
 1

 TR/10/01 August 2001
 Software tools for Stochastic Programming:
 A Stochastic Programming Integrated
 Environment (SPInE).

 P Valente, G Mitra, C Poojari, T Kyriakis.

 Department of Mathematical Sciences
 Brunel University, Uxbridge, UB8 3PH

 2

Software tools for Stochastic Programming:

A Stochastic Programming Integrated Environment

(SPInE)

Patrick Valente, Gautam Mitra, Chandra A. Poojari, Triphonas Kyriakis

Department of Mathematical Sciences, Brunel University, West London, UK.

Abstract

SP models combine the paradigm of dynamic linear programming with
modelling of random parameters, providing optimal decisions which hedge
against future uncertainties. Advances in hardware as well as software
techniques and solution methods have made SP a viable optimisation tool.
We identify a growing need for modelling systems which support the creation
and investigation of SP problems. Our SPInE system integrates a number of
components which include a flexible modelling tool (based on stochastic
extensions of the algebraic modelling languages AMPL and MPL), stochastic
solvers, as well as special purpose scenario generators and database tools.
We introduce an asset/liability management model and illustrate how SPInE
can be used to create and process this model as a multistage SP application.

 3

1 Introduction and background .. 4

2 Problem statement.. 8

2.1 Classes of Stochastic Programming problems ... 8

2.2 Stochastic measures in SP recourse problems :EVPI and VSS......................... 13

2.3 Illustrative example: asset/liability management model.................................... 14

2.4 Illustrative model formulated in AMPL and MPL.. 17

3 Extending Algebraic Modelling Languages for SP.. 20

3.1 SMPL and SAMPL: an introduction ... 20

3.2 Illustrative model formulated in SAMPL and SMPL.. 22

4 Scenario generation ... 26

4.1 Integrating scenario generators in SPInE.. 26

4.2 Models of randomness .. 27

4.3 An example: Connecting SPInE to an asset prices generator 28

5 Stochastic Solver in SPInE .. 29

5.1 Solution techniques ... 29

5.2 The solver system in SPInE .. 30

5.3 Quality Assurance/Benchmark and Scale Up Properties 31

6 SPInE... 38

6.1 Software architecture: an overview.. 38

6.2 Using SPInE: commands and controls ... 40

6.3 VaR computation.. 44

7 Future work and conclusions... 46

Appendix A ... 47

Appendix B ... 48

References .. 49

 4

1 Introduction and background

Stochastic Programming (SP) is an established approach to optimum
decision making under uncertainty. SP models have proven to be more
suitable than their deterministic counterparts in many applications, ranging
from portfolio allocation and asset/liability management (see Mulvey and
Ziemba eds. 1998) to the planning of power systems (see Pereira and Pinto
1985), from transportation (see Powell 1988) and telecommunication (see
Gaivoronski 1995) to supply chain networks planning (see Eppen et al.
1989, Lucas et al. 1996, Escudero et al. 1999, Shapiro 2001). SP models
combine the paradigm of dynamic linear programming with modelling of
random parameters (scenario generation). The solution of such SP models
leads to optimal decisions which hedge against future uncertainties.
Advances in hardware as well as software techniques and solution methods
have made SP a viable optimisation tool. Unfortunately, there are not many
modelling systems which support the creation and investigation of SP
models. In fact, the practical exploitation of SP models runs into various
difficulties. In order to understand these difficulties, it is important to first
identify the key steps in the process of conceptualisation, formulation,
solution and analysis of the results of mathematical programming (MP)
models (Dominguez-Ballesteros et al. 1999).

S o lu tio n
&

S o lu tio n An a lys is

C o n cep tu a lisa tio n

Alg eb ra ic F o rm (m o d e lle r ’s fo rm)
(M o d e l lin g L an g u ag e)

M ach in e -R ead ab le F o rm (a lg o r ith m ’s fo rm)

T ran s la tio n
(M o d e llin g L an g u ag e)

D a ta M o d e llin g

Figure 1. The modelling process.

The model conceptualisation stage involves an analysis of the real world
decision problem. The available information is collected and used to
understand the data and the decision-making requirement of the application
under investigation. The data modelling stage involves the extraction and
classification of the available information.
The categories obtained by this analysis provide the sets and parameters
which are used in the algebraic formulation of the model. The algebraic
formulation of the model is generally implemented using an Algebraic
Modelling Language (AML), which translates the abstract modeller’s form
into a machine-readable form. The translation can be considered as model
instantiation. After supplying appropriate data, the combined model and
data instance can be subsequently processed by a suitable solver, which in
turn produces the model’s results. Modern algebraic modelling systems are

 5

capable of supporting this entire process for Linear Programming (LP), Mixed
Integer Programming (MIP), Quadratic Programming (QP), and to some
extent Non-Linear Programming (NLP) models. Moreover, these systems are
able to interact with corporate data warehouses and data marts stored in
relational, object oriented or in other emerging standards.
The availability of algebraic modelling languages such as AMPL (Fourer et al.
1993), AIMMS (Bisschop et al. 1993), GAMS (Brooke et al. 1998) and MPL
(Maximal 2000) and the corresponding model development environments
have contributed in the following ways:

(i) Model development and prototyping has become a high
productivity process. This has lead to widespread acceptance of
optimisation by the end user community based on the proof of
concept applications rapidly developed by OR/MS analysts.

(ii) There have been many examples of deployment of optimisation as
an embedded inference engine in Decision Support Systems (DSS).

In many cases, moving on to SP formulation of these decision problems is a
natural step forward. Unfortunately, this progress is hampered due to the
lack of commensurate model development tools in the domain of Stochastic
Programming. A number of investigators have reported development of SP
modelling systems. These are in different stages of completion and use, and
are summarised in Table 1.

Name Affiliation System Name
JJ Bisshop, et al. Paragon Decision Technology AIMMS
A Meeraus, et al. GAMS GAMS
B Kristjansson Maximal Software MPL
R Fourer, et al. Northwestern University AMPL
MAH Dempster, et al. Cambridge University STOCHGEN
E Fragniere, et al. University of Geneva SETSTOCH
A King, et al. IBM OSL/SE
HI Gassmann, et al. Dalhousie University MSLiP
G Infanger et. al. Stanford University DECIS
P Kall, et al. University of Zürich SLP-IOR
G Mitra, et al. Brunel University SPInE
Table 1. Current development of software tools for SP.

The designers of AIMMS, GAMS and AMPL have put forward conference
presentations and examples of use of their systems to develop SP models. No
major implementation, however, have been reported. SP language extensions
for AMPL have also been proposed in (Gassmann and Ireland 1996). The
MPL modelling system is being extended to include SPInE’s functionalities.
Other practitioners have focused on the automatic generation of Stochastic
Programming model instances. For instance, Dempster’ s group has
developed and used the Stochastic Programming tool STOCHGEN in a
number of industrial settings (Consigli and Dempster 1998). SETSTOCH
(reported by Condevaux-Lanloy and Fragnière 2000) is another system
which retrieves the dynamic structure of an SP model by reordering the
generated matrix using external information on the temporal relations
between the decision variables and the parameters.
Several specialised solvers for SP have also been produced. IBM’ s OSL
Stochastic Extension (King 1994) is an optimisation library which provides a
set of routines for the manipulation and solution of multistage Stochastic

 6

Programming problems presented in SMPS standard format (Birge et al.
1987). MSLiP (Gassmann 1990) is another established solver for multistage
stochastic linear programs (SLP) based on the nested Benders decomposition
method. DECIS (Infanger 1997) is a system for solving large-scale stochastic
programs, which uses Benders decomposition and Monte Carlo sampling
techniques. Finally, SLP-IOR (Kall and Mayer 1996) is an integrated model
management system for stochastic linear programming problems and is
designed to support the life cycle of an SP problem including model
formulation, solution and analysis of the model instance and the results. In
investigating SP models with the existing software tools, however, several
difficulties are encountered:

(a) In the conceptualisation and subsequent formulation phase of a
stochastic program, it is necessary to develop models of randomness and
models of optimum resource allocation. Data modelling similarly splits
into two main activities: (i) specification and collection of deterministic
data; (ii) identification and categorisation of random parameters. The
data definition facilities of the AMLs do not support this.

(b) Special purpose application programs are required to model the
uncertainty. For instance, geometric Brownian motion is used to forecast
asset prices in many financial applications, whereas sampling from a
lognormal probability distribution may be used to create scenarios for
products demand in a supply chain problem. These specialised
applications (scenario generators) need to be integrated with the
algebraic modelling systems.

(c) The algebraic modelling systems do not provide appropriate syntax for
the implementation of SP models. Information related to the random
parameters cannot be specified as such using the existing constructs
and many specialists agree that these AMLs need to be extended. Some
suggestions have been made (Gassmann and Ireland 1996, Fourer and
Gay 1997, Entriken 1997, also see Table 1) but practitioners do not
seem to have found a solution which fully addresses the requirements of
SP modelling.

(d) The special structure of SP models is represented compactly and
efficiently by following the SMPS standard (Birge et al. 1987). All the
AML systems are capable of providing models in MPSX format (IBM
1976) or equivalent, but do not have facilities to produce SP model
instances in the SMPS format.

(e) Solving SP models is a challenging task, as the sizes of these models are
usually very large; thereby they are unmanageable by classical
algorithms based on sparse simplex or interior point methods.
Decomposition algorithms such as nested Benders decomposition
(Benders 1962; Van Slyke and Wets 1969), stochastic decomposition
methods (Higle and Sen 1996), Monte Carlo and Importance Sampling
�,QIDQJHU� ������� /DJUDQJHDQ� GHFRPSRVLWLRQ� �0XOYH\� DQG� 5XV]F]\ VNL�
1995) require both the implementation of specialised solvers and a close
coupling with the algebraic modelling system. The analysis of the
results, together with the investigation of the stochastic measures
associated with the SP models, are difficult to carry out without the use
of database systems and customised viewers.

In this paper, we address some of these challenges and introduce SPInE
(Stochastic Programming Integrated Environment). The original design of the

 7

software system (Messina and Mitra 1997) has been revised and updated.
Our revisions take into account many of the issues discussed above and our
design objective is to create a flexible software tool for Stochastic
Programming practitioners. The rest of this paper is organised as follows:
section 2 introduces the classes of SP models which are supported by our
system. In this section we also introduce an example, which is used
throughout the paper in order to illustrate the features of SPInE. Section 3
focuses on SAMPL and SMPL, which are extensions of the AMPL and MPL
modelling languages respectively. In section 4 we discuss the rationale
underlying the parameter passing interface which connects the special
purpose scenario generators to the SPInE system. In section 5, we give an
overview of the solution algorithms implemented in SPInE and consider the
performance and scale up properties of these algorithms. In section 6 we
describe the software architecture of SPInE: the illustrative example given in
section 2 is used to explain the investigation of SP models within the SPInE
system. Our aim is to make SPInE widely available to the industrial and
academic research community. We have therefore prepared a library of SP
models in SMPL and SAMPL and also collected test problems in SMPS:
These two model libraries are summarised in Appendix A and Appendix B
respectively.

 8

2 Problem statement
In this section we consider the family of models which are now well
established and come under the broad heading of optimum decision making
under uncertainty. We first introduce these concepts and terminology which
we subsequently use to illustrate the features and capabilities of the SPInE
environment.

2.1 Classes of Stochastic Programming problems
We follow the classification of Stochastic Programming problems introduced
by (Gassmann and Ireland 1996). We make a small extension of their
categorisation by adding the Expected Value models as a subclass of the
distribution problems leading to a working taxonomy shown in Figure 2.

SP problems

Chance
Constrained

Problems

Recourse
Problems

Distribution
Problems

Scenario-
based

Distribution-
based

Wait and See Expected
Value

Stochastic Measures: EVPI and VSS

Figure 2 Taxonomy of SP problems.

We illustrate these classes by first considering the linear programming
problem:

mnnm RbRxcRAwhere

x

bAxtosubject

cxZ

∈∈∈

≥
=

=

× ;,;

0

min

(1)

Let (Ω, ℑ , P) denote a (discrete) probability space where),(ωξ ω∈Ω denote the
realizations of the uncertain parameters. Let us denote the realizations of A,
b, c for a given event ω as:

() ωω =ξωξ),,(cbAor (2)

The associated probabilities of these realizations are often denoted as

.))(()(ωξωξ porp For notational convenience we denote these probabilities as

)(ωp .
The classes of stochastic models illustrated in Figure 2 are defined below.

 9

Distribution problems
The optimisation problems which provide the distribution of the objective
function value for different realisations of the random parameters and also
for the expected value of such parameters are broadly known as the
distribution problems.

The Expected Value Problem

The Expected Value (EV) model is constructed by replacing the random
parameters by their expected values. Such an EV model is thus a linear
program, as the uncertainty is dealt with before it is introduced into the
underlying linear optimisation model. It is common practice to formulate and
solve the EV problem in order to gain some insight into the decision
problem. Let the feasible regions corresponding to the problem stated in (1)
and (2) be defined as:

{ } () ()ωξω
ω orcbAforxbAxxF ,,0,| ≥== (3)

We can reconsider (1) as an expected value or an average value problem
where:

()[] () ()∑
Ω∈

===
ω

ωξωωξξ pEcbA),,(

and the optimisation problem is defined as:

{ }bxAxFx

where

xcZ EV

=≡∈

=

|

min

 (4)

Let *

EVx denote an optimal solution to the above problem.

This solution can be evaluated for all possible realisations)(ωξ | Ω∈ω . We
can thus determine the corresponding objective function values and
compute what is called the expectation of the expected value solution:

[]*)(EVEEV xcEZ ω= (5)

If for some Ω∈ω , ωFxEV ∉* , that is *

EVx is not feasible for some realisation

)(ωξ of the random parameters, we set:

+∞→EEVZ (6)

Wait and See Problems

Wait and See (WS) problems assume that the decision-maker is somehow
able to wait until the uncertainty is resolved before implementing the

 10

optimal decisions. This approach therefore relies upon perfect information
about the future. Because of its very assumptions such a solution cannot be
implemented and is known as the “passive approach”. Wait and see models
are often used to analyse the probability distribution of the objective value,
and consist of a family of LP models, each associated with an individual
scenario. The corresponding problem is stated as:

ω

ωω
Fxtosubject

xcZ

∈

=)(min)(
 (7)

The expected value of the wait and see solutions is defined as:

[] ()∑
Ω∈

==
ω

ωωω pZZEZWS)()((8)

Stochastic Programming Problems with Recourse
Stochastic Programming Problems with recourse are dynamic LP models
characterised by uncertain future outcomes for some parameters. In general,
Stochastic Programming problems can be formulated as follows:

[]
Fxwhere

xcEZ HN

∈
=)(min ω

 (9)

�
Ω∈

=
ω

ωFFand
(10)

The optimal objective function value ZHN denotes the minimum expected
costs of the stochastic optimisation problem. The optimal solution x*∈ F
hedges against all possible events ω∈Ω that may occur in the future.
The classical stochastic linear program with recourse makes the dynamic
nature of SP explicit, by separating the model' s decision variables into first
stage strategic decisions which are taken facing future uncertainties and
second stage recourse (corrective) actions, taken once the uncertainty is
revealed. The formulation of the classical two-stage SP model with recourse
is as follows:

()

,0

,min

≥
=

+=

x

bAxtosubject

xQEcxZ ωω

 (11)

where:

 11

() () ()
() () () ()
()

Ω∈
≥

+=
=

ω
ω

ωωωω
ωωω

.0

min,

y

xBdyDtosubject

yfxQ

 (12)

The matrix A and the vector b are known with certainty. The function Q(x, ω),
referred to as the recourse function, is in turn defined by the linear program
(12). The technology matrix D(ω), also known as the recourse matrix, the
right-hand side d(ω), the inter-stage linking matrix B(ω), and the objective
function coefficients f(ω) of this linear program are random. For a given
realisation ω, the corresponding recourse action y(ω) is obtained by solving
the problem set out in (12).
As the future unfolds in several sequential steps and subsequent recourse
actions are taken, we deal with the generalisation of the two-stage recourse
problem, known as multistage Stochastic Programming problem with
recourse. A decision made in stage t should take into account all future
realisations of the random parameters and such decisions only affect the
remaining decisions in stages t+1 … T. In Stochastic Programming this
concept is known as non-anticipativity. The general formulation of a
multistage recourse problem is set out in equations (13) - (16) below:

 ++++=

− TT
xxxx

HN xcExcExcExcZ
T

TT
min...minminmin

21
3

23
2

2
1

|...||33|2211 ξξξξξξ (13)

subject to:

TTTTTTT bxAxAxAxA

bxAxAxA

bxAxA

bxA

=++++

=++
=+
=

...

332211

3333232131

2222121

1111

MOM

 (14)

; ttt ux ≤≤l (15)

where: Tt ,...,1= represents the planning horizon and the vectors:

[]TAAcb tTtttt ,...,2t),...,,(1 ∈∀=ξ (16)

are random vectors on a probability space � ��ℑ , P).
It is important to stress the difference between decision stages and model
time periods. Although these coincide in many applications, a stage can be
regarded in general as a time period where new information about the state
of nature is provided, that is the realisation of the random vectors can be
observed. The term “Here and Now” is often used to refer to recourse
problem, reflecting the fact that decisions are taken before perfect
information on the states of nature is revealed.

 12

Scenario based recourse problems

Let us reconsider the random parameter vector ξ(ω) introduced in (2) and
used in the definition of the given class of models. In the discrete statement
of the problem the event parameter takes the range of values ω = 1,…,|Ω|;
there are associated random vector realisations ξ(ω) and probabilities p(ω)
such that:

∑
Ω∈ Ω∈

=Ξ=
ω ω

ωξω �)(and 1)(p

(17)

In (17), Ξ is the set of all random vectors and is often called the set of
scenarios.

For the multistage recourse problem (13) - (16), if the probability distribution
of the random parameter vectors is discrete, the uncertainty defines a
random structure in the form of an event tree, which represents the possible
sequence of realisations (scenarios) over the time horizon (see Figure 3).
When the event tree is explicitly given, we refer to the model as a scenario
based recourse problem.

ξ 2 2k ξ 2 2k

ξ T

......

......

... ...

...

ξ 2

ξ3 ξ 3 ξ 3

ξ 4

Figure 3. Event tree and scenarios

In the multistage problem (scenario based), the event tree serves two
purposes:

(i) specify the model of randomness (the scenario generation) and

(ii) define the algebraic model structure including hierarchal (or
recursive) non anticipativity restrictions.

In general, individual scenarios are interpreted as leaf enumeration of the
event tree (Messina and Mitra 1997).

Distribution based recourse problems

An event tree can be also implied by defining the probability distributions of
the random parameters, in which case the model is called distribution based
recourse problem. Gassmann and Ireland (Gassmann and Ireland 1996)
expand this concept in their work. This second class of problems, however,
introduces various difficulties in the model specification using algebraic
modelling languages and in terms of the solution process, in particular when
some of the random parameters are continuously distributed. An
approximation can be achieved by adopting appropriate sampling
procedures, whereby the distributions may be replaced by an event tree.

 13

Chance-Constrained Problems
Another important class of Stochastic Programming models are the chance-
constrained problems (CCP) (Charnes and Cooper 1959). These can be
dynamic or static models where one or more constraints are probabilistic.
The general formulation of a chance-constrained problem is:

{ } ,..1

..

min

00

IihxAP

bxA

ts

cxZ

iii

CCP

=≥≥
=

=

β

(18)

where:

]1,0[∈iβ

is a reliability level and:

IihA iii ..1),(=∀=ξ

is a random vector on the probability space � ��), P).
If the Ai is a row vector, the i-th constraint is called individual chance
constraint. If Ai is a cr × matrix with 1>r , then the i-th constraint is
referred to as joint chance constraint.

2.2 Stochastic measures in SP recourse problems :EVPI and VSS
It can be shown that the three objective function values ZEEV, ZHN, ZWS are
connected by the following ordered relationship:

EEVHNWS ZZZ ≤≤ (19)

The inequality:

EEVHN ZZ ≤ (20)

can be argued in the following way: any feasible solution of the average value
approximation is already considered in the Here and Now model, therefore
the optimal Here and Now objective must be better. The difference between
these two solutions defines the Value of the Stochastic Solution (VSS):

HNEEV ZZVSS −= (21)

This is a measure of how much can be saved by implementing the
(computational expensive) Here and Now solution as opposed to the
deterministic expected value solution.
Another important index is represented by the Expected Value of Perfect
Information (EVPI):

 14

WSHN ZZEVPI −= (22)

This property of the stochastic optimisation problems is interpreted as the
expected value of the amount the decision maker is willing to pay to have
perfect information (i.e. knowledge) about the future scenarios. A relatively
small EVPI indicates that better forecasts will not lead to much
improvement; a relatively large EVPI means that incomplete information
about the future may prove costly. In (Birge and Louveaux 1997) some
useful bounds on the EVPI and VSS are discussed:

EVEEVEVHN ZZZZEVPI −≤−≤≤0 (23)

EVEEV ZZVSS −≤≤0 (24)

These can help in estimating the relative benefit of implementing the costly
Stochastic Programming solution, as opposed to approximate solutions
obtained by processing the Expected Value LP problem.

2.3 Illustrative example: an asset/liability management model
The finance industry, rather belatedly, has embraced the Markowitz mean-
variance model (Markowitz 1952; see also Jobst et al. 2001) for portfolio
planning and asset/liability management applications. A major criticism of
this approach (Luenberger 1997) is that it is a single period, static model.
Carino and Turner (Carino and Turner 1997) illustrate the superiority of
Stochastic Programming dynamic asset allocation models, over the mean-
variance approach. In fact, active portfolio management breaks away from
myopic static decisions and implies revisiting the strategy, and re-balancing
of the portfolio positions as financial conditions change. We use an ALM
multistage Stochastic Programming model with downside risk constraints
(Kyriakis 2001) to illustrate the capabilities of the SPInE system.

Algebraic formulation

The ALM problem:

An investor faces the problem of creating a portfolio allocating assets out of a
universe of I assets. Each asset is characterised by a price, which is (the
only) random variable. The possible future prices are represented by an
event tree. The goal of the investor is to maximise the portfolio wealth at the
end of the time horizon T. He needs to take into account future obligations
(liabilities). Asset buying and selling decisions are made, and each trade has
an associated transaction cost. The deviation of the portfolio value from a
predefined target is taken as measure of the risk. In each time stage the
investor can decide the amount of assets to buy, sell and hold in the
portfolio.
We implement this problem as a multistage stochastic program with
recourse, using a split-variable deterministic equivalent representation
(Dempster 1988; Messina and Mitra 1997):

 15

Sets and indices:

T denotes the number of time period in the time horizon
Assets is the set of assets in our universe, where |Assets| = I
Scenarios is the set of scenarios, where |Scenarios|= Sc
t = 1..T denote time periods,
i = 1..I denote an asset,
s = 1 ..Sc indicates a scenario.

Parameters:

priceits i ∈ Assets, t=1..T, s ∈ Scenarios is the price of asset i in period t,
for scenario s

ps s ∈ Scenarios is the weight (probability) associated to scenario s
Lt ≥0 t=1..T is the expected liability at time period t
Ft ≥0 t=1..T is the funding available in time period t
At >0 t=1..T is the predefined target for time period t
H0i ≥0 i ∈ Assets is the initial composition of the portfolio
R ≥0 is the maximum deviation from the target accepted by the

investor (in fraction)
g ≥0 is the transaction cost rate

Decision variables:

Hits ≥0 i∈ Assets t=1..T, s∈ Scenarios is the amount of assets of type i
held in time period t under scenario s

Bits ≥0 i∈ Assets t=1..T, s∈ Scenarios is the amount of assets of type i
bought in time period t under scenario s

Sits ≥0 i∈ Assets, t=1..T, s∈ Scenarios is the amount of assets of type i
sold in time period t under scenario s

Objective function:

Maximise the expected value of the final portfolio wealth:

∑ ∑
= =

Sc

s
iTs Hpricep

1

I

1i
iTmax

Subject to:

Asset holding constraints:

 itsitsiits - S B HO H += ScsI, i t ..1,..11 ===

 1 itsitssitits - S B H H += − ScsIT, it ..1,..1..2 ===

Fund Balance constraints:

)1()1(
11

∑∑
==

+=+−−
I

i
itsits

I

i
ttitsits BpricegFLSpriceg

Scs..Tt ..1,1 ==

Downside risk constraints:

 R-
I

1i
itst tits AHpriceA ≤∑

=
 ScsTt ..1,..2 ==

 16

To complete the formulation we add to this a set of non-anticipativity
constraints, which depend on the event tree structure.

Event tree representation
Let T represent a time horizon of one year, which is divided into four
quarters. A decision is made at the beginning of each quarter, leading to a
four-stage stochastic program. The event tree used in this example is shown
in Figure 4. The leftmost node represents the strategic decision (to be made
today) while the subsequent nodes represent conditional “recourse”
decisions at later stages, when the portfolio is re-balanced.

t=1 t=2 t=3 t=4

Figure 4: Event tree structure

The further we look into the future, the less accurate is our knowledge about
the state of nature. This justifies our choice of a tree structure in which the
number of branches (alternative asset prices) decreases in later stages. We
consider 8 possible outcomes in the second stages, 4 conditional outcomes
in the third stage and 2 conditional outcomes in the last stage leading to a
total of 8 x 4 x 2 = 64 scenarios.
The asset prices are generated using a GARCH based model (Kyriakis 2001).
The discussion of the scenario generation is postponed until section 4. The
conditional decisions induced by the scenario tree are modelled via a set of
non-anticipativity constraints. A scenario s is a data path from the root of
the event tree to any of the leaves. In general, the decisions at each stage
have to be the same for all scenarios which are indistinguishable up to that
stage (they pass through the same node).
Formally, let:

tK

denote the number of nodes in stage t, and let:

[] [] ,..,1 , ,..,1 TtKkn ttk ∈∈

denote the k-th node of the t-th stage of the event tree. We define:

tkbundle

 17

as the set of scenarios passing through node ntk. In our example, we have:

64,32,8,1 4321 ==== KKKK

The composition of the bundles is therefore:
bundle11={1,2,…,64} (t=1)
bundle21={1,2,..,8}, bundle22={9,10,..,16}, …, bundle28={57,..,64} (t=2)
and so on. We can define the bundles of this problem in a compact form as:

−+= k
K

Sc
k

K

Sc
bundle

tt
tk),...,1(1 (25)

where Sc is the total number of scenarios. This relation is valid for any
scenario tree with a constant number of branches at each node of a given
stage.
The non-anticipativity can be thus expressed as:

tiqrBundlessBHSBHS tkqritsits rq
,,,,,),,(),,(∀≠∈∀= (26)

2.4 Illustrative model formulated in AMPL and MPL
The implementations of this model in the established modelling languages
AMPL (Fourer et al. 1993) and MPL (Maximal 2000) are set out below. The
values of the deterministic parameters, as well as the scenario data, are read
from a database. In AMPL, the directives for the database connections are
separated from the model definition. The AML systems translate these
declarative formulations into the matrix of the deterministic equivalent
model.

 18

Formulation of the model in AMPL

set I := 1..23; #asset type
set T := 1..4; #time stages
set Sc := 1..64; #scenarios

param g := 0.025; # Transactions cost ratio
param R := 0.2; # Risk level;
param L{T}; # Liabilities;
param H0{I}; # Initial portfolio;
param F{T}; # Funding
param A{T}; # Targets
param P{Sc}; # scenario probabilities
param price{T,I,Sc}; # asset prices

var S{T,I,Sc} >=0;
var H{T,I,Sc} >=0;
var B{T,I,Sc} >=0;

maximize wealth : sum{s in Sc, i in I} P[s]* H[4,i,s]* price[4,i,s];

######subject to

ASSET HOLDING CONSTRAINTS #######

assetholding1{i in I, s in Sc}: H[1,i,s]=H0[i]+B[1,i,s]-S[1,i,s];
assetholding2{i in I, t in 2..4,s in Sc}: H[t,i,s]=H[t-1,i,s]+B[t,i,s]-
S[t,i,s];

FUND BALANCE CONSTRAINTS #######

fundbalance{t in T,s in Sc}: sum {i in I} B[t,i,s]*price[t,i,s]*(1+g) -
 sum {i in I} S[t,i,s]*price[t,i,s]*(1-g) =
 F[t]-L[t];

DOWNSIDE RISK CONSTRAINT ######

zeta{ t in 2..4, s in Sc}: A[t]- sum {i in I} H[t,i,s]*price[t,i,s]<=
 R*A[t];

NON ANTICIPATIVITY CONSTRAINT ######

nah11{i in I,s in 2..64} : H[1,i,s]= H[1,i,s-1];

nah21{i in I,s in 2..8} : H[2,i,s]= H[2,i,s-1];
nah22{i in I,s in 10..16}: H[2,i,s]= H[2,i,s-1];
…
nah28{i in I,s in 58..64}: H[2,i,s]= H[2,i,s-1];

nah31{i in I,s in 2..2} : H[3,i,s]= H[3,i,s-1];
nah32{i in I,s in 4..4} : H[3,i,s]= H[3,i,s-1];
…
nah316{i in I,s in 64..64}: H[3,i,s]= H[3,i,s-1];

same for variables S and B ####

Table 2. Formulation of the ALM model in AMPL.

 19

Formulation of the model in MPL

TITLE ALM_46_MS;

INDEX
i = 1..23; ! I=23
t = 1..4; ! T=4
s = 1..64; ! Sc=64

DATA
g = 0.025;
R = 0.2;
L[t] = DATABASE(tbl_liabs,liability);
H0[i] = DATABASE(tbl_portfolio,quantity);
F[t] = DATABASE(tbl_incomes,Income);
A[t] = DATABASE(tbl_targets,Target);
P[s] = DATABASE(tbl_Probabilities,Prob);
price[t,i,s] = DATABASE(tbl_PricesSP,return);

DECISION VARIABLES
S[t,i,s];
H[t,i,s];
B[t,i,s];

MODEL
MAX wealth = SUM(s,i,t=4: P[s]*H[t,i,s]*price[t,i,s]);

SUBJECT TO
!********* ASSET HOLDING CONSTRAINTS *******
assetholding[i,t=1,s]: H[t,i,s]=H0[i]+B[t,i,s]-S[t,i,s];
assetholding[i,t>1,s]: H[t,i,s]=H[t-1,i,s]+B[t,i,s]-S[t,I,s];

!********* FUND BALANCE CONSTRAINT *********
fundbalance[t,s]: SUM(i:B[t,i,s]*price[t,i,s]*(1+g)) -
 SUM(i:S[t,i,s]*price[t,i,s]*(1-g)) =
 F[t]-L[t];

!********* DOWNSIDE RISK CONSTRAINT *******
zeta[t>1,s] : A[t]-SUM(i:H[t,i,s]*price[t,i,s])<=R*A[t];

!********* NON ANTICIPATIVITY CONSTRAINT *********
nah11[t=1,i,s>1]: H[t,i,s]= H[t,i,s-1];

nah21[t=2,i,s=2..8]: H[t,i,s]= H[t,i,s-1];
nah22[t=2,i,s=10..16]: H[t,i,s]= H[t,i,s-1];
…
nah28[t=2,i,s=58..64]: H[t,i,s]= H[t,i,s-1];

nah31[t=3,i,s=2]: H[t,i,s]= H[t,i,s-1];
nah32[t=3,i,s=4]: H[t,i,s]= H[t,i,s-1];
…
nah316[t=3,i,s=64]: H[t,i,s]= H[t,i,s-1];

!*** same for variables S and B***********
…
END

Table 3. Formulation of the ALM model in MPL

An examination of the non-anticipativity constraints indicates that this
explicit form of representation is not immediately natural: it can be laborious
and error-prone. Also, the important requirement of separating the data
from the model (Geoffrion 1992) is lost in the above representation. This can
be avoided using alternative but equally laborious model formulations (see
for instance Gassman and Ireland 1995). Finally, the matrices generated for
these deterministic equivalent models contain redundancies and are often
too big to be handled by both solvers and modelling systems. This strongly
makes the case for extending the algebraic modelling languages in terms of
syntax and in generation capabilities in order to support the SP modelling
steps.

 20

3 Extending Algebraic Modelling Languages for SP

The use of the MPS input format as a representation standard and the extensive
use of algebraic modelling languages have become well established and have
substantially facilitated the investigation of deterministic optimisation problems.
SMPS was introduced as a standard for representing stochastic programs in a more
compact and efficient way, exploiting the inherent SP model structure. However,
SMPS is a machine-readable format and has no high level representational power.
Our illustrative example introduced in section 2.3 and our discussions in section
2.4 highlight the difficulties of using existing algebraic modelling languages to
formulate SP. This is mainly due to the lack of constructs for the definition of the
randomness of the model coefficients and for the declaration of the scenario tree
structure. An examination of other investigators’ works (Table 1) reveals that some
extensions have been proposed to overcome these limitations, but have not yet
been deployed.
We have designed and adopted a direct approach, whereby we provide extensions to
AMLs to formulate SP recourse problems and Chance Constrained Problems with
natural and concise constructs (Valente et al. 2001). This approach allows us to
extend the syntax of AMPL and MPL into what we call SAMPL and SMPL
respectively.

3.1 SMPL and SAMPL: an introduction
A Stochastic Programming model can be considered as a linear programming model
extended and refined by the introduction of uncertainty (see Figure 5). More
precisely, the underlying LP optimisation model is extended by taking into account
the probability distribution of the LP coefficients which are random variables. Such
distributions are provided by models of randomness (implemented in scenario
generators), which are specific to the particular optimisation problems under
investigation.

Modelling of
random

parameters

LP
modelling

SP
modelling

Scenario Analysis
Expected Value
Two Stage RP
Multistage RP

Chance Constrained Problems

Figure 5. The combined paradigm

As we consider the taxonomy and the classes of stochastic models introduced in
Figure 2, it becomes immediately obvious that AMLs are neither specifically
designed nor well suited to construct these classes of models. In fact, the strong
coupling between the model structure and the data structure which arises in the
models of randomness makes it very difficult separate model definition from data
definition (see section 4.1).

 21

If the probability distributions of the random parameters are discrete, it is always
possible to define a deterministic equivalent model for Stochastic Programming
problems with recourse. As we discussed in section 2.4, this approach suffers from
a number of drawbacks, and often leads to unmanageable models when the size of
the problems increases. The difficulties of working with the deterministic equivalent
model are summarised below:

a) The unnatural non-anticipativity constraints have to be declared to reflect
the model structure induced by the scenario tree.

b) The replication of decision variables leads to a high level of redundancy.

c) The size of the deterministic equivalent models grows exponentially with the
number of decision stages considered.

d) The staircase structure of the matrix is lost due to the internal processing of
the modelling systems, precluding the possibility of exploiting structure
information by the solution algorithm.

Ideally, a modelling language for Stochastic Programming problems should include
a set of constructs which allow the modeller to capture the effects induced by the
uncertainty on the underlying model structure, as well as provide a compact
representation of the model instance. We present a generic approach of modifying
AMLs, which is based on the concepts of underlying deterministic model and
stochastic information in respect of the random parameters.

The underlying deterministic model
In a Stochastic Programming problem, it is always possible to identify an
underlying deterministic model (also called the core model). This model captures
the logical structure of the problem as well as the dynamical relations within
decision variables, their bounds and the objective function. In a scenario-based
recourse problem, for instance, the core represents the model associated with a
particular sequence of realisations of the random parameters (scenario). The
definition of the underlying deterministic model makes use of the standard
constructs provided by the existing modelling languages (AMPL or MPL). The core
model could be linked to the model of randomness in two ways:

a) Making variables, parameters and constraints explicitly parametric in the
scenario index

b) Marking the appropriate coefficients as random parameters in such a way
that they can be treated implicitly.

The first approach requires that a scenario dimension must be introduced a priori
and precludes the possibility of describing models with continuous distributions; it
also implies the replications of variables and constraints. We adopt the second
approach, whereby we write a pure deterministic model and we use new language
constructs to identify the random parameters of the problem. Such constructs also
define the effects of the uncertainty on the underlying model structure.

Declaration of the random structure
Once the underlying deterministic problem has been implemented, it is necessary
to merge it with the information related to the model of randomness which
characterises the problem. We expand the language syntax in order to capture
such stochastic information. The items of information can be summarised as
follows:
Stochastic Class: identifies the category to which the SP problem belong

(distribution-based recourse problem, scenario-based recourse
problem, chance-constrained Problem)

 22

Time dimension: the index used to describe the temporal horizon in the underlying
model needs to be uniquely identified.

Stages: Decision stages are defined in terms of a partition of the time
horizon

Scenario dimension: the index used to identify the scenarios needs to be uniquely
identified, because the realisations of the random parameters in
scenario-based problems are defined using this index.

Scenario Tree: for scenario-based problems, it represents the structure of the
event tree.

Scenarios probability distribution: the (discrete) probabilities associated with the
scenarios.

Random parameters probability distributions: only required for distribution-based
problems

Random data: defines and marks the random parameters of the problem in
scenario-based problems.

Chance constraints: Probabilistic constraints in chance-constrained problems need
to be explicitly declared.

Time index

Stages

aggregations

Scenario tree

structure

Scenario

index

Random

parameters

Scenario

probabilities

Probabilistic
constraints

Indices

Objectives

Constraints

Variables

Parameters

Standard AML
constructs
sufficient for the
definition of the
core models

Extensions for
SP modelling

Figure 6. Extended language constructs

Figure 6 shows how the basic constructs of a modelling language for linear
programming are extended to capture the stochastic information. The design of the
new constructs is adapted to be consistent with the grammar of the underlying
modelling language. We have successfully applied this approach to the MPL and
AMPL languages. We refer to (Valente et al. 2001) for a detailed description of the
syntax. The combined SMPL and SAMPL parser is the core of the modelling system
embedded into SPInE. This system also generates data model instances in SMPS
format and in a Stochastic Intermediate Representation (SIR).

3.2 Illustrative model formulated in SAMPL and SMPL
Following the approach outlined in section 3.1, we need to specify the stochastic
information relating to the ALM problem. Table 4 contains the declarations in SMPL
and SAMPL of the components which together comprise the required stochastic
information.

 23

Description SMPL

definition
SAMPL
definition

Stochastic class
The model is a scenario-based recourse
problem (SBRP)

STOCHASTIC CLASS
SBRP;

class SBRP;

Time
The time index is of this problem is
represented by t.

TIME
t;

timeset T;

Scenarios
The asset prices outcomes are given in
the form of an event tree. We use the
index s to identify the scenarios.

SCENARIO
s;

scenarioset Sc;

Probabilities
We consider scenarios with equal
probability.

PROBABILITIES
ALL_EQUAL;

probability
all_equal;

Stages
The time horizon is divided into 4
quarters, which also identify the
decisional stages. There is therefore a 1
to 1 relation between time periods and
stages, which we indicate as
ONE_TO_ONE.

STAGES PARTITION
ONE_TO_ONE;

stages partition:
one_to_one;

Tree
The event tree used in this model is a
symmetric tree. The number of
branches at each node varies in
different time stages (8,4,2), but is
constant for nodes within a given stage.

TREE
MULTIBRANCH(8,4,2);

tree
multibranch{8,4,2};

Random data
The only random parameter is the price
of the assets over time. This parameter
is scenario-dependent, and is therefore
indexed over the scenario index.

RANDOM DATA
price =
DATABASE(tbl_PricesSP,r
eturn);

random param
price;

Table 4. Definition of the stochastic information of the ALM model

The complete model formulations in SAMPL and SMPL are set out in Table 5 and
Table 6 respectively.
An SP presented in SAMPL or SMPL can be separated into two parts:

(a) Part 1 which contains the declaration of the underlying core LP using
“standard” AML statements.

(b) Part 2 which which contains some structural details covering the
stochastic aspects of the model. This includes the definition of the
scenario tree structure, the partitioning of variables and constraints
into stages and an implicit reference to a scenario generator which
provides random data parameter values to instantiate the SP model.

 24

asset/liability management model ALM48ms.mod

set T := 1..4; #time horizon
set I := 1..23; #asset type

param g := 0.025; # Transactions cost rate
param R := 0.2; # Risk level;
param L{T}; # Liabilities;
param H0{I}; # Initial portfolio;
param F{T}; # Funding
param A{T}; # Targets

var S{T,I} >=0;
var H{T,I} >=0;
var B{T,I} >=0;

maximize wealth : sum{i in I} H[4,i]*price[4,i];

subject to

ASSET HOLDING CONSTRAINTS #######

assetholding1{i in I}: H[1,i]=H0[i]+B[1,i]-S[1,i];
assetholding2{i in I, t in 2..4]: H[t,i]=H[t-1,i]+B[t,i]-S[t,i];

FUND BALANCE CONSTRAINTS #######

fundbalance{t in T}: sum {i in I} B[t,i]*price[t,i]*(1+g) -
 sum {i in I} S[t,i]*price[t,i]*(1-g) =
 F[t]-L[t];

DOWNSIDE RISK CONSTRAINT ######

zeta{ t in 2..4}: A[t]-sum {i in I} H[t,i]*price[t,i] <=R[t]*A[t];

stochastic framework

class SBRP;

timeset T;

scenarioset Sc;

probability all_equal;

random param price;

stages partition one_to_one;

tree multibranch{8,4,2};

end

Table 5. Formulation of the ALM model in SAMPL

 25

TITLE ALM_64_MS;

INDEX
i = 1..23;
t = 1..4;
DATA
g = 0.025;
R = 0.2;
L[t] = DATABASE(tbl_liabs,liability);
H0[i] = DATABASE(tbl_portfolio,quantity);
F[t] = DATABASE(tbl_incomes,Income);
A[t] = DATABASE(tbl_targets,Target);
price[t,i];

DECISION VARIABLES
S[t,i];
H[t,i];
B[t,i];

MODEL
MAX wealth = SUM(t=4,i:H[t,i]*price[t,i]);

SUBJECT TO
!********* ASSET HOLDING CONSTRAINTS *******

assetholding[i,t=1]: H[t,i]=H0[i]+B[t,i]-S[t,i];
assetholding[i,t>1]: H[t,i]=H[t-1,i]+B[t,i]-S[t,i];

!********* FUND BALANCE CONSTRAINT *********

fundbalance[t]: SUM(i:B[t,i]*price[t,i]*(1+g))-
 SUM(i:S[t,i]*price[t,i]*(1-g))=
 F[t]-L[t];

!********* DOWNSIDE RISK CONSTRAINT *******
zeta[t>1] : A[t]-SUM(i:H[t,i]*price[t,i])<=R*A[t];

STOCHASTIC CLASS
SBRP;

TIME
t;

SCENARIO
s;

PROBABILITIES
ALL_EQUAL;

STAGES
PARTITION: ONE_TO_ONE;

TREE
MULTIBRANCH(8,4,2);

RANDOM DATA
price = DATABASE(tbl_PricesSP,return);

Table 6. Formulation of the ALM model using the SMPL extended language.

We observe that:

(i) the explicit definition of the non-anticipativity constraints has been
eliminated,

(ii) the separation of data definition from model definition, which is one of
the main advantages of the use of AMLs, is preserved.

 26

4 Scenario generation

If we revisit section 2.1 where we define the scenario based recourse problem and
the Figure 5 in section 3.1 where we describe the combined paradigm of models of
randomness and the optimum allocation of LP models, we gain some insight into
the nature and structure of the SP models.

The algebraic (LP) model captures the logic of the application’s domain. Similarly,
the scenario generators are also special purpose applications developed to capture
the randomness properties of a particular application’s domain. Typically, a
consumer product supply chain model and an energy distribution model both
require scenarios of forecast demand, but the factors which influence the demands
and the forecasting models may be very different. Again in finance applications the
asset prices under consideration may be generated using different models of credit
risk, interest rate risk or other considerations. In designing an SP modelling
support system our goal is therefore to develop an appropriate parameter passing
interface which enables us to connect diverse special purpose scenario generators
(which capture very valuable domain knowledge) to our modelling system.

In section 4.1 we outline the design principles, in section 4.2 we consider some well
established approaches to scenario generation and in section 4.3 we provide an
example of connecting a GARCH based asset price generator for our illustrative
ALM model.

4.1 Integrating scenario generators in SPInE
In section 2.1 we introduced the concept of scenarios and noted that the event tree
within SP serves two different purposes:

(i) define the model of randomness (scenario generation) and

(ii) specify the algebraic structure of the decision variables and constraints.

A scenario generator �captures in a procedural form a domain-specific model of
randomness. In particular it uses historical information, an event tree structure
and some other specification parameters. We can thus separate the main groups of
parameters as

H : History,
: : Event Tree,
 : Remaining Parameters.

7KH�VHW�RI�VFHQDULRV� �LV�WKHQ�VHHQ�DV�WKH�FROOHFWLRQ�RI�VFHQDULRV�ZKLFK�DUH�RXWSXW�
by the generation procedure:

Ξ⇒),,(θτϕ H (27)

In the algebraic form of the SP model we also need to specify the ‘variable and
constraint’ tree structure, which we label as ’. Thus using the extended AML we
provide a specification of ’ in the SP model through the tree declaration.
For consistency, of course, we need the two trees to be congruent. In other words
we need to ensure that the event tree structure used by the special purpose
scenario generator is ‘compatible’ with the ’ specified in the SP model (see Valente
et al. 2001). The requirement for scenario generator parameter passing and tree
consistency conditions are illustrated in Figure 9. When a special purpose scenario
generator is connected to SPInE, the two trees and ’ are compared for

 27

consistency. The scenario generator then creates the set of scenarios and the
associated probabilities S� �.

0RGHO�RI �
UDQGRPQHVV�

ϕ(θ,τ,Η) = Ξ

6FHQDULR
VHW�

Ξ

63�UHFRXUVH�
PRGHO�

�UHTXLUHV�WUHH�
VWUXFWXUH���

�

τ��

τ

θ

+�

τ ����
τ ¶��
ϕ���
θ���
+�
Ξ

��6FHQDULR�WUHH�VWUXFWXUH�
��63�PRGHO�WUHH�VWUXFWXUH�
��0RGHO�RI�UDQGRPQHVV�
��2WKHU�SDUDPHWHUV�RI�ϕ�
��+LVWRULFDO�GDWD�
��6HW�RI�VFHQDULRV�

�
&RQVLVWHQF\�FRQGLWLRQ��

τ = τ�
�

Figure 7. Scenario Generation Parameter Paring and Tree Consistency

The data interface for the presentation of the scenarios to the modelling system is
based on ODBC connections. This allows the scenario generator to store the output
in virtually any type of database (including text files). The flexible interface with
scenario generators and the ability to create in-sample scenarios for SP model
optimisation and out-of-sample scenarios for simulation (see section 6.3) make the
connection to external generators a valuable feature of SPInE.

4.2 Models of randomness
There are some well-established approaches to scenario generation; having
examined a number of reported applications we have identified three modelling
methodologies which are likely to encompass a wide range of SP models. These are
moment-based methods, diffusion processes and time series based methods. Our
design goal is to provide templates for connecting these types of generators.

Moment based scenario generation
One of the major problems in the scenario generation is to make sure that the
outcomes sampled from the random model are consistent with the underlying
probability distribution, or with the decision-maker beliefs about the future.
Høyland and Wallace (Høyland and Wallace 2001), present an algorithm whereby
the decision-maker specifies a distribution in terms of marginal moments,
correlation matrix and higher co-moments and the generated scenarios are
consistent with the specification.

Diffusion processes
Diffusion processes are widely used in finance to model the paths of the future
prices of stocks, interest rate term structure and the value derivatives. These
models of randomness are continuous time models.

Time series
Time series models are commonly used to estimate parameters which explain the
behaviour of a random variable based on past observations.

 28

4.3 An example: Connecting SPInE to an asset prices generator
In this section, we give a broad overview of the scenario generator for stock prices
and liabilities developed in (Kyriakis 2001). We have integrated this generator in
SPInE and used it for our asset/liability management example. This generator uses
some ideas put forward by Mulvey (Mulvey 1996) who developed the CAP:Link
model for Tower Perrins. Also see (Zenios 1993) for a description of optimisation as
used in the finance industry. Figure 8 provides a compact outline description of the
relationship diagram of the scenario generator.

'LYLGHQG�\LHOGV�

/LDELOLWLHV� &DVK�%RQGV� 6WRFN�SULFHV�

+LVWRULFDO�GDWD�

/RQJ�UXQ�
LQWHUHVW�UDWHV�

6KRUW�UXQ�
LQWHUHVW�UDWHV�

&RQVXPHU�
SULFH�LQGH[�

Figure 8. Asset prices generator: architecture

The macroeconomic environment is modelled using a Generalised Autoregressive
model with Conditional Heteroscedasticity, GARCH(1,1).
GARCH processes are used to model random variables characterised by non-
constant variance over time (heteroscedasticity), including a disturbance term
which is function of past realisations and other exogenous factors. GARCH(1,1) is
hence used to model the short run interest rates, long run interest rates and the
consumer price index, and to capture the interrelationships between these
variables through time. The coefficients for the model are estimated using a 19
years period from March 1978 to March 1996. These represent the H input
parameter of the scenario generator.
The scenarios produced by these processes are next used to simulate paths for the
dividend yield of either an index or individual assets. A combination of a stochastic
process and an autoregressive model simulate the behaviour of the dividend yields.
Brownian motion is used to capture the dependence of the dividends from their
past values.
The scenario generator hereby illustrated uses autoregressive models AR(1) to
relate dividend yields to the short run interest rate. Note that different models are
estimated for each asset and financial index.
Finally, a multivariate autoregressive model, specific to each asset or index,
generates future projections for the returns of the index or the assets. In this case,
past returns and the current dividend yield explain the movements of the expected
returns.

 29

5 Stochastic Solver in SPInE

The proposal and adoption of the stochastic mathematical programming input data
standard, SMPS (Birge et. al. 1987), as well as the library of models maintained by
researchers (Ariyawansa and Felt 2001, Birge 2001) prepared to this specification,
has made it easier to develop solvers and evaluate their performance. The SMPS
input format extends the MPSX standard and is designed to achieve efficient
conversion to SP models by representing the deterministic and the stochastic
information in separate information streams presented as data files. The solver
developed and integrated in SPInE has a clearly set out coupling with the modelling
system and can accept model data instances either in SIR or in the SMPS format.
As a result the interface is extremely flexible and the solver, which implements a
number of established and a few innovative algorithms may be used as a stand-
alone tool.

5.1 Solution techniques
Solution methods for SP problems have been widely studied and these can be
broadly classified into four categories:

Universe problem
In this approach, which involves solving the deterministic equivalent, we consider
all possible outcomes ω ∈Ω and solve the corresponding problem exactly (Birge and
Louveaux 1997). This is not always possible, because there may be too many
possible realisations ξ(ω)∈Ξ . The universe problem can be solved in two ways
depending on how the non-anticipativity constraints are considered; these non-
anticipativity constraints can be considered either implicitly or explicitly.

Decomposition
Mathematical decomposition of the deterministic equivalent program is primarily
based on using the L-shaped decomposition (see Van Slyke and Wets 1969), in
multistage setting, for example, (Ho and Loute 1974; Glassey 1973), and
5XV]F]\ VNL� �5XV]F]\ VNL�������KDYH� LPSOHPHQWHG�SDUDOOHO� YHUVLRQV��$� YDULDQW� RI�
the nested decomposition algorithm, called the regularized decomposition method
�5XV]F]\ VNL� ������� KDV� DOVR� EHHQ� SURSRVHG� WR� VROYH� ODUJH� SUREOHPV�� 7KH�
progressive KHGJLQJ� �RU� VFHQDULR� DJJUHJDWLRQ�� PHWKRG� �0XOYH\� DQG� 5XV]F]\ VNL�
1995), is an augmented Lagrangean based technique with mathematical
decomposition. For its implementation for problems with network structure see
(Mulvey and Vladimirou 1991).

Sampling-Based
In sampling-based methods, one iteratively draws random samples from the
underlying probability distribution for computing stochastic quasi-gradient (Dupac
1965), (Kushner 1971) or for stochastic L-shaped decomposition (Higle and Sen
1996) procedures that enjoy asymptotic convergence properties. Noting that the
variance of the samples is the key to the convergence process, various variance
reduction schemes, such as importance sampling within the L-shaped method
(Bowermann and Koehler 1978), (Infanger 1994) have been employed for better
algorithm performance.

Successive approximation
This approach is based on computation of bounds on the optimal objective value.
See (Andradottoir 1995 and 1996), (Birge and Qui 1995), (Birge and Wets 1986)

 30

and (Frantzeskakis and Powell 1990), for general details on such schemes. These
methods employ lower and upper bounding functions on the expected value
function at each decision stage; these bounds are then used in the outer
approximation.

5.2 The solver system in SPInE
The solver system which we have embedded into SPInE is designed to variously
process the family of SP models which include:
(i) Expected Value Problem

(ii) Wait and See Problems

(iii) Here and Now Problem (Recourse Models).

,QSXW��
5RXWLQHV�

6ROXW LRQ�
FRQVLVWV�

'DWD�ILOHV �
�&RUH�6WRFK��7LPH��

�

2SWLRQ�ILOH�
�

FRQVLVWV �
6WRFKDVWLF�
0HWULFV�

DUH�

(93,� 966�

$OJRULWKPV�
�

DUH�

'HWHUPLQLVWLF�
HTXLYDOHQW�

+HUH�DQG�1RZ� :DLW�DQG�6HH� ([SHFWHG�9DOXH�

FRQVLVWV�

FRQVLVWV�/DJUDQJHDQ�EDVHG�
1HVWHG�%HQGHUV�

,PSOLFLW�
�QRQ�DQWLFLSDWLYL W\�

([SOLFLW�
�QRQ�DQWLFLSDWLYL W\�

5HVXOWV�URXWLQHV� ZULWHV�

5HVXOWV�ILOH�

Figure 9. Entity relationship diagram of SPInE’s solver.

Figure 9 shows the entity relationship diagram of the solver system. SP models
capture the two important aspects of decision-making, namely time and
uncertainty, but their computational realizations suffer from the curse of
dimensionality. This in turn requires that the data structure of the solver must be
efficient to (i) capture the dynamic evolution of uncertain parameters, and (ii) scale
up (of the model size through scenarios and stages) to process real world models.

 31

Algorithms
A number of solution algorithms have been implemented and tested within SPInE.
Currently, we use FortMP (Ellison et. al 1999) as the main LP/MIP solver engine
but the design allows us to replace it by any other powerful solver engine such as
CPLEX. The Table 7 sets out the SP model and solver algorithm combinations
which have been tested or planned for inclusion within SPInE.

SP Model Algorithm Comments

Universe
(Deterministic equivalent).
DEQ implicit,
DEQ explicit

The user controls the specification
of the non-anticipativity
constraints, thus resulting in two
possible representations, namely
implicit and explicit. We have
implemented both approaches in
the solver system.

Benders Decomposition Implemented and tested.
Stochastic Decomposition Currently being implemented.

Two-stage
linear SP

Benders and Importance
sampling.

Currently being implemented.

Lagrangean relaxation This algorithm is described in our
working paper (Poojari and Mitra
2001) and also in our Supply
chain paper (Poojari et. al. 2000)

Integer
two-stage
SP

Lagrangean relaxation
and importance sampling.

To be implemented.

Deterministic equivalent Implemented and tested.
Nested Benders Implemented and tested.

Nested Benders and
Importance sampling

To be implemented.

Multi-stage
SP

EVPI based importance
sampling.

To be implemented. This is based
in the work done by (Dempster
and Thompson 1999).

Table 7. Solution algorithms of the solver system

Control
The solution algorithms to be deployed are chosen by control parameters specified
via a parameter file. The full details of these parameters and the parameter file can
be found in (Poojari and Mitra 2001); examples of setting these controls are shown
in section 6.2. The solver can be also deployed to process the Expected Value
problem, and the Wait and See problems for all scenario instances. Furthermore
there exist control switches to calculate the stochastic measures EVPI and VSS.

5.3 Quality Assurance/Benchmark and Scale Up Properties
The embedded SP solver module has been extensively tested for a wide range of
quality assurance (QA) test problems which have been collected from a number of
sources. A summary of these QA models is given in Appendix B; a paper describing
the algorithm and computational performance of the SP solver engine is under
preparation (Poojari and Mitra 2001). The following five algorithms make up the
most important part of the SP solver engine.

 32

(i) Deterministic equivalent split-variable (DEQ explicit): model processed by
IPM,

(ii) Deterministic equivalent compact variable (DEQ implicit): model
processed by SSX,

(iii) (Nested) Benders decomposition (NBD): the master and subproblems
processed by SSX,

(iv) Wait and See (WS): The individual problems processed by SSX.
(v) Expected Value (EV): The expected value LP problem processed by SSX.

The computational platform is set out in Table 8 in a summary form:

Processor Memory Software

Pentium III 500 MHz 128 Mbyte RAM
FortMP solver compiled

using Digital Fortran and
running under Win NT

Table 8. Computational Platform

Table 9 displays the summary of a subset of test models taken from this QA set.

Model Rows Columns Non-Zeroes
Pgp2 9 20 40
FXM 330 457 2589
Pltexp 270 732 1491
Storm 713 1380 4037
Phone 24 93 207

Table 9. Model Summary.

The relative performances of the three Here-and-Now algorithms (Benders
decomposition, DEQ implicit, and DEQ explicit), the Wait-and-See algorithm (WS),
and the Expected Value (EV) are shown in Table 10.

 33

Description SP models Stochastic

Metric

Name Stage/
Scen.

HN
(time)

WS
(time)

EV
(time)

EVPI VSS

DEQ Implicit 508.975
(1s)

DEQ Explicit 508.975
(1s)

Pgp2 2/8

Benders
Decomposition

508.975
(8s)

449.844
(1s)

431.406
(1s)

59.130 ∞

DEQ Implicit 18417.065
(24s)

DEQ Explicit 18417.127
(47s)

Fxm 2/16

Benders
Decomposition

18417.13
(46s)

18416.75
(4s)

18416.75
(1s)

0.38 0.38

DEQ Implicit -13.965
(32s)

DEQ Explicit -13.968
(399s)

Pltexp 3/36

Benders
Decomposition

-13.968
(19s)

-13.968
(5s)

-14.304
(1s)

0 ∞

DEQ Implicit 15535210
(26s)

DEQ Explicit 15535210
(23s)

2/8

Benders
Decomposition

15535217
(94s)

15488580
(5s)

15459240
(1s)

46637.65 ∞

DEQ Implicit 15508969
(323s)

DEQ Explicit 15508969
(890s)

2/27

Benders
Decomposition

15508969
(381s)

15459253
(17s)

15476546
(1s)

20389 ∞

DEQ Implicit 15512047
(8138s)

DEQ Explicit Not enough
memory

2/125

Benders
Decomposition

15512048
(2521s)

15476584
(80s)

15459219
(1s)

52829 ∞

DEQ Implicit Not enough
memory

DEQ Explicit Not enough
memory

Storm

2/1000

Benders
Decomposition

15802505
(18882s)

15766791
(649s)

15750516
(1s)

35714 ∞

DEQ Implicit Not enough
Memory

DEQ Explicit Not enough
Memory

Phone

2/32768
Benders
Decomposition

36.9
(15943s)

36.9
(935s)

36.9
(1s) 0 ∞

Table 10. Computational Results

In order to study the scale up properties of these algorithms we investigated the
two models STORM and PHONE.
STORM is a two-period freight-scheduling problem described in (Mulvey and
Ruszczynski 1995), the problem is held at the University of Michigan and provided
by Adam Berger. PHONE is a two-period telecommunication network problem
described in (Sen, Doverspike and Cosares 1994).

These models were investigated for progressively larger sizes: for STORM 8 to 1000
scenarios, and for PHONE 100 to 32000 scenarios. The corresponding processing

 34

times are set out in Table 11 and Table 12, and are also plotted separately in
Figure 10 and Figure 12 to a log (time) vs. linear (number of scenarios) scale. We
have experimented the scale-up property of the nested Benders algorithm for
different number of scenarios. In Figure 11 and Figure 13 we plot the performance
of Benders algorithm for different instances (number of scenarios) of the Storm and
Phone models.

Benders decomposition also extends well for parallel implementation (see
Ariyawansa and Hudson 1991, and MirHassani et. al 2000, Zenios and Censor
1997, Wright 2001). Our solver is available on NEOS over a client server platform.
Our earlier experience of solving large SP models on a parallel platform using
client-server architecture is described in (Poojari et al 2001). In the following tables
and figures, we use the following legend:

NB ≡ Nested Benders decomposition,
DI ≡ DEQ Implicit,
DE ≡ DEQ Explicit,
WS ≡ Wait-and-See.

Scenarios NB DE DI WS

1 1s 1s 1s 1s
8 198s 24s 18s 5s

10 310s 74s 30s 7s
25 781s 1293s 200s 17s
27 839s 913s 255s 18s
50 1342s 5533s 930s 32s
70 1601s 29719s 1893s 51s

100 2912s � 3375s 65s
200 5559s 15742s 145s
550 14410s 159446s 345s

700 15202s � 441s
1000 18222s 628s

Table 11. Performance time (in seconds) for algorithms on the STORM model.

 35

Performance of alternate algorithms.

0

1

2

3

4

5

6

0 50 100 150 200 250

Scenarios

T
im

e
(l

o
g

 s
ec

)
NB

DE

DI

WS

 Figure 10. Performance of the algorithms on the STORM model.

Performance of the (Nested) Benders algorithm.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200

Scenarios.

T
im

e
(l

o
g

 s
ec

)

 Figure 11. Performance of the (Nested) Benders on the STORM model.

Scenarios NB DI DE WS

1 1s 1s 1s 1s
100 23s 21 80s 3s
200 60s 73s 696s 6s
300 95s 206s 2376s 9s
400 139s 457s 5660s 12s
600 145s 828s 19237s 18s

1000 309s 2216s� 31s

2000 512s 12485s 63s
5000 1255s� 159s

15000 4727s 470s

 36

25000 9651s 800s

32000 14654s 1020s
Table 12.Performance time (in seconds) for algorithms on the PHONE model.

Performance of alternate algorithms.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 200 400 600 800 1000
Scenarios

T
im

e
(l

o
g

 s
ec

)

NB

DI

DE

WS

 Figure 12. Performance of alternate algorithms on the PHONE model.

Performance of the (Nested) Benders algorithm.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000 25000 30000 35000

Scenarios

T
im

e
(l

o
g

 s
ec

)

 Figure 13. Performance of the (Nested) Benders on the PHONE model.

The IPM and the SSX solvers process these two deterministic equivalent
representations (DEQ implicit) with varying efficiency and different scale up
properties. We have not implemented any structure exploitation facility in our
algorithms; in table 10 we simply set out our computational experience for these
two alternate representations.

 37

Model

(Stages/Scenario)

 Compact Split-variable
 IPM SSX IPM SSX
Pgp2 (2/8) 1s 1s 1s 1s
Fxm (2/16) 18s 24s 47s 37s
Pltexp (3/36) 351s 32s 399s 65s
Storm (2/8) 16s 26s 23s 29s
Storm (2/27) 448s 323s 890s 329s
Storm (2/125) NEM 8138s NEM 13498s
Storm (2/1000) NEM NEM NEM NEM
Phone(2/32768) NEM NEM NEM NEM

NEM: Not enough memory.
Table 13. Performance of IPM and SSX on the two representations of the deterministic equivalent.

 38

6 SPInE
A prototype of the SPInE environment was first designed in (Messina and Mitra
1997). The focus in that work was on the integration of modelling, solution and
analysis tools to aid in the development and investigation of multistage recourse
problems. The system was based on the MPL modelling system for the definition of
the underlying core model, which was parametric in the scenario dimension.
Several external files were needed to define the stochastic structure of the problem,
leading to a laboriously and unnatural modelling process. However, the use of
multidimensional database systems represented an innovative approach for the
analysis of the results. The solver was based on the combination of MSLiP
(Gassmann 1990) with the FortMP solver (Ellison et al. 1999).
We have revised the design of the first SPInE prototype adding several features,
such as the support of the SMPL and SAMPL extended languages, the development
of a new solver for SP multistage recourse problems, and the integration with
scenario generators.
In subsection 6.1 we provide an overview of the software architecture. In 6.2 we
describe the SPInE menu options and controls by means of a few example screen
shots taken from the investigation of the ALM model illustrated earlier in the paper.
In 6.3 we show how the system can be used, through the spreadsheet data
exchange feature, to compute Value at Risk for the first stage decisions.

6.1 Software architecture: an overview
The new SPInE environment integrates a number of subsystems which are
managed by a Control system. The subsystems as such are software components
which may be used to create embedded applications.

SP
Generator

LP/MP
Solvers

(FortMP)

Scenario

Generators

SP

Solvers

SPInE
Kernel

Editors

SPInE

GUI

ODBC

SP
Reporter

Modelling

engine

DB

Viewers

Data

analysis

DB

Solutions

 SMPL
SAMPL

SP
Converter

Profiles

Data flow

Options

Structure

Data files

SW modules

SIR

Dic

SMPS MPS

Figure 14. Software architecture of SPInE.

The diagram in Figure 14 illustrates the architecture of SPInE, and the interaction
of the modules which together comprise the software environment. SPInE is divided
into four main subsystems, namely Scenario Generation, Modelling, Solver, Results
Analysis and the overarching Control module.

 39

Scenario Generation
SPInE is designed to interface with scenario generators which supply the scenario
data in ODBC databases or text files. An important aspect of the scenario
generation interface is to establish the consistency between the SP model tree ¶
and the data path tree �underlying the scenario generation (see Section 4)

Modelling subsystem
The modelling subsystem is designed to support the language extensions SAMPL
and SMPL introduced in section 3. The software module called Stochastic Program
Generator (SPG) combines two separate parsers and a matrix generator. SPG
processes together the algebraic models and the scenario data set to create an
instance of the model in either SMPS format or in the Stochastic Intermediate
Representation (SIR). SPG exchanges information externally using a set of files with
a predefined format, and can be called as a command line application providing an
options file, which contains directives for the execution. It also generates a
dictionary, which maps the original names of the variables and constraints in the
algebraic formulation to column and row numbers. The SPG module makes use of
an underlying modelling engine, specifically OptiMax for the support of SMPL
models and a comparable AMPL-based COM object, developed by our research
group, for models prepared in SAMPL. The modelling system interacts directly with
the scenario generators for the stochastic data and connects to the database
systems which maintain the deterministic data relating to the core model of the SP
problem.

Solver subsystem
Given a Stochastic Programming problem with recourse, the stochastic solver
embedded in SPInE (see section 5) provides the solution to three related classes of
models:

(i) Here and Now

(ii) Scenario Analysis (Wait and See)

(iii) Expected Value

For each of these, there is more than one possible solution algorithm. All underlying
LPs may be solved using the Sparse Simplex algorithm (SSX) or the Interior Point
Method (IPM). The Here and Now problem may be solved using Benders
Decomposition, Lagrangean Relaxation or via the Deterministic Equivalent
problem. The solver is also able to report the stochastic measures EVPI and VSS.

Results analysis
A critical phase in the development of stochastic models is the analysis of the
solutions. The integration with database systems enables the exploitation of the
Data Manipulation Languages (DML) which usually accompany the DBMS for the
development of customised viewers and advanced data analysis tools. The SP
Reporter (SPR) module of SPInE allows the user to export solution vectors using
standard ODBC or using text files. The volume of the solution results produced by
the stochastic solver can be very large. In fact, each decision variable has an
associated optimal activity and reduced cost, for each stage and for each scenario.
The investigator might be interested only in a subset of the solutions (e.g. the first
stage strategic decisions). SPR provides filtering functionality which is used to
transfer only the relevant decision data to the DBMS.

 40

Control Module and Graphical User Interface
Each module in SPInE can be run as an independent application through script
files. A control module including a Graphical User Interface (GUI) has been
developed and can be used to investigate SP problems.
The GUI makes use of standard Windows objects to display and control
hierarchical structures. It also provides with model management functionality,
which is based on the concept of project (Figure 15). A project is a collection of
stochastic models related to a specific problem. Each model, in turn, comprises a
set of scenario data instances.

Figure 15. Project management in SPInE

The main subsystems of SPInE, namely the SP instances generator SPG, the
stochastic solver SPS and the solution Reporter SPR have also been wrapped in a
dynamic link library, which enables the rapid development of embedded
applications.

6.2 Using SPInE: commands and controls
A sequence of control commands and dialog boxes are annotated below to illustrate
a simple use of SPInE. After activating SPInE, the main window appears as shown
in Figure 16. The menu bar and the alternative control features are also shown in
this figure.

Figure 16. SPInE’s menu commands

 41

The main menu items are described as follows:

Options: this menu item is used to specify generator and solver control
settings.

Run: this item enables the user to first parse the model, generate the SP
instance, solve the model and finally export the results.

Model: this menu item allows the user to view the scenario tree and to edit
controls manually.

For the example ALM model, the View Tree command after Parse leads to the
display shown in Figure 17.

Figure 17. Scenario tree view

After the model has been parsed, the SMPS generation can be controlled using the
dialog box shown in Figure 18.

 42

Figure 18. SMPS generation controls

The generated core matrix of the model can be also viewed as shown in Figure 19.

Figure 19. Matrix structure of the core LP problem

The solver execution on the different related models (Here and Now, Expected
Value, Wait and See) is controlled by the dialog box shown in Figure 20.

 43

Figure 20. SP Solver controls

After solving the model, a compact report is produced if the filter control is used for
the solver output. The results report for the ALM model is shown in Figure 21.

Figure 21. Text report of the optimal values

In this example, we solve the Expected Value (EV), the Wait and See (WS) and the
Here and Now (HN, solved using Nested Benders Decomposition) models, and we
compute the stochastic measures EVPI and VSS.
Table 14 reports the optimum values of objective functions of these models and the
stochastic measures, where the risk level is set to R = 20%. The solution of the EV
problem was not feasible for some of the scenarios; hence the VSS is infinite by
definition.

 44

EV WS HN VSS EVPI
151072.86 341025.08 195006.06 +� 146019.02

Table 14. Optimum values and stochastic measures for R=20%

6.3 VaR computation
SPInE can be also used to undertake more advanced investigation of an SP model.
In many applications, quantification of the risk associated with a decision is
becoming an important modelling issue. In general, Value at Risk (VaR) as a metric
for computing risk has become widely accepted, particularly by the finance
community (Rockafellar and Uryasev 2000). SPInE can be used to interact with
Excel spreadsheet and can produce VaR metric for any given first stage decision
using either in-sample or out-of sample scenarios.
For the given ALM model we are interested in computing and compare the VaR for
the optimum first stage decisions xHN given by the Here and Now model and the
optimum first stage decisions xEV given by the Expected Value LP model. These
solution vectors are imported into Excel (see Figure 22) and are supplied as fixed
values to a scenario analysis model which is used to simulate their performance.

2SWLPLVDWLRQ�
VFHQDULRV�

6LPXODWLRQ�
VFHQDULRV�

+1�VROXW LRQ�
(9�VROXW LRQ�

+1�9D5�
(9�9D5�

$/0�
RSWLPLVDWLRQ�

PRGHO�

9D5��
VLPXODW LRQ�
PRGHO�

)L[��VW�
VWDJH�

6ROYH�:6�

63,Q(�

([FHO�

Figure 22. Computation of VaR using SPInE and spreadsheets

Two sets of frequency diagrams are computed (for xHN and xEV) taken over all the
scenario realisations. This is equivalent to carrying out two simulation
experiments, with 360 out-of-sample scenarios, again from the same generator. The
optimum solution values are again exported back to Excel to display the results
(see Figure 23).

 45

Figure 23. Distribution of the objectives for EV and HN

Thus for a � fractile of 0.99, we obtain the VaR profit levels which are shown in
Table 15.

Implemented Solution VaR
HN 131638
EV 82565

Table 15. VaR results.

It is clearly seen that for this model, the hedged Here and Now solution provides a
better risk level than the Expected Value solution.

0

10

20

30

40

50

60

70

80

90

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

([SHFWHG�:HDOWK

)
U
H
T
X
H
Q
F
\

HN

EV

 46

7 Future work and conclusions

Modelling and solving Optimum decision problems under uncertainty is a
challenging task. We have highlighted the need for an integrated environment for
modelling and solving SP models. In this paper, we have introduced our Stochastic
Programming Integrated Environment (SPInE). This system provides practitioners
with a powerful modelling system, based on two language extensions (SAMPL and
SMPL) specifically designed for the definition of SP models. We have illustrated an
asset/liability management model and we have used SMPL and SAMPL to
formulate the corresponding multistage SP model. The interface designed for the
connection to the scenario generators allows us to bring together the models of
randomness with algebraic optimisation models. The variety of solution algorithms
embedded in our SP solver engine and the ability to connect to databases for the
analysis of the results make SPInE a complete and flexible tool for the
implementation and investigation of Stochastic Programming problems.
We identify, however, a number of research issues of conceptualisation and
software development which need further investigation.

(i) Connecting specific scenario generators to the SP models remains a thorny

issue. Indeed in the generated model we work with a snap shot of the
dynamic model. In a closely coupled modelling and solver system it is
possible to investigate EVPI based sampling algorithm or importance
sampling algorithms to create an iterative solution procedure.

(ii) The scenario generators can be extended to connect with historical data.

Thus a framework of validation of the first stage decisions may be
undertaken through simulation as well as back testing.

(iii) We aim to develop a solver which can process quadratic inequalities. Thus

a range of chance-constrained models can be also processed by the system;
this will enhance the scope of applying SP models.

(iv) We have earlier experience of parallelizing particular instances of SP

models (MirHassani et al 2000). We wish to extend this work to include
parallel implementations of Benders as well as the Lagrangean relaxation
based Integer SP solver.

 47

Appendix A

SAMPL and SMPL Libraries of SP models

We have prepared two libraries of SP models, one in SAMPL and the other in SMPL.
The context of the models, the model structures and the sizes of the SMPS files
which are generated, are summarised in the Table A.1 and A.2.

Model Description Stochasticity Rows Cols Nz

ALM Asset/Liability Management model with
downside risk constraints

Technology 99 276 621

CLO Distribution model

RHS 64 160 410

FINA Asset/Liability Management model with
diversification constraints

Technology 42 81 196

INTCLO Mixed Integer distribution model

RHS, Bounds 251 473 1504

POWER Simple power expansion model

RHS 9 12 33

MP Small two stage IP model

RHS, Cost 2 2 3

MP2 Minimal two stage model
 RHS 2 2 3

Table A.1. Models summary

Instance Scenarios Tree structure DEQ Rows DEQ Cols DEQ Nz
ALM16ts 16 2 stage 1115 1998 4466
ALM48ts 48 2 stage 7080 13461 30211
ALM48ms 48 8 x 3 x 2 11560 13461 39171
ALM360ms 360 15 x 8 x 3 93895 100509 308095
CLO25ts 25 2 stage 2216 4040 9922
CLO125ms 125 5 x 5 x 5 19095 19539 70092
INTCLO10ts 10 2 stage 3675 4895 15292
FINA8ts 8 2 stage 614 393 1499
FINA8ms 8 2 x 2 x 2 676 677 2065
POWER 4 2 stage 39 51 131
MP 10 2 stage 21 21 41
MP2 5000 2 stage 10001 10001 20001
Table A.2. Structure and size of the SMPS instances

 48

Appendix B

Quality Assurance and benchmark test problems

We have collected together a number of test problems which are taken mainly from

(a) Library supplied by Birge (Birge, 2001)

(b) Library prepared by Ariyawansa and Felt, (Ariyawansa and Felt, 2001)

(c) Industrial models developed by our research group (Mitra et al. 2001)

We use a subset of these models for the quality assurance of the solver; the content
of these models, their structure and their size are summarised in Table B.1 and
B.2. The full set of models is processed to gather benchmark performance data.

Model Description Stochasticity Rows Cols Nz

SGPF5Y5a Mixed Integer distribution model
 RHS, Bounds 314 455 1058

AIRLb
Airlift operations scheduling, 2 stage
mixed integer linear.

RHS 8 12 24

ASSETb
Network model for asset or liability
management, 2 stage linear.

Technology,
RHS 10 26 47

4NODEb Cargo network scheduling

RHS 90 238 772

CHEMb Design of batch chemical plants, 2
stage mixed integer linear.

RHS,Cost 84 80 186

ELECTRICb Electric investment planning, 2 stage
linear.

RHS, Cost 9 16 36

ENVb Energy and Environment planning RHS 96 98 276
TRADEc Supply chain planning RHS 574 456 1342
Table B.1. Models summary

Instance Scenarios Tree structure DEQ Rows DEQ Cols DEQ Nz
SGPF5Y5 3125 5 stage 157562 176151 530210
AIRL 25 2 stage 152 204 504
ASSET 37500 2 stage 187505 487513 975021
4NODE 256 2 stage 18960 47668 120112
CHEM 2 2 stage 130 121 289
ELECTRIC 2 2 stage 23 40 92
ENV 2 2 stage 288 294 852
TRADE 43 2 stage 12250 10536 37546

Table B.2. Structure and size of the SMPS instances

 49

References
Andradottir S. (1995): A stochastic approximation algorithm with varying bounds,
Operations Research 1037-1048.

Andradottir S. (1996): A scaled stochastic approximation algorithm, Management
Science, 475-498.

Ariyawansa, K.A and Hudson, D.D. (1991): Performance of a benchmark parallel
implementation of the Van-Slyke and Wets algorithm. Concurrency: Practice and
Experience 3, 109-128.

Ariyawansa K.A. and Felt J.A. (2001): On a new collection of stochastic linear
programming test problems, Preprint at Optimization Online (www.optimization-
online.org/).

Benders J.F. (1962): Partitioning Procedures for Solving Mixed-Variable
Programming Problems, Numerische Mathematik 4,803-812.

Birge J., Dempster M.A.H., Gassmann H.I., Gunn E., King A. and Wallace S.W.
(1987): A standard input format for multiperiod stochastic linear programs,
Mathematical Programming Society Committee on Algorithms Newsletter 17, pp 1-19.

Birge J.R., Louveaux F. (1997): Introduction to Stochastic Programming, Springer-
Verlag NY.

Birge J.R. and Qi L. (1995): Continuous approximation schemes for stochastic
programs, Annals of Operations Research 56, 15-38.

Birge J.R. and Wets R.J-B (1986): Designing approximation schemes for stochastic
optimisation problems, Mathematical Programming Study 27, 54-102.

Birge J.R. Holmes D (2001): Computational results web page
(http://users.iems.nwu.edu/~jrbirge//html/dholmes/POSTresults.html)

Bisschop J.J. and R. Entriken (1993): AIMMS User Guide, Version 2.03, Paragon
Decision Technology, The Netherlands.

Bowermann B.L. and Koehler A.B. (1978): An optimal policy for sampling from
uncertain distribution, Communication Statistics - A theory methods 7,1041-1051.

Brooke A., Kendrick D., Meeraus A., Raman R. (1998): GAMS: A User’ s Guide,
Gams Development Corporation.

Cariño D. R. and Turner A. L. (1997): Multistage Planning for Asset allocation,
World Wide Asset and Liability Modeling (W. T. Ziemba and J. M. Mulvey, eds.),
Cambridge University Press, 1997.

Charnes A. and Cooper A.A. (1959): Chance Constrained Programming,
Management Science, Vol.6, pp.73-79.

Condevaux-Lanloy C. Fragnière E. (2000): An approach to deal with uncertainty in
energy and environmental planning: the MARKAL case, Environmental Modelling
and Assessment 5, Issue 3 145-155.

Consigli G. and Dempster M.A.H. (1998): Dynamic Stochastic Programming for
asset-liability management, Annals of Operations Research 81, 131-162.

Corvera-Poiré X, (1995): STOCHGEN User's Manual, Departement of Mathematics,
University of Essex.

Dempster M.A.H. (1988): On Stochastic Programming: dynamic problems under
risk, Stochastics 25.

 50

Dempster M.A.H. and Thompson R.T. (1999): EVPI-based importance sampling
solution procedures for multistage stochastic linear programmes on parallel MIMD
architectures, Annals of Operational Research 90, 161-184.

Dominguez-Ballesteros B., Mitra G., Koutsoukis N-S (1999): Modern Mathematical
Programming Modelling Languages: A Comparative Review, Technical Report in
preparation, Brunel University.

'XSD � 9�� �������� $� G\QDPLF� VWRFKDVWLF� DSSUR[LPDWLRQ� PHWKRG�� Annals of
Mathematical Sciences 6, 1695-1702.

Ellison E.F.D., Hajian M., Levkovitz R., Maros I., Mitra G. e Sayers D. (1999):
FortMP Manual, OptiRisk Systems and Brunel University.

Entriken R. (1997): Languages constructs for modelling stochastic linear programs,
SOL Report 97-1, Department of EESOR, Stanford University.

Eppen G.D. Martin R.K. and Schrage L. (1989): A Scenario Approach to Capacity
Planning, Operations Research 37, 517-527.

Escudero L.F., Galindo E., Garcia G. Gomez E., Sabau V. (1999): Schumann, a
modelling framework for supply chain management under uncertainty, European
Journal of Operational Research (119) 1, 14-34.

Frantzeskakis L. and Powell W.B. (1990): A Successive Linear Approximation
Procedure for Stochastic, Dynamic Vehicle Allocation Problems, Transportation
Science 24, 40-57.

Fourer R., Gay D.M., Kernighan B.W. (1993): Ampl: A modelling language for
mathematical programming, Duxbury Press/Brooks/Cole Publishing Company.

Fourer R., Gay D.M. (1997): Stochastic Programming in the AMPL Modeling
Language, Session WE4-G-IN11 Modelling Support for Stochastic Programming, Intl.
Symposium on Mathematical Programming, Lausanne, Aug 1997.

Gaivoronski A.A. (1995): Stochastic Programming approach to the network
planning under uncertainty, in A. Sciomachen (ed.), Optimization in Industry, vol 3,
Wiley and Sons.

Gassmann H.I., (1990): MSLiP: A Computer Code for the Multi-Stage Stochastic
Linear Programming Problem, Mathematical Programming 47, 407-423.

Gassmann H.I., Ireland A.M. (1995): Scenario formulation in an algebraic modelling
language, Annals of Operations Research 59, pp. 45-75.

Gassmann H.I., Ireland A.M. (1996): On the formulation of stochastic linear
programs using algebraic modelling languages, Annals of Operations Research 64,
pp. 83-112.

Geoffrion A.M., (1992): Indexing in Modelling Languages for Mathematical
Programming, Management Science 38, No. 3.

Glassey C.R. (1973): Nested decomposition and multi-stage linear programs,
Management Science, 20, 282-292.

Higle J.L, Sen S. (1996): Stochastic Decomposition: A Statistical Method for Large
Scale Stochastic Linear Programming, Kluwer, Boston.

Ho J.K., Loute E. (1974): Nested decomposition for dynamic models, Mathematical
Programming, 6, 121-140.

Høyland K. and Wallace S.W. (2001): Generating scenario trees for multistage
problem, Management Science 47 (2), 295-307.

 51

IBM World Trade Corporation (1976): IBM Mathematical Programming System
Extended /370 (MSPX/370): Program Reference No. SH19-1095-1, New York &
Paris.

Infanger, G. (1994): Planning Under Uncertainty: Solving Large-Scale Stochastic
Linear Programs, The Scientific Press series, Boyd and Fraser.

Infanger, G. (1997): DECIS User’s Guide, Dr. Gerd Infanger, 1590 Escondido Way,
Belmont, CA 94002.

Jobst N.J., Horniman M.D., Lucas C.A. and Mitra G. (2001): Computational
Aspects of Alternative portfolio selection Models in the presence of Discrete asset
choice Constraints, to appear in The Journal of Quantitative Finance.

Kall P. and Mayer J. (1996): SLP-IOR: An interactive model management system for
stochastic linear programs, Mathematical Programming 75, 221-240.

King A. (1994): SP/OSL Version 1.0 Stochastic Programming Interface Library:
User’ s Guide, Research Report RC 19757 (87525) 9/26/94 Mathematics, T.J
Watson Research Center, Yorktown Heights, NY.

Kushner H. (1971): Introduction to Stochastic Control, Holt, New York, NY.

Kusy M.I., Ziemba W.T. (1986): A Bank Asset and Liability Model, Operations
Research 34, 356-376.

Kyriakis T. (2001): A Stochastic Programming approach to asset and liability
management, Ph.D Thesis.

Levkovitz, R, Mitra G. (1993): Solution of large-scale linear programs: A review of
hardware, software and algorithmic issues. In: T.A. Ciriani & R.C. Leachman (eds)
Optimisation in Industry. John Wilsey and sons, 139-171.

Lucas C., Messina E. and Mitra G. (1996): Risk and Return analysis of a multi-
period strategic planning problem, in L. Thomas and A. Christers (eds.) Stochastic
Modelling in Innovative Manufacturing, Springer Verlag,(81-96):

Luenberger D.G. (1997): Investment Science, Oxford University Press, New York.

Markowitz H. (1952): Portfolio Selection. Journal of Finance 7, 77-91

Maximal Software Incorporation (2000): MPL Modelling System, Release 4.11, USA.

Messina E., Mitra G. (1997): Modelling and analysis of multistage Stochastic
Programming problems: A software environment, European Journal Of Operational
Research 101 2, pp. 343-359.

MirHassani S.A, Lucas C., Mitra G., Messina E. and Poojari C.A, (2000):
Computational Solution of Capacity Planning Models under Uncertainty, Parallel
Computing 26, pp.511-538.

Mitra G. Lucas Poojari C.A. Dominguez D-B (2001): A combined model for
production capacity planning & inventory scheduling under uncertainty, Informs
Hawaii 2001.

Mulvey J.M. (1996): Generating Scenarios for the Towers Perrin Investment System,
Interfaces 26, 1-13.

0XOYH\�-�0��DQG�5XV]F]\ VNL�$����������$�QHZ�VFHQDULR�GHFRPSRVLWLRQ�PHWKRG�IRU�
large scale stochastic optimisation, Operational Research 43, 3, 477-490.

Mulvey J.M. and Vladimirou H. (1991): Applying the progressive hedging algorithm
to stochastic generalised networks, Annals of Operations Research 31,399-424.

 52

Mulvey J.M. and Ziemba W.T., editors (1998): Worldwide Asset Liability
Management. Cambridge University Press.

Pereira M.V.F. and Pinto L.M.V.G. (1991): Multi-stage Stochastic Optimization
Applied to Energy Planning, Mathematical Programming 52, 359-375.

Poojari C.A. and Mitra G. (2001): A solver system for multi-stage Stochastic
Programming problem, Working paper, Department of Mathematical Sciences, Brunel
University.

Poojari C.A., Lucas C.A., MirHassani A. and Mitra G. (2000): Solving two-stage
Stochastic Programming problem using lagrangean relaxation: An enumerative
approach, Submitted to Journal of Global Optimisation.

Poojari C.A. and Mitra G. (2001): A solution technique for two-stage stochastic
program with first–stage integer variables. Presented at the Ninth International
conference on Stochastic Programming, Berlin.

Powell W.B. (1988): A Comparative Review of Alternative Algorithms for the
Dynamic Vehicle Allocation Program, Vehicle Routing: Methods and Studies, Golden
and Assad (eds.): North-Holland.

Rockafellar R.T. and Uryasev S. (2000): Optimization of Conditional Value at Risk,
The Journal of Risk 2, (#3).

5XV]F]\ VNL� $�� �������� 3DUDOOHO� GHFRPSRVLWLRQ� RI� PXOWLVWDJH� 6WRFKDVWLF�
Programming problems, Mathematical Programming 58,201-228.

5XV]F]\ VNL� $�� �������� $� UHJXODULVHG� GHFRPSRVLWLon for minimising a sum of
polyhedral functions, Mathematical Programming 35, 309-333.

Sen S., Doverspike R.D., and Cosares S. (1994): Network planning with random
demand, Telecommunication Systems, 3:11-30.

Shapiro J. (2001): Modeling the Supply Chain, Duxbury Press, California.

Valente P., Fourer R. and Mitra G. (2001): Extending algebraic modelling languages
for Stochastic Programming, Working Paper, Brunel University and Northwestern
University.

Van Slyke R.M., Wets R.J.-B (1969): L-Shaped Linear Programs with Applications
to Optimal Control and Stochastic Programming, SIAM Journal on Applied
Mathematics 17,638-663.

Zenios S.A (1993): Financial Optimisation, Essays dedicated to G.B. Dantzig, Medal
of the National Academy of Sciences, USA, and H. Markowitz, Nobel Prize in
Economics 1990, Cambridge University Press.

Zenios S.A. Censor Y. (1997): Parallel Optimization: Theory, Algorithms, and
Applications (Numerical Mathematics and Scientific Computation): Oxford, Oxford
University Press.

Wright S (2001): Solving Optimization Problems on Computational Grids, Optima
Mathematical Programming Society Newsletter, May 2001.

