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Abstract

Second-order stochastic dominance (SSD) is widely recognised as an important decision criterion in
portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from
a computational point of view.

In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed
by Dentcheva and Ruszczyński (2006), uses a SSD constraint, which can be expressed as integrated
chance constraints (ICCs). The second, proposed by Roman, Darby-Dowman, and Mitra (2006) uses
SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and
algorithms were proposed by Klein Haneveld and Van der Vlerk (2006) for ICCs, and by Künzi-Bay
and Mayer (2006) for CVaR minimization. These concepts are taken into consideration to propose
representations and solution methods for the above class of SSD based models. We describe a cutting
plane based solution algorithm and outline implementation details. A computational study is presented,
which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to
the SSD model of Roman, Darby-Dowman, and Mitra (2006).
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1 Introduction

The model of choice among random variables is a crucial issue in portfolio selection. Mean-risk models
are convenient from a computational point of view and have an intuitive appeal. In their traditional form,
however, they use only two (or a few) statistics to characterize the portfolio return distribution, and thus may
ignore important information. Stochastic dominance, in contrast, takes into account the entire distribution
of a random variable. It is considered to be a formal approach for comparing random variables; in particular,
second-order stochastic dominance (SSD) is widely recognised as an important criterion of choice in portfolio
selection.

New portfolio-optimization models which apply the concept of second-order stochastic dominance were
proposed by Dentcheva and Ruszczyński (2006), and by Roman, Darby-Dowman, and Mitra (2006). Dentcheva
and Ruszczyński consider a second-order stochastic dominance constraint that can be expressed as a finite
set of integrated chance constraints (ICC). Roman, Darby-Dowman, and Mitra introduce a uniform dom-
inance concept, and formulate multi-objective Conditional Value-at-Risk (CVaR) minimization problems.
These authors present their respective formulations as linear programming (LP) problems by introducing
new variables which represent positive parts in the formulation of integrated chance constraints and Condi-
tional Value-at-Risk, respectively. In this paper we introduce the term lifting representations for the linear
programming problems that result from such formulations, as these transformations ’lift’ the feasible sets of
the problems into higher dimensional spaces. The resulting LP problems are very large, and their solution
presents a computational challenge. Dentcheva and Ruszczyński exploit special structure of these problems:
they adapt the Regularized Decomposition Method of Ruszczyński (1986) to the duals. The formulation
proposed by Roman, Darby-Dowman, and Mitra, although powerful from a modeling point of view, could be
solved in realistic time only for a limited number of scenarios. Dentcheva (2006) has suggested a reformula-
tion of the above problem as a two-stage stochastic program such that the computational scale up limitations
can be addressed by applying a decomposition algorithm. Lim, Sherali and Uryasev (2008) have proposed
solution methods for CVaR minimization problems with large numbers of scenarios using non-differentiable
optimization.

In this paper we propose cutting-plane methods to address the computational difficulty of processing this
class of models based on second-order stochastic dominance. We consider methodological aspects of chance-
constrained programming and the minimization of CVaR; we show important connections with the second-
order stochastic dominance models. Klein Haneveld and Van der Vlerk (2006) proposed a cutting-plane
representation of integrated chance constraints, and Künzi-Bay and Mayer (2006) proposed a cutting-plane
representation of conditional value-at-risk. Based on their respective cutting-plane representations, these
authors developed cutting-plane methods for the solution of integrated-chance-constrained problems and
CVaR minimization problems, respectively. They found that solution methods which exploit cutting-plane
representations produce better results than direct methods based on lifting representations. For large test
problems, the former approach was found to be 1-2 orders of magnitude faster than the latter. Moreover,
the former approach has much better scale-up properties for the processing of models of increasing size.

The interested reader may find further models and methods involving ICC and CVaR in Prékopa (2003)
and Kall and Mayer (2005).

In this paper we focus on adapting the cutting-plane representation of Künzi-Bay and Mayer to the model
proposed by Roman, Darby-Dowman, and Mitra (2006). We present algorithmic description, implementation
details, and a computational study that demonstrates the effectiveness of this approach: problems with
thousands of scenarios were solved in seconds.

The paper is organised as follows. In Section 2, we review portfolio models which use SSD. In Section 3
we review cutting-plane based solution methods that are applicable to this class of problems. In Section 4
we describe a cutting-plane approach adapted to the model proposed by Roman, Darby-Dowman, and Mitra
(2006). A computational study is presented in Section 5. Results are summarized, conclusions drawn, and
further research directions are outlined in Section 6.
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2 Portfolio selection using Second-order Stochastic Dominance

Let n denote the number of assets available for investment at the beginning of a fixed time period. A portfolio
x = (x1, . . . , xn)T represents the fractions of the initial capital invested in the different assets (xj = wj/w
where wj is the capital invested in asset j and w is the total amount of capital to be invested, j = 1 . . . n).
Let X ⊂ IRn denote the set of the feasible portfolios. Such a feasible set is often simply defined by the

requirement that the weights must sum to 1 and short selling is not allowed: X = {(x1, . . . , xn)/
n∑

j=1

xj =

1, xj ≥ 0,∀j ∈ {1, . . . , n}}. We consider here a more general case and assume that X is a bounded convex
polyhedron.

Let the random vector R = (R1, . . . , Rn)T denote the returns of the different assets at the end of the
investment period. The return of a portfolio x is the random variable Rx = RT x.

The problem of choosing between portfolios is thus a problem of choosing between random variables
(with larger outcomes preferred). The criterion by which one random variable is considered ”better” than
another random variable is specified by models of choice, or models of preference. Specifying such a model
of choice is a crucial issue in portfolio selection.

Mean-risk models have been widely used in portfolio selection, since their introduction in the early fifties
(Markowitz 1952). In their traditional form, they describe random variables (and portfolios) by using two
scalars: the expected value, or the ”mean”, and a ”risk” value. Preference is then defined using a trade-off
between the mean where a larger value is desirable, and risk, where a smaller value is desirable. Various risk
measures have been proposed in the literature, see for example Markowitz (1952), Fishburn (1977), Ogryczak
and Ruszczynski (1999, 2001), Rockafellar and Uryasev (2000, 2002). Mean-risk models are convenient from
a computational point of view and have an intuitive appeal. However, they use only two (or a few) statistics
to characterize a distribution, and thus may ignore important information. One way of improvement is
to apply mean-risk models in interactive decision-support frameworks: Krokhmal, Palmquist, and Uryasev
(2002) and independently Mansini, Ogryczak and Speranza (2007) observe that portfolio optimization with
multiple risk-constraints for different time frames and at different confidence levels allows the shaping of
distributions according to the decision maker’s preferences. Another approach is to construct mean-risk that
are consistent with expected utility maximization / stochastic dominance; this has been the research subject
of several recent papers (Ogryczak and Ruszczynski 1999, 2001, 2002, Yamai and Yoshiba 2002).

Stochastic dominance provides a completely different approach, since it takes into account the entire
distribution of a random variable. It is closely connected to the expected utility theory (von Neumann
and Morgenstern 1947) but it eliminates the need to explicitly specify a utility function. With stochastic
dominance, random variables are compared by pointwise comparison of functions constructed from their
distribution functions.

The concept of stochastic dominance, that is, stochastic ordering of random variables, was inspired by
earlier work in the theory of majorization (Hardy, Littlewood and Polya 1934). In economics, stochastic
dominance was introduced in the 1960’s; Quirk and Saposnik (1962) considered the first order stochastic
dominance relation and demonstrated the connection to utility functions. Second order stochastic dominance
was brought to economics by Hadar and Russel (1969) and third order stochastic dominance by Whitmore
(1970). The interested reader may find a detailed discussion in Whitmore and Findlay (1978) and a survey
in Levy (1992).

Of particular importance in portfolio selection is the second-order stochastic dominance (SSD), as this
relates to models of risk-averse preferences. We introduce these concepts below.

Consider two random variables Rx and Ry (they may represent the returns of two portfolios x and y)
with cumulative distribution functions Fx and Fy respectively. It is known (see, for example Whitmore and
Findlay (1978)) that the three statements below are equivalent:

a) F
(2)
x (t) ≤ F

(2)
y (t), ∀t ∈ IR.

where: F
(2)
x (t) =

∫ t

−∞ Fx(u) du, ∀t ∈ IR.
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b)
E ([t−Rx]+) ≤ E ([t−Ry]+) , ∀t ∈ IR (1)

(where [t−Rx]+ = max{t−Rx, 0})
c) E (U(Rx)) ≥ E (U(Ry)), for any increasing and concave (integrable) utility function U .

If the relations above hold, Rx is said to (weakly) dominate Ry with respect to second order stochastic
dominance (SSD). This dominance is denoted by Rx ºSSD

Ry. The corresponding strict dominance relation
Â

SSD
is defined in the usual way: Rx ÂSSD

Ry if and only if Rx ºSSD
Ry and Ry 6ºSSD

Rx.
A portfolio x is said to dominate (or be preferred to) another portfolio y with respect to SSD if Rx ºSSD

Ry, where Rx and Ry are the (random) returns of portfolios x and y respectively. A similar notation is used
for the decision vectors x and y : x º

SSD
y.

A portfolio x? is said to be SSD-efficient if there is no feasible portfolio x ∈ X such that x ÂSSD x?.
It is known that increasing and concave utility functions express the preference of risk-averse investors

(Fishburn 1964, 1970). This underlines the importance of second-order stochastic dominance, since risk
aversion is the observed economic behavior; yet, practical application of SSD as a criterion of choice proves
to be difficult. Generally, comparing two random variables with respect to SSD involves an infinite number
of comparisons, as set out in (1). Few models that use SSD have been proposed in the literature; they use
additional assumptions in order to be computationally tractable; even so, their computational difficulty is
remarkable. In the rest of this section, we review two recently proposed portfolio selection models that use
SSD.

In the practice of portfolio selection, it is usual to assume that the asset returns have a discrete joint
distribution, described by realizations under S states of the world (these states of the world are obtained
through scenario generation or finite sampling of historical data). This is also the assumption made in
this paper. Let r(1), . . . , r(S) denote the realizations of the return vector R, occurring with probabilities
p1, . . . , pS , respectively. Denote by rij be the return of asset j under scenario i, i ∈ {1, . . . , S}, j ∈ {1, ..., n}.
Thus, r(i) = (ri1, . . . , rin), ∀i ∈ {1, ..., S}. The random variable Rx = RT x representing the return of
portfolio x is finitely distributed over {r(1)

x , ..., r
(S)
x }, where r

(i)
x = r(i) T x = x1ri1 + ...+xnrin is the portfolio

return under scenario i, ∀i ∈ {1, ..., S}.

2.1 Portfolio optimization with SSD constraints

Dentcheva and Ruszczyński (2006) consider a reference return Ŵ ; this may be, for example, the return of a
reference portfolio, say an index. They propose the following portfolio-optimization model:

max f(x)
such that x ∈ X,

RT x º
SSD

Ŵ ,

(2)

where f is a concave function. In particular, f(x) := E
(
RT x

)
= R

T
x can be used. Thus, only portfolios

whose return dominate the reference return with respect to SSD are considered.
In general, a SSD-constraint RT x º

SSD
Ŵ can be expressed by a continuum of constraints, in the

form of (1). These authors observe that, in case Ŵ has a finite discrete distribution with realizations
ŵ(`) (` = 1, . . . , L), then RT x ºSSD Ŵ is equivalent to the finite set of constraints

E
(
[ŵ(`) −RT x]+

)
≤ E

(
[ŵ(`) − Ŵ ]+

)
(` = 1, . . . , L). (3)

The relations (3) are then transformed into a set of linear constraints by introducing variables yi` to represent
the shortfall of the portfolio return below ŵ(`) in scenario i: yi` = [ŵ(`) − r(i) T x]+ (i = 1, . . . , S, ` =
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1, . . . , L). They formulate the lifting representation of the SSD-constrained problem (2):

max f(x)

such that x ∈ X,

yi` ≥ 0, yi` ≥ ŵ(`) − r(i) T x (i = 1, . . . , S, ` = 1, . . . , L),

S∑
i=1

piyi` ≤ E
(
[ŵ(`) − Ŵ ]+

)
(` = 1, . . . , L).

(4)

The above problem has a specific structure. For such specific problems, these authors have developed a
duality theory in which the dual objects are utility functions. Based on this duality theory, they construct
a dual problem for (4) that consists of the minimization of a weighted sum of polyhedral convex functions.
Domains, function values, subgradients are computable. The authors adapted the Regularized Decomposition
method of Ruszczyński (1986) to these special dual problems. The authors implemented this method, and
report favorable performance. A problem with 719 real-world assets was solved using 616 possible realizations
of their joint return rates.

2.2 Multi-objective formulation and SSD efficient portfolios

Roman, Darby-Dowman, and Mitra (2006) propose a multi-objective model whose Pareto optimal solutions1

are SSD-efficient portfolios. (The origin of this multi-objective formulation can be traced back to the work
of Ogryczak (2000, 2002).) A specific solution is chosen by considering a reference return Ŵ . The return
distribution of this chosen portfolio comes close to, or emulates, the reference return Ŵ in a uniform sense,
as explained below.

Given a random wealth W , let Tailα(W ) (0 < α ≤ 1) denote the unconditional expectation of the
least α ∗ 100% outcomes of W . This is a heuristic definition and further clarification is needed considering
’probability atoms’ in the distribution of W . For a formal definition quantile functions can be used. The
first quantile function F

(−1)
W (α) := inf{t|FW (t) ≥ α} is the generalised inverse of the cumulative distribution

function FW of W . The second quantile function is defined as F
(−2)
W (α) :=

α∫
0

F
(−1)
W (β)dβ. (with F

(−2)
W (0)

as 0.)
Ogryczak and Ruszczyński (2002) prove that the second quantile function F

(−2)
W (α) is the convex conju-

gate of the second performance function F
(2)
W (t) :=

t∫
−∞

FW (u)du = E([t−W ]+). Formally,

F
(−2)
W (α) = sup

t∈IR

{
αt− F

(2)
W (t)

}
(5)

holds for 0 ≤ α ≤ 1. Theory of convex conjugacy can be found in Rockafellar (1970). Ogryczak and
Ruszczyński (2002) show that, due to the properties of convex conjugacy, F

(−2)
W (α) = αE(W |W ≤ t) holds

for FW (t) = α. Thus the second quantile function has the heuristic meaning of unconditional tail expectation,
justifying the definition Tailα(W ) := F

(−2)
W (α).

Rockafellar and Uryasev (2000, 2002) establish a risk measure whose optimization results in convex
problems. Given a random loss M and a probability 0 ≤ β < 1, the quantity CVaRβ(M), i.e. β-Conditional
Value-at-Risk, is the conditional mean value of the worst (1 − β) ∗ 100% losses. This definition requires
further clarification respecting probability atoms. Rockafellar and Uryasev (2000, 2002) give a definition

1For a multi-objective model, a feasible solution is Pareto optimal if there is no other feasible solution that would improve
on all objective functions, with at least one strict inequality.
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that ’splits’ probability atoms and results in a coherent risk measure - see also the summary in Rockafellar
(2007). They establish the minimization rule

CVaRβ(M) = min
u∈IR

{
u +

1
1− β

E ([M − u]+)
}

(6)

that facilitates the solution of optimization problems involving the CVaR risk measure.
Loss can be considered as shortage relative to a benchmark wealth. (This is the wealth that we intend to

accumulate, a parameter to be set by the decision maker.) In this paper we set the benchmark wealth to 0,
hence we have M = −W . It is easily seen that the definition of the second quantile function is compatible
with the CVaR definition of Rockafellar and Uryasev, and from (5) and (6) we have

Tailα(W ) = −α CVaR1−α(−W ) (0 < α ≤ 1). (7)

Ogryczak and Ruszczyński (2002) proved that the second-order dominance relation W º
SSD

W ′ between
random variables W and W ′ is equivalent to

Tailα(W ) ≥ Tailα(W ′) (0 < α ≤ 1). (8)

Roman, Darby-Dowman, and Mitra (2006) use the equally probable scenarios assumption (p1 = . . . =
pS = 1/S): the asset return vector R and the reference return Ŵ have discrete finite distributions, each
with S equally probable outcomes. This assumption is quite natural in scenario generation or in sampling of
historical data. (Moreover it is not restrictive as any discrete finite distribution can be approximated using
equally probable scenarios.)

Under the equiprobability assumption, the characterization of second-order stochastic dominance in the
form of (8) requires only a finite number of inequalities. Namely, let W and W ′ be the random variables to
compare; W º

SSD
W ′ is equivalent to

Tail i
S
(W ) ≥ Tail i

S
(W ′) holding for i = 1, . . . , S. (9)

It is clear that, in the case of a random variable W with equally probable outcomes

Tail i
S
(W ) =

i∑

j=1

1
S

w<j> (i = 1, . . . , S), (10)

where w<1> ≤ . . . ≤ w<S> denote the ordered outcomes of W , each occurring with probability 1/S.
Thus, under the equiprobability assumption, comparing random variables with respect to SSD reduces

to comparing their cumulated outcomes.
The SSD efficient portfolios are Pareto optimal solutions of the following multi-objective model:

max
(

Tail 1
S

(
RT x

)
, . . . , Tail i

S

(
RT x

)
, . . . , TailS

S

(
RT x

) )

such that x ∈ X.

(11)

The reference-point method of Wierzbicki (1982) is used in order to choose a particular SSD efficient
solution: the portfolio whose return distribution comes close to (tracks) the reference return Ŵ . This is
done by solving a single objective optimization problem, as described below.

A reference point is defined as

τ̂ = (τ̂1, . . . , τ̂S) :=
(

Tail 1
S

(
Ŵ

)
, . . . , TailS

S

(
Ŵ

) )
.

The multi-objective problem (11) is reduced to a single objective maximization problem; the objective
function is a concave achievement function Γbτ whose arguments are the components of the objective in (11).
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The simplest achievement function is

Γbτ (τ1, . . . , τS) := min
1≤i≤S

(τi − τ̂i). (12)

(A more sophisticated approach is to replace the term τi − τ̂i in (12) with a partial achievement function
for each component i. The ith partial achievement function is a concave monotone increasing function of τi

that takes the value 0 for τi = τ̂i. Moreover, a term ε
∑S

i=1(τi − τ̂i) with a small positive ε is usually added
to ensure Pareto-efficiency of the optimal solution.)

Using the above achievement function, the single-objective optimization problem takes the form

max Γbτ
(

Tail 1
S

(
RT x

)
, . . . , TailS

S

(
RT x

) )

such that x ∈ X.

(13)

Denoting by ϑ = min
1≤i≤S

(Tail i
S

(
RT x

)
− τ̂i) the worst partial achievement, the above problem is written

as:

max ϑ

such that ϑ ∈ IR, x ∈ X

ϑ ≤ Tail i
S

(
RT x

)
− τ̂i (i = 1, . . . , S).

(14)

To express the quantities Tail i
S
(RT x), Roman, Darby-Dowman, and Mitra (2006) use the CVaR-

optimization formula (6). For the case when the random loss has a discrete finite distribution, Rockafellar
and Uryasev (2000, 2002) proposed transforming (6) into a linear programming problem by introducing new
variables to represent positive parts. This is a lifting representation. Given a portfolio x, the random loss
is the negative of the portfolio return RT x. Hence the CVaR is the optimal value of the following problem
(we substituted t for −u) :

CVaRβ

(
−RT x

)
= min −t + 1

1−β

S∑
j=1

1
S dj

such that t ∈ IR,

dj ≥ −r(j) T x + t, dj ≥ 0 (j = 1, . . . , S).

(15)

The lifting representation (15) and the formula (7) can then be used to compute the quantities Tail i
S
(RT x) (i =

1, . . . , S) as optimal values of maximization problems. In the ith problem, the new variables are ti, di1, . . . , diS ∈
IR:

Tail i
S

(
RT x

)
= 1

S max i ti −
S∑

j=1

dij

such that ti ∈ IR,

−ti + dij ≥ −r(j) T x, dij ≥ 0 (j = 1, . . . , S).

(16)

Using representation (16), Roman, Darby-Dowman, and Mitra (2006) formulate the achievement-maximization
problem (13) as a linear programming problem, with variables ϑ, x, zi (i = 1 . . . S), ti (i = 1 . . . S),
dij (i, j = 1 . . . S):
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max ϑ

such that x ∈ X

zi − τ̂i ≥ ϑ, for i = 1 . . . S

zi = 1
S (iti −

∑S
j=1 dij), for i = 1 . . . S

ti −
∑n

j=1 xjrij ≤ dij , for i, j = 1 . . . S

dij ≥ 0, for i, j = 1 . . . S.

(17)

Due to lifting representation, a large number of new constraints and variables is introduced. (The number
of new constraints and variables is in the order of S2.)

These authors implemented the method outlined above, and made extensive testing on problems with 76
real-world assets using 132 possible realizations of their joint return rates. The modelling capability of their
approach proved to be powerful; however, the model could only be solved for a limited number of scenarios
(less than 600), due to its size.

Remark 1 To be more precise, in Roman, Darby-Dowman, and Mitra (2006) an additional term ε
∑S

i=1(zi−
τ̂i), with ε an arbitrarily small positive number, is added to the objective function in (17). This term is added
to ensure the SSD efficiency of the portfolio obtained, in case that the maximization of the worst partial
achievement has non-unique optimal solutions.

The model described above is never infeasible, and its optimal solution is a SSD-efficient portfolio, irre-
spective of the reference return chosen by the decision maker.

The approach allows the decision maker to set and tune components of the reference return directly.
(Hence the reference return may not be the return distribution of some feasible portfolio, but just composed
of ”desirable”, ”ideal” outcomes.) When solving the resulting LP, the sign of the optimal value distinguishes
which type of reference has been used. There are three possible types of reference returns:

Type I : a reference return Ŵ that is not SSD efficient. In this case, the optimum is strictly positive, and
the optimal portfolio has a return distribution that improves on Ŵ (until SSD-efficiency is obtained).

Type II : a reference return that is SSD efficient. In this case, the optimum is zero, and the optimal solution
is a portfolio whose return distribution is exactly the reference return.

Type III : a reference return Ŵ that is unattainable (for example, when some of its components are too
high and no feasible portfolio could have such a return distribution). In this case, the optimum is
strictly negative, and the optimal solution is an SSD-efficient portfolio whose return comes closest, in
a uniform sense, to Ŵ .

The model can thus be used for checking SSD efficiency of a given distribution.

Remark 2 Obviously, the reference return introduced by the user plays an important role in choosing the
solution. The most common situation is type I, since usually the return of an index is used as a reference
return; thus, there is a similarity with the model of Dentcheva and Ruszczyński.

There are also important differences between the models of Dentcheva and Ruszczyński (2006)and Roman,
Darby-Dowman, and Mitra (2006). The former model, while improving on a benchmark, is not guaranteed
to improve until SSD efficiency; it could still result in dominated solutions. Moreover, there is (theoretically)
the possibility that the constraint set has no feasible solution.
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3 Cutting-plane based representations and solution methods

3.1 Integrated Chance Constraints

The constraints appearing in the SSD-formulation (3) have the form

E
([

h−RT x
]
+

)
≤ γ, (18)

where h, γ are given numbers. Constraints of this type were introduced by Klein Haneveld (1986), and
are called Integrated Chance Constraints (ICCs). Klein Haneveld and Van der Vlerk (2006) proposed a
cutting-plane representation of ICCs. The constraint (18) is represented in the form

∑

j∈J
pj

(
h− r(j) T x

)
≤ γ holding for each subset J ⊂ {1, . . . , S}. (19)

Based on this representation, Klein Haneveld and Van der Vlerk (2006) also develop a cutting-plane method.
We outline this method as applied to the expectation-maximization problem

max R
T
x

such that x ∈ X,

E
([

h−RT x
]
+

)
≤ γ,

(20)

where X is a convex bounded polyhedron.
Using the cutting-plane representation, problem (20) takes the form:

max R
T
x

such that x ∈ X,
ψ(x) ≤ 0,

(21)

with the constraint function

ψ(x) := max
J⊂{1,...,S}

∑

j∈J
pj

(
h− r(j) T x

)
− γ. (22)

A sequence of iterates x1, . . . , xκ ∈ X is constructed; at each iterate xι, a linear function l]ι is constructed:

l]ι(x) :=
∑

j∈Jι

pj

(
h− r(j) T x

)
− γ with Jι :=

{
1 ≤ j ≤ S

∣∣∣ h− r(j) T xι > 0
}

.

It is easily seen that this function satisfies

l]ι(x) ≤ ψ(x) (x ∈ IRn) and l]ι(xι) = ψ(xι).

In words, the graph of l]ι is a supporting hyperplane to the epigraph of ψ at the point (xι, ψ(xι)).

Remark 3 Restricting the above graph and epigraph to the space of the x-vectors, we can say : if the level set
{x |ψ(x) ≤ 0} is not empty, and ψ(xι) > 0, then the hyperplane

{
x | l]ι(x) = 0

}
separates the level set from

xι. Hence the above cutting-plane method can be viewed as constructing a cutting-plane model of the level
set. In the forthcoming overview, however, we prefer viewing the method as constructing a cutting-plane
model of the function ψ, because such view will allow the application of constrained convex programming
methods. In Appendix A.1 we consider applying the Constrained Level Method of Lemaréchal, Nemirovskii,
and Nesterov (1995) to the problem (21).
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A cutting-plane model of ψ is constructed as

ψκ(x) := max
1≤ι≤κ

l]ι(x). (23)

The next iterate xκ+1 will be an optimal solution of the model problem

max R
T
x

such that x ∈ X,
ψκ(x) ≤ 0.

(24)

The method stops if the model problem becomes infeasible, or if the current iterate becomes a feasible
solution of the original problem (i.e., ψ(xκ+1) ≤ 0 holds).

Klein Haneveld and Van der Vlerk (2006) observe that the procedure stops in finitely many steps. They
implemented the method and their test results show that only a small fraction of the possible 2S cuts needs
to be generated. They found that for a fixed dimension n, the average number of cuts (slowly) increases
with the number S of scenarios.

These authors also formulated the lifting representation of problem (20) by introducing new variables yj

to represent
[
h− r(j) T x

]
+

(j = 1, . . . , S):

max R
T
x

such that x ∈ X,

yj ≥ 0, yj ≥ h− r(j) T x (j = 1, . . . , S),

S∑
j=1

pjyj ≤ γ.

(25)

They solved this problem with a benchmark interior-point solver, and compared results with their cutting-
plane representation approach. On smaller problem instances, the cutting-plane algorithm could not beat
the interior-point solver. However, the cutting-plane representation approach proved much faster on larger
instances.

Using these cutting-plane representation of ICCs, the SSD-constrained portfolio-optimization model (2) can
be formulated as

max f(x)

such that x ∈ X,

∑
j∈J`

pj

(
h` − r(j) T x

) ≤ γ` ( J` ⊂ {1, . . . , S}, ` = 1, . . . , L ) ,

(26)

where h` = ŵ(`) and γ` = E
(
[ŵ(`) − Ŵ ]+

)
(` = 1, . . . , L).

If f(x) = E
(
RT x

)
= R

T
x, then the cutting-plane method of Klein Haneveld and Van der Vlerk (2006)

can be easily adapted to problem (26). (The feasibility cuts can be applied independently for ` = 1, . . . , L).
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3.2 Conditional Value-at-Risk

Künzi-Bay and Mayer (2006) proposed the following cutting-plane representation of CVaRβ (0 ≤ β < 1):

CVaRβ

(
−RT x

)
= min z + 1

1−β v

such that z, v ∈ IR,

∑
j∈J

pj

(−r(j) T x− z
) ≤ v ( J ⊂ {1, . . . , S} ) .

(27)

The cut belonging to the empty set J = ∅ just prescribes the non-negativity of v. (This representation even
allows a random benchmark wealth that we assume to be 0, hence the loss is expressed by −RT x.)

The representation (27) is the CVaR-analogue of the representation (19) of Klein Haneveld and Van der
Vlerk (2006). The two approaches employ the same idea, originally developed by Klein Haneveld and Van
der Vlerk, as indicated in the References. Künzi-Bay and Mayer (2006) obtained the CVaR representation
(27) independently, by considering the (single-stage) CVaR-minimization problem as a two-stage stochastic
programming problem. They found that the second-stage problems have a special structure and that their
duals can be solved explicitly. These authors also did extensive testing, and their results confirm the effec-
tiveness of the cutting-plane approach. (The two computational studies actually complement each other:
Klein Haneveld and Van der Vlerk (2006) employ the cutting-plane model of a constraint function, while
Künzi-Bay and Mayer (2006) employ the cutting-plane model of the objective function.)

Using the above cutting-plane representation, a CVaR-minimization problem takes the form:

min z + 1
1−β ϕ(x, z) such that x ∈ X, z ∈ IR, (28)

where X is a convex bounded polyhedron, and the objective function is

ϕ(x, z) := max
J⊂{1,...,S}

∑

j∈J
pj

(
−r(j) T x− z

)
. (29)

For the minimization of CVaR in one-stage stochastic problems, Künzi-Bay and Mayer (2006) developed
a special cutting-plane method. They construct a sequence of iterates (x1, z1) , . . . , (xκ, zκ) ∈ X × IR. At
each iterate (xι, zι), they construct a linear function lι as

lι(x, z) :=
∑

j∈Jι

pj

(
−r(j) T x− z

)
with Jι :=

{
1 ≤ j ≤ S

∣∣∣ −r(j) T xι − zι > 0
}

.

It is easily seen that this function satisfies

lι(x, z) ≤ ϕ(x, z) (x ∈ IRn, z ∈ IR) and lι(xι, zι) = ϕ(xι, zι).

In words, the graph of lι is a supporting hyperplane to the epigraph of ϕ at the point ((xι, zι) , ϕ (xι, zι)).
A cutting-plane model of ϕ is constructed as

ϕκ(x, z) := max
1≤ι≤κ

lι(x, z). (30)

The next iterate (xκ+1, zκ+1) is an optimal solution of the problem

min z + 1
1−β ϕκ(x, z) such that x ∈ X, z ∈ IR. (31)

The method stops if ϕκ(xκ+1, zκ+1) = ϕ(xκ+1, zκ+1) holds, i.e., in the current iterate, the model function
value coincides with the original objective value.
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The above procedure finds an optimal solution in a finite number of steps.
Künzi-Bay and Mayer (2006) implemented their method, and solved several CVaR-minimization test

problems with their experimental solver called CVaRMin. They also solved the test problems with general-
purpose LP solvers. These solvers were used to solve LP-equivalent problems constructed using the lifting
representation (15). (The lifting representation contains the constraints describing feasible portfolios, and 2S
additional constraints. These are individual constraints for each scenario, as opposed to the aggregate cuts
that appear in the cutting-plane representation (27).) Additionally, they also solved the test problems in
two-stage recourse forms, by employing a benchmark stochastic solver. Their experimental results show the
clear superiority of the solver CVaRMin in case of CVaR-problems. For the largest test problems, CVaRMin
was by at least one order of magnitude faster than either of the other solvers involved. They also propose a
version of the method that finds an ε-optimal solution with a prescribed stopping tolerance ε > 0.

Remark 4 A cutting-plane scheme for optimization of (SSD-compatible) coherent risk measures that involve
p-order moments of loss distributions is discussed in Krokhmal and Soberanis (2008).

4 The proposed algorithm

In this section we adapt the cutting-plane representation of CVaR (27) to the model proposed by Roman,
Darby-Dowman and Mitra (2006), described in Section 2.2.

In the present application we assume p1 = . . . = pS = 1/S and only consider confidence levels β =
S−i
S (i = 1, . . . , S). Let us substitute these into (27). Moreover, let us introduce a new variable ν :=

z + 1
1−β v = z + S

i v instead of v. We get:

CVaRS−i
S

(
−RT x

)
= min ν

such that z, ν ∈ IR,

1
i

∑
j∈J

( −r(j) T x
) −

(
|J |
i − 1

)
z ≤ ν ( J ⊂ {1, . . . , S} ) ,

(32)

where |J | denotes the cardinality of the set J .
Fábián (2008) proposed a simplified version of the cutting-plane representation (27) for single-stage

models. Fábián observes that under the present conditions, only sets J of cardinality |J | = i need to be
considered in the ith problem (i = 1, . . . , S). Hence the coefficient of z is 0 in the constraints of (32). It
follows that

CVaRS−i
S

(
−RT x

)
= max 1

i

∑
j∈J

−r(j) T x

such that J ⊂ {1, . . . , S}, |J | = i.

(33)

Using (7) and (33) we get the following cutting-plane representation for Tail i
S

(i = 1, . . . , S):

Tail i
S

(
RT x

)
= 1

S min
∑

j∈J
r(j) T x

such that J ⊂ {1, . . . , S}, |J | = i.

(34)

Remark 5 Equality (34) clearly follows from (10). We went through the steps (32) - (33) in order to show
that the cutting-plane representation (34) is a special form of representation (27). Hence a cutting-plane
method using (34) inherits the computational properties of the method proposed by Künzi-Bay and Mayer
(2006).
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In contrast to the lifting representation (16), the cutting-plane representation (34) introduces no additional
variables. Using (34), the achievement-maximization problem (13) can be re-formulated to:

max ϑ

such that ϑ ∈ IR, x ∈ X,

ϑ + τ̂i ≤ 1
S

∑
j∈Ji

r(j) T x for each Ji ⊂ {1, . . . , S}, |Ji| = i,

where i = 1, . . . , S.

(35)

No additional variables are introduced in the above formulation. Theoretically an astronomical number of
cuts are required, but in practice only a few of them are needed. The problem can be solved by the following
cutting-plane method:

0. Initialize.
Set the stopping tolerance ε > 0.

The initial cutting-plane model contains the constraints x ∈ X, and a single cut that we select arbi-
trarily as, e.g.,

ϑ + τ̂1 ≤ 1
S

r(1) T x.

(This cut belongs to the set J1 = {1}. It is added to make the objective function of the model problem
finite.)

1. Solve the model.
Let (ϑ?,x?) be an optimal solution of the current cutting-plane model.

Let w? <j?
1 > ≤ . . . ≤ w? <j?

S> denote the ordered outcomes of the current portfolio return W ? = RT x?.

Let J ?
i := {j?

1 , . . . , j?
i } (i = 1, . . . , S).

2. Check for optimality
If

ϑ? + τ̂i ≤ 1
S

∑

j∈J ?
i

r(j) T x? + ε holds for each i = 1, . . . , S, (36)

then x? is an ε-optimal solution; stop.

If some of the above inequalities are not satisfied, then consider the violations

ϑ? + τ̂i − 1
S

∑

j∈J ?
i

r(j) T x? (i = 1, . . . , S).

Let ı̂ (1 ≤ ı̂ ≤ S) denote the index that maximizes violation.

3. Append cuts
Append the following cut to the model:

ϑ + τ̂ı̂ ≤ 1
S

∑

j∈J ?
ı̂

r(j) T x.

Repeat from step 1.
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Remark 6 The cutting plane representation (35) slightly deviates from the model proposed by Roman,
Darby-Dowman and Mitra (2006), where a regularization term is added to the objective function, as de-
scribed in Remark 1. Thus, solving the cutting plane representation (35) may still, theoretically, result in a
SSD dominated solution. (If (35) has a unique optimal solution (ϑ?, x?), then x? is a SSD efficient portfolio.
However, in the case of multiple optimal solutions, some of them may represent portfolios that are dominated
with respect to SSD.) In its present form, the representation and the algorithm proposed only guarantees to
improve on the reference return with respect to SSD (if possible). However, our numerical experiments show
that, in practice, the representation (35) usually leads to the same solution, as the representation proposed
by Roman, Darby-Dowman and Mitra (2006). (For small datasets, the model has been solved using both
the cutting-plane representation and the lifting representation with regularization. In all instances, both
representations led to the same solutions, that is, SSD efficient portfolios).

In the Appendix we propose enhancements and extensions to the approach described above, both from
the solution method and the modeling point of view. The Level Method of Lemaréchal, Nemirovskii, and
Nesterov (1995) is suggested as an alternative to the cutting plane method for solving (35). A possible
application to multi-objective models with variance taken into account is also suggested.

5 Computational study

5.1 Scope and implementation issues

In Roman, Mitra and Darby-Dowman (2006), the model described in Section 2.2 was tested on a data set
of 132 historical monthly returns of 76 stocks (all the stocks that belonged to the FTSE 100 index during
the period January 1993 - December 2003). The returns of the 132 time periods were considered as equally
probable scenarios for the next time period (January 2004). Tests were made with different types of reference
returns. Powerful modelling capabilities were demonstrated by in-sample and out-of-sample analysis of the
return distributions of the optimal portfolios. Unfortunately, using the lifting representation, only models of
relatively small scenario sizes (less than 500 scenarios) could be solved in a realistic time.

Here, we solve this model using the cutting plane representation (35) instead of the lifting representation.
We implement the algorithm described in Section 4. However, in the optimality check of step 2, we use a
relative tolerance instead of the absolute tolerance of (36). Hence we check whether

ϑ? + τ̂i ≤ (1 + ε)
1
S

∑

j∈J ?
i

r(j) T x? (i = 1, . . . , S)

holds. Accordingly, we only add cuts where the relative violations are significant. The use of relative
tolerances is justified from a decision maker’s point of view. Moreover we found this approach more effective.
We test the scale-up properties of this approach.

The method was implemented using the AMPL modelling system (Fourer, Gay and Kernighan 1989)
and the AMPL COM Component Library (Sadki 2005), integrated with C functions. Under AMPL we use
the FortMP solver. FortMP was developed at Brunel University and NAG Ltd by Ellison et al. (1999), the
project being co-ordinated by E.F.D. Ellison.

In our cutting-plane system, cut generation is implemented in C, and cutting-plane model problem data
are forwarded to AMPL in each iteration. Hence the bulk of the arithmetic computations is done in C, since
the number of scenarios is typically large as compared to the number of assets. Moreover, our test results
imply that acceptable accuracy can be achieved by a relatively small number of cuts in the master problem.
Hence the sizes of the master problems do not directly depend on the number of scenarios.

Our tests were run on a Windows XP machine with Intel CPU T2250 @ 1.73 GHz and 2 GB RAM.
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5.2 Test problems and test results

We generated large scenario sets using the Geometric Brownian Motion, which is well accepted in finance for
modelling asset prices, see e.g., Ross (2002). The parameters for scenario generation were derived from the
historical dataset used by Roman, Mitra and Darby-Dowman (2006), described in Section 5.1. We generated
scenario sets containing 5000, 7000 and 10000 scenarios, respectively. (A single scenario describes returns
for the 76 component stocks and also for the reference return.)

We solved the achievement-maximization problem with the 3 types of reference return described in
Roman, Mitra and Darby-Dowman (2006) and summarized in Remark 1, Section 2.2 of this paper.

The problems were solved with different values for the relative stopping tolerance (1e− 04, 1e− 05, 1e−
06, and 1e − 07). In all these cases, the models were solved in less than 10 seconds. Thus, the superiority
and effectiveness of the cutting plane approach (as compared to the lifting representation) is obvious.

Our test results are summarized in Tables 1 - 5. In these tables, column headers display the stopping
tolerances, and row headers display the numbers of scenarios.

Type I is a reference return distribution that is not SSD efficient. To illustrate this case, we chose as
reference the return distribution of the FTSE100 index. (Indeed, this benchmark distribution is not SSD
efficient, since a strictly positive optimum is obtained; the optimal portfolio has a return distribution that
dominates the reference with respect to SSD.) The number of cuts required to reach near-optimality are
presented in Table 1. The optimal objectives obtained are presented in Table 2. In this case, stopping
tolerances of 1e− 05, 1e− 06 and 1e− 07 resulted exactly the same solution. The stopping tolerance 1e− 04
resulted a fractionally different solution.

Type II is a reference return distribution that is efficient with respect to SSD. In this case, the optimal
objective value is zero and the model finds a portfolio whose return distribution is exactly the reference.
To illustrate this case, we chose as reference the return distribution of the stock with the highest expected
return. (This distribution is chosen only for demonstrative purposes. The optimal portfolio consists of the
single stock used for creating the reference. It is obviously not desirable, due to lack of diversification.) The
number of cuts required to reach near-optimality are presented in Table 3. In all cases, the optimal objective
values are zero, and the optimal solutions are the same.

Type III is a reference return that is not attainable, in the sense that there is no feasible portfolio whose
return distribution is this reference, or dominates this reference with respect to SSD. In this case, the optimal
objective is negative and the model finds a portfolio whose return distribution comes uniformly close to the
reference. For illustrating this case, we chose the reference vector τ̂ composed of the best individual tails.
More precisely, in the case of S scenarios, we solved S optimization problems; in the ith problem we maximize
Tail i

S
and set τ̂i equal to the optimum obtained, (i = 1, . . . , S). The reference τ̂ = (τ̂1, . . . , τ̂S) is obviously

unattainable. The number of cuts required to reach near-optimality are presented in Table 4. The optimal
objective values are presented in Table 5.

Running times largely depend on the type of the reference distribution used. For the 10000-scenario
problems, running times were as follows. Type-I problems: 9 - 10 seconds, Type-II problems: 4 - 5 seconds,
Type-III problems: 6 - 8 seconds. We found that considering a certain reference distribution type, the time
of single iteration is a slightly increasing function of the number of the scenarios.

In the present computational setup, processing times of the cutting-plane model problems make the
dominant part of the total running time. (In an earlier implementation, cut generation was also done in
AMPL, and it took the dominant part of the total time. The present C implementation of cut generation is
more efficient.) We note that the processing time of a cutting-plane model problem includes the time used
by AMPL to read model and data, generate the problem, and run the solver (FortMP). Also there is some
overhead introduced by invoking AMPL through COM.

Remark 7 As it can be seen from Tables 1 and 3, the number of iterations required to solve a problem
sometimes decreases with smaller tolerance. This curious behavior is due to our use of relative tolerances:
when a tighter tolerance is prescribed, we may in an early iteration add a certain cut that greatly helps in the
solution process. Applying a slacker tolerance, on the other hand, we may not add this certain cut, because
it is not violated significantly with respect to the slack tolerance.
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We also solved the hardest, Type I-reference distribution problems with the tight absolute stopping tolerance
of 1e-8. (In this experiment, we used the method as described in section 4 ; and did not apply relative
tolerances as described in section 5.1.) For each scenario set, the optimal objective values coincided with the
respective values given in the last columns of Table 2 (up to the first 7 digits given in Table 2). However,
the number of iterations and the running times were about 3 times larger with the tight absolute tolerance,
justifying our approach of using relative stopping tolerances as described in section 5.1.

Remark 8 In our type-III test problems, the reference tails are composed of the best individual tails of
the different assets. Hence the reference vector τ̂ gets ’stronger’ as the sample size increases. This is the
explanation of the large decreases inside columns of Table 5.

Although the present paper concerns cutting plane representations and an effective solution algorithm,
we wish to highlight the power of the SSD model under consideration. A full treatment (considering a
limited number of scenarios) is given in Roman et al. (2006). We consider the type I benchmark (in our
example, the return distribution of the FTSE100 index), 10000 scenarios and a tolerance level of 1e-07. The
portfolio obtained as a solution of our model is denoted by P1. Its return distribution strictly dominates the
index with respect to SSD. The statistics of the return distributions of P1 and of FTSE100 are presented in
Table 6. The statistics are clearly better in the case of P1: higher expected return, higher minimum, higher
maximum. The standard deviation and the range are also higher, but, in this case, it is not a drawback,
since it involves ’spread’ at higher return levels: the range for the possible returns of P1 is ’shifted upwards’.
This underlines again the difference between our approach and a classical approach like the mean-variance
model.

The out-of-sample performance of P1 and FSTE100 index is analyzed over the 10 historical time periods
following the date of selection (January - October 2004). The statistics of the out-of-sample returns are
presented in Table 7. The out-of-sample performance of P1 is obviously better.

6 Discussion

In this paper we have proposed cutting-plane representations and solution methods which dramatically
improve the computational performance of decision models based on second-order stochastic dominance.
The methods are particularly suitable for two recently proposed portfolio optimization models. The first
model, proposed by Dentcheva and Ruszczynski (2006), has a SSD constraint that can be expressed as a
set of integrated chance constraints (ICCs). The second model, proposed by Roman, Darby-Dowman, and
Mitra (2006), uses minimization of CVaR at multiple confidence levels. In their original form, both models
were reduced to LPs by introducing additional variables. This approach has severe limitations in respect of
the computational scale up properties. Thus, even problems with a reasonable number of assets are difficult
to solve when the number of scenarios is large.

Cutting plane representations of ICCs and CVaR were recently proposed by Klein Haneveld and Van
der Vlerk (2006) and Künzi-Bay and Mayer (2006), respectively. In our proposed method we have adapted
the representations and solution techniques proposed by these authors to the portfolio optimization models
based on SSD.

We have focused on adapting the cutting-plane representation of Künzi-Bay and Mayer (2006) to the
model proposed by Roman, Darby-Dowman, and Mitra (2006); we have presented algorithmic description,
implementation details, and a computational study that demonstrates effectiveness of this approach. Prob-
lems with 10000 scenarios were solved within 30 seconds.

In Appendix A we suggest possible enhancements and extensions of the work presented in this paper.
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[28] Ogryczak, W. and A. Ruszczyński (2001). On Consistency of Stochastic Dominance and Mean-
Semideviations Models. Mathematical Programming 89, 217-232.
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[30] Prékopa, A. (2003). Probabilistic programming. In: Stochastic Programming, Handbooks in Opera-
tions Research and Management Science 10 (A. Ruszczyński and A. Shapiro, eds.), Elsevier, Amster-
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1e-04 1e-05 1e-06 1e-07

5000 26 26 19 19
7000 22 23 23 18

10000 25 28 28 28

Table 1: Type I reference return. Numbers of iterations. Column headers show the stopping tolerances.
Row headers show the numbers of the scenarios.

1e-04 1e-05 1e-06 1e-07

5000 0.005506 0.005734 0.005734 0.005734
7000 0.005508 0.005506 0.005506 0.005506

10000 0.005719 0.005715 0.005715 0.005715

Table 2: Type I reference. Optimal objective values obtained with different stopping tolerances.

1e-04 1e-05 1e-06 1e-07

5000 9 6 6 6
7000 9 9 9 9

10000 6 6 6 6

Table 3: Type II reference. Numbers of iterations.

1e-04 1e-05 1e-06 1e-07

5000 12 14 19 20
7000 12 14 16 18

10000 14 16 19 21

Table 4: Type III reference. Numbers of iterations.

1e-04 1e-05 1e-06 1e-07

5000 -6.166302035 -6.210836095 -6.211805798 -6.211895451
7000 -7.911551621 -7.968123422 -7.976466103 -7.977045489

10000 -8.897442933 -9.068657844 -9.072698606 -9.073370813

Table 5: Type III reference. Optimal objective values.
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P1 FTSE 100 Index

Mean 0.0105 0.0034
Standard Deviation 0.0033 0.0018

Minimum -0.0001 -0.0034
Maximum 0.0224 0.0102

Kurtosis -0.0523 -0.0263
Skewness 0.0119 0.0100

Range 0.0225 0.0136

Table 6: Type I reference. In-sample performances of P1 and the FTSE 100 index: statistics of their
return distribution. P1 is the portfolio obtained with our model, 10000 scenarios; reference = return distri-
bution of FTSE 100 index.

P1 FTSE 100 Index

Mean 0.0189 0.0057
Standard Deviation 0.0270 0.0225

Minimum -0.0044 -0.0278
Maximum 0.0801 0.0355

Table 7: Type I reference. Out-of-sample performances of P1 and the FTSE 100 index: statistics of
their series of return values for the 10 months following the date of selection (January - October 2004).
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A Extensions and other applications

A.1 The Level Methods

In Sections 3.1 and 3.2, we described specialized cutting-plane methods for solving the cutting-plane repre-
sentation problems (21) (of ICC) and (28) (of CVaR).

As an alternative to these cutting-plane methods, we propose solving the cutting-plane representation
problems (21) and (28) by the Constrained Level Method of Lemaréchal, Nemirovskii, and Nesterov (1995).
This is a bundle-type method.

In the case of ICC models, it can solve problems more general than (21): it can maximize a concave
objective function instead of the present linear objective. Hence the Constrained Level Method can han-
dle the SSD-constrained portfolio-optimization model in the general form (2) proposed by Dentcheva and
Ruszczyński.

Lemaréchal, Nemirovskii, and Nesterov prove the following efficiency estimate: To obtain an ε-optimal
solution, the Constrained Level Method performs no more than

c

(
DΛ
ε

)2

ln
(

DΛ
ε

)
(37)

iterations, where D is the diameter of the feasible polyhedron X, Λ is a common Lipschitz constant of the
objective and constraint functions, and c is a constant that depends only on the parameters of the method.

In the case of CVaR minimization models, Lemaréchal, Nemirovskii, and Nesterov prove the following
efficiency estimate: to obtain an ε-optimal solution, the (unconstrained) Level Method performs no more
than

c′
(

DΛ
ε

)2

(38)

iterations, where D is the diameter of the feasible polyhedron X, Λ is a Lipschitz constant of the objective
function, and c′ is a constant that depends only on the parameters of the method.

Lemaréchal, Nemirovskii, and Nesterov report on successful application of the above methods to a variety
of problems. Their experimental results suggest much better practical behavior than the above estimates.

Fábián and Szőke (2007) experimented with variants of the Level Methods adapted for the solution of
stochastic programming problems. Their test results are favorable. They found that for a fixed stopping
tolerance ε, the required number of steps does not depend on the number S of the scenarios.

In the unconstrained case, Fábián and Szőke (2007) solved problems with increasing accuracy, and found
that the number of steps required to find an ε-optimal solution, grew in proportion with log 1/ε. This suggest
a much better practical behavior than the theoretical estimate (38).

Remark 9 If we use the Level Method for the portfolio selection model proposed by Roman et al. (2006), then
we can handle general concave partial achievement functions instead of the simplest achievement function
(12).

A.2 Multi-objective models with variance

Roman, Mitra, and Darby-Dowman (2007) proposed and studied portfolio optimization models which take
into account both variance and CVaR. This approach represents a compromise between regulators’ require-
ments for short tails and classical fund managers’ requirements for small variance. A portfolio is characterized
with 3 items of data: expected yield, variance, and CVaR. An approximation of the 3-dimensional efficient
frontier is constructed. (In making the final choice, the decision maker plays a key role.) The authors
tested the model on real-life data. Several levels of expected yield were considered; and for each level, five
portfolios were selected from the mean/variance/CVaR efficient frontier: the minimum variance portfolio,
the minimum CVaR portfolio, and three intermediate ones. The selected portfolios were then tested. Both
in-sample and out-of-sample analysis shows that the performance of intermediate portfolios are superior.
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The multi-objective model described in Section 2.2 can be extended to take into account variance as well.
Given a portfolio x, let us consider the achievement function value

Γbτ
(

Tail 1
S

(
rT x

)
, . . . , TailS

S

(
rT x

) )

as an efficiency measure of x. (The achievement function Γbτ was defined in (12).) We can characterize
a portfolio with 2 items of data: variance and the above efficiency measure. Applying the cutting-plane
approach of Section 3.2, we can construct an approximation of the 2-dimensional efficient frontier.

A.3 Two-stage SP recourse models

We can easily formulate two-stage extensions of the SSD-models described in Section 2: Suppose we have two
time-periods, and we can rebalance our portfolio at the beginning of each period. Let us compare benchmark
yield and portfolio yield at the end of the second time period.

For the 2-stage extension of the SSD-constrained problem described in Section 2.1, Fábián and Veszprémi
(2008) proposed a dual decomposition scheme and a solution method. Variance terms are included in the
objective function following the ideas of Roman, Mitra, and Darby-Dowman (2007). Besides the economic
advantages observed by Roman et al., the variance terms yield a technical advantage: They make the
objective function strictly convex, and hence enable solution of the primal problem through a dual approach.

We plan to develop a solution method for the 2-stage extension of the multi-objective problem described
in Section 2.2.
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