

(qi, ∂tp
h
i ) + 2k

j−1
∑

i=1

(qi+1, p
h
i )

6 (2k + 1)k

j
∑

i=1

‖M1/2qi‖20 + k

j−1
∑

i=1

‖M−1/2phi ‖20 +
k2

2

j
∑

i=1

‖M−1/2∂tp
h
i ‖20. (23)

Note that this manipulation has meant that we do not have to assume that k is small

enough in order to take the term in phj to the left hand side. In fact term one on the right

of this is bounded by data, the second can be handled with a discrete Gronwall lemma

and the third will be kicked back — without requiring η > 0.

For terms IV and V we first note the following discrete-integration-by-parts identity for

an arbitrary linear form, L,

k

j
∑

i=1

(

〈Li, ∂twi〉+ 〈∂tLi, wi−1〉
)

= 〈Lj, wj〉 − 〈L0, w0〉.

Then, for IV and V we have,

2k

j
∑

i=1

(f i, ∂tu
h
i ) + 2k

j
∑

i=1

(gi, ∂tu
h
i )ΓN

= 2(f j ,u
h
j )− 2(f0,u

h
0)− 2k

j
∑

i=1

(∂tf i,u
h
i−1)

+ 2(gj ,u
h
j )ΓN

− 2(g0,u
h
0)ΓN

− 2k

j
∑

i=1

(∂tgi,u
h
i−1)ΓN

,

6
1

ǫ4
‖f‖2L∞(0,tj ;V ′) + ‖ḟ‖2L2(0,tj ;V ′) +

C

ǫ5
‖g‖2L∞(0,tj ;L2(ΓN )) + C‖ġ‖2L2(0,tj ;L2(ΓN ))

+ (ǫ4 + ǫ5)‖uh
j ‖2V + 2k

j−1
∑

i=1

‖uh
i ‖2V ,
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where we used a trace inequality and noted that since ∂tf i = k−1
∫ ti
ti−1

ḟ (s) ds we have

2k

j
∑

i=1

(∂tf i,u
h
i−1) 6

∫ tj

0

‖ḟ(s)‖2V ′ ds+ k

j
∑

i=1

‖uh
i−1‖2V

with a similar estimate for the term in g. Choosing ǫ4 = ǫ5 = 1/4 and putting these

results together then gives,

1

2
‖uh

j ‖2V + ‖M−1/2phj ‖20 + κ‖τ 1/2σ∗h
j ‖20 + ϑ‖σ∗h

j ‖20 + (̺ϕ0 + ρτ)‖p∗hj ‖20

+ 2k

j
∑

i=1

(

‖K−1/2zhi ‖20 + η‖phi ‖20 + κ‖σ∗h
i ‖20 + ϑ‖τ 1/2∂tσ∗h

i ‖20 + ̺τ‖∂tp∗hi ‖20 + ρϕ0‖p∗hi ‖20

)

+ k2
j
∑

i=1

(

‖M−1/2∂tp
h
i ‖20

2
+ ‖∂tuh

i ‖2V + κ‖τ 1/2∂tσ∗h
i ‖20 + ϑ‖∂tσ∗h

i ‖20 + (̺ϕ0 + ρτ)‖∂tp∗hi ‖20

)

6 (2k + 1)k

j
∑

i=1

‖M1/2qi‖20 + C‖f‖2H1(0,tj ;V ′) + C‖g‖2H1(0,tj ;L2(ΓN ))

+ k

j−1
∑

i=1

(

‖M−1/2phi ‖20 + 2‖uh
i ‖2V
)

+ 2k

j
∑

i=1

(σ∗h
i , ε(∂tu

h
i )) + 2kκ

j
∑

i=1

(ϕ1Dε(`mu
h
i ),σ

∗h
i )

+ 2kϑ

j
∑

i=1

(ϕ1Dε(`mu
h
i ), ∂tσ

∗h
i )− 2̺kϕ2

j
∑

i=1

(`mp
h
i , ∂tp

∗h
i )

− 2ρkϕ2

j
∑

i=1

(`mp
h
i , p

∗h
i )− 2kζ

j
∑

i=1

(phi , p
∗h
i ). (24)

Now we label the last six terms as A, B, C, D, E and F and continue. First, since

u(0) = 0 and σ∗h
0 = 0 we get for term A that,

2k

j
∑

i=1

(σ∗h
i , ε(∂tu

h
i )) = 2(σ∗h

j , ε(u
h
j ))− 2k

j
∑

i=1

(∂tσ
∗h
i , ε(u

h
i−1))

6 ǫA‖uh
j ‖2V +

‖D−1‖L∞(Ω)

ǫA
‖σ∗h

j ‖20 + ǫ′Ak

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20 +

k

ǫ′A

j−1
∑

i=1

‖D−1‖L∞(Ω)

τ
‖uh

i ‖2V .

In this the last term can be handled with a Gronwall inequality but the other three terms

have to be kicked-back. For term F we have

2kζ

j
∑

i=1

(phi , p
∗h
i ) 6 kζǫF

j
∑

i=1

‖phi ‖20 +
kζ

ǫF

j
∑

i=1

‖p∗hi ‖20

for every ǫF > 0.

Terms B and C both contain the lagging operator so we deal first with the lagged case

where m = 1 and `1u
h
i := uh

i−1. Again using u(0) = 0 for term B we then have,

2kκ

j
∑

i=1

(ϕ1Dε(u
h
i−1),σ

∗h
i ) 6 kκ

j
∑

i=1

‖σ∗h
i ‖20 + kκ

j−1
∑

i=1

ϕ2
1‖D‖L∞(Ω)‖uh

i ‖2V ,
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while for term C,

2kϑ

j
∑

i=1

(ϕ1Dε(u
h
i−1), ∂tσ

∗h
i ) 6 kϑ

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20 + kϑ

j−1
∑

i=1

ϕ2
1

τ
‖D‖L∞(Ω)‖uh

i ‖2V .

For terms D and E in the lagged case and with ̺ = 1 we have,

2kϕ2

j
∑

i=1

(phi−1, ∂tp
∗h
i ) + 2kρϕ2

j
∑

i=1

(phi−1, p
∗h
i ) 6

(

ρ

ϕ0
+

1

τ

)

kϕ2
2M

j−1
∑

i=1

‖M−1/2phi ‖20

+ 2k

j
∑

i=1

(τ

2
‖∂tp∗hi ‖20 +

ρϕ0

2
‖p∗hi ‖20

)

.

Merging these into (24) then results in,

(

1

2
− ǫA

)

‖uh
j ‖2V + ‖M−1/2phj ‖20 + κ‖τ 1/2σ∗h

j ‖20 +
(

ϑ− ‖D
−1‖L∞(Ω)

ǫA

)

‖σ∗h
j ‖20

+ (ϕ0 + ρτ)‖p∗hj ‖20 + 2k

j
∑

i=1

(

‖K−1/2zhi ‖20 +
(

η − ζǫF
2

)

‖phi ‖20 +
κ

2
‖σ∗h

i ‖20

+
ϑ− ǫ′A

2
‖τ 1/2∂tσ∗h

i ‖20 +
τ

2
‖∂tp∗hi ‖20 +

1

2

(

ρϕ0 −
ζ

ǫF

)

‖p∗hi ‖20

)

+ k2
j
∑

i=1

(

1

2
‖M−1/2∂tp

h
i ‖20 + ‖∂tuh

i ‖2V + ϑ‖∂tσ∗h
i ‖20

+ κ‖τ 1/2∂tσ∗h
i ‖20 + (ϕ0 + ρτ)‖∂tp∗hi ‖20

)

6 C‖f‖2H1(0,tj ;V ′) + C‖g‖2H1(0,tj ;L2(ΓN )) + (2k + 1)k

j
∑

i=1

‖M1/2qi‖20

+ Ck

j−1
∑

i=1

(

‖M−1/2phi ‖20 +
(

1 + κ+ ϑ+
1

ǫ′A

)

‖uh
i ‖2V
)

.

Next, recalling that we are assuming ϕ1 > 0, we choose ρ large enough so that ρ >

ζτ/2ϕ0ϕ1. Therefore ζ/ϕ0ρ < 2ϕ1/τ and we can find ǫF so that ζ/ϕ0ρ < ǫF < 2ϕ1/τ .

Recalling that η = ζϕ1/τ we can conclude that ǫF < 2η/ζ or, in the more relevant form,

η − ǫF ζ/2 > 0. On the other hand we also see that ζ/ϕ0ρ < ǫF implies ζ/ǫF < ϕ0ρ or,

what is again more relevant, ϕ0ρ − ζ/ǫF > 0. Lastly we choose (for example) ǫA = 1/3,

κ = 2, ϑ = 2ǫ′A with ǫ′A = 2‖D−1‖L∞(Ω) and apply Gronwall’s inequality to give the

desired result (which is uniform in ζ) for any time step k > 0.

Turning now to the non-lagged case we have m = 0 and `0u
h
i := uh

i . In this case for term
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B we have,

2kκ

j
∑

i=1

(ϕ1Dε(u
h
i ),σ

∗h
i ) = 2k2κ

j
∑

i=1

(ϕ1Dε(∂tu
h
i ),σ

∗h
i ) + 2kκ

j−1
∑

i=0

(ϕ1Dε(u
h
i ),σ

∗h
i+1)

6 ǫBk
2κ2ϕ2

1‖D‖L∞(Ω))

j
∑

i=1

‖∂tuh
i ‖2V +

k2

ǫB

j
∑

i=1

‖σ∗h
i ‖20

+ ǫ′Bkκ

j
∑

i=1

‖σ∗h
i ‖20 +

kκϕ2
1‖D‖L∞(Ω))

ǫ′B

j−1
∑

i=1

‖uh
i ‖2V .

The last term on the right can be ‘Gronwalled’ but the others will be kicked-back. Next,

for term C we obtain,

2kϑ

j
∑

i=1

(ϕ1Dε(u
h
i ), ∂tσ

∗h
i ) = 2k2ϑ

j
∑

i=1

(ϕ1Dε(∂tu
h
i ), ∂tσ

∗h
i ) + 2kϑ

j−1
∑

i=0

(ϕ1Dε(u
h
i ), ∂tσ

∗h
i+1)

6
k2

τǫC

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20 + ǫCk

2ϑ2ϕ2
1‖D‖L∞(Ω))

j
∑

i=1

‖∂tuh
i ‖2V

+
kϑ

ǫ′C

j−1
∑

i=1

ϕ2
1‖D‖L∞(Ω))

τ
‖uh

i ‖2V + ǫ′Ckϑ

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20,

while for D we have

2̺kϕ2

j
∑

i=1

(phi , ∂tp
∗h
i ) = 2̺k2ϕ2

j
∑

i=1

(∂tp
h
i , ∂tp

∗h
i ) + 2̺kϕ2

j
∑

i=1

(phi−1, ∂tp
∗h
i )

6

j
∑

i=1

(

k2

ǫD
+ k̺ǫ′D

)

‖∂tp∗hi ‖20 + k2
j
∑

i=1

ǫD̺
2ϕ2

2M‖M−1/2∂tp
h
i ‖20 +

̺Mϕ2
2k

ǫ′D

j−1
∑

i=1

‖M−1/2phi ‖20

for every ǫD, ǫ
′

D > 0. Lastly, for E,

2ρkϕ2

j
∑

i=1

(phi , p
∗h
i ) = 2ρk2ϕ2

j
∑

i=1

(∂tp
h
i , p

∗h
i ) + 2ρkϕ2

j
∑

i=1

(phi−1, p
∗h
i )

6

j
∑

i=1

(

k2ϕ0

ǫE
+ ǫ′Ekρϕ0

)

‖p∗hi ‖20 + k2
j
∑

i=1

ǫEρ
2ϕ2

2M

ϕ0
‖M−1/2∂tp

h
i ‖20

+
ρϕ2

2Mk

ϕ0ǫ′E

j−1
∑

i=1

‖M−1/2phi ‖20

for every ǫE , ǫ
′

E > 0.
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Assembling these results into (24) now gives,
(

1

2
− ǫA

)

‖uh
j ‖2V + ‖M−1/2phj ‖20 + κ‖τ 1/2σ∗h

j ‖20 +
(

ϑ− ‖D
−1‖L∞(Ω)

ǫA

)

‖σ∗h
j ‖20

+ (̺ϕ0 + ρτ)‖p∗hj ‖20 + 2k

(

η − ζǫF
2

) j
∑

i=1

‖phi ‖20 + 2k

j
∑

i=1

‖K−1/2zhi ‖20

+ k2
(

1

2
− ǫD̺2ϕ2

2M −
ǫEρ

2ϕ2
2M

ϕ0

) j
∑

i=1

‖M−1/2∂tp
h
i ‖20 + κk2

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20

+

(

(2τ − ǫ′D)̺−
k

ǫD

)

k

j
∑

i=1

‖∂tp∗hi ‖20 + 2k

(

ρϕ0 −
ζ

2ǫF
− kϕ0

2ǫE
− ǫ′Eρϕ0

2

) j
∑

i=1

‖p∗hi ‖20

+ k2(̺ϕ0 + ρτ)

j
∑

i=1

‖∂tp∗hi ‖20 +
(

(2− ǫ′C)ϑ− ǫ′A −
k

τǫC

)

k

j
∑

i=1

‖τ 1/2∂tσ∗h
i ‖20

+

(

(2− ǫ′B)κ−
k

ǫB

)

k

j
∑

i=1

‖σ∗h
i ‖20

+
(

1− (ǫBκ
2 + ǫCϑ

2)ϕ2
1‖D‖L∞(Ω))

)

k2
j
∑

i=1

‖∂tuh
i ‖2V

+ ϑk2
j
∑

i=1

‖∂tσ∗h
i ‖20 6 (2k + 1)k

j
∑

i=1

‖M1/2qi‖20 + C‖f‖2H1(0,tj ;V ′) + C‖g‖2H1(0,tj ;L2(ΓN ))

+ k

j−1
∑

i=1

(

(

1 +
ρϕ2

2M

ϕ0ǫ′E
+
̺Mϕ2

2

ǫ′D

)

‖M−1/2phi ‖20

+

(

2 +
‖D−1‖L∞(Ω))

τǫ′A
+

(

κ

ǫ′B
+

ϑ

τǫ′C

)

ϕ2
1‖D‖L∞(Ω))

)

‖uh
i ‖2V

)

.

The next step is to choose the ǫ’s so as to keep all of the coefficients on the left positive.

We begin this procedure by dealing first with the terms involving ph and p∗h.

First we see that ǫ′E and ǫ′D can be chosen rather freely since they appear in the summation

on the right hand side so, to simplify the arguments that are coming, we will take ǫ′E = 1

and insist that ǫ′D < 2τ which is possible since τ > 0. With this we observe that

̺ϕ0 + ρτ > 0 by assumption and that, since η = ζϕ1/τ > 0 (recall that ϕ1 > 0), we

can guarantee that η − ζǫF/2 > 0 by insisting that ǫF < 2ϕ1/τ . In a similar vein we

can guarantee that (2τ − ǫ′D)̺ − k/ǫD > 0 by insisting that ǫD > k/((2τ − ǫ′D)̺) which
(recalling that 2τ − ǫ′D > 0) is always achievable by controlling k/̺.

Now, since ǫ′E = 1 we see that

ρϕ0 −
ζ

2ǫF
− kϕ0

2ǫE
− ǫ′Eρϕ0

2
> 0 ⇐⇒ ρϕ0 −

ζ

ǫF
− kϕ0

ǫE
> 0

which, in turn, is equivalent to ǫE > ǫFkϕ0/(ρϕ0ǫF − ζ) which can be guaranteed by

choosing k small enough with the proviso that ρϕ0ǫF − ζ > 0, or ǫF > ζ/ρϕ0. Taken

together with the earlier restriction on ǫF we have therefore to require that,

ζ

ρϕ0
< ǫF <

2ϕ1

τ

17



which is always achievable by choosing ρ large enough. The last of this set of terms to be

concerned about is the requirement that

1

2
− ǫD̺2ϕ2

2M −
ǫEρ

2ϕ2
2M

ϕ0

> 0

which, with the lower bounds on ǫD and ǫE stated above, can be re-written and bounded

as,

1

2M
> ǫD̺

2ϕ2
2 +

ǫEρ
2ϕ2

2

ϕ0
>

k̺ϕ2
2

(2τ − ǫ′D)
+

kǫFρ
2ϕ2

2

ρϕ0ǫF − ζ
.

This can always be achieved by requiring small enough time step k and so with any ̺ > 0

completes the calculations regarding the internal viscous pressure variables.

Turning now to the terms involving σ∗h we notice this time that ǫ′A, ǫ
′

B and ǫ′C can be

chosen freely since they are balanced on the right by the ‘Gronwall coefficient’, and we

recall that we are still free to choose κ, ϑ > 0.

Clearly we need to insist that ǫA < 1/2 with ϑ − ‖D−1‖L∞(Ω)/ǫA > 0 simultaneously.

Hence we require that ǫA > ϑ−1‖D−1‖L∞(Ω) and so such an ǫA > 0 exists by insisting

that ϑ > 2‖D−1‖L∞(Ω). Now, for some ǫ ∈ (0, 1) we set ǫ′A = ǫϑ and ǫ′C = ǫ and then

(2− ǫ′C)ϑ− ǫ′A − k/τǫC > 0 will be guaranteed if we insist that ǫC > k/((2− 2ǫ)ϑτ).

In a similar vein, if ǫ′B ∈ (0, 2) then (2 − ǫ′B)κ − k/ǫB > 0 is guaranteed by ǫB >

k/[(2 − ǫ′B)κ]. Clearly ǫ′A, ǫ
′

B and ǫ′C can all be chosen within these constraints and so,

even with the lower bound on ϑ, we have derived achievable lower bounds on ǫB and ǫC
and a non-empty two-sided bound on ǫA. The last requirement is that,

1− (ǫBκ
2 + ǫCϑ

2)ϕ2
1‖D‖L∞(Ω) > 0 or, equivalently,

ǫBκ
2 + ǫCϑ

2 <
1

ϕ2
1‖D‖L∞(Ω)

.

Observing the lower bounds on ǫB and ǫC we also need,

ǫBκ
2 + ǫCϑ

2 >
kκ

2− ǫ′B
+

kϑ

(2− 2ǫ)τ
.

Putting these last two inequalities together and using the lower bound on ϑ then results

in,
1

ϕ2
1‖D‖L∞(Ω)

>

(

κ

2− ǫ′B
+

ϑ

(2− 2ǫ)τ

)

k >

(

κ

2− ǫ′B
+
‖D−1‖L∞(Ω)

(1− ǫ)τ

)

k

and this will be satisfied if k is small enough. Therefore, for small enough time step, the

proof is completed by using the discrete Gronwall lemma. QPPPPPPR

Remark 3.3 Note that the six terms labelled A, . . . , F in (24) are not present in poroe-

lasticity and the inequality then reflects the unconditional (in terms of time step) stability

of the coupled poroelasticity algorithm.

On the other hand the time step restriction in the non-lagged algorithm seems to be nec-

essary. If we note that sending ϕ1 → 0 or τ → ∞, both representing the vanishing of

viscoelasticity, then by examining the proof we can see that the restriction on the time step

vanishes and we get back to the unconditional stability of poroelasticity. This suggests that

not too much information has been discarded in the foregoing analysis.
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Since the problem is linear we have a well-posedness result for the discrete schemes.

Proposition 3.4 (discrete well-posedness) Assume (12). Then (for small enough

time step in the case of `0) the discrete problem has a unique solution that depends con-

tinuously on the data.

Proof. The initial data are zero and for each time step, given unique previous values, the

discrete scheme defines a linear map from the data into the discrete solution space. The

stability estimate implies that this map is bijective. QPPPPPPR

4 Error estimates

We now move on to explore the convergence properties of the lagged scheme and derive

an a priori error bound. To begin we introduce projections,

Πp : L2(Ω)→W h, Πz : H0(div; Ω)→ RTh,

Πu : V → V h, Πσ : L2(Ω)→W h,

as follows. Πp and Πσ are defined as the standard L2(Ω) and L2(Ω) projections; Πu is

the usual Ritz, or elliptic, projection defined through a(·, ·); and, Πz is the usual Raviart-

Thomas interpolator, see [23], which satisfies (∇ · (w −Πzw), φ) = 0 for all φ ∈ W h and

for which ‖w −Πzw‖0 6 Ch‖w‖1.
Defining the error components,

Ei
p := phi − Πpp(ti), Ep(t) := p(t)− Πpp(t),

Ei
z := zhi − Πzz(ti), Ez(t) := z(t)−Πzz(t),

Ei
u := uh

i − Πuu(ti), Eu(t) := u(t)− Πuu(t),

Ei
σ := σ∗h

i −Πσσ
∗(ti), Eσ(t) := σ∗(t)−Πσσ

∗(t),

Ei
c := p∗hi −Πpp

∗(ti), Ec(t) := p∗(t)− Πpp
∗(t),

so that phi − p(ti) = Ei
p − Ep(ti) and so on, the error bound will follow in the usual way

by first bounding the ‘E’ quantities in terms of the approximation errors embodied in

the ‘E ’ quantities and the finite difference approximations, and then using the triangle

inequality.

The approximation-error bound,

‖Eσ‖W 1
∞
(I;L2(Ω)) + ‖Eu‖W 1

∞
(I;V ) + ‖Ep‖W 1

∞
(I;L2(Ω)) + ‖Ez‖L∞(I;L2(Ω)) + ‖Ec‖W 1

∞
(I;L2(Ω))

6 Ch
(

‖σ∗‖W 1
∞
(I;H1(Ω)) + ‖u‖W 1

∞
(I;H2(Ω)) + ‖p‖W 1

∞
(I;H1(Ω))

+ ‖p‖L∞(I;H2(Ω)) + ‖p∗‖W 1
∞
(I;H2(Ω))

)

, (25)

follows by standard results, and we note from (1) and (6) that σ∗ ∈ Wm+1
p (I;H1(Ω))

whenever we have u ∈ Wm
p (I;H2(Ω)), and also that p∗ ∈ Wm+1

p (I;L2(Ω)) whenever

p ∈ Wm
p (I;L2(Ω)).

We now give the main technical argument that will contribute toward the a priori error

bound below in Theorem 4.2.
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Lemma 4.1 (main error bound) Assume (12) along with,

• p ∈ L∞(I;H2(Ω)) ∩W 1
∞
(I;H1(Ω)) ∩H2(I;L2(Ω));

• u ∈ W 1
∞
(I;H2(Ω)) ∩H2(I;V );

• σ∗ ∈ W 1
∞
(I;H1(Ω)) ∩H2(I;L2(Ω));

• p∗ ∈ W 2
2 (I;L2(Ω)),

then for the lagged scheme, with any time step k > 0,

‖M−1/2Ej
p‖20 + ‖Ej

u‖2V + ‖Ej
σ‖20 + ‖ϕ

1/2
0 Ej

c‖20

+

j
∑

i=1

(

k‖K−1/2Ei
z‖20 + k‖τ 1/2∂tEi

σ‖20 + k‖τ 1/2∂tEi
c‖20
)

6 Ck2 + Ch2

for a constant C independent of h and k.

Proof. The approach is quite standard and so we include only the main steps. Subtract

each of (13), (14), (15), (16), (17) (at ti) from its counterpart in (18), (19), (20), (21),

(22) with the choices φ = Ei
p, χ = ∂tE

i
u, ψ = −Ei

z , θ = ϑ∂tE
i
σ, for some ϑ > 0, and

̟ = ∂tE
i
c. Add the resulting equations, notice that the terms involving (α∇ · ∂tEi

u, E
i
p)

and (∇ · Ei
z, E

i
p) are self-eliminating, and multiply by 2k to get,

k∂t‖M−1/2Ei
p‖20 + k∂t‖Ei

u‖2V + ϑk∂t‖Ei
σ‖20 + k∂t‖ϕ1/2

0 Ei
c‖20 + 2k‖τ 1/2∂tEi

c‖20
+ 2k‖K−1/2Ei

z‖20 + 2kϑ‖τ 1/2∂tEi
σ‖20 + k2‖M−1/2∂tE

i
p‖20 + k2‖ϕ1/2

0 ∂tE
i
c‖20 + k2‖∂tEi

u‖2V
+ ϑk2‖∂tEi

σ‖20 = 2k(M−1(ṗ(ti)− ∂tpi), Ei
p) + 2k(α∇ · (u̇(ti)− ∂tui), E

i
p)

+ 2kϑ(τ σ̇∗(ti)− τ∂tσ∗

i , ∂tE
i
σ)− 2kϑ(ϕ1Dε(ui − ui−1), ∂tE

i
σ) + 2k(M−1∂tEp(ti), E

i
p)

+2k(∇·Ez(ti), E
i
p)+2k(α∇·∂tEu(ti), E

i
p)+2k(K−1

Ez(ti), E
i
z)−2kϑ(ϕ1Dε(Eu(ti−1)), ∂tE

i
σ)

+ 2kϑ(τ∂tEσ(ti), ∂tE
i
σ) + 2kϑ(Eσ(ti), ∂tE

i
σ) + 2kϑ(ϕ1Dε(E

i−1
u ), ∂tE

i
σ)− 2k(Ep(ti),∇ ·Ei

z)

+ 2ka(Eu(ti), ∂tE
i
u)− 2k(Eσ(ti), ε(∂tE

i
u))− 2k(αEp(ti),∇ · ∂tEi

u) + 2k(Ei
σ, ε(∂tE

i
u))

− 2k(ϕ2E
i−1
p , ∂tE

i
c) + 2kτ(ṗ∗(ti)− ∂tp∗(ti), ∂tEi

c) + 2kϕ2(p(ti)− p(ti−1), ∂tE
i
c)

+ 2kτ(∂tEc(ti), ∂tE
i
c) + 2kϕ0(Ec(ti), ∂tE

i
c) + 2kϕ2(Ep(ti−1), ∂tE

i
c).

Now, in the right hand side of this, we observe the orthogonalities for

term 5 : (M−1∂tEp(ti), E
i
p) = 0;

term 6 : (∇ · Ez(ti), E
i
p) = 0;

term 10 : ϑ(τ∂tEσ(ti), ∂tE
i
σ) = 0;

term 11 : ϑ(Eσ(ti), ∂tE
i
σ) = 0;

term 13 : (Ep(ti),∇ ·Ei
z) = 0 (since ∇ · Ei

z ∈ W h ×W h);

term 14 : a(Eu(ti), ∂tE
i
u) = 0;

term 21 : (∂tEc(ti), ∂tE
i
c) = 0;

term 22 : (Ec(ti), ∂tE
i
c) = 0;

term 23 : (Ep(ti−1), ∂tE
i
c) = 0,
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and so, upon removing right-hand-side terms 5, 6, 10, 11, 13, 14, 21, 22 and 23, we are

left with,

k∂t‖M−1/2Ei
p‖20 + k∂t‖Ei

u‖2V + ϑk∂t‖Ei
σ‖20 + k∂t‖ϕ1/2

0 Ei
c‖20 + 2k‖τ 1/2∂tEi

c‖20
+ 2k‖K−1/2Ei

z‖20 + 2kϑ‖τ 1/2∂tEi
σ‖20 + k2‖M−1/2∂tE

i
p‖20 + k2‖ϕ1/2

0 ∂tE
i
c‖20

+ k2‖∂tEi
u‖2V + ϑk2‖∂tEi

σ‖20 = 2k(M−1(ṗ(ti)− ∂tpi), Ei
p)

+ 2k(α∇ · (u̇(ti)− ∂tui), E
i
p) + 2kϑ(τ σ̇∗(ti)− τ∂tσ∗

i , ∂tE
i
σ)

− 2kϑ(ϕ1Dε(ui − ui−1), ∂tE
i
σ) + 2k(α∇ · ∂tEu(ti), E

i
p)

+ 2k(K−1
Ez(ti), E

i
z)− 2kϑ(ϕ1Dε(Eu(ti−1)), ∂tE

i
σ)− 2k(Eσ(ti), ε(∂tE

i
u))

− 2k(αEp(ti),∇ · ∂tEi
u) + 2kϑ(ϕ1Dε(E

i−1
u ), ∂tE

i
σ) + 2k(Ei

σ, ε(∂tE
i
u))

− 2k(ϕ2E
i−1
p , ∂tE

i
c) + 2kτ(ṗ∗(ti)− ∂tp∗(ti), ∂tEi

c) + 2kϕ2(p(ti)− p(ti−1), ∂tE
i
c).

There are now fourteen terms on the right, with all except terms ten, eleven and twelve

containing approximation error. This means that we will have a good deal of freedom in

using kickback arguments by choosing suitable ǫ’s in Young’s inequality. Indeed, labelling

these terms in order as I, II, III, . . . , XIV we sum over i = 1, . . . , j and see that terms

I, II, V, XII, XIII and XIV, involving Ei
p and Ei

c, can be controlled by approximation, a

kickback and a Gronwall inequality. Terms III, IV and VII, involving ∂tE
i
σ, can be dealt

with by approximation and kickback while term X, due to the lagging, is easily dealt with

by a Gronwall estimate. Term VI presents no difficulty but terms VIII, IX and XI will

need to be summed by parts using (3).

So, to summarise, we have,

j
∑

i=1

(

2k‖K−1/2Ei
z‖20 + 2kϑ‖τ 1/2∂tEi

σ‖20 + 2k‖τ 1/2∂tEi
c‖20

+ k2‖M−1/2∂tE
i
p‖20 + k2‖∂tEi

u‖2V + ϑk2‖∂tEi
σ‖20 + k2‖ϕ1/2

0 ∂tE
i
c‖20
)

+ ‖M−1/2Ej
p‖20 + ‖Ej

u‖2V + ϑ‖Ej
σ‖20 + ‖ϕ

1/2
0 Ej

c‖20 =
j
∑

i=1

(I + II + · · ·+XI) ,

and we now estimate the summed terms on the right in the way described above. To do this

we will make use of results of the following type. Since v̇(ti)−∂tvi = k−1
∫ ti
ti−1

∫ ti
s
v̈(ξ) dξds,

it is easily deduced for a scalar product (on X say) and its norm that for all p > 1,

|(v̇(ti)− ∂tvi, w)| 6 k1−1/p‖w‖X ‖v̈‖Lp(ti−1,ti;X).

|(vi − vi−1, w)| 6 k1−1/p‖w‖X ‖v̇‖Lp(ti−1,ti;X),

‖∂tv(ti)‖X 6 k−1/p‖v̇‖Lp(ti−1,ti;X),

where w is not time dependent.

We apply Young’s inequality to terms I, II and V with ǫ = 6 for the j–th term in the sum
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and arrive—first in detail, and then more succinctly—at,

j
∑

i=1

∣

∣

∣
I + II + V

∣

∣

∣
6

1

2
‖M−1/2Ej

p‖20 + 3k

j−1
∑

i=1

‖M−1/2Ei
p‖20 + k2‖M−1/2p̈‖2L2(0,tj−1;L2(Ω))

+ 6k3‖M−1/2p̈‖2L2(tj−1,tj ;L2(Ω)) + k2‖M1/2α∇ · ü‖2L2(0,tj−1;L2(Ω))

+ 6k3‖M1/2α∇ · ü‖2L2(tj−1,tj ;L2(Ω)) + tj−1‖M1/2α∇ · Ėu‖2L∞(0,tj−1;L2(Ω))

+ 6k2‖M1/2α∇ · Ėu‖2L∞(tj−1,tj ;L2(Ω)),

6
1

2
‖M−1/2Ej

p‖20 + 3k

j−1
∑

i=1

‖M−1/2Ei
p‖20

+ Ck2
(

‖p̈‖2L2(0,tj ;L2(Ω)) + ‖∇ · ü‖2L2(0,tj ;L2(Ω))

)

+ Ctj−1‖∇ · Ėu‖2L∞(0,tj ;L2(Ω)).

Similarly, for terms III, IV and VII using ǫ = 5 in each Young’s inequality we have,

j
∑

i=1

∣

∣

∣
III + IV + VII

∣

∣

∣
6

3

5
ϑk

j
∑

i=1

‖τ 1/2∂tEi
σ‖20 + Cϑk2

(

‖σ̈∗‖2L2(0,tj ;L2(Ω)) + ‖u̇‖2L2(0,tj ;V )

)

+ Cϑtj‖Eu‖2L∞(0,tj ;V ),

while X and VI yield,

j
∑

i=1

∣

∣

∣
X+ VI

∣

∣

∣
6

1

5
ϑk

j
∑

i=1

‖τ 1/2∂tEi
σ‖20 + k

j
∑

i=1

‖K−1/2Ei
z‖20

+ Ctj‖Ez‖2L∞(0,tj ;L2(Ω)) + Cϑk

j−1
∑

i=1

‖Ei
u‖2V .

Next, for terms VIII, IX and XI we use (3) to get,

j
∑

i=1

(

VIII + IX + XI
)

= −2(Eσ(tj), ε(E
j
u))− 2(αEp(tj),∇ · Ej

u)− 2(Ej
σ, ε(E

j
u))

+ 2k

j
∑

i=1

(α∂tEp(ti),∇ · Ei−1
u ) + 2k

j
∑

i=1

(∂tEσ(ti), ε(E
i−1
u ))− 2k

j
∑

i=1

(∂tE
i
σ, ε(E

i−1
u ).

Hence, for all ǫ > 0, there is a C⋆ depending only on D such that,

j
∑

i=1

∣

∣

∣
VIII + IX + XI

∣

∣

∣
6 3ǫC⋆

(

‖Eσ(tj)‖20 + ‖αEp(tj)‖20
)

+ 3ǫC⋆‖Ej
σ‖20 +

1

ǫ
‖Ej

u‖2V

+
ϑk

5

j
∑

i=1

‖τ 1/2∂tEi
σ‖20 + C⋆tj‖Ėσ‖2L∞(0,tj ;L2(Ω)) + C⋆tj‖αĖp‖2L∞(0,tj ;L2(Ω))

+

(

2 +
5C⋆

ϑτ

)

k‖E0
u‖2V +

(

2 +
5C⋆

ϑτ

)

k

j−1
∑

i=1

‖Ei
u‖2V .
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Lastly, for terms XII, XIII and XIV we have

j
∑

i=1

∣

∣

∣
XII + XIII + XIV

∣

∣

∣
6 3τk2‖p̈∗‖2L2(0,tj ;L2(Ω)) +

3ϕ2k
2

τ
‖ṗ‖2L2(0,tj ;L2(Ω))

+ k

j
∑

i=1

‖τ 1/2∂tEi
c‖20 +

3ϕ2
2Mk

τ

j−1
∑

i=1

‖M−1/2Ei
p‖20.

Assembling all of these results produces,

1

2
‖M−1/2Ej

p‖20 +
(

1− 1

ǫ

)

‖Ej
u‖2V + (ϑ− 3ǫC⋆)‖Ej

σ‖20 + ‖ϕ
1/2
0 Ej

c‖20

+

j
∑

i=1

(

k‖K−1/2Ei
z‖20 + kϑ‖τ 1/2∂tEi

σ‖20 + k‖τ 1/2∂tEi
c‖20 + k2‖M−1/2∂tE

i
p‖20

+ k2‖∂tEi
u‖2V + ϑk2‖∂tEi

σ‖20 + k2‖ϕ1/2
0 ∂tE

i
c‖20
)

6 Ck2
(

‖ṗ‖2H1(0,tj ;L2(Ω))

+ ϑ‖u̇‖2L2(0,tj ;V ) + ‖∇ · ü‖2L2(0,tj ;L2(Ω)) + ϑ‖σ̈∗‖2L2(0,tj ;L2(Ω)) + ‖p̈∗‖2L2(0,tj ;L2(Ω))

)

+ C⋆tj

(

‖Ėσ‖2L∞(0,tj ;L2(Ω)) + ‖αĖp‖2L∞(0,tj ;L2(Ω))

)

+ 3ǫC⋆

(

‖Eσ(tj)‖20 + ‖αEp(tj)‖20
)

+ Ctj

(

‖∇ · Ėu‖2L∞(0,tj ;L2(Ω)) + ϑ‖Eu‖2L∞(0,tj ;V ) + ‖Ez‖2L∞(0,tj ;L2(Ω))

)

+ 3k

(

1 +
ϕ2
2M

τ

) j−1
∑

i=1

‖M−1/2Ei
p‖20 +

(

Cϑ+

(

2 +
5C⋆

ϑτ

))

k

j−1
∑

i=1

‖Ei
u‖2V ,

and by choosing, for example, ǫ = 2 and any ϑ > 6C⋆ we complete the proof by using

(25) and Gronwall’s inequality. QPPPPPPR

Theorem 4.2 (a priori error bound) Under the assumptions of Lemma 4.1 we have

for the lagged scheme, and with any time step k > 0, that

(

k

j
∑

i=1

(

‖K−
1

2 (z(ti)− zhi )‖20 + ‖τ
1

2∂t(σ
∗(ti)− σ∗h

i )‖20 + ‖ϕ
1/2
0 ∂t(p

∗(ti)− p∗hi )‖20
)

)1/2

+‖M−
1

2 (p(tj)−phj )‖0+‖u(tj)−uh
j ‖V +‖ϕ

1/2
0 (p∗(tj)−p∗hj )‖0+‖σ∗(tj)−σ∗h

j ‖0 6 Ck+Ch

for a positive constant, C, independent of h and k.

Proof. Use Lemma 4.1, the definitions of the error components, and the triangle inequal-

ity. QPPPPPPR

5 Numerical experiments

To illustrate the error bound derived in the previous section we substitute into the PDE

system a simple chosen form for pressure and displacement so that we may determine

exact (up to quadrature error) values of error norms. Specifically we take,

p = (t+ 3t4) cos(3x) cos(2y)

and u = (t+ 2t3)

(

cos(x/3) cos(2y)

cos(2x) cos(y/3)

)
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In the absence of viscoelasticity (i.e. when ϕ0 = 1) this procedure is straightforward. We

just use the exact solutions in the PDE’s so as to derive the corresponding forms for the

data. However, when ϕ0 ∈ (0, 1) the situation is a little more complicated and less easy

to implement. The root cause is the absence of free-to-choose loads on the right hand

side of the internal variable ODE’s for p∗ and σ∗. This means that the forms of these

internal variables are dependent on the forms chosen for the pressure and displacement.

Of course, we could introduce arbitrary loads into these ODE’s but then the software

becomes unnecessarily convoluted (the boundary tractions are affected and the physical

meaning of p∗ and σ∗ becomes obscured). Some notes on how the exact solutions are

implemented in the presence of viscoelasticity are given in Appendix A. We note also

that any artificially created solution must respect the symmetry of the stress tensors, but

(for simplicity) we have not taken the extra step in these artificial solutions of respecting

the homogeneous boundary data assumed earlier for the theory.

Table 1: values of ‖∇{u− uh}‖ℓ∞(L2) for the lagged scheme.

N M

2 4 8 16 32 64

2 8.68707 4.3788 2.22349 1.19874 0.756209 0.598015

4 8.67769 4.36655 2.18775 1.12149 0.621019 0.41139

8 8.67359 4.36337 2.17547 1.09235 0.563691 0.316704

16 8.67194 4.36322 2.17239 1.08386 0.545676 0.282632

32 8.67126 4.36362 2.17187 1.08172 0.540773 0.272697

64 8.67097 4.36395 2.1719 1.08125 0.539536 0.270075

Table 2: values of ‖{p− ph}‖ℓ∞(L2) for the lagged scheme.

N M

2 4 8 16 32 64

2 9.38953 5.08582 2.5632 1.28806 0.652707 0.342683

4 9.37828 5.08749 2.56282 1.28513 0.645799 0.328787

8 9.37091 5.08878 2.56305 1.28421 0.643256 0.32341

16 9.36674 5.08959 2.56335 1.28405 0.642536 0.321779

32 9.36452 5.09003 2.56356 1.28407 0.642371 0.321344

64 9.36338 5.09027 2.56369 1.28411 0.642345 0.321238

For these numerical experiments we consider the d = 2 case only (i.e. Ω ⊂ R
2) by taking

Ω = (0, 1)2. We let T h ∈ {T }h be a member of a family of quasiuniform and shape

regular triangulations of Ω where each ‘mesh’ is formed by taking an M ×M array of the

basic building block ⊠. Thus we get h =M−1 and (M + 1)2 +M2 triangle-corner nodes

for a given M ∈ N. Because we are dealing here with a simple model problem we were

able to carry out all of the computations in FreeFem++ v.3.9 (see www.freefem.org) and

solve the pressure and displacement problems simultaneously. However, in practice and

for large scale simulations, we note that iterative coupling procedures are usually used,

see [16] for example.

For the numerical tests that follow we used the parameter values T = 2, E = 3, ν = 0.3

so that λ = 1.73077 and µ = 1.15385 by the standard Hooke’s law expressions λ =
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Table 3: values of
√
k‖{K−1zh +∇p}‖ℓ2(L2) for the lagged scheme.

N M

2 4 8 16 32 64

2 35.9875 18.6286 9.40366 4.73244 2.4008 1.26329

4 26.8113 13.8854 7.00643 3.51898 1.7712 0.905571

8 21.997 11.3967 5.74972 2.88516 1.44684 0.729304

16 19.6008 10.158 5.12453 2.57059 1.28732 0.645383

32 18.4153 9.54512 4.81536 2.41526 1.20901 0.605083

64 17.8271 9.24103 4.66198 2.33826 1.17033 0.585439

Table 4: values of ‖{σ∗ − σ∗h}‖ℓ∞(L2) for the lagged scheme.

N M

2 4 8 16 32 64

2 1.15855 1.14977 1.14785 1.14739 1.14728 1.14725

4 0.703167 0.674952 0.668198 0.666523 0.66611 0.66601

8 0.434622 0.377434 0.361973 0.358026 0.357038 0.356793

16 0.315034 0.224688 0.195174 0.18711 0.18505 0.184534

32 0.274159 0.160543 0.114026 0.0991323 0.0950754 0.0940387

64 0.262635 0.139397 0.0806262 0.0573534 0.0499373 0.0479155

Eν/((1 + ν)(1 − 2ν)) and µ = E/(2 + 2ν). We also used ϕ0 = 0.5, ϕ1 = 0.5, τ = 10,

α = 2, η = 0.125, ζ = 2.5, K = 4 and M = 2 (which shouldn’t cause any confusion with

M , the grid parameter, above).

The results are shown for the lagged scheme (using `1) in Tables 1, 2, 3, 4 and 5 and for

interest, although not covered by our error bound, for the non-lagged scheme (using `0)

in Tables 6, 7, 8, 9 and 10. In each case we clearly see the O(h + k) convergence down

the diagonals.

6 A practical example

In this section we attempt to illustrate the behaviour of this model in a more realistic

geomechanics setting. We start by considering a 1 km by 500m vertical cross section of

rock skeleton with Young’s modulus E = 4.0 × 107Pa and Poisson’s ratio ν = 0.3. Thus

Ω = {0 < x < 1000 and − 500 < y < 0} and we take T = 6, ζ = 2.5, K = 10−5, M = 10

and compute on a 40×20 mesh of isoceles triangles (with the diagonals flipped at the top

left and bottom right corners of Ω to avoid having all of those triangles’ nodes lying on

∂Ω). Note that these values have been chosen for the purposes of illustration only. The

discretization is otherwise exactly as described above in Section 5, and we use the lagged

scheme.

For the body forces we take f = 0 and for the tractions we take: g = (0,−1000x)
on y = 0 (the top); g = (1000(500 + y), 0) on x = 0 (the left); and, g = (0, 0) on

x = 1000 (the right). On the bottom where y = −500 we impose u = 0. For the pressure
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Table 5: values of ‖{p∗ − p∗h}‖ℓ∞(L2) for the lagged scheme.

N M

2 4 8 16 32 64

2 0.0195518 0.0189307 0.018734 0.0186829 0.01867 0.0186668

4 0.0143455 0.0123796 0.0116986 0.0115168 0.0114706 0.011459

8 0.0113932 0.00813415 0.00679894 0.00641173 0.00631057 0.00628499

16 0.0102571 0.00622387 0.00422661 0.00353908 0.00334407 0.00329345

32 0.00989466 0.00556795 0.00315716 0.00214426 0.00180237 0.0017061

64 0.00978408 0.00537567 0.00280565 0.0015844 0.00107868 0.000909106

Table 6: values of ‖∇{u− uh}‖ℓ∞(L2) for the non-lagged scheme.

N M

2 4 8 16 32 64

2 8.6951 4.43003 2.30181 1.32295 0.934934 0.810744

4 8.67776 4.38106 2.20244 1.13852 0.645629 0.445535

8 8.67323 4.36934 2.17994 1.09511 0.565685 0.318684

16 8.67175 4.36609 2.17438 1.08476 0.545746 0.281899

32 8.67117 4.36505 2.17287 1.08218 0.540842 0.272391

64 8.67092 4.36467 2.17241 1.08151 0.539614 0.270011

equation we assume a simple hydrostatic pressure field and take an initial pressure of

p(x, y, 0) = −8000y (this approximates ̺gy for ̺ = 800 and g = 9.81). Consistent with

this we set the fluxes as z♭ = (0, 0) on the left and right; z♭ = (0, 8000) on the top; and,

z♭ = (0,−8000) on the bottom.

To demonstrate the effect of the coupling and of the viscoelasticity on the deformation and

pressure we consider the four cases corresponding to α = 1.0 or α = 0.1 and {ϕ0, ϕ1} =
{1, 0} or {ϕ0, ϕ1} = {0.8, 0.2} with, in each case, τ = 10 (recall that ϕ1 = 1 − ϕ0 and in

some sense measures the ‘amount’ of viscous effect present in the material).

The deformed meshes, using a scaling of 10u at the final time are shown in Figure 1 while

the final pressure fields are shown in Figure 2. The shading corresponds to pressure levels

increasing from −500 000 to 4 500 000 in steps of 500 000. The ‘stair-casing’ is an artefact

of the piecewise constant pressure field. These results will be discussed in the conclusions.

7 Concluding remarks

We have presented an extension to a fully discrete mixed and Galerkin approximation

to poroelasticity to allow for viscoelastic relaxation in the porous media. Our lagged

numerical scheme is unconditionally stable, has optimal convergence rates and is simple

to implement into an existing poroelasticity solver. A manufactured solution indicates

that the lagged scheme delivers a numerical solution that is of equivalent quality as the

fully coupled non-lagged scheme but is easier to implement.

Moving on now to consider the ‘practical example’ we can see from the left of Figure 1 that
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Table 7: values of ‖{p− ph}‖ℓ∞(L2) for the non-lagged scheme.

N M

2 4 8 16 32 64

2 9.39488 5.0868 2.56307 1.28698 0.650218 0.337752

4 9.38164 5.08822 2.56292 1.28478 0.644859 0.32682

8 9.37278 5.08923 2.56317 1.28414 0.642985 0.322802

16 9.36772 5.08983 2.56344 1.28405 0.642473 0.321615

32 9.36503 5.09016 2.56361 1.28408 0.642361 0.321304

64 9.36364 5.09033 2.56371 1.28412 0.642345 0.32123

Table 8: values of
√
k‖{K−1zh +∇p}‖ℓ2(L2) for the non-lagged scheme.

N M

2 4 8 16 32 64

2 35.9945 18.6309 9.4038 4.7308 2.39669 1.25506

4 26.8149 13.8868 7.0067 3.5185 1.76977 0.902555

8 21.9988 11.3974 5.74994 2.88508 1.44643 0.728381

16 19.6016 10.1583 5.12466 2.5706 1.28722 0.645132

32 18.4158 9.54531 4.81544 2.41528 1.209 0.605022

64 17.8274 9.24113 4.66202 2.33828 1.17033 0.585426

the relatively small amount of viscoelasticity with only small pressure coupling, α = 0.1,

has little effect on the final deformed shape of the domain. This is to be expected since the

longer term creeping deformation is restricted by the long term elastic modulus, ϕ0E, and

the pressure effect on the displacement equations is ‘small’. However, when the coupling

is increased we see from the right of Figure 1 that the presence of viscous effects has

marked effect. On the other hand we observe from Figure 2 that the coupling parameter

exerts no discernable influence on the final pressure field but that the presence of even

this small amount of viscoelasticity has a rather profound effect.

Of course these findings are for these data only and must be taken with some caution before

they can be extrapolated to ‘reality’. On the other hand what we have demonstrated is

that the addition to the poroelasticity equations of viscoelastic damping in the skeleton

produces novel effects and gives an extra dimension of capability to the modeller —

whether the concern be with rock, biotissue or indeed any other porous media comprising

of a ‘lossy’ skeleton material.

In closing we note that further extensions to this work could include plasticity, thermal

effects, nonlinearities and dynamics. It seems that the last of these could readily be

included in the working given above since if (̺ü(t),χ) is included in the displacement

equation then, on choosing χ = u̇(t), we get,

(̺ü(t), u̇(t)) =
1

2

d

dt
‖̺1/2u̇(t)‖20

which integrates to give the change in kinetic energy from 0 to t.
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Table 9: values of ‖{σ∗ − σ∗h}‖ℓ∞(L2) for the non-lagged scheme.

N M

2 4 8 16 32 64

2 1.5831 1.59922 1.60076 1.6015 1.60181 1.60193

4 0.773958 0.754716 0.747508 0.745866 0.745517 0.745445

8 0.436457 0.381349 0.363773 0.359373 0.358312 0.358056

16 0.31118 0.21987 0.187171 0.178202 0.17594 0.17538

32 0.272746 0.158392 0.108855 0.0926089 0.0881529 0.0870158

64 0.262407 0.139102 0.0786484 0.0540869 0.0460544 0.0438365

Table 10: values of ‖{p∗ − p∗h}‖ℓ∞(L2) for the non-lagged scheme.

N M

2 4 8 16 32 64

2 0.0311587 0.0328927 0.033422 0.0335656 0.0336022 0.0336114

4 0.0163469 0.0154788 0.0152005 0.0151359 0.01512 0.0151161

8 0.0114287 0.00860312 0.00750266 0.00720118 0.00712384 0.00710438

16 0.0101024 0.00620275 0.00430197 0.00366838 0.00349159 0.00344595

32 0.00979528 0.00551581 0.00313387 0.00214258 0.0018106 0.00171753

64 0.00973235 0.00534539 0.00278589 0.00157134 0.00106805 0.00089906
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A Notes on the exact solution

First of all let us recollect the strong form of the equations that we want to solve:

1

M

∂p

∂t
+ α∇ · ∂u

∂t
−K∇2p+ ηp+ ζp∗ = q,

−∇ ·Dε(u) +∇ · σ∗ + α∇p = f ,

τ
∂σ∗

∂t
+ σ∗ = ϕ1Dε(u), and τ

∂p∗

∂t
+ ϕ0p

∗ = −ϕ2p,

with zero initial data on all terms (but we allow more flexibility than in the theory on the

behaviour of these test problems on the boundary of Ω). Recall also that σ = Dε(u)−σ∗,

ϕ0 > 0, M = (φγ + ζ)−1 and η = ζϕ1/τ .

To get the exact solutions that underlie the error data shown earlier we chose the forms

for the pressure and displacement functions and then designed the loads and boundary

conditions so that they were indeed an exact solution of the problem (this procedure is

often termed the method of manufactured solutions).

For the viscous effects though we had to ensure that any given ‘solution’ did not introduce

extra loads in to the right hand side of the evolution equations for the internal stress and

pressure variables.

To do this we assumed first that the displacement was separable: u(x, t) = Fu(t)U(x).

Then, for the internal stress variables we have,

τ σ̇∗

ij + σ∗

ij = ϕ1λδij∇ · u+ 2ϕ1µεij(u)

with σ∗

ij(x, 0) = 0. The solutions to these equations are (with the x dependence sup-

pressed),

σ∗

ij =
ϕ1

τ

∫ t

0

e−(t−s)/τ
(

λδij∇ · u(s) + 2µεij(u(s))
)

ds,

=
ϕ1

τ

(

λδij∇ · u(t) + 2µεij(u(t))

Fu(t)

)
∫ t

0

e−(t−s)/τFu(s) ds.

The viscoelastic effect is then (for the purposes of clean coding) captured in the integral. If

we take the case where Fu(t) = t+Aut
m, for some constant Au and with m a non-negative

integer that we can choose, then by recursion,

Im :=

∫ t

0

es/τsm ds =⇒







I0 := τ(et/τ − 1),

Im := τet/τ tm − τmIm−1,

for m > 1.
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Therefore, with this limited degree of flexibility for choosing the exact form of the dis-

placements, the internal stress variables are given explicitly by,





σ∗

11

σ∗

22

σ∗

12



 =
ϕ1e

−t/τ (I1 + AuIm)

τFu(t)











λ
(

∂u1

∂x1

(t) + ∂u2

∂x2

(t)
)

+ 2µ∂u1

∂x1

(t)

λ
(

∂u1

∂x1

(t) + ∂u2

∂x2

(t)
)

+ 2µ∂u2

∂x2

(t)

µ
(

∂u1

∂x2

(t) + ∂u2

∂x1

(t)
)











.

This is the form that was hard-coded in to the software in order to demonstrate the

convergence rates.

A similar situation arises with the internal pressure variable. In this case we use the

ansatz p = P (x)Fp(t) and get,

p∗(t) = −ϕ0ϕ1

τ 2
P (x)e−t/τ ′

∫ t

0

es/τ
′

Fp(s) ds

where τ ′ := τ/ϕ0 for convenience. Taking Fp(t) = t+Apt
m, where Ap is a constant and m

is a non-negative integer that we can choose (not necessarily the same as the one above),

we calculate that p∗(t) = −τ−2ϕ0ϕ1P (x)e
−t/τ ′(I ′1 + ApI

′

m) where I ′m is identical to Im
except that it uses τ ′ rather than τ .

These somewhat artificial manipulations allow the construction of test problems with

known exact solutions which can then be used to demonstrate the theoretical convergence

rates.
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