Nahla Samargandi, Jan Fidrmuc and Sugata Ghosh

Financial development and economic growth in an oil-rich economy: The case of Saudi Arabia

May 2013
Financial development and economic growth in an oil-rich economy: The case of Saudi Arabia

Nahla Samargandi†, Jan Fidrmuc‡ and Sugata Ghosh§

May 2013

Abstract

We investigate the effect of financial development on economic growth in the context of an oil-rich economy. In doing so, we allow for the effect of financial development to be different for the oil and non-oil sectors of the economy in the long–run. Using the Autoregressive Distributed Lag (ARDL) bounds test technique; we find that financial development has a positive impact on the growth of the non-oil sector in Saudi Arabia. In contrast, its impact on total GDP growth is negative but insignificant.

Keywords: Financial Development; Economic Growth; ARDL Method, Saudi Arabia.
JEL Codes: O11, O16, O47

* We benefited from helpful comments and suggestions received from Mauro Costantini as well as workshop participants at Brunel University and Ruhr University- Bochum.
† Department of Economics and Finance, Brunel University; and Department of Economics, Faculty of Economics and Administration, King Abdulaziz University, Saudi Arabia; E-mail: nsamrgandi@kau.edu.sa; Tel: +966 (0) 555512633.
‡ Corresponding Author: Department of Economics and Finance and Centre for Economic Development and Institutions (CEDI), Brunel University; Institute of Economic Studies, Charles University; and CESifo Munich. Contact information: Department of Economics and Finance, Brunel University, Uxbridge, UB8 3PH, United Kingdom. Email: Jan.Fidrmuc@brunel.ac.uk or jan@fidrmuc.net. Phone: +44-1895-266-528, Web: http://www.fidrmuc.net/.
§ Department of Economics and Finance, CEDI and BMRC, Brunel University, UK; Email: sugata.ghosh@brunel.ac.uk; Tel: +44 (0)1895 266887
I. Introduction

In this paper, we explore the link between financial development and economic growth for an oil-rich economy, Saudi Arabia. Countries whose economies are dominated by oil or other natural resources possess specific features not shared by industrialized or developing economies. Large share, often lion’s share, of economic activity is represented by resource extraction, characterized by low added value and often by high degree of state regulation. Moreover, economic dynamics are predominantly determined by the prices of natural resources at world markers rather than by domestic economic developments. To the best of our knowledge, our paper is one of the first studies to specifically consider the role that financial development plays in a resource-dependent economy, and the potentially different effects that it may have on the resource-extraction and conventional sectors of such an economy.

The literature on the relationship between financial development and economic growth is voluminous. There is, however, yet no consensus view on either the nature of this relationship or the direction of causality. Four different hypotheses have been proposed.

The first view is that financial development is supply–leading, in the sense that it fosters economic growth by acting as a productive input. This view has been supported theoretically and empirically by a large number of studies. One of the first contributions is Schumpeter (1911) who argues that the services provided by financial intermediaries encourage technical innovation and economic growth. McKinnon (1973) and Shaw (1973) were the first to highlight the importance of having a banking system free from financial restrictions such as interest rate ceilings, high reserve requirements and directed credit programs. Such policies tend to be prevalent in all countries, but are especially common in developing ones. According to their argument, financial repression disrupts both savings and investment. In contrast, the liberalization of the financial system allows financial deepening
and increases the competition in the financial sector, which in turn promotes economic growth. Similar ideas are put forward by, among others, Galbis (1977), Fry (1978), Goldsmith (1969), Greenwood and Jovanovic (1990), Thakor (1996), and Hicks (1969). They view financial development as a vital determinant of economic growth, which increases savings and facilitates capital accumulation and thereby leads to greater investment and growth. Empirically, several studies support the supply–leading view. A prominent study is King and Levine (1993). They study 80 countries by means of a simple cross-country OLS regression. Their findings imply that financial development is indeed important determinant of economic growth. Similar results have been found in a study by Chistopoulos and Tsionas (2004), who examine the long-run relationship between bank development and economic growth for 10 developing countries. They utilize panel cointegration techniques and find a uni-directional relationship going from financial development to economic growth. Atje and Jovanovic (1993) assess the role of the stock market on economic growth and find that the volume of transactions in the stock market has a fundamental effect on economic growth. Subsequent studies confirm these results by focusing on both market-based and bank-based measures of financial development (see for example, Levine and Zervos, 1998, and Kunt and Maksimovic, 1998).

The second view is demand-following. In contrast to the previous position, Robinson (1952) argues that financial development follows economic growth, which implies that as an economy develops the demand for financial services increases and as a result more financial institutions, financial instruments and services appear in the market. A similar view is expressed by Kuznets (1955), who suggests that as the real side of the economy expands and approaches the intermediate stage of growth, the demand for financial services begins to increase. Hence, according to this view, financial development depends on the level of
economic development rather than the other way around. This view has been empirically confirmed by studies such as, for example, Al-Yousif (2002) and Ang and McKibbin (2007).

The third view is one of bidirectional causality. Accordingly, there is a mutual or two-way causal relationship between financial development and economic growth. This argument is put forward by Patrick (1966) who was one of the first researchers to posit that the development of the financial sector (financial deepening) is as an outcome of economic growth, which in turn feeds back as a factor of real growth. Similarly, a number of endogenous growth models such as Greenwood and Jovanovic (1990); Greenwood and Bruce (1997); and Berthelemy and Varoudakis (1997) posit a two-way relationship between financial development and economic growth. Additional support for this view can be found in the empirical study by Demetriades and Hussein (1996), who studied 13 countries and found very strong evidence supporting bidirectional causality.

Finally, the fourth view states that financial development and economic growth are not causally related. Based on this view, there is no relationship between finance and growth, or, in other words, financial development does not cause growth or vice versa. This view was initially put forward by Lucas (1988) who states that “economists badly overstress the role of financial factors in economic growth”. His view is also supported by Stern (1989).

In addition, some empirical studies of the effects of financial development on economic growth highlight the potential negative association between finance and growth. For example, De Gregorio and Guidotti (1995) find a negative impact of financial development on growth in some Latin American countries. Van Wijnbergen (1983) and Buffie (1984) also point out the potentially negative impact of finance on growth. They argue that the high level of liberalization of the financial sector (financial deepening) results in decreasing the total real credit to domestic firms, and thereby lowers investment and slows economic growth. A study by Al-Malikawi et al (2012), who examines the short- and long-run relationship between
financial development and economic growth in the United Arab Emirates (UAE), suggests
the relationship between them is negative. They attribute this result to the transition phase of
the UAE financial system during the period of study. What is more, the weak regulatory
environment of the financial intermediaries can be another reason for this negative
relationship.

It is obvious from this review of the literature that the importance of the financial sector in
promoting economic growth is still very much an open question among researchers.
Moreover, to the best of our knowledge, only few studies attempt to investigate the
relationship between financial development and economic growth in the context of a natural-
resource-dominated economy. Nili and Rastad (2007), and Beck (2011), are among the few
authors who consider how the abundance of oil can have an effect on the relationship
between financial development and economic growth, and whether there is any indication of
a natural resource curse in the relationship between financial development and economic
growth. Nili and Rastad (2007) examine the role that financial development plays in oil-rich
resource economies. They find that financial development has a weaker effect in oil-
exporting countries than in oil-importing countries. They suggest that this result is not only
due to the high dependence on oil in the former but also because of the general inefficiency
of financial institutions in oil-dependent countries.

Nili and Rastad (2007) examine the role that financial development plays in oil-rich
resource economies. They find that financial development has a weaker effect in oil-
exporting countries than in oil-importing countries. They suggest that this result is not only
due to the high dependence on oil in the former but also because of the general inefficiency
of financial institutions in oil-dependent countries.

Numbers of studies provide evidence that countries endowed with natural resources have a tendency to grow
more slowly than less resource-abundant countries. This phenomenon is known as resource curse thesis (see
Sachs and Warner, 2001; Nankani, 1979). Resource curse refers to the negative externalities stemming from
the abundance of natural resources to the rest of the economy. See van der Ploeg (2011) for a recent survey on
the curse of natural resource abundance.
Beck (2011) argues that the ambiguity in the relationship between financial development and economic growth in oil-rich (or natural-resource-rich) countries in the previous literature reflects the general belief that economic growth is driven by different forces in these countries and that the financial sector has a different structure and plays a different role there. Nevertheless, his findings indicate, contrary to Nili and Rastad (2007), that there is in fact no significant difference in the impact of financial development on economic growth between both resource-based countries and non-resource based countries. However, when he assesses the level of countries’ reliance on natural resources, he finds that countries that depend more on the exports of natural resources tend to have underdeveloped financial systems. This is despite the fact that banks in resource-based economies tend to display higher profitability and are more liquid and better capitalized. However, they offer less credit to the private sector, which he attributes to the incidence of financial repression in resource-based countries. Therefore, he concludes that resource-based countries can be subject to the natural resource curse in financial development, and suggests that further work is needed on this issue.

We seek to contribute to this debate by considering the case of a resource-dominated country: Saudi Arabia. The economy of Saudi Arabia is heavily dependent on oil revenue. Recently, however, the government has been promoting diversification towards the non-oil sector and reducing the country’s dependence on the petroleum sector. Since the

implementation of the fourth development plan (1985-1990), in particular, significant priority has been given to the financial sector. In this paper, we assess the results of this policy stance. Specifically, we investigate the role that the financial sector plays in this country’s economy, and whether this role differs between the traditional sector (petroleum) and the emerging non-oil sector.

To this effect, we collect time series data from 1968 to 2010 and apply an ARDL bound test approach to cointegration to examine the long and short-run impact of the financial sector on economic growth. There are various methods for examining the existence of a long-run relationship between the variables of interest: Engle and Granger (1987) and Johansen (1988, 1991, 1995) are the most widely adopted approaches. We, however, follow the ARDL bound test approach for testing the finance and growth nexus due to the preferable features of this technique compared to the other conventional approaches, as discussed in more detail in the methodology section. Furthermore, we deviate from the usual approach by using principal component analysis (PCA) to build a single composite indicator of financial development.

Our findings indicate that financial development has a statistically significant and positive effect on the non-oil sector only. In contrast, the effect on overall GDP is negative, although not significantly so. We consider this an important result, not only from the perspective of an oil-rich economy, but also in the general context of the financial development-growth debate.

The remainder of this paper is organized as follows. Section II provides a brief overview of the Saudi economy and discusses the key characteristics of its financial sectors. Section III describes the data and the construction of the measures of financial development used in the empirical analysis. Section IV explains the methodology and the econometric model used in our study. Section V reports the empirical results. Finally, section VI concludes, and provides some policy implications.
II. Overview of the Saudi Economy and its Financial Sectors

Saudi Arabia’s economy depends heavily on the oil sector. The country is the world’s leading exporter of petroleum and a very prominent member of the OPEC. The oil sector contributes to about 45 percent of the total GDP and 90 percent of the total export earnings. Besides oil, the Saudi economy is also dependent on migration, as roughly 6 million overseas workers work in the oil and service sectors. In order to reduce the dependence on the oil sector, the government has, over the last couple of decades, been trying to diversify the economy by promoting the non-oil sector. Efforts have been made to diversify into power generation, telecommunications, natural gas exploration, and petrochemical sectors. What is more, in order to foster economic growth, the government has recognized the important role of the financial sector in mobilising savings and channeling funds to economic activities. To this effect, it has been promoting the development of an efficient banking system, well-developed financial markets and comprehensive and competitive insurance services.

There have been several signs that the economy has been switching from the oil to the non-oil sector over the last four decades. During the 1970s, the share of the non-oil sector in overall GDP was very low, from 30% to 37%. However, at the beginning of the 1980s, the Saudi economy experienced a rapid shift in favour of the non-oil sector at the expense of the oil sector. In 1985, the non-oil output peaked at 77% of GDP. Thereafter, its share fluctuated between 60% and 72% during the following period (1986-2010).

Choudhury and Al-Sahlawi (2000) see this significant growth of the non-oil sector could as a success of the emphasis on diversification made in the fourth development plan.

7 The oil sector refers to the production activity relating to the extraction and supply of crude oil. The non-oil activities include finance, trade, government services, construction, utilities, natural gas and petroleum-processing industries.
(1985-90) and all the subsequent plans. On the other hand, Al-Hassan et al. (2010) argue that these increases in the non-oil sector are merely the result of the fluctuation in the world’s oil demand that reflects swings in world oil prices.

Despite the fact that the financial sector in Saudi Arabia comprises banks and non-bank financial institutions, it is dominated by the banking sector. This is because all other non-bank financial institutions, such as the stock market, Sukuk (Islamic bonds) and insurance, are either newly-established or underdeveloped. For example, the Saudi stock market was officially established only in 1984; until then it was just an informal market. Moreover, the number of listed companies was small: just 72 companies up to 2008. However, this number has increased to 152 companies in 2010. This increase in the numbers of listed companies is attributed to the new rules that opened the door to foreigners to participate in shares trading in the stock market, which has been restricted only to Saudi citizens before 2008.

Although the Saudi insurance industry is the largest insurance market among the Gulf Cooperation Council (GCC) countries, the regulation of this sector by the Saudi Arabian Monetary Agency (SAMA) only began in 2003 (The Saudi Insurance Market Report, 2009). In 2004, there was only one insurance company, but by the first half of 2008, the Council of Ministers approved the licensing of 22 insurance companies. As regards the Islamic Banking and Sukuk (Islamic bonds), there are four Islamic banks in Saudi Arabia; in addition to them, there are Islamic windows in the conventional banks. According to a report issued by the World Islamic Banking Conference on the competitiveness of Islamic banks, Saudi Arabia ranks first, as measured by the earnings of Islamic Banks over the period 2000–2006. However, no data on this sector are publicly available.

The banking sector has fared well during the last four decades, no doubt favourably affected by the oil boom phase. Several Saudi commercial banks were established, so that the number of commercial banks has risen to 12. Out of those, five are entirely owned by Saudi
shareholders while the rest are owned by a mix of Saudi and foreign shareholders (Ariss, et al., 2007). Table 1 shows some selected indicators of the banking sector. The ratio of liquid liabilities to GDP (M3/GDP) has increased moderately from 2005 to 2010, though it has fallen somewhat in 2008 and 2010 compared to the previous years. A higher liquidity ratio means that the banking system has grown in size. The ratio of private sector credit to GDP has followed the same trend as the liquid liabilities to GDP ratio. Table 1 also shows that total bank assets have been increasing constantly over the years.

The Saudi commercial banks have expanded the amount of investment and consumer lending. The private sector in Saudi Arabia remains relatively small, possibly because it is constrained by the limited credit disbursement by the commercial banks to the private sector. However, more commercial banks entered into the money market and expanded their loans to the private sector from 1999 onwards so that the loan disbursements have increased sharply. Table 2 also shows that the total credit disbursement of commercial banks has increased moderately from 2006 to 2010, but has fallen slightly in 2009 as compared to the previous year.

III. Data, and the construction of financial development variables

Data description

We use annual data for Saudi Arabia covering the period from 1968 to 2010. The data were collected from the World Development Indicator (WDI) dataset and the forty-seventh annual report of the Saudi Arabian Monetary Agency (SAMA). The variables of interest include real gross domestic product per capita (GDP) as the dependent variable and potentially important determinants of economic growth as explanatory variables. We initially collected data on government expenditure (as a percentage of GDP), investment share in GDP, oil price,
inflation, openness to trade and various measures of financial development (discussed in greater detail below) as our main variables of interest.\(^8\) However, when including all variables in the regression, several turned out to be insignificant. We, therefore, proceeded to omit the insignificant explanatory variables, one by one, until we were left with a model that contained only significant variables: the oil price (OILP), trade openness (TRD) and financial development (FD).\(^9\) The fact that investment dropped out is particularly puzzling: it is typically a robust determinant of economic growth in most studies, and therefore it is surprising that it fails to feature significantly as a determinant of Saudi growth. This may be due to the overwhelming dominance of the oil sector in this country. It may also reflect the fact that a large fraction of investment in Saudi Arabia is related to oil exploration and thus may affect growth only with a substantial lag, likely to be several years.

We, therefore, estimate a model that includes only a relatively narrow set of core variables alongside our main variable of interest: financial development. This is in line with the literature arguing against controlling for a relatively extensive list of explanatory variables: the resulting coefficients then often depend crucially on the set of specific remaining variables included (see the discussion in, among others, Levine and Renelt, 1992, and Woo, 2009).

Construction of financial development variables: Principal component analysis (PCA)

We collected information on the following three indicators of financial development:

1. The ratio of broad money (M2)\(^{10}\) to nominal GDP.
2. The ratio of liquid liabilities (M3)\(^{11}\) to the nominal GDP.

\(^8\) We also sought to include some measure of human capital but were unable to do so because of missing values.

\(^9\) This approach is equivalent to implementing the general-to-specific procedure.

\(^{10}\) \(M2 = M1 \text{ (currency outside banks + demand deposits)} + \text{time and saving deposits}\).

\(^{11}\) \(M3 = M2 + \text{other quasi monetary deposits}\).
3. The ratio of credit to private sector to nominal GDP.

We follow Ang and McKibbin (2007) in constructing a single measure of financial development by using principal component analysis. The justification for doing this is two-fold. First, it addresses the problem of multicollinearity, or the high correlation between the various financial development indicators. Second, there is no general consensus as to which measure of financial development is the most appropriate. Therefore, having a summary measure of financial development that includes all the relevant financial proxies (data permitting) to capture several aspects of the financial sector at the same time, such as directed credit programs and liquidity, will provide better information on financial deepening.

Table 3 presents the results obtained from principal component analysis with the logarithms of the three measures of financial development listed above. The eigenvalue associated with the first component is significantly larger than one. The first principal component explains approximately 97.3% of the standardised variance, the second principal component explains another 2.0%, and the last principal component accounts for only 0.5% of the variation. Clearly, the first principal component, which explains the variations of the dependent variable better than any of the other linear combinations of explanatory variables, is the best measure of financial development in this case. Below, we denote this summary indicator of financial development as FD.

IV. Methodology and Model Specification

Methodology

The two commonly used techniques to test for cointegration between variables are the Engle and Granger method and the Johansen technique. The Engle and Granger method is a single-equation technique and as such it can lead to contradictory results, especially when there are
more than two cointegrated variables under consideration (see, Asteriou and Hall (2011); Ang (2010)). Another shortcoming of this method is in its implementation: in order to obtain the long-run equilibrium relationship, we need to estimate the Ordinary Least Squares (OLS) regression as a first step on levels of the variables. This procedure, as pointed out by Banerjee et al. (1986), may generate a substantial bias owing to the omission of dynamics, and this can undermine the performance of the estimator. Also, the two-step residual-based procedure uses the generated residual series in the first step to estimate a new regression model in the second stage, in order to see whether the residual series is stationary or not. Hence, the error introduced in the first step is carried forward into the second step (Enders, 2004; Asteriou and Hall, 2011).

The Johansen method, which is known as a system-based approach to cointegration, is considered to be a superior method over the Engle and Granger method, and offers a solution in the case of having more than two variables and multiple cointegration vectors that might exist between the variables. Also, the Johansen approach mitigates the omitted lagged variables bias that affects the Engle and Granger approach by the inclusion of lags in the estimation. Even so, the advantages of the Johansen method can be subject to criticism. The first drawback is the sensitiveness of the results to the optimal number of lags included in the test (Gonzalo, 1994). The second is that if there are more than one cointegrating vectors, it is often hard to interpret each implied economic relationship and yo find the most appropriate vector for the subsequent test (Ang, 2010).

Both the Engle-Granger and Johansen techniques are criticised on the grounds that the validity of these methods requires that all the variables be integrated of order one, e.g. I(1). They cannot be employed, therefore, if we have a mixture of I(0) and I(1) variables, as in our case (see below).
In this study, we use the autoregressive distributed lag or Bounds testing approach to cointegration (ARDL) technique of Pesaran et al. (2001). This method has been used as an alternative cointegration test that examines the long-run relationships and dynamic interactions among the variables and as such addresses the above issues. This approach has several desirable statistical features. First, the cointegrating relationship can be estimated easily using OLS after selecting the lags order of the model. Second, it allows to test simultaneously for the long and short—run relationship between the variables in a time series model. Third, in contrast to Engle-Granger and Johansen methods, this test procedure is valid irrespective of whether the variables are I (0) or I (1) or mutually co-integrated, which means that no unit root test is required. However, this test procedure will not be applicable if an I (2) series exists in the model. Fourth, in spite of the possible presence of endogeneity, ARDL model provides unbiased coefficients of explanatory variables along with valid t-statistics. In addition, ARDL model corrects the omitted lagged variable bias (Inder, 1993). Furthermore, Jalil et al (2008) and Ang (2010) argue that the ARDL framework includes sufficient numbers of lags to capture the data generating process in general to specific modelling approach of Hendry (1995). Finally, this test is very efficient and consistent in small and finite sample sizes.

Model specification:

Following Ang and McKibbin (2005), Khan and Qayyum (2005) and Fosu and Magnus (2006), the ARDL version of the vector error correction model (VECM) can be specified as:

\[
\Delta \ln Y = \beta_0 + \beta_1 \ln Y_{t-1} + \beta_2 \ln X_1_{t-1} + \beta_3 \ln X_2_{t-1} + \beta_4 \ln X_3_{t-1} + \sum^p \gamma_i \Delta \ln Y_{t-i} + \\
\sum^q \delta_j \Delta \ln X_{1,j} + \sum^q \phi_l \Delta \ln X_{2,l} + \sum^q \eta_m \ln X_{3,m} + \epsilon_t
\]

(1)
In equation (1), \(Y \) is the real gross domestic product per capita, \(X_1 \) stands for financial development, \(X_2 \) is the oil price, \(X_3 \) is trade openness, and \(\varepsilon \) is the error term.

Using the ARDL approach we estimate three models where the first model relates real GDP per capita (GDP) = \(f(\text{Financial Development (FD), Oil Price (OILP), Trade Openness (TRD)}) \), the second model is real GDP per capita of Non Oil Sector (GDPN) = \(f(\text{Financial Development (FD), Oil Price (OILP), Trade Openness (TRD)}) \), and the third model is real GDP per capita of Oil Sector (GDPO) = \(f(\text{Financial Development (FD), Oil Price (OILP), Trade Openness (TRD)}) \).

Estimation procedure

We first estimate equation (1) using OLS and then conduct the Wald Test or F-test for joint significance of the coefficients of lagged variables for the purpose of examining the existence of a long-run relationship among the variables. We test the null hypothesis, \(H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \), that there is no cointegration among the variables, against the alternative hypothesis \(H_a: \beta_1 \neq \beta_2 \neq \beta_3 \neq \beta_4 \neq 0 \). The F-statistics is then to be compared with the critical value (upper and lower bound) given by Pesaran et al. (2001). If the F-statistic is above the upper critical value, the null hypothesis of no cointegration is rejected which indicates that long-run relationship exists among the variables. Conversely, if the F-statistic is less than the lower critical value the null hypothesis cannot be rejected, implying no cointegration among the variables. However, if the F-statistic lies between lower and upper critical values, the test is inconclusive.

In the second step, after testing the relationship among the variables, the long-run coefficients of the ARDL model can be estimated:

\[
\ln Y = \beta_0 + \sum_{i=1}^{p} y_i \ln Y_{t-i} + \sum_{j=0}^{q_1} \delta_j \ln X_{1t-j} + \sum_{i=0}^{q_2} \phi_i \ln X_{2t-i} + \sum_{m=0}^{q_3} \eta_m \ln X_{3t-m} + \varepsilon_t
\]

(2)
In this process, we use the SIC criteria for selecting the appropriate lag length of the ARDL model for all four variables under study. Finally, we use the error correction model to estimate the short run dynamics:

\[
\Delta \ln Y = \beta_0 + \sum_{i}^{p} \gamma_i \Delta \ln Y_{t-i} \sum_{j}^{q} \delta_j \Delta \ln X_{3t-j} + \sum_{i}^{q} \phi_i \Delta \ln X_{2t-i} + \sum_{m}^{q} \eta_m \Delta \ln X_{3t-m} + \delta emc_{t-1} + \epsilon_t
\]

(C3)

Cusum and cusumsq test (Stability Test)

We perform two tests of stability of the long-run coefficients together with the short run dynamics, following Pesaran (1997), after estimating the error correction model: the cumulative sum of recursive residuals (CUSUM) and the cumulative sum of squares of recursive residuals (CUSUMSQ) tests.

V. Results and Discussion

Unit-root test

Prior to testing for cointegration, we conduct a test of the order of integration for each variable using the Augmented Dickey-Fuller test (Table 4). Even though the ARDL framework does not require pre-testing variables, the unit root test could indicate whether or not the ARDL model should be used. As can be seen from Table 4, only some of the variables, in particular real GDP per capita in the non-oil sector (GDPN), real GDP per capita in the oil sector (GDPO) and the oil price (OILP), are stationary at the 5 percent or 10 percent significance level, whereas all variables are stationary after first differencing. Hence, the results of unit root test demonstrate that the ARDL model is more appropriate to analyze the data than the Johansen cointegration model.

Cointegration test
The calculated F-statistics for the cointegration test are displayed in Tables 5, 9 and 13. The F-statistic for the first model (7.5803, Table 5) is higher than the upper bound critical value at the 1 percent level of significance, using restricted intercept and no trend. This implies that the null hypothesis of no cointegration cannot be accepted, therefore there is a cointegrating relationship among the variables. Through normalization process we find that there is cointegration at 5% when financial development and the oil price are the dependent variables but not when we consider openness to trade. The same procedure has been applied to analyze the other two models (for the oil and non-oil sectors). The results suggest the presence of cointegration between GDPN and all other explanatory variables, and also cointegration between GDPO and the other variables.

Long-run impact

The empirical results are reported in Tables 6, 10 and 14. They show that trade openness has positive and significant effect on overall economic growth as well as on the growth of both oil and non-oil sectors. This result is consistent with theoretical and empirical predictions. In addition, the oil price has a positive and significant impact on overall GDP growth but an insignificant impact on the non-oil sector in the long-run.

Financial development has a negative but insignificant impact on economic growth, indicating that the Saudi economy has not benefitted from financial development. This result is in line with Barajas, Chami and Yousefi (2012), who find that financial development has lower if not negative effect on economic growth in oil-rich and in Middle Eastern and North African (MENA) countries. This finding may be attributed to the fact that during the period under analysis, the financial sector was still relatively under-developed, below the threshold point of development when it would be capable of promoting economic growth (Al-Malkawi et al., 2012). Ram (1999) also found a negligible or weak negative impact of financial
development on economic growth. Jalil and Ma (2008), similarly, argue that inefficient allocation of resources by banks coupled with the absence of favourable investment environment in the private sector slow the overall economic growth in China. The findings of Jalil and Mia would be applicable to Saudi Arabia where, as in China, most economic decisions are directed by the government. Barajas et al. (2011) argue that the impact of financial deepening on economic growth disappears in the case of an oil-based economy like Saudi Arabia. The findings of our research are in line also with Ang and McKibbin (2006) who found no evidence of economic improvement due to expansion of financial sector in Malaysia. Ang and McKibbin suggest that the returns from financial development depend on the mobilization of savings and allocation of funds to productive investment projects. But due to information gaps, high transaction costs and improper allocation of resources, the interaction between savings and investment and its link with economic growth is not strong in developing countries. According to Beck (2011), the existence of natural resource curse in financial development might be another reasons for this insignificant impact of financial development on growth in oil-rich economies.

In contrast, the effect of financial development (FD) on the non oil sector in Saudi Arabia is positive and statistically significant at 10%. The magnitude of this impact is not sufficient to warrant a positive relationship for the overall economy since the non-oil sector constitutes only a relatively small part of the Saudi economy. This finding is consistent with Nili and Rastad, (2007) who find that financial markets in resource-rich countries are relatively weak. They attribute their results to three reasons, a possible natural resource curse in financial development, the dominant role of government in total investment and the poor performance of the private sector in these countries.
In contrast, the third model shows that FD does not have any impact on the oil sector of Saudi Arabia. Since the oil sector is exclusively controlled by the government, it is not surprising that financial development does not significantly contribute towards its growth.

Short run impact and adjustment

The coefficients of the error correction model for all three specifications are presented in Tables 7, 11 and 15. The negative signs of each coefficient of the ECM variable reveal that short-run adjustment, which occurs at a high speed in the negative direction, is statistically significant. Moreover, this is an indication of cointegration relationship among GDP (both oil and non-oil), financial development, oil price, and trade openness. The values of ECM coefficients strongly suggest that the disequilibrium caused by previous year’s shocks dissipates and the economy converges back to the long-run equilibrium in the current year (see Dara and Sovannroeun, 2008; and Hossein, 2007).

Diagnostic test

The overall goodness of fit of the estimated models shown in Tables 8, 12 and 16 is quite high, with R^2 values of 96%, 99% and 77% for the first, second and third model, respectively. This is not surprising, given that the ARDL model includes the lagged dependent variable. We applied a number of diagnostic tests to the ARDL model. We found no evidence of serial correlation, multicollinearity, and error in the functional form, but found heteroskedasticity in model 2 and model 3 (Tables 12 and 16). However, as Shrestha and Chowdhury (2005) and Fosu and Magnus (2006) point out, it is natural to detect heteroskedasticity in the ADRL approach, since the model mixes time series data integrated of order I(0) and I(1). Figure 1, 2 and 3 show the CUSUM and the CUSUMSQ stability test results to the residuals of equation (1): the CUSUM and CUSUMSQ remain within the critical boundaries for the 5%
significance level. These statistics confirm that the long-run coefficients and all short-run coefficients in the error correction model are stable and affect growth.

VI. Conclusion

This paper contributes to the literature on financial development and growth by focusing on the financial sector of an oil-rich economy, Saudi Arabia, which has not been studied extensively so far. The results of this empirical study, based on the ARDL approach, suggest that financial development may have a positive impact on economic growth of the Saudi non-oil sector in the long-run. In contrast, we find no evidence of an impact on the economy as a whole, or on the Saudi oil sector, which, we believe, is a significant finding.

These results can be interpreted from two angles. First, they reflect the inherent economic nature of Saudi Arabia, which is predominantly an oil-dominated economy. Second, they can be indicative of relative under-development of the Saudi banking system. This leads to imbalances between saving and investment and may distort investment decisions. This finding is in line with Malkawi et al. (2012), who argue that the financial sector in Saudi Arabia is still in the transition stage. Hence it needs to pass the threshold point of development before it could be instrumental in promoting economic growth.

These findings also highlight the specific nature of oil and resource-rich economies like Saudi Arabia. Resource-driven economies do not necessarily follow the same patterns as manufacturing economies. The economy crucially depends on price fluctuations and foreign markets, as documented by the strong role played in our analysis by the oil price and openness to trade. Financial development does not play as prominent a role as in manufacturing economies, or may not even play any role at all. The two arguments mentioned in the preceding paragraph may therefore be related: the fact that the Saudi banking sector is underdeveloped may itself be due to the dominant role of oil in the
economy. Banking plays an important role in industrialized and agricultural economies alike, in that it improves allocation of resources to firms and helps these firms stay afloat until their goods are sold. This role is less important when the economy is dominated by extraction of a highly liquid (in financial sense) and easily marketable commodity.

Our results suggest, nevertheless, the Saudi non-oil sector is favourably affected by financial development. Therefore, if the diversification of the Saudi economy continues, we can anticipate that financial development will play a more prominent role in the country’s overall economic performance in the future, provided the expansion of the non-oil sector is not hampered by the underdevelopment of the financial sector.
References

Durlauf, Steven, Paul Johnson, and Jonathan Temple, “Growth Econometrics” (pp. 557–677), in Philippe Aghion and Steven Durlauf (Eds.), *Handbook of Economic Growth* (Amsterdam: North-Holland, 2005).

Finance, 20, 917-948.

Tables

Table 1: Selected Indicators of Banking Sector

<table>
<thead>
<tr>
<th>Year</th>
<th>M3/GDP</th>
<th>PRIVATE/GDP</th>
<th>Total Bank Asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>46.8218</td>
<td>36.864469</td>
<td>759075</td>
</tr>
<tr>
<td>2006</td>
<td>49.4604</td>
<td>35.6413857</td>
<td>861088</td>
</tr>
<tr>
<td>2007</td>
<td>54.7463</td>
<td>40.05913986</td>
<td>1075221</td>
</tr>
<tr>
<td>2008</td>
<td>52.0185</td>
<td>41.12532216</td>
<td>1302271</td>
</tr>
<tr>
<td>2009</td>
<td>72.8406</td>
<td>52.53976349</td>
<td>1370258</td>
</tr>
<tr>
<td>2010</td>
<td>64.3419</td>
<td>47.59243453</td>
<td>1415267</td>
</tr>
</tbody>
</table>

Sources: SAMA 48th Annual Report.

Table 2: Bank Credit to the Private Sector by economic Activity (In Million Riyals)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount</td>
<td>% Share</td>
<td>Amount</td>
<td>% Share</td>
<td>Amount</td>
</tr>
<tr>
<td>Agriculture & Fishing</td>
<td>6802</td>
<td>1.5</td>
<td>8636</td>
<td>1.5</td>
<td>10980</td>
</tr>
<tr>
<td>Manufacturing & Processing</td>
<td>37566</td>
<td>8.1</td>
<td>54339</td>
<td>9.7</td>
<td>79333</td>
</tr>
<tr>
<td>Mining & Quorrying</td>
<td>1802</td>
<td>0.4</td>
<td>3897</td>
<td>0.7</td>
<td>4265</td>
</tr>
<tr>
<td>Electricity, Water & Gas</td>
<td>3598</td>
<td>0.8</td>
<td>5878</td>
<td>1.1</td>
<td>10629</td>
</tr>
<tr>
<td>Building & Construction</td>
<td>37845</td>
<td>8.2</td>
<td>43421</td>
<td>7.8</td>
<td>54371</td>
</tr>
<tr>
<td>Commerce</td>
<td>111511</td>
<td>24.1</td>
<td>127473</td>
<td>22.9</td>
<td>176858</td>
</tr>
<tr>
<td>Transport & Communication</td>
<td>6875</td>
<td>1.5</td>
<td>20989</td>
<td>3.8</td>
<td>37814</td>
</tr>
<tr>
<td>Finance</td>
<td>61828</td>
<td>13.4</td>
<td>62632</td>
<td>11.2</td>
<td>16812</td>
</tr>
<tr>
<td>Services</td>
<td>16735</td>
<td>3.6</td>
<td>28286</td>
<td>5.1</td>
<td>32324</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>177539</td>
<td>38.4</td>
<td>201854</td>
<td>36.2</td>
<td>289351</td>
</tr>
<tr>
<td>Total</td>
<td>462,103</td>
<td>100</td>
<td>557,405</td>
<td>100</td>
<td>712,737</td>
</tr>
</tbody>
</table>

Sources: SAMA 47th Annual Report.
Table 3: Principal Components Analysis

Number of Obs = 41 Number of comp. = 3

<table>
<thead>
<tr>
<th>Component</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp1</td>
<td>2.912</td>
<td>2.840</td>
<td>0.971</td>
<td>0.971</td>
</tr>
<tr>
<td>Comp2</td>
<td>.072</td>
<td>.0569</td>
<td>0.024</td>
<td>0.995</td>
</tr>
<tr>
<td>Comp3</td>
<td>.015</td>
<td>.</td>
<td>0.005</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 4: Unitroot Test

<table>
<thead>
<tr>
<th>Variables</th>
<th>ADF test I(0)</th>
<th>ADF test I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In level</td>
<td>First difference</td>
</tr>
<tr>
<td></td>
<td>Intercept & trend</td>
<td>Intercept & trend</td>
</tr>
<tr>
<td>GDP</td>
<td>-2.598</td>
<td>-3.078*</td>
</tr>
<tr>
<td>GDPN</td>
<td>-3.15**</td>
<td>-2.47</td>
</tr>
<tr>
<td>GDPO</td>
<td>-2.659*</td>
<td>-5.335***</td>
</tr>
<tr>
<td>FD</td>
<td>-0.250</td>
<td>-6.999***</td>
</tr>
<tr>
<td>OILP</td>
<td>-2.631*</td>
<td>-6.028***</td>
</tr>
<tr>
<td>TRD</td>
<td>-1.555</td>
<td>-9.097***</td>
</tr>
</tbody>
</table>

Note: ** at 5%, *** at 1% * at 10%

Table 5: Result from Bound test

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>SIC Lag</th>
<th>F-statistic</th>
<th>Probability</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_GDP</td>
<td>1</td>
<td>7.580</td>
<td>0.000***</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_FD</td>
<td>1</td>
<td>3.636</td>
<td>0.015**</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_OILP</td>
<td>1</td>
<td>3.355</td>
<td>0.021**</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_TRD</td>
<td>1</td>
<td>1.254</td>
<td>0.308</td>
<td>No Cointegration</td>
</tr>
</tbody>
</table>

Note: ** at 5%, *** at 1% * at 10%
Table 6: Estimated Long Run Coefficients using the ARDL Approach

ARDL(2,0,1,1) selected based on Schwarz Bayesian Criterion, Dependent variable is GDP

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-6.950</td>
<td>12.390</td>
<td>-.560</td>
<td>.579</td>
</tr>
<tr>
<td>FD</td>
<td>-.033</td>
<td>.035</td>
<td>-.962</td>
<td>.342</td>
</tr>
<tr>
<td>OILP</td>
<td>.133***</td>
<td>.023</td>
<td>5.690</td>
<td>.000</td>
</tr>
<tr>
<td>TRD</td>
<td>2.14***</td>
<td>.088</td>
<td>24.310</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: ** at 5%, *** at 1% * at 10%

Table 7: Error Correction Representation for the Selected ARDL Model

ARDL(2,0,1,1) selected based on Schwarz Bayesian Criterion. Dependent variable is dGDP

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔFD</td>
<td>-0.004</td>
<td>0.004</td>
<td>-.993</td>
<td>0.327</td>
</tr>
<tr>
<td>ΔOILP</td>
<td>0.001</td>
<td>0.004</td>
<td>.252</td>
<td>0.802</td>
</tr>
<tr>
<td>ΔTRD</td>
<td>0.118*</td>
<td>0.058</td>
<td>1.74</td>
<td>0.089</td>
</tr>
<tr>
<td>ecm(-1)</td>
<td>-0.128***</td>
<td>0.023</td>
<td>-5.47</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: ** at 5%, *** at 1% * at 10%

Table 8: ARDL-VECM Model Diagnostic Tests

R²=0.96, Adjusted R²=0.95

Serial Correlation $X^2(1)=0.001[0.972]$ Normality $X^2(2)=1.687[0.43]$
Functional Form $X^2(1)=0.559[0.454]$ Heteroscedasticity $X^2(1)=1.640[0.199]$

Figure 1: Cusum and Cusumq for coefficients stability for ECM model (1)
<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>SIC</th>
<th>Lag</th>
<th>F-statistic</th>
<th>Probability</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{GDPN} (GDPN</td>
<td>FD, OILP, TRD)</td>
<td>2</td>
<td>10.381</td>
<td>0.000***</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_{FD} (FD</td>
<td>GDPN, OILP, TRD)</td>
<td>1</td>
<td>4.199</td>
<td>0.007**</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_{OILP} (OILP</td>
<td>FD, GDPN, TRD)</td>
<td>1</td>
<td>5.996</td>
<td>0.001**</td>
<td>Cointegration</td>
</tr>
<tr>
<td>F_{TRD} (TRD</td>
<td>FD, GDPN, OILP)</td>
<td>1</td>
<td>2.770</td>
<td>0.042*</td>
<td>Cointegration</td>
</tr>
</tbody>
</table>

** at 5%, ***at 1% * at 10%

Table 10: Estimated Long Run Coefficients using the ARDL Approach
ARDL(2,0,1,1) selected based on Schwarz Bayesian Criterion, Dependent variable is GDPN

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.25**</td>
<td>0.600</td>
<td>2.070</td>
<td>0.040</td>
</tr>
<tr>
<td>FD</td>
<td>.184*</td>
<td>.106</td>
<td>1.730</td>
<td>.091</td>
</tr>
<tr>
<td>OILP</td>
<td>.078</td>
<td>.046</td>
<td>1.660</td>
<td>.104</td>
</tr>
<tr>
<td>TRD</td>
<td>2.14***</td>
<td>.088</td>
<td>24.310</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note : ** at 5%, ***at 1% * at 10%

Table 11: Error Correction Representation for the Selected ARDL Model
ARDL(2,0,1,1) selected based on Schwarz Bayesian Criterion. Dependent variable is DGDPN

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ΔFD$</td>
<td>0.111</td>
<td>0.008</td>
<td>1.390</td>
<td>0.172</td>
</tr>
<tr>
<td>$ΔOILP$</td>
<td>0.110***</td>
<td>0.004</td>
<td>2.570</td>
<td>0.014</td>
</tr>
<tr>
<td>$ΔTRD$</td>
<td>0.061</td>
<td>0.062</td>
<td>0.980</td>
<td>0.333</td>
</tr>
<tr>
<td>ecm(-1)</td>
<td>-0.06***</td>
<td>0.174</td>
<td>-3.450</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note : ** at 5%, ***at 1% * at 10%

Table 12: ARDL-VECM Model Diagnostic Tests

$R^2=0.99$, Adjusted $R^2=0.99$

Serial Correlation $\chi^2(1)=.010[0.91]$
Normality $\chi^2(2)=0.053[0.97]$
Functional Form $\chi^2(1)=.016[0.89]$
Heteroscedasticity $\chi^2(1)=4.65[0.031]$
Figure 2: Cusum and Cusumq for coefficients stability for ECM model (2)

Table 13: Result from Bound test

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>SIC Lag</th>
<th>F-statistic</th>
<th>Probability</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{GDPO}(GDPO</td>
<td>FD, OILP, TRD)</td>
<td>1</td>
<td>3.840</td>
<td>0.017**</td>
</tr>
<tr>
<td>F_{FD}(FD</td>
<td>GDPO, OILP, TRD)</td>
<td>1</td>
<td>1.313</td>
<td>0.297</td>
</tr>
<tr>
<td>F_{OILP}(OILP</td>
<td>FD, GDPO, TRD)</td>
<td>1</td>
<td>2.504</td>
<td>0.068</td>
</tr>
<tr>
<td>F_{TRD}(TRD</td>
<td>FD, GDPO, OILP)</td>
<td>1</td>
<td>1.959</td>
<td>0.138</td>
</tr>
</tbody>
</table>

** at 5%, ***at 1% * at 10%

Table 14: Estimated Long Run Coefficients using the ARDL Approach

ARDL(1,1,0,0) selected based on Schwarz Bayesian Criterion, Dependent variable is GDPO

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.100</td>
<td>6.060</td>
<td>.676</td>
<td>.504</td>
</tr>
<tr>
<td>FD</td>
<td>.170</td>
<td>.123</td>
<td>1.44</td>
<td>.157</td>
</tr>
<tr>
<td>OILP</td>
<td>.193**</td>
<td>.082</td>
<td>2.35</td>
<td>.025</td>
</tr>
<tr>
<td>TRD</td>
<td>3.140***</td>
<td>.158</td>
<td>19.87</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: ** at 5%, ***at 1% * at 10%

Table 15: Error Correction Representation for the Selected ARDL Model

ARDL (1,1,0,0) selected based on Schwarz Bayesian Criterion. Dependent variable is DGDO

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔFD</td>
<td>-0.088</td>
<td>0.044</td>
<td>-2.004</td>
<td>0.053</td>
</tr>
<tr>
<td>ΔOILP</td>
<td>0.021***</td>
<td>0.007</td>
<td>2.954</td>
<td>0.006</td>
</tr>
<tr>
<td>ΔTRD</td>
<td>0.349**</td>
<td>0.149</td>
<td>2.340</td>
<td>0.025</td>
</tr>
<tr>
<td>ecm(-1)</td>
<td>-0.111**</td>
<td>0.051</td>
<td>-2.155</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Note : ** at 5%, ***at 1% * at 10%
Table 16: ARDL-VECM model diagnostic tests

R²=0.77, Adjusted R²=0.73

Serial Correlation $\chi^2(1)=2.049[0.152]$
Normality $\chi^2(2)=.0211[0.989]$
Functional Form $\chi^2(1)=2.291[0.130]$
Heteroscedasticity $\chi^2(1)=14.860[0.00]$

Figure 3: Cusum and Cusumq for coefficients stability for ECM model (3)