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Abstract 
 

 
SP models combine the paradigm of dynamic linear programming with 
modelling of random parameters, providing optimal decisions which hedge 
against future uncertainties. Advances in hardware as well as software 
techniques and solution methods have made SP a viable optimisation tool. 
We identify a growing need for modelling systems which support the creation 
and investigation of SP problems. Our SPInE system integrates a number of 
components which include a flexible modelling tool (based on stochastic 
extensions of the algebraic modelling languages AMPL and MPL), stochastic 
solvers, as well as special purpose scenario generators and database tools. 
We introduce an asset/liability management model and illustrate how SPInE 
can be used to create and process this model as a multistage SP application.  
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1 Introduction and background 
 
Stochastic Programming (SP) is an established approach to optimum 
decision making under uncertainty. SP models have proven to be more 
suitable than their deterministic counterparts in many applications, ranging 
from portfolio allocation and asset/liability management (see Mulvey and 
Ziemba eds. 1998) to the planning of power systems (see Pereira and Pinto 
1985), from transportation (see Powell 1988) and telecommunication (see 
Gaivoronski 1995) to supply chain networks planning (see Eppen et al. 
1989, Lucas et al. 1996, Escudero et al. 1999, Shapiro 2001). SP models 
combine the paradigm of dynamic linear programming with modelling of 
random parameters (scenario generation). The solution of such SP models 
leads to optimal decisions which hedge against future uncertainties.  
Advances in hardware as well as software techniques and solution methods 
have made SP a viable optimisation tool. Unfortunately, there are not many 
modelling systems which support the creation and investigation of SP 
models. In fact, the practical exploitation of SP models runs into various 
difficulties. In order to understand these difficulties, it is important to first 
identify the key steps in the process of conceptualisation, formulation, 
solution and analysis of the results of mathematical programming (MP) 
models (Dominguez-Ballesteros et al. 1999). 
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Figure 1. The modelling process. 

The model conceptualisation stage involves an analysis of the real world 
decision problem. The available information is collected and used to 
understand the data and the decision-making requirement of the application 
under investigation. The data modelling stage involves the extraction and 
classification of the available information.  
The categories obtained by this analysis provide the sets and parameters 
which are used in the algebraic formulation of the model. The algebraic 
formulation of the model is generally implemented using an Algebraic 
Modelling Language (AML), which translates the abstract modeller’s form 
into a machine-readable form. The translation can be considered as model 
instantiation.  After supplying appropriate data, the combined model and 
data instance can be subsequently processed by a suitable solver, which in 
turn produces the model’s results. Modern algebraic modelling systems are 
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capable of supporting this entire process for Linear Programming (LP), Mixed 
Integer Programming (MIP), Quadratic Programming (QP), and to some 
extent Non-Linear Programming (NLP) models. Moreover, these systems are 
able to interact with corporate data warehouses and data marts stored in 
relational, object oriented or in other emerging standards.  
The availability of algebraic modelling languages such as AMPL (Fourer et al. 
1993), AIMMS (Bisschop et al. 1993), GAMS (Brooke et al. 1998) and MPL 
(Maximal 2000) and the corresponding model development environments 
have contributed in the following ways: 

(i) Model development and prototyping has become a high 
productivity process. This has lead to widespread acceptance of 
optimisation by the end user community based on the proof of 
concept applications rapidly developed by OR/MS analysts. 

(ii) There have been many examples of deployment of optimisation as 
an embedded inference engine in Decision Support Systems (DSS). 

In many cases, moving on to SP formulation of these decision problems is a 
natural step forward. Unfortunately, this progress is hampered due to the 
lack of commensurate model development tools in the domain of Stochastic 
Programming. A number of investigators have reported development of SP 
modelling systems. These are in different stages of completion and use, and 
are summarised in Table 1. 
 

Name Affiliation System Name 
JJ Bisshop, et al. Paragon Decision Technology AIMMS 
A Meeraus, et al. GAMS GAMS 
B Kristjansson Maximal Software MPL 
R Fourer, et al. Northwestern University AMPL 
MAH Dempster, et al. Cambridge University STOCHGEN 
E Fragniere, et al. University of Geneva SETSTOCH 
A King, et al. IBM OSL/SE 
HI Gassmann, et al. Dalhousie University MSLiP 
G Infanger et. al. Stanford University DECIS 
P Kall, et al. University of Zürich SLP-IOR 
G Mitra, et al. Brunel University SPInE 
Table 1. Current development of software tools for SP. 

The designers of AIMMS, GAMS and AMPL have put forward conference 
presentations and examples of use of their systems to develop SP models. No 
major implementation, however, have been reported. SP language extensions 
for AMPL have also been proposed in (Gassmann and Ireland 1996). The 
MPL modelling system is being extended to include SPInE’s functionalities.  
Other practitioners have focused on the automatic generation of Stochastic 
Programming model instances. For instance, Dempster’ s group has 
developed and used the Stochastic Programming tool STOCHGEN in a 
number of industrial settings (Consigli and Dempster 1998). SETSTOCH 
(reported by Condevaux-Lanloy and Fragnière 2000) is another system 
which retrieves the dynamic structure of an SP model by reordering the 
generated matrix using external information on the temporal relations 
between the decision variables and the parameters.  
Several specialised solvers for SP have also been produced. IBM’ s OSL 
Stochastic Extension (King 1994) is an optimisation library which provides a 
set of routines for the manipulation and solution of multistage Stochastic 
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Programming problems presented in SMPS standard format (Birge et al. 
1987). MSLiP (Gassmann 1990) is another established solver for multistage 
stochastic linear programs (SLP) based on the nested Benders decomposition 
method. DECIS (Infanger 1997) is a system for solving large-scale stochastic 
programs, which uses Benders decomposition and Monte Carlo sampling 
techniques. Finally, SLP-IOR (Kall and Mayer 1996) is an integrated model 
management system for stochastic linear programming problems and is 
designed to support the life cycle of an SP problem including model 
formulation, solution and analysis of the model instance and the results. In 
investigating SP models with the existing software tools, however, several 
difficulties are encountered: 

(a) In the conceptualisation and subsequent formulation phase of a 
stochastic program, it is necessary to develop models of randomness and 
models of optimum resource allocation. Data modelling similarly splits 
into two main activities: (i) specification and collection of deterministic 
data; (ii) identification and categorisation of random parameters.  The 
data definition facilities of the AMLs do not support this. 

(b) Special purpose application programs are required to model the 
uncertainty. For instance, geometric Brownian motion is used to forecast 
asset prices in many financial applications, whereas sampling from a 
lognormal probability distribution may be used to create scenarios for 
products demand in a supply chain problem. These specialised 
applications  (scenario generators) need to be integrated with the 
algebraic modelling systems.  

(c) The algebraic modelling systems do not provide appropriate syntax for 
the implementation of SP models. Information related to the random 
parameters cannot be specified as such using the existing constructs 
and many specialists agree that these AMLs need to be extended. Some 
suggestions have been made (Gassmann and Ireland 1996, Fourer and 
Gay 1997, Entriken 1997, also see Table 1) but practitioners do not 
seem to have found a solution which fully addresses the requirements of 
SP modelling.  

(d) The special structure of SP models is represented compactly and 
efficiently by following the SMPS standard (Birge et al. 1987). All the 
AML systems are capable of providing models in MPSX format (IBM 
1976) or equivalent, but do not have facilities to produce SP model 
instances in the SMPS format.  

(e) Solving SP models is a challenging task, as the sizes of these models are 
usually very large; thereby they are unmanageable by classical 
algorithms based on sparse simplex or interior point methods. 
Decomposition algorithms such as nested Benders decomposition 
(Benders 1962; Van Slyke and Wets 1969), stochastic decomposition 
methods (Higle and Sen 1996), Monte Carlo and Importance Sampling 
�,QIDQJHU� ������� /DJUDQJHDQ� GHFRPSRVLWLRQ� �0XOYH\� DQG� 5XV]F]\ VNL�
1995) require both the implementation of specialised solvers and a close 
coupling with the algebraic modelling system.  The analysis of the 
results, together with the investigation of the stochastic measures 
associated with the SP models, are difficult to carry out without the use 
of database systems and customised viewers. 

In this paper, we address some of these challenges and introduce SPInE 
(Stochastic Programming Integrated Environment). The original design of the 
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software system (Messina and Mitra 1997) has been revised and updated. 
Our revisions take into account many of the issues discussed above and our 
design objective is to create a flexible software tool for Stochastic 
Programming practitioners. The rest of this paper is organised as follows: 
section 2 introduces the classes of SP models which are supported by our 
system. In this section we also introduce an example, which is used 
throughout the paper in order to illustrate the features of SPInE. Section 3 
focuses on SAMPL and SMPL, which are extensions of the AMPL and MPL 
modelling languages respectively. In section 4 we discuss the rationale 
underlying the parameter passing interface which connects the special 
purpose scenario generators to the SPInE system. In section 5, we give an 
overview of the solution algorithms implemented in SPInE and consider the 
performance and scale up properties of these algorithms.  In section 6 we 
describe the software architecture of SPInE: the illustrative example given in 
section 2 is used to explain the investigation of SP models within the SPInE 
system.  Our aim is to make SPInE widely available to the industrial and 
academic research community.  We have therefore prepared a library of SP 
models in SMPL and SAMPL and also collected test problems in SMPS:  
These two model libraries are summarised in Appendix A and Appendix B 
respectively. 
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2 Problem statement 
In this section we consider the family of models which are now well 
established and come under the broad heading of optimum decision making 
under uncertainty. We first introduce these concepts and terminology which 
we subsequently use to illustrate the features and capabilities of the SPInE 
environment. 

2.1 Classes of Stochastic Programming problems 
We follow the classification of Stochastic Programming problems introduced 
by (Gassmann and Ireland 1996). We make a small extension of their 
categorisation by adding the Expected Value models as a subclass of the 
distribution problems leading to a working taxonomy shown in Figure 2. 

SP problems 

Chance 
Constrained 

Problems 

Recourse 
Problems 

Distribution 
Problems 

Scenario-
based 

Distribution-
based 

Wait and See Expected 
Value 

Stochastic Measures: EVPI and VSS 
 

Figure 2 Taxonomy of SP problems. 

We illustrate these classes by first considering the linear programming 
problem: 
 

mnnm RbRxcRAwhere

x

bAxtosubject

cxZ

∈∈∈

≥
=

=

× ;,;

0

min

 

(1) 

 
Let (Ω, ℑ , P) denote a (discrete) probability space where ),(ωξ ω∈Ω  denote the 
realizations of the uncertain parameters. Let us denote the realizations of A, 
b, c for a given event ω as: 
 

( ) ωω =ξωξ ),,(  cbAor  (2) 

 
The associated probabilities of these realizations are often denoted as 

.  ))(( )(ωξωξ porp  For notational convenience we denote these probabilities as 

)(ωp . 
The classes of stochastic models illustrated in Figure 2 are defined below. 
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Distribution problems 
The optimisation problems which provide the distribution of the objective 
function value for different realisations of the random parameters and also 
for the expected value of such parameters are broadly known as the 
distribution problems. 

The Expected Value Problem 

The Expected Value (EV) model is constructed by replacing the random 
parameters by their expected values. Such an EV model is thus a linear 
program, as the uncertainty is dealt with before it is introduced into the 
underlying linear optimisation model. It is common practice to formulate and 
solve the EV problem in order to gain some insight into the decision 
problem. Let the feasible regions corresponding to the problem stated in (1) 
and (2) be defined as: 
 

{ } ( ) ( )ωξω
ω orcbAforxbAxxF ,,0,| ≥==  (3) 

 
We can reconsider (1) as an expected value or an average value problem 
where: 
 

( )[ ] ( ) ( )∑
Ω∈

===
ω

ωξωωξξ pEcbA ),,(
 

 

 
and the optimisation problem is defined as: 

{ }bxAxFx

where

xcZ EV

=≡∈

=

|

min

 (4) 

 
 
Let *

EVx  denote an optimal solution to the above problem. 

This solution can be evaluated for all possible realisations )(ωξ | Ω∈ω . We 
can thus determine the corresponding objective function values and 
compute what is called the expectation of the expected value solution: 
 

[ ]*)( EVEEV xcEZ ω=  (5) 

 
If for some Ω∈ω , ωFxEV ∉* , that is *

EVx is not feasible for some realisation 

)(ωξ of the random parameters, we set: 
 

+∞→EEVZ  (6) 

Wait and See Problems 

Wait and See (WS) problems assume that the decision-maker is somehow 
able to wait until the uncertainty is resolved before implementing the 
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optimal decisions. This approach therefore relies upon perfect information 
about the future. Because of its very assumptions such a solution cannot be 
implemented and is known as the “passive approach”. Wait and see models 
are often used to analyse the probability distribution of the objective value, 
and consist of a family of LP models, each associated with an individual 
scenario. The corresponding problem is stated as: 

ω

ωω
Fxtosubject

xcZ

∈

= )(min)(
 (7) 

 
The expected value of the wait and see solutions is defined as: 

[ ] ( )∑
Ω∈

==
ω

ωωω pZZEZWS )()(  (8) 

 

Stochastic Programming Problems with Recourse 
Stochastic Programming Problems with recourse are dynamic LP models 
characterised by uncertain future outcomes for some parameters. In general, 
Stochastic Programming problems can be formulated as follows: 
 

[ ]
Fxwhere

xcEZ HN

∈
= )(min ω

 (9) 

�
Ω∈

=
ω

ωFFand  
(10) 

 
The optimal objective function value ZHN denotes the minimum expected 
costs of the stochastic optimisation problem. The optimal solution x*∈ F 
hedges against all possible events ω∈Ω  that may occur in the future. 
The classical stochastic linear program with recourse makes the dynamic 
nature of SP explicit, by separating the model' s decision variables into first 
stage strategic decisions which are taken facing future uncertainties and 
second stage recourse (corrective) actions, taken once the uncertainty is 
revealed. The formulation of the classical two-stage SP model with recourse 
is as follows: 
 

( )

,0

,min

≥
=

+=

x

bAxtosubject

xQEcxZ ωω

 (11) 

 
where: 
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min,

y
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The matrix A and the vector b are known with certainty. The function Q(x, ω), 
referred to as the recourse function, is in turn defined by the linear program 
(12). The technology matrix D(ω), also known as the recourse matrix, the 
right-hand side d(ω), the inter-stage linking matrix B(ω), and the objective 
function coefficients f(ω) of this linear program are random. For a given 
realisation ω, the corresponding recourse action y(ω) is obtained by solving 
the problem set out in (12). 
As the future unfolds in several sequential steps and subsequent recourse 
actions are taken, we deal with the generalisation of the two-stage recourse 
problem, known as multistage Stochastic Programming problem with 
recourse. A decision made in stage t should take into account all future 
realisations of the random parameters and such decisions only affect the 
remaining decisions in stages t+1 … T. In Stochastic Programming this 
concept is known as non-anticipativity. The general formulation of a 
multistage recourse problem is set out in equations (13) - (16) below: 
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subject to: 
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...

  

332211

3333232131

2222121

1111

MOM

 (14) 

 
;            ttt ux ≤≤l  (15) 

 
where: Tt ,...,1=  represents the planning horizon and the vectors: 
 

[ ]TAAcb tTtttt ,...,2t    ),...,,( 1 ∈∀=ξ   (16) 

 
are random vectors on a probability space � ��ℑ , P).  
It is important to stress the difference between decision stages and model 
time periods. Although these coincide in many applications, a stage can be 
regarded in general as a time period where new information about the state 
of nature is provided, that is the realisation of the random vectors can be 
observed.  The term “Here and Now” is often used to refer to recourse 
problem, reflecting the fact that decisions are taken before perfect 
information on the states of nature is revealed.  
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Scenario based recourse problems 

Let us reconsider the random parameter vector ξ(ω) introduced in (2) and 
used in the definition of the given class of models.  In the discrete statement 
of the problem the event parameter takes the range of values ω = 1,…,|Ω|; 
there are associated random vector realisations ξ(ω) and probabilities p(ω) 
such that: 
 

∑
Ω∈ Ω∈

=Ξ=
ω ω

ωξω � )(     and       1)(p
  

(17) 

In (17), Ξ is the set of all random vectors and is often called the set of 
scenarios. 
 
For the multistage recourse problem (13) - (16), if the probability distribution 
of the random parameter vectors is discrete, the uncertainty defines a 
random structure in the form of an event tree, which represents the possible 
sequence of realisations (scenarios) over the time horizon (see Figure 3).  
When the event tree is explicitly given, we refer to the model as a scenario 
based recourse problem.  
 

ξ 2 2k ξ 2 2k

ξ T

...... ...... ...... ...... ...... ...... ...... ............

...... ...... ..........................................

... ...

... ...... ... ... ...

ξ 2

ξ3 ξ 3 ξ 3

ξ 4

 
Figure 3. Event tree and scenarios 

In the multistage problem (scenario based), the event tree serves two 
purposes:  

(i) specify the model of randomness (the scenario generation) and  

(ii) define the algebraic model structure including hierarchal (or 
recursive) non anticipativity restrictions.   

In general, individual scenarios are interpreted as leaf enumeration of the 
event tree (Messina and Mitra 1997).  

Distribution based recourse problems 

An event tree can be also implied by defining the probability distributions of 
the random parameters, in which case the model is called distribution based 
recourse problem. Gassmann and Ireland (Gassmann and Ireland 1996) 
expand this concept in their work. This second class of problems, however, 
introduces various difficulties in the model specification using algebraic 
modelling languages and in terms of the solution process, in particular when 
some of the random parameters are continuously distributed. An 
approximation can be achieved by adopting appropriate sampling 
procedures, whereby the distributions may be replaced by an event tree.  
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Chance-Constrained Problems  
Another important class of Stochastic Programming models are the chance-
constrained problems (CCP) (Charnes and Cooper 1959). These can be 
dynamic or static models where one or more constraints are probabilistic. 
The general formulation of a chance-constrained problem is: 
 

{ } ,..1      

..

min

00

IihxAP

bxA

ts

cxZ

iii

CCP

=≥≥
=

=

β  

(18) 

where: 

]1,0[∈iβ  

is a reliability level and: 

IihA iii ..1   ),( =∀=ξ  

is a random vector on the probability space � ��), P). 
If the Ai is a row vector, the i-th constraint is called individual chance 
constraint. If Ai is a cr ×  matrix with 1>r , then the i-th constraint is 
referred to as joint chance constraint. 
 

2.2 Stochastic measures in SP recourse problems :EVPI and VSS 
It can be shown that the three objective function values ZEEV, ZHN, ZWS are 
connected by the following ordered relationship: 
 

EEVHNWS ZZZ ≤≤  (19) 

 
The inequality: 
 

EEVHN ZZ ≤  (20) 

 
can be argued in the following way: any feasible solution of the average value 
approximation is already considered in the Here and Now model, therefore 
the optimal Here and Now objective must be better. The difference between 
these two solutions defines the Value of the Stochastic Solution (VSS): 
 

HNEEV ZZVSS −=  (21) 

 
This is a measure of how much can be saved by implementing the 
(computational expensive) Here and Now solution as opposed to the 
deterministic expected value solution.  
Another important index is represented by the Expected Value of Perfect 
Information (EVPI): 
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WSHN ZZEVPI −=  (22) 

 
This property of the stochastic optimisation problems is interpreted as the 
expected value of the amount the decision maker is willing to pay to have 
perfect information (i.e. knowledge) about the future scenarios. A relatively 
small EVPI indicates that better forecasts will not lead to much 
improvement; a relatively large EVPI means that incomplete information 
about the future may prove costly. In (Birge and Louveaux 1997) some 
useful bounds on the EVPI and VSS are discussed: 
 

EVEEVEVHN ZZZZEVPI −≤−≤≤0  (23) 

EVEEV ZZVSS −≤≤0  (24) 

 
These can help in estimating the relative benefit of implementing the costly 
Stochastic Programming solution, as opposed to approximate solutions 
obtained by processing the Expected Value LP problem. 

2.3 Illustrative example: an asset/liability management model 
The finance industry, rather belatedly, has embraced the Markowitz mean-
variance model (Markowitz 1952; see also Jobst et al. 2001) for portfolio 
planning and asset/liability management applications. A major criticism of 
this approach (Luenberger 1997) is that it is a single period, static model. 
Carino and Turner (Carino and Turner 1997) illustrate the superiority of 
Stochastic Programming dynamic asset allocation models, over the mean-
variance approach. In fact, active portfolio management breaks away from 
myopic static decisions and implies revisiting the strategy, and re-balancing 
of the portfolio positions as financial conditions change. We use an ALM 
multistage Stochastic Programming model with downside risk constraints 
(Kyriakis 2001) to illustrate the capabilities of the SPInE system. 

Algebraic formulation 

The ALM problem: 

An investor faces the problem of creating a portfolio allocating assets out of a 
universe of I assets. Each asset is characterised by a price, which is (the 
only) random variable. The possible future prices are represented by an 
event tree.  The goal of the investor is to maximise the portfolio wealth at the 
end of the time horizon T.  He needs to take into account future obligations 
(liabilities). Asset buying and selling decisions are made, and each trade has 
an associated transaction cost. The deviation of the portfolio value from a 
predefined target is taken as measure of the risk. In each time stage the 
investor can decide the amount of assets to buy, sell and hold in the 
portfolio. 
We implement this problem as a multistage stochastic program with 
recourse, using a split-variable deterministic equivalent representation 
(Dempster 1988; Messina and Mitra 1997): 
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Sets and indices: 

T  denotes the number of time period in the time horizon 
Assets is the set of assets in our universe, where |Assets| = I 
Scenarios is the set of scenarios, where |Scenarios|= Sc 
t = 1..T denote time periods, 
i = 1..I  denote an asset, 
s = 1 ..Sc  indicates a scenario. 
 

Parameters: 

priceits     i ∈  Assets, t=1..T,  s ∈  Scenarios is the price of asset i in period t,  
for scenario s 

ps     s ∈  Scenarios is the weight (probability) associated to scenario s 
Lt ≥0      t=1..T is the expected liability at time period t 
Ft ≥0      t=1..T is the funding available in time period t 
At >0      t=1..T is the predefined target for time period t 
H0i ≥0      i ∈  Assets is the initial composition of the portfolio 
R ≥0 is the maximum deviation from the target accepted by the 

investor (in fraction) 
g ≥0 is the transaction cost rate 
 

Decision variables: 

Hits ≥0 i∈  Assets t=1..T, s∈  Scenarios is the amount of assets of type i 
held in time period t under scenario s 

Bits ≥0 i∈  Assets t=1..T, s∈  Scenarios is the amount of assets of type i 
bought in time period t under scenario s 

Sits ≥0 i∈  Assets, t=1..T, s∈  Scenarios is the amount of assets of type i 
sold in time period t under scenario s 

Objective function:  

Maximise the expected value of the final portfolio wealth: 

∑ ∑
= =

Sc

s
iTs Hpricep

1

I

1i
iTmax   

Subject to: 

 
Asset holding constraints: 

                itsitsiits  - S B  HO H +=  ScsI, i t ..1,..11 ===  

            1 itsitssitits  - S B  H H += −  ScsIT, it ..1,..1..2 ===  

 
Fund Balance constraints: 

   )1()1(
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==

+=+−−
I

i
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I

i
ttitsits BpricegFLSpriceg

 

Scs..Tt ..1,1 ==  

Downside risk constraints: 

        R-
I

1i
itst tits AHpriceA ≤∑

=
 ScsTt ..1,..2 ==  
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To complete the formulation we add to this a set of non-anticipativity 
constraints, which depend on the event tree structure. 

Event tree representation 
Let T represent a time horizon of one year, which is divided into four 
quarters. A decision is made at the beginning of each quarter, leading to a 
four-stage stochastic program. The event tree used in this example is shown 
in Figure 4. The leftmost node represents the strategic decision (to be made 
today) while the subsequent nodes represent conditional “recourse” 
decisions at later stages, when the portfolio is re-balanced.  

t=1 t=2 t=3 t=4 

 
Figure 4: Event tree structure 

The further we look into the future, the less accurate is our knowledge about 
the state of nature. This justifies our choice of a tree structure in which the 
number of branches (alternative asset prices) decreases in later stages. We 
consider 8 possible outcomes in the second stages, 4 conditional outcomes 
in the third stage and 2 conditional outcomes in the last stage leading to a 
total of 8 x 4 x 2 = 64 scenarios. 
The asset prices are generated using a GARCH based model (Kyriakis 2001). 
The discussion of the scenario generation is postponed until section 4. The 
conditional decisions induced by the scenario tree are modelled via a set of 
non-anticipativity constraints. A scenario s is a data path from the root of 
the event tree to any of the leaves. In general, the decisions at each stage 
have to be the same for all scenarios which are indistinguishable up to that 
stage (they pass through the same node).  
Formally, let: 

tK  

denote the number of nodes in stage t, and let: 

[ ] [ ]  ,..,1  , ,..,1       TtKkn ttk ∈∈  

denote the k-th node of the t-th stage of the event tree. We define: 

tkbundle  
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as the set of scenarios passing through node ntk. In our example, we have: 

64,32,8,1 4321 ==== KKKK  

The composition of the bundles is therefore: 
bundle11={1,2,…,64}  (t=1) 
bundle21={1,2,..,8}, bundle22={9,10,..,16}, …, bundle28={57,..,64}   (t=2) 
and so on. We can define the bundles of this problem in a compact form as:  









−+= k
K

Sc
k

K

Sc
bundle

tt
tk ),...,1(1  (25)  

 
where Sc is the total number of scenarios. This relation is valid for any 
scenario tree with a constant number of branches at each node of a given 
stage. 
The non-anticipativity can be thus expressed as: 
 

tiqrBundlessBHSBHS tkqritsits rq
,,,,,),,(),,( ∀≠∈∀=   (26) 

2.4 Illustrative model formulated in AMPL and MPL 
The implementations of this model in the established modelling languages 
AMPL (Fourer et al. 1993) and MPL (Maximal 2000) are set out below. The 
values of the deterministic parameters, as well as the scenario data, are read 
from a database. In AMPL, the directives for the database connections are 
separated from the model definition. The AML systems translate these 
declarative formulations into the matrix of the deterministic equivalent 
model.  
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Formulation of the model in AMPL 
 

set I    := 1..23; #asset type 
set T    := 1..4; #time stages 
set Sc    := 1..64; #scenarios 
 
param g := 0.025;  # Transactions cost ratio 
param R := 0.2;  # Risk level; 
param L{T};      # Liabilities; 
param H0{I};     # Initial portfolio; 
param F{T};    # Funding 
param A{T};    # Targets 
param P{Sc};   # scenario probabilities    
param price{T,I,Sc};  # asset prices 
 
var S{T,I,Sc} >=0; 
var H{T,I,Sc} >=0; 
var B{T,I,Sc} >=0; 
 
maximize wealth : sum{s in Sc, i in I} P[s]* H[4,i,s]* price[4,i,s]; 
 
######subject to  
 
###### ASSET HOLDING CONSTRAINTS ####### 
 
assetholding1{i in I, s in Sc}:         H[1,i,s]=H0[i]+B[1,i,s]-S[1,i,s]; 
assetholding2{i in I, t in 2..4,s in Sc}: H[t,i,s]=H[t-1,i,s]+B[t,i,s]-
S[t,i,s]; 
 
###### FUND BALANCE CONSTRAINTS ####### 
 
fundbalance{t in T,s in Sc}:  sum {i in I} B[t,i,s]*price[t,i,s]*(1+g) - 
          sum {i in I} S[t,i,s]*price[t,i,s]*(1-g) = 
       F[t]-L[t]; 
 
###### DOWNSIDE RISK CONSTRAINT ###### 
 
zeta{ t in 2..4, s in Sc}:  A[t]- sum {i in I} H[t,i,s]*price[t,i,s]<=                        
                            R*A[t]; 
 
###### NON ANTICIPATIVITY CONSTRAINT ###### 
 
nah11{i in I,s in 2..64} :  H[1,i,s]= H[1,i,s-1]; 
 
nah21{i in I,s in 2..8}  :  H[2,i,s]= H[2,i,s-1]; 
nah22{i in I,s in 10..16}:  H[2,i,s]= H[2,i,s-1]; 
… 
nah28{i in I,s in 58..64}:  H[2,i,s]= H[2,i,s-1]; 
 
nah31{i in I,s in 2..2}  :  H[3,i,s]= H[3,i,s-1]; 
nah32{i in I,s in 4..4}  :  H[3,i,s]= H[3,i,s-1]; 
… 
nah316{i in I,s in 64..64}:  H[3,i,s]= H[3,i,s-1]; 
 
#### same for variables S and B #### 

Table 2. Formulation of the ALM model in AMPL. 
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Formulation of the model in MPL 
 

TITLE ALM_46_MS; 
 
INDEX 
i  = 1..23; ! I=23 
t  = 1..4;  ! T=4 
s  = 1..64; ! Sc=64 
 
DATA 
g    = 0.025;  
R    = 0.2; 
L[t]      = DATABASE(tbl_liabs,liability); 
H0[i]        = DATABASE(tbl_portfolio,quantity); 
F[t]   = DATABASE(tbl_incomes,Income); 
A[t]   = DATABASE(tbl_targets,Target); 
P[s]    = DATABASE(tbl_Probabilities,Prob); 
price[t,i,s] = DATABASE(tbl_PricesSP,return); 
 
DECISION VARIABLES  
S[t,i,s];  
H[t,i,s];  
B[t,i,s]; 
 
MODEL 
MAX wealth = SUM(s,i,t=4: P[s]*H[t,i,s]*price[t,i,s]); 
 
SUBJECT TO 
!********* ASSET HOLDING CONSTRAINTS ******* 
assetholding[i,t=1,s]:         H[t,i,s]=H0[i]+B[t,i,s]-S[t,i,s]; 
assetholding[i,t>1,s]:         H[t,i,s]=H[t-1,i,s]+B[t,i,s]-S[t,I,s]; 
 
!********* FUND BALANCE CONSTRAINT ********* 
fundbalance[t,s]:               SUM(i:B[t,i,s]*price[t,i,s]*(1+g)) - 
                                SUM(i:S[t,i,s]*price[t,i,s]*(1-g)) = 
                                F[t]-L[t]; 
 
!********* DOWNSIDE RISK CONSTRAINT ******* 
zeta[t>1,s] :              A[t]-SUM(i:H[t,i,s]*price[t,i,s])<=R*A[t]; 
 
!********* NON ANTICIPATIVITY CONSTRAINT ********* 
nah11[t=1,i,s>1]: H[t,i,s]= H[t,i,s-1]; 
 
nah21[t=2,i,s=2..8]: H[t,i,s]= H[t,i,s-1]; 
nah22[t=2,i,s=10..16]: H[t,i,s]= H[t,i,s-1]; 
… 
nah28[t=2,i,s=58..64]: H[t,i,s]= H[t,i,s-1]; 
 
nah31[t=3,i,s=2]: H[t,i,s]= H[t,i,s-1]; 
nah32[t=3,i,s=4]: H[t,i,s]= H[t,i,s-1]; 
… 
nah316[t=3,i,s=64]: H[t,i,s]= H[t,i,s-1]; 
 
!*** same for variables S and B*********** 
… 
END 

Table 3. Formulation of the ALM model in MPL 

An examination of the non-anticipativity constraints indicates that this 
explicit form of representation is not immediately natural: it can be laborious 
and error-prone. Also, the important requirement of separating the data 
from the model (Geoffrion 1992) is lost in the above representation. This can 
be avoided using alternative but equally laborious model formulations (see 
for instance Gassman and Ireland 1995). Finally, the matrices generated for 
these deterministic equivalent models contain redundancies and are often 
too big to be handled by both solvers and modelling systems. This strongly 
makes the case for extending the algebraic modelling languages in terms of 
syntax and in generation capabilities in order to support the SP modelling 
steps. 
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3 Extending Algebraic Modelling Languages for SP 
 
The use of the MPS input format as a representation standard and the extensive 
use of algebraic modelling languages have become well established and have 
substantially facilitated the investigation of deterministic optimisation problems. 
SMPS was introduced as a standard for representing stochastic programs in a more 
compact and efficient way, exploiting the inherent SP model structure. However, 
SMPS is a machine-readable format and has no high level representational power. 
Our illustrative example introduced in section 2.3 and our discussions in section 
2.4 highlight the difficulties of using existing algebraic modelling languages to 
formulate SP. This is mainly due to the lack of constructs for the definition of the 
randomness of the model coefficients and for the declaration of the scenario tree 
structure. An examination of other investigators’ works (Table 1) reveals that some 
extensions have been proposed to overcome these limitations, but have not yet 
been deployed. 
We have designed and adopted a direct approach, whereby we provide extensions to 
AMLs to formulate SP recourse problems and Chance Constrained Problems with 
natural and concise constructs (Valente et al. 2001). This approach allows us to 
extend the syntax of AMPL and MPL into what we call SAMPL and SMPL 
respectively. 

3.1 SMPL and SAMPL: an introduction 
A Stochastic Programming model can be considered as a linear programming model 
extended and refined by the introduction of uncertainty (see Figure 5). More 
precisely, the underlying LP optimisation model is extended by taking into account 
the probability distribution of the LP coefficients which are random variables. Such 
distributions are provided by models of randomness (implemented in scenario 
generators), which are specific to the particular optimisation problems under 
investigation. 

Modelling of 
random 

parameters 

LP 
modelling 

SP 
modelling 

Scenario Analysis 
Expected Value  
Two Stage RP 
Multistage RP 

Chance Constrained Problems 

 
Figure 5. The combined paradigm 

As we consider the taxonomy and the classes of stochastic models introduced in 
Figure 2, it becomes immediately obvious that AMLs are neither specifically 
designed nor well suited to construct these classes of models. In fact, the strong 
coupling between the model structure and the data structure which arises in the 
models of randomness makes it very difficult separate model definition from data 
definition (see section 4.1). 
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If the probability distributions of the random parameters are discrete, it is always 
possible to define a deterministic equivalent model for Stochastic Programming 
problems with recourse. As we discussed in section 2.4, this approach suffers from 
a number of drawbacks, and often leads to unmanageable models when the size of 
the problems increases. The difficulties of working with the deterministic equivalent 
model are summarised below: 

a) The unnatural non-anticipativity constraints have to be declared to reflect 
the model structure induced by the scenario tree.  

b) The replication of decision variables leads to a high level of redundancy. 

c) The size of the deterministic equivalent models grows exponentially with the 
number of decision stages considered. 

d) The staircase structure of the matrix is lost due to the internal processing of 
the modelling systems, precluding the possibility of exploiting structure 
information by the solution algorithm.  

Ideally, a modelling language for Stochastic Programming problems should include 
a set of constructs which allow the modeller to capture the effects induced by the 
uncertainty on the underlying model structure, as well as provide a compact 
representation of the model instance. We present a generic approach of modifying 
AMLs, which is based on the concepts of underlying deterministic model and 
stochastic information in respect of the random parameters.   

The underlying deterministic model 
In a Stochastic Programming problem, it is always possible to identify an 
underlying deterministic model (also called the core model). This model captures 
the logical structure of the problem as well as the dynamical relations within 
decision variables, their bounds and the objective function. In a scenario-based 
recourse problem, for instance, the core represents the model associated with a 
particular sequence of realisations of the random parameters (scenario). The 
definition of the underlying deterministic model makes use of the standard 
constructs provided by the existing modelling languages (AMPL or MPL). The core 
model could be linked to the model of randomness in two ways: 

a) Making variables, parameters and constraints explicitly parametric in the 
scenario index 

b) Marking the appropriate coefficients as random parameters in such a way 
that they can be treated implicitly. 

The first approach requires that a scenario dimension must be introduced a priori 
and precludes the possibility of describing models with continuous distributions; it 
also implies the replications of variables and constraints. We adopt the second 
approach, whereby we write a pure deterministic model and we use new language 
constructs to identify the random parameters of the problem. Such constructs also 
define the effects of the uncertainty on the underlying model structure. 

Declaration of the random structure 
Once the underlying deterministic problem has been implemented, it is necessary 
to merge it with the information related to the model of randomness which 
characterises the problem. We expand the language syntax in order to capture 
such stochastic information. The items of information can be summarised as 
follows: 
Stochastic Class: identifies the category to which the SP problem belong 

(distribution-based recourse problem, scenario-based recourse 
problem, chance-constrained Problem) 
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Time dimension: the index used to describe the temporal horizon in the underlying 
model needs to be uniquely identified. 

Stages:  Decision stages are defined in terms of a partition of the time 
horizon  

Scenario dimension: the index used to identify the scenarios needs to be uniquely 
identified, because the realisations of the random parameters in 
scenario-based problems are defined using this index. 

Scenario Tree:  for scenario-based problems, it represents the structure of the 
event tree. 

Scenarios probability distribution: the (discrete) probabilities associated with the 
scenarios. 

Random parameters probability distributions: only required for distribution-based 
problems 

Random data:  defines and marks the random parameters of the problem in 
scenario-based problems.  

Chance constraints: Probabilistic constraints in chance-constrained problems need 
to be explicitly declared. 

 
Time index 

 

 
Stages 

aggregations 
 

 
Scenario tree 

structure 
 

 
Scenario 

index 
 

 
Random 

parameters 
 

 
Scenario 

probabilities 
 

 
Probabilistic 
constraints 

 

Indices 

Objectives 

Constraints 

Variables 

Parameters 

Standard AML 
constructs 
sufficient for the 
definition of the 
core models 

Extensions for 
SP modelling  

 
Figure 6. Extended language constructs 

Figure 6 shows how the basic constructs of a modelling language for linear 
programming are extended to capture the stochastic information. The design of the 
new constructs is adapted to be consistent with the grammar of the underlying 
modelling language. We have successfully applied this approach to the MPL and 
AMPL languages. We refer to (Valente et al. 2001) for a detailed description of the 
syntax. The combined SMPL and SAMPL parser is the core of the modelling system 
embedded into SPInE. This system also generates data model instances in SMPS 
format and in a Stochastic Intermediate Representation (SIR). 

3.2 Illustrative model formulated in SAMPL and SMPL 
Following the approach outlined in section 3.1, we need to specify the stochastic 
information relating to the ALM problem. Table 4 contains the declarations in SMPL 
and SAMPL of the components which together comprise the required stochastic 
information. 
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Description SMPL 

definition 
SAMPL 
definition 

Stochastic class 
The model is a scenario-based recourse 
problem (SBRP) 

STOCHASTIC CLASS 
SBRP; 

 
 
class SBRP; 
 
 

Time 
The time index is of this problem is 
represented by t. 

TIME 
t; 

 
timeset  T;  
 

Scenarios 
The asset prices outcomes are given in 
the form of an event tree. We use the 
index s to identify the scenarios. 

SCENARIO 
s; 

 
scenarioset  Sc; 
 

Probabilities 
We consider scenarios with equal 
probability. 

PROBABILITIES 
ALL_EQUAL; 

 
probability  
all_equal; 
 

Stages 
The time horizon is divided into 4 
quarters, which also identify the 
decisional stages. There is therefore a 1 
to 1 relation between time periods and 
stages, which we indicate as 
ONE_TO_ONE. 

STAGES PARTITION 
ONE_TO_ONE; 

 
stages partition: 
one_to_one; 
 
 

Tree 
The event tree used in this model is a 
symmetric tree. The number of 
branches at each node varies in 
different time stages (8,4,2), but is 
constant for nodes within a given stage.  

TREE 
MULTIBRANCH(8,4,2); 

tree 
multibranch{8,4,2}; 

Random data 
The only random parameter is the price 
of the assets over time. This parameter 
is scenario-dependent, and is therefore 
indexed over the scenario index. 

RANDOM DATA 
price = 
DATABASE(tbl_PricesSP,r
eturn); 

 
random param  
price; 
 

Table 4. Definition of the stochastic information of the ALM model  

The complete model formulations in SAMPL and SMPL are set out in Table 5 and 
Table 6 respectively. 
An SP presented in SAMPL or SMPL can be separated into two parts: 

(a) Part 1 which contains the declaration of the underlying core LP using 
“standard” AML statements. 

(b) Part 2 which which contains some structural details covering the 
stochastic aspects of the model.  This includes the definition of the 
scenario tree structure, the partitioning of variables and constraints 
into stages and an implicit reference to a scenario generator which 
provides random data parameter values to instantiate the SP model. 
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# asset/liability management model ALM48ms.mod 
 
set T  := 1..4;    #time horizon 
set I   := 1..23; #asset type 
 
param g := 0.025; # Transactions cost rate 
param R := 0.2; # Risk level; 
param L{T};     # Liabilities; 
param H0{I};  # Initial portfolio; 
param F{T};   # Funding 
param A{T};   # Targets 
 
var S{T,I} >=0; 
var H{T,I} >=0; 
var B{T,I} >=0; 
 
maximize wealth : sum{i in I} H[4,i]*price[4,i]; 
 
subject to  
 
###### ASSET HOLDING CONSTRAINTS ####### 
 
assetholding1{i in I}:             H[1,i]=H0[i]+B[1,i]-S[1,i]; 
assetholding2{i in I, t in 2..4]:  H[t,i]=H[t-1,i]+B[t,i]-S[t,i]; 
 
###### FUND BALANCE CONSTRAINTS ####### 
 
fundbalance{t in T}:           sum {i in I} B[t,i]*price[t,i]*(1+g) - 
            sum {i in I} S[t,i]*price[t,i]*(1-g) = 
        F[t]-L[t]; 
 
###### DOWNSIDE RISK CONSTRAINT ###### 
 
zeta{ t in 2..4}:            A[t]-sum {i in I} H[t,i]*price[t,i] <=R[t]*A[t]; 
 
# stochastic framework 
 
class SBRP; 
 
timeset  T; 
 
scenarioset  Sc; 
  
probability all_equal; 
 
random param price; 
 
stages partition one_to_one; 
 
tree multibranch{8,4,2}; 
 
# end 
 

Table 5. Formulation of the ALM model in SAMPL 
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TITLE ALM_64_MS; 
 
INDEX 
i      = 1..23;  
t   = 1..4; 
DATA 
g    = 0.025;  
R    = 0.2; 
L[t]            = DATABASE(tbl_liabs,liability); 
H0[i]         = DATABASE(tbl_portfolio,quantity); 
F[t]         = DATABASE(tbl_incomes,Income); 
A[t]      = DATABASE(tbl_targets,Target); 
price[t,i]; 
  
DECISION VARIABLES  
S[t,i];  
H[t,i];  
B[t,i]; 
 
 
MODEL 
MAX wealth = SUM(t=4,i:H[t,i]*price[t,i]); 
 
SUBJECT TO 
!********* ASSET HOLDING CONSTRAINTS ******* 
 
assetholding[i,t=1]:                   H[t,i]=H0[i]+B[t,i]-S[t,i]; 
assetholding[i,t>1]:                   H[t,i]=H[t-1,i]+B[t,i]-S[t,i]; 
 
!********* FUND BALANCE CONSTRAINT ********* 
 
fundbalance[t]:                        SUM(i:B[t,i]*price[t,i]*(1+g))- 
                                       SUM(i:S[t,i]*price[t,i]*(1-g))= 
                                       F[t]-L[t]; 
 
!********* DOWNSIDE RISK CONSTRAINT ******* 
zeta[t>1] :                        A[t]-SUM(i:H[t,i]*price[t,i])<=R*A[t]; 
 
 
STOCHASTIC CLASS 
SBRP; 
 
TIME 
t; 
 
SCENARIO 
s; 
 
PROBABILITIES 
ALL_EQUAL; 
 
STAGES 
PARTITION: ONE_TO_ONE; 
 
TREE 
MULTIBRANCH(8,4,2); 
 
RANDOM DATA 
price = DATABASE(tbl_PricesSP,return); 
 
 

Table 6. Formulation of the ALM model using the SMPL extended language. 

We observe that: 
 

(i) the explicit definition of the non-anticipativity constraints has been 
eliminated, 

(ii) the separation of data definition from model definition, which is one of 
the main advantages of the use of AMLs, is preserved. 
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4 Scenario generation 
 
If we revisit section 2.1 where we define the scenario based recourse problem and 
the Figure 5 in section 3.1 where we describe the combined paradigm of models of 
randomness and the optimum allocation of LP models, we gain some insight into 
the nature and structure of the SP models. 
 
The algebraic (LP) model captures the logic of the application’s domain.  Similarly, 
the scenario generators are also special purpose applications developed to capture 
the randomness properties of a particular application’s domain. Typically, a 
consumer product supply chain model and an energy distribution model both 
require scenarios of forecast demand, but the factors which influence the demands 
and the forecasting models may be very different. Again in finance applications the 
asset prices under consideration may be generated using different models of credit 
risk, interest rate risk or other considerations.  In designing an SP modelling 
support system our goal is therefore to develop an appropriate parameter passing 
interface which enables us to connect diverse special purpose scenario generators 
(which capture very valuable domain knowledge) to our modelling system. 
 
In section 4.1 we outline the design principles, in section 4.2 we consider some well 
established approaches to scenario generation and in section 4.3 we provide an 
example of connecting a GARCH based asset price generator for our illustrative 
ALM model. 

4.1 Integrating scenario generators in SPInE 
In section 2.1 we introduced the concept of scenarios and noted that the event tree 
within SP serves two different purposes:   

(i) define the model of randomness (scenario generation) and  

(ii) specify the algebraic structure of the decision variables and constraints. 

A scenario generator �captures in a procedural form a domain-specific model of 
randomness. In particular it uses historical information, an event tree structure 
and some other specification parameters. We can thus separate the main groups of 
parameters as 
 
H : History,  
:  : Event Tree,  
   : Remaining Parameters. 

 
7KH�VHW�RI�VFHQDULRV� �LV�WKHQ�VHHQ�DV�WKH�FROOHFWLRQ�RI�VFHQDULRV�ZKLFK�DUH�RXWSXW�
by the generation procedure: 

Ξ⇒),,( θτϕ H  (27)  

In the algebraic form of the SP model we also need to specify the ‘variable and 
constraint’ tree structure, which we label as ’.  Thus using the extended AML we 
provide a specification of ’ in the SP model through the tree declaration. 
For consistency, of course, we need the two trees to be congruent.  In other words 
we need to ensure that the event tree structure  used by the special purpose 
scenario generator is ‘compatible’ with the ’ specified in the SP model (see Valente 
et al. 2001).  The requirement for scenario generator parameter passing and tree 
consistency conditions are illustrated in Figure 9. When a special purpose scenario 
generator is connected to SPInE, the two trees  and ’ are compared for 
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consistency. The scenario generator then creates the set of scenarios and the 
associated probabilities S� �. 
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Figure 7. Scenario Generation Parameter Paring and Tree Consistency 

The data interface for the presentation of the scenarios to the modelling system is 
based on ODBC connections. This allows the scenario generator to store the output 
in virtually any type of database (including text files).  The flexible interface with 
scenario generators and the ability to create in-sample scenarios for SP model 
optimisation and out-of-sample scenarios for simulation (see section 6.3) make the 
connection to external generators a valuable feature of SPInE. 

4.2 Models of randomness 
There are some well-established approaches to scenario generation; having 
examined a number of reported applications we have identified three modelling 
methodologies which are likely to encompass a wide range of SP models.  These are 
moment-based methods, diffusion processes and time series based methods.  Our 
design goal is to provide templates for connecting these types of generators. 

Moment based scenario generation 
One of the major problems in the scenario generation is to make sure that the 
outcomes sampled from the random model are consistent with the underlying 
probability distribution, or with the decision-maker beliefs about the future. 
Høyland and Wallace (Høyland and Wallace 2001), present an algorithm whereby 
the decision-maker specifies a distribution in terms of marginal moments, 
correlation matrix and higher co-moments and the generated scenarios are 
consistent with the specification. 

Diffusion processes  
Diffusion processes are widely used in finance to model the paths of the future 
prices of stocks, interest rate term structure and the value derivatives. These 
models of randomness are continuous time models. 

Time series 
Time series models are commonly used to estimate parameters which explain the 
behaviour of a random variable based on past observations.  



 28 

4.3 An example: Connecting SPInE to an asset prices generator  
In this section, we give a broad overview of the scenario generator for stock prices 
and liabilities developed in (Kyriakis 2001). We have integrated this generator in 
SPInE and used it for our asset/liability management example. This generator uses 
some ideas put forward by Mulvey (Mulvey 1996) who developed the CAP:Link 
model for Tower Perrins. Also see (Zenios 1993) for a description of optimisation as 
used in the finance industry. Figure 8 provides a compact outline description of the 
relationship diagram of the scenario generator. 
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Figure 8. Asset prices generator: architecture 

 
The macroeconomic environment is modelled using a Generalised Autoregressive 
model with Conditional Heteroscedasticity, GARCH(1,1). 
GARCH processes are used to model random variables characterised by non-
constant variance over time (heteroscedasticity), including a disturbance term 
which is function of past realisations and other exogenous factors. GARCH(1,1) is 
hence used to model the short run interest rates, long run interest rates and the 
consumer price index, and to capture the interrelationships between these 
variables through time. The coefficients for the model are estimated using a 19 
years period from March 1978 to March 1996. These represent the H input 
parameter of the scenario generator. 
The scenarios produced by these processes are next used to simulate paths for the 
dividend yield of either an index or individual assets. A combination of a stochastic 
process and an autoregressive model simulate the behaviour of the dividend yields. 
Brownian motion is used to capture the dependence of the dividends from their 
past values.  
The scenario generator hereby illustrated uses autoregressive models AR(1) to 
relate dividend yields to the short run interest rate. Note that different models are 
estimated for each asset and financial index. 
Finally, a multivariate autoregressive model, specific to each asset or index, 
generates future projections for the returns of the index or the assets. In this case, 
past returns and the current dividend yield explain the movements of the expected 
returns. 
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5 Stochastic Solver in SPInE 
 
The proposal and adoption of the stochastic mathematical programming input data 
standard, SMPS (Birge et. al. 1987), as well as the library of models maintained by 
researchers (Ariyawansa and Felt 2001, Birge 2001) prepared to this specification, 
has made it easier to develop solvers and evaluate their performance. The SMPS 
input format extends the MPSX standard and is designed to achieve efficient 
conversion to SP models by representing the deterministic and the stochastic 
information in separate information streams presented as data files. The solver 
developed and integrated in SPInE has a clearly set out coupling with the modelling 
system and can accept model data instances either in SIR or in the SMPS format.  
As a result the interface is extremely flexible and the solver, which implements a 
number of established and a few innovative algorithms may be used as a stand-
alone tool. 

5.1 Solution techniques  
Solution methods for SP problems have been widely studied and these can be 
broadly classified into four categories: 

Universe problem  
In this approach, which involves solving the deterministic equivalent, we consider 
all possible outcomes ω ∈Ω  and solve the corresponding problem exactly (Birge and 
Louveaux 1997). This is not always possible, because there may be too many 
possible realisations ξ(ω)∈Ξ . The universe problem can be solved in two ways 
depending on how the non-anticipativity constraints are considered; these non-
anticipativity constraints can be considered either implicitly or explicitly. 

Decomposition 
Mathematical decomposition of the deterministic equivalent program is primarily 
based on using the L-shaped decomposition (see Van Slyke and Wets 1969), in 
multistage setting, for example, (Ho and Loute 1974; Glassey 1973), and 
5XV]F]\ VNL� �5XV]F]\ VNL�������KDYH� LPSOHPHQWHG�SDUDOOHO� YHUVLRQV��$� YDULDQW� RI�
the nested decomposition algorithm, called the regularized decomposition method 
�5XV]F]\ VNL� ������� KDV� DOVR� EHHQ� SURSRVHG� WR� VROYH� ODUJH� SUREOHPV�� 7KH�
progressive KHGJLQJ� �RU� VFHQDULR� DJJUHJDWLRQ�� PHWKRG� �0XOYH\� DQG� 5XV]F]\ VNL�
1995), is an augmented Lagrangean based technique with mathematical 
decomposition. For its implementation for problems with network structure see 
(Mulvey and Vladimirou 1991).  

Sampling-Based 
In sampling-based methods, one iteratively draws random samples from the 
underlying probability distribution for computing stochastic quasi-gradient (Dupac 
1965), (Kushner 1971) or for stochastic L-shaped decomposition (Higle and Sen 
1996) procedures that enjoy asymptotic convergence properties.  Noting that the 
variance of the samples is the key to the convergence process, various variance 
reduction schemes, such as importance sampling within the L-shaped method 
(Bowermann and Koehler 1978), (Infanger 1994) have been employed for better 
algorithm performance. 

Successive approximation 
This approach is based on computation of bounds on the optimal objective value.  
See (Andradottoir 1995 and 1996),  (Birge and Qui 1995), (Birge and Wets 1986) 
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and (Frantzeskakis and Powell 1990), for general details on such schemes. These 
methods employ lower and upper bounding functions on the expected value 
function at each decision stage; these bounds are then used in the outer 
approximation.  

5.2 The solver system in SPInE  
The solver system which we have embedded into SPInE is designed to variously 
process the family of SP models which include: 
(i) Expected Value Problem 

(ii) Wait and See Problems 

(iii) Here and Now Problem (Recourse Models). 
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Figure 9. Entity relationship diagram of SPInE’s solver. 

Figure 9 shows the entity relationship diagram of the solver system. SP models 
capture the two important aspects of decision-making, namely time and 
uncertainty, but their computational realizations suffer from the curse of 
dimensionality. This in turn requires that the data structure of the solver must be 
efficient to (i) capture the dynamic evolution of uncertain parameters, and (ii) scale 
up (of the model size through scenarios and stages) to process real world models. 
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Algorithms 
A number of solution algorithms have been implemented and tested within SPInE. 
Currently, we use FortMP (Ellison et. al 1999) as the main LP/MIP solver engine 
but the design allows us to replace it by any other powerful solver engine such as 
CPLEX. The Table 7 sets out the SP model and solver algorithm combinations 
which have been tested or planned for inclusion within SPInE.  
 
SP Model Algorithm Comments 

Universe 
(Deterministic equivalent). 
DEQ implicit, 
DEQ explicit 

The user controls the specification 
of the non-anticipativity 
constraints, thus resulting in two 
possible representations, namely 
implicit and explicit. We have 
implemented both approaches in 
the solver system. 

Benders Decomposition Implemented and tested. 
Stochastic Decomposition Currently being implemented. 

Two-stage 
linear SP 

Benders and Importance 
sampling. 

Currently being implemented. 

Lagrangean relaxation This algorithm is described in our 
working paper (Poojari and Mitra 
2001) and also in our Supply 
chain paper (Poojari et. al. 2000) 

Integer 
two-stage 
SP 

Lagrangean relaxation 
and importance sampling. 

To be implemented. 

Deterministic equivalent Implemented and tested. 
Nested Benders Implemented and tested.  

Nested Benders and 
Importance sampling  

To be implemented. 

Multi-stage 
SP 

EVPI based importance 
sampling. 

To be implemented. This is based 
in the work done by (Dempster 
and Thompson 1999). 

Table 7. Solution algorithms of the solver system 

Control 
The solution algorithms to be deployed are chosen by control parameters specified 
via a parameter file. The full details of these parameters and the parameter file can 
be found in (Poojari and Mitra 2001); examples of setting these controls are shown 
in section 6.2.  The solver can be also deployed to process the Expected Value 
problem, and the Wait and See problems for all scenario instances. Furthermore 
there exist control switches to calculate the stochastic measures EVPI and VSS. 

5.3 Quality Assurance/Benchmark and Scale Up Properties  
The embedded SP solver module has been extensively tested for a wide range of 
quality assurance (QA) test problems which have been collected from a number of 
sources. A summary of these QA models is given in Appendix B; a paper describing 
the algorithm and computational performance of the SP solver engine is under 
preparation (Poojari and Mitra 2001). The following five algorithms make up the 
most important part of the SP solver engine. 
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(i) Deterministic equivalent split-variable (DEQ explicit): model processed by 
IPM, 

(ii) Deterministic equivalent compact variable  (DEQ implicit): model 
processed by SSX, 

(iii) (Nested) Benders decomposition (NBD): the master and subproblems 
processed by SSX, 

(iv) Wait and See (WS): The individual problems processed by SSX.  
(v) Expected Value (EV): The expected value LP problem processed by SSX. 

 
The computational platform is set out in Table 8 in a summary form: 
 
Processor  Memory Software 

Pentium III 500 MHz 128 Mbyte RAM 
FortMP solver compiled 

using Digital Fortran and 
running under Win NT 

Table 8. Computational Platform 

Table 9 displays the summary of a subset of test models taken from this QA set.  
 

Model Rows Columns Non-Zeroes 
Pgp2 9 20 40 
FXM 330 457 2589 
Pltexp 270 732 1491 
Storm 713 1380 4037 
Phone 24 93 207 

Table 9. Model Summary. 

The relative performances of the three Here-and-Now algorithms (Benders 
decomposition, DEQ implicit, and DEQ explicit), the Wait-and-See algorithm (WS), 
and the Expected Value (EV) are shown in Table 10.  
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Description SP models Stochastic 

Metric 

Name Stage/ 
Scen. 

HN 
(time) 

WS 
(time) 

EV 
(time) 

EVPI VSS 

DEQ Implicit 508.975 
(1s) 

DEQ Explicit 508.975 
(1s) 

Pgp2 2/8 

Benders  
Decomposition 

508.975 
(8s) 

449.844 
(1s) 

431.406 
(1s) 

59.130 ∞  

DEQ Implicit 18417.065 
(24s) 

DEQ Explicit 18417.127 
(47s) 

Fxm 2/16 

Benders  
Decomposition 

18417.13 
(46s) 

18416.75 
(4s) 

18416.75 
(1s) 

0.38 0.38 

DEQ Implicit -13.965 
(32s) 

DEQ Explicit -13.968 
(399s) 

Pltexp 3/36 

Benders  
Decomposition 

-13.968 
(19s) 

-13.968 
(5s) 

-14.304 
(1s) 

0 ∞  

DEQ  Implicit 15535210 
(26s) 

DEQ  Explicit 15535210 
(23s) 

2/8 

Benders 
Decomposition 

15535217 
(94s) 

15488580 
(5s) 

15459240 
(1s) 

46637.65 ∞  

DEQ  Implicit 15508969 
(323s) 

DEQ  Explicit 15508969 
(890s) 

2/27 

Benders 
Decomposition 

15508969 
(381s) 

15459253 
(17s) 

15476546 
(1s) 

20389 ∞  

DEQ  Implicit 15512047 
(8138s) 

DEQ  Explicit Not enough  
memory 

2/125 

Benders 
Decomposition 

15512048 
(2521s) 

15476584 
(80s) 

15459219 
(1s) 

52829 ∞  

DEQ  Implicit Not enough  
memory 

DEQ  Explicit Not enough  
memory 

Storm 

2/1000 

Benders 
Decomposition 

15802505 
(18882s) 

15766791 
(649s) 

15750516 
(1s) 

35714 ∞  

DEQ Implicit Not enough 
Memory 

DEQ Explicit Not enough 
Memory 

 

Phone 

 

 

2/32768 
Benders 
Decomposition 

36.9 
(15943s) 

36.9 
(935s) 

36.9 
(1s) 0 ∞  

 

Table 10. Computational Results 

In order to study the scale up properties of these algorithms we investigated the 
two models STORM and PHONE.  
STORM is a two-period freight-scheduling problem described in (Mulvey and 
Ruszczynski 1995), the problem is held at the University of Michigan and provided 
by Adam Berger. PHONE is a two-period telecommunication network problem 
described in (Sen, Doverspike and Cosares 1994).  
 
These models were investigated for progressively larger sizes: for STORM 8 to 1000 
scenarios, and for PHONE 100 to 32000 scenarios. The corresponding processing 
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times are set out in Table 11 and Table 12, and are also plotted separately in 
Figure 10 and Figure 12 to a log (time) vs. linear (number of scenarios) scale.  We 
have experimented the scale-up property of the nested Benders algorithm for 
different number of scenarios. In Figure 11 and Figure 13 we plot the performance 
of Benders algorithm for different instances (number of scenarios) of the Storm and 
Phone models. 
 
Benders decomposition also extends well for parallel implementation (see 
Ariyawansa and Hudson 1991, and MirHassani et. al 2000, Zenios and Censor 
1997, Wright 2001). Our solver is available on NEOS over a client server platform. 
Our earlier experience of solving large SP models on a parallel platform using 
client-server architecture is described in (Poojari et al 2001). In the following tables 
and figures, we use the following legend: 
 
NB ≡ Nested Benders decomposition, 
DI  ≡ DEQ Implicit, 
DE ≡ DEQ Explicit, 
WS ≡ Wait-and-See. 

 
Scenarios NB DE DI WS 

1 1s 1s 1s 1s
8 198s 24s 18s 5s

10 310s 74s 30s 7s
25 781s 1293s 200s 17s
27 839s 913s 255s 18s
50 1342s 5533s 930s 32s
70 1601s 29719s 1893s 51s

100 2912s � 3375s 65s
200 5559s 15742s 145s
550 14410s 159446s 345s

700 15202s � 441s
1000 18222s  628s

Table 11. Performance time (in seconds) for algorithms on the STORM model. 
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Performance of alternate algorithms.
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     Figure 10. Performance of the algorithms on the STORM model. 

 
 

Performance of the (Nested) Benders algorithm.
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     Figure 11. Performance of the (Nested) Benders on the STORM model. 

 
Scenarios NB DI DE WS 

1 1s 1s 1s 1s
100 23s 21 80s 3s
200 60s 73s 696s 6s
300 95s 206s 2376s 9s
400 139s 457s 5660s 12s
600 145s 828s 19237s 18s

1000 309s 2216s� 31s

2000 512s 12485s 63s
5000 1255s�  159s

15000 4727s  470s
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25000 9651s  800s

32000 14654s  1020s
Table 12.Performance time (in seconds) for algorithms on the PHONE model. 

 

Performance of alternate algorithms.
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 Figure 12. Performance of alternate algorithms on the PHONE model. 

 
 

Performance of the (Nested) Benders algorithm.
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 Figure 13. Performance of the (Nested) Benders on the PHONE model. 

The IPM and the SSX solvers process these two deterministic equivalent 
representations (DEQ implicit) with varying efficiency and different scale up 
properties. We have not implemented any structure exploitation facility in our 
algorithms; in table 10 we simply set out our computational experience for these 
two alternate representations. 
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Model 

(Stages/Scenario) 
 

 Compact Split-variable 
 IPM SSX IPM SSX 
Pgp2 (2/8) 1s 1s 1s 1s 
Fxm (2/16) 18s 24s 47s 37s 
Pltexp (3/36) 351s 32s 399s 65s 
Storm (2/8) 16s 26s 23s 29s 
Storm (2/27) 448s 323s 890s 329s 
Storm (2/125) NEM 8138s NEM 13498s 
Storm ( 2/1000) NEM NEM NEM NEM 
Phone(2/32768) NEM NEM NEM NEM 

 
NEM:  Not enough memory. 
Table 13. Performance of IPM and SSX on the two representations of the deterministic equivalent. 
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6 SPInE 
A prototype of the SPInE environment was first designed in (Messina and Mitra 
1997). The focus in that work was on the integration of modelling, solution and 
analysis tools to aid in the development and investigation of multistage recourse 
problems. The system was based on the MPL modelling system for the definition of 
the underlying core model, which was parametric in the scenario dimension. 
Several external files were needed to define the stochastic structure of the problem, 
leading to a laboriously and unnatural modelling process. However, the use of 
multidimensional database systems represented an innovative approach for the 
analysis of the results. The solver was based on the combination of MSLiP 
(Gassmann 1990) with the FortMP solver (Ellison et al. 1999). 
We have revised the design of the first SPInE prototype adding several features, 
such as the support of the SMPL and SAMPL extended languages, the development 
of a new solver for SP multistage recourse problems, and the integration with 
scenario generators. 
In subsection 6.1 we provide an overview of the software architecture. In 6.2 we 
describe the SPInE menu options and controls by means of a few example screen 
shots taken from the investigation of the ALM model illustrated earlier in the paper. 
In 6.3 we show how the system can be used, through the spreadsheet data 
exchange feature, to compute Value at Risk for the first stage decisions. 

6.1 Software architecture: an overview 
The new SPInE environment integrates a number of subsystems which are 
managed by a Control system. The subsystems as such are software components 
which may be used to create embedded applications. 
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Figure 14. Software architecture of SPInE. 

The diagram in Figure 14 illustrates the architecture of SPInE, and the interaction 
of the modules which together comprise the software environment. SPInE is divided 
into four main subsystems, namely Scenario Generation, Modelling, Solver, Results 
Analysis and the overarching Control module. 
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Scenario Generation 
SPInE is designed to interface with scenario generators which supply the scenario 
data in ODBC databases or text files. An important aspect of the scenario 
generation interface is to establish the consistency between the SP model tree ¶ 
and the data path tree �underlying the scenario generation (see Section 4) 

Modelling subsystem 
The modelling subsystem is designed to support the language extensions SAMPL 
and SMPL introduced in section 3. The software module called Stochastic Program 
Generator (SPG) combines two separate parsers and a matrix generator. SPG 
processes together the algebraic models and the scenario data set to create an 
instance of the model in either SMPS format or in the Stochastic Intermediate 
Representation (SIR). SPG exchanges information externally using a set of files with 
a predefined format, and can be called as a command line application providing an 
options file, which contains directives for the execution. It also generates a 
dictionary, which maps the original names of the variables and constraints in the 
algebraic formulation to column and row numbers. The SPG module makes use of 
an underlying modelling engine, specifically OptiMax for the support of SMPL 
models and a comparable AMPL-based COM object, developed by our research 
group, for models prepared in SAMPL. The modelling system interacts directly with 
the scenario generators for the stochastic data and connects to the database 
systems which maintain the deterministic data relating to the core model of the SP 
problem.  

Solver subsystem 
Given a Stochastic Programming problem with recourse, the stochastic solver 
embedded in SPInE (see section 5) provides the solution to three related classes of 
models:  

(i) Here and Now  

(ii) Scenario Analysis (Wait and See) 

(iii) Expected Value 

For each of these, there is more than one possible solution algorithm. All underlying 
LPs may be solved using the Sparse Simplex algorithm (SSX) or the Interior Point 
Method (IPM). The Here and Now problem may be solved using Benders 
Decomposition, Lagrangean Relaxation or via the Deterministic Equivalent 
problem. The solver is also able to report the stochastic measures EVPI and VSS. 

Results analysis 
A critical phase in the development of stochastic models is the analysis of the 
solutions. The integration with database systems enables the exploitation of the 
Data Manipulation Languages (DML) which usually accompany the DBMS for the 
development of customised viewers and advanced data analysis tools. The SP 
Reporter (SPR) module of SPInE allows the user to export solution vectors using 
standard ODBC or using text files. The volume of the solution results produced by 
the stochastic solver can be very large. In fact, each decision variable has an 
associated optimal activity and reduced cost, for each stage and for each scenario. 
The investigator might be interested only in a subset of the solutions (e.g. the first 
stage strategic decisions). SPR provides filtering functionality which is used to 
transfer only the relevant decision data to the DBMS.  
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Control Module and Graphical User Interface  
Each module in SPInE can be run as an independent application through script 
files. A control module including a Graphical User Interface (GUI) has been 
developed and can be used to investigate SP problems.  
The GUI makes use of standard Windows objects to display and control 
hierarchical structures. It also provides with model management functionality, 
which is based on the concept of project (Figure 15). A project is a collection of 
stochastic models related to a specific problem. Each model, in turn, comprises a 
set of scenario data instances. 

 
Figure 15. Project management in SPInE 

The main subsystems of SPInE, namely the SP instances generator SPG, the 
stochastic solver SPS and the solution Reporter SPR have also been wrapped in a 
dynamic link library, which enables the rapid development of embedded 
applications. 

6.2 Using SPInE: commands and controls 
A sequence of control commands and dialog boxes are annotated below to illustrate 
a simple use of SPInE. After activating SPInE, the main window appears as shown 
in Figure 16. The menu bar and the alternative control features are also shown in 
this figure. 
 

 
Figure 16. SPInE’s menu commands 
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The main menu items are described as follows: 

Options:  this menu item is used to specify generator and solver control 
settings. 

Run: this item enables the user to first parse the model, generate the SP 
instance, solve the model and finally export the results. 

Model:  this menu item allows the user to view the scenario tree and to edit 
controls manually. 

 
For the example ALM model, the View Tree command after Parse leads to the 
display shown in Figure 17. 
 

 

Figure 17. Scenario tree view 

 
After the model has been parsed, the SMPS generation can be controlled using the 
dialog box shown in Figure 18. 
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Figure 18. SMPS generation controls 

The generated core matrix of the model can be also viewed as shown in Figure 19. 
 

 
Figure 19. Matrix structure of the core LP problem 

The solver execution on the different related models (Here and Now, Expected 
Value, Wait and See) is controlled by the dialog box shown in Figure 20. 
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Figure 20. SP Solver controls 

After solving the model, a compact report is produced if the filter control is used for 
the solver output. The results report for the ALM model is shown in Figure 21. 
 

 
Figure 21. Text report of the optimal values 

In this example, we solve the Expected Value (EV), the Wait and See (WS) and the 
Here and Now (HN, solved using Nested Benders Decomposition) models, and we 
compute the stochastic measures EVPI and VSS.  
Table 14 reports the optimum values of objective functions of these models and the 
stochastic measures, where the risk level is set to R = 20%. The solution of the EV 
problem was not feasible for some of the scenarios; hence the VSS is infinite by 
definition. 
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EV WS HN VSS EVPI 
151072.86 341025.08 195006.06 +� 146019.02 

Table 14. Optimum values and stochastic measures for R=20% 

6.3 VaR computation 
SPInE can be also used to undertake more advanced investigation of an SP model. 
In many applications, quantification of the risk associated with a decision is 
becoming an important modelling issue. In general, Value at Risk (VaR) as a metric 
for computing risk has become widely accepted, particularly by the finance 
community (Rockafellar and Uryasev 2000). SPInE can be used to interact with 
Excel spreadsheet and can produce VaR metric for any given first stage decision 
using either in-sample or out-of sample scenarios. 
For the given ALM model we are interested in computing and compare the VaR for 
the optimum first stage decisions xHN given by the Here and Now model and the 
optimum first stage decisions xEV given by the Expected Value LP model. These 
solution vectors are imported into Excel (see Figure 22) and are supplied as fixed 
values to a scenario analysis model which is used to simulate their performance.  
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Figure 22. Computation of VaR using SPInE and spreadsheets 

Two sets of frequency diagrams are computed (for xHN and xEV) taken over all the 
scenario realisations. This is equivalent to carrying out two simulation 
experiments, with 360 out-of-sample scenarios, again from the same generator. The 
optimum solution values are again exported back to Excel to display the results 
(see Figure 23).  
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Figure 23. Distribution of the objectives for EV and HN 

 
Thus for a � fractile of 0.99, we obtain the VaR profit levels which are shown in 
Table 15.  

Implemented Solution VaR 
HN 131638 
EV 82565 

Table 15. VaR results. 

It is clearly seen that for this model, the hedged Here and Now solution provides a 
better risk level than the Expected Value solution. 
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7 Future work and conclusions 
 
Modelling and solving Optimum decision problems under uncertainty is a 
challenging task. We have highlighted the need for an integrated environment for 
modelling and solving SP models. In this paper, we have introduced our Stochastic 
Programming Integrated Environment (SPInE). This system provides practitioners 
with a powerful modelling system, based on two language extensions (SAMPL and 
SMPL) specifically designed for the definition of SP models. We have illustrated an 
asset/liability management model and we have used SMPL and SAMPL to 
formulate the corresponding multistage SP model. The interface designed for the 
connection to the scenario generators allows us to bring together the models of 
randomness with algebraic optimisation models. The variety of solution algorithms 
embedded in our SP solver engine and the ability to connect to databases for the 
analysis of the results make SPInE a complete and flexible tool for the 
implementation and investigation of Stochastic Programming problems. 
We identify, however, a number of research issues of conceptualisation and 
software development which need further investigation.  
  
(i) Connecting specific scenario generators to the SP models remains a thorny 

issue.  Indeed in the generated model we work with a snap shot of the 
dynamic model. In a closely coupled modelling and solver system it is   
possible to investigate EVPI based sampling algorithm or importance 
sampling algorithms to create an iterative solution procedure.  

 
(ii) The scenario generators can be extended to connect with historical data.  

Thus a framework of validation of the first stage decisions may be 
undertaken through simulation as well as back testing.  

 
(iii) We aim to develop a solver which can process quadratic inequalities.  Thus 

a range of chance-constrained models can be also processed by the system; 
this will enhance the scope of applying SP models. 

 
(iv) We have earlier experience of parallelizing particular instances of SP 

models (MirHassani et al 2000). We wish to extend this work to include 
parallel implementations of Benders as well as the Lagrangean relaxation 
based Integer SP solver. 
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Appendix A 
 
SAMPL and SMPL Libraries of SP models 
 
We have prepared two libraries of SP models, one in SAMPL and the other in SMPL.  
The context of the models, the model structures and the sizes of the SMPS files 
which are generated, are summarised in the Table A.1 and A.2. 
 
 
Model Description Stochasticity Rows Cols Nz 

ALM Asset/Liability Management model with 
downside risk constraints 

Technology 99 276 621 

CLO Distribution model 
 

RHS 64 160 410 

FINA Asset/Liability Management model with 
diversification constraints 

Technology 42 81 196 

INTCLO Mixed Integer distribution model 
 

RHS, Bounds 251 473 1504 

POWER Simple power expansion model 
 

RHS 9 12 33 

MP Small two stage IP model 
 

RHS, Cost 2 2 3 

MP2 Minimal two stage model 
 RHS 2 2 3 

Table A.1. Models summary 

 
Instance  Scenarios Tree structure DEQ Rows DEQ Cols DEQ Nz 
ALM16ts 16 2 stage 1115 1998 4466 
ALM48ts 48 2 stage 7080 13461 30211 
ALM48ms 48 8 x 3 x 2 11560 13461 39171 
ALM360ms 360 15 x 8 x 3 93895 100509 308095 
CLO25ts 25 2 stage 2216 4040 9922 
CLO125ms 125 5 x 5 x 5 19095 19539 70092 
INTCLO10ts 10 2 stage 3675 4895 15292 
FINA8ts 8 2 stage 614 393 1499 
FINA8ms 8 2 x 2 x 2 676 677 2065 
POWER 4 2 stage 39 51 131 
MP 10 2 stage 21 21 41 
MP2 5000 2 stage 10001 10001 20001 
Table A.2. Structure and size of the SMPS instances 
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Appendix B 
 
Quality Assurance and benchmark test problems 
 
We have collected together a number of test problems which are taken mainly from 
 
(a) Library supplied by Birge (Birge, 2001) 

 
(b) Library prepared by Ariyawansa and Felt, (Ariyawansa and Felt, 2001) 

 
(c) Industrial models developed by our research group (Mitra et al. 2001) 
 
We use a subset of these models for the quality assurance of the solver; the content 
of these models, their structure and their size are summarised in Table B.1 and 
B.2.   The full set of models is processed to gather benchmark performance data. 
 
 
Model Description Stochasticity Rows Cols Nz 

SGPF5Y5a Mixed Integer distribution model 
 RHS, Bounds 314 455 1058 

AIRLb 
Airlift operations scheduling, 2 stage 
mixed integer linear. 
 

RHS 8 12 24 

ASSETb 
Network model for asset or liability 
management,  2 stage linear.  
 

Technology,  
RHS 10 26 47 

4NODEb Cargo network scheduling 
 

RHS 90 238 772 

CHEMb Design of batch chemical plants,  2 
stage mixed integer linear. 

RHS,Cost 84 80 186 

ELECTRICb Electric investment planning, 2 stage 
linear. 

RHS, Cost 9 16 36 

ENVb Energy and Environment planning RHS 96 98 276 
TRADEc Supply chain planning RHS 574 456 1342 
Table B.1. Models summary 

 
Instance  Scenarios Tree structure DEQ Rows DEQ Cols DEQ Nz 
SGPF5Y5 3125                5 stage 157562 176151 530210 
AIRL 25 2 stage 152 204 504 
ASSET 37500  2 stage  187505 487513 975021 
4NODE 256 2 stage 18960 47668 120112 
CHEM 2 2 stage 130 121 289 
ELECTRIC 2 2 stage  23 40 92 
ENV 2 2 stage 288 294 852 
TRADE 43 2 stage 12250 10536 37546 

 
Table B.2. Structure and size of the SMPS instances 
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