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Abstract

A Feature Model (FM) is a compact representation of

all the products of a software product line. The automated

extraction of information from FMs is a thriving research

topic involving a number of analysis operations, algorithms,

paradigms and tools. Implementing these operations is far

from trivial and easily leads to errors and defects in analysis

solutions. Current testing methods in this context mainly rely

on the ability of the tester to decide whether the output of

an analysis is correct. However, this is acknowledged to be

time-consuming, error-prone and in most cases infeasible

due to the combinatorial complexity of the analyses.

In this paper, we present a set of relations (so-called

metamorphic relations) between input FMs and their set

of products and a test data generator relying on them.

Given an FM and its known set of products, a set of

neighbour FMs together with their corresponding set of

products are automatically generated and used for testing

different analyses. Complex FMs representing millions of

products can be efficiently created applying this process

iteratively. The evaluation of our approach using mutation

testing as well as real faults and tools reveals that most

faults can be automatically detected within a few seconds.

1. Introduction

Software Product Line (SPL) engineering is a systematic

approach to develop families of software products. Products

in SPLs are defined in terms of features. A feature is an

increment in product functionality [2]. Feature models [15]

are widely used to represent all the valid combinations of

features (i.e. products) of an SPL in a single model. The au-

tomated analysis of feature models deals with the computer–

aided extraction of information from feature models. Typical

operations of analysis allow determining whether a feature

model is void (i.e. it represents no products), whether it

contains errors (e.g. features that cannot be part of any

This work has been partially supported by the European Commission

(FEDER) and Spanish Government under CICYT project SETI (TIN2009-

07366) and the Andalusian Government project ISABEL (TIC-2533)

product) or what is the number of products of the SPL

represented by the model. Catalogues with a number of

analysis operations identified on feature models are reported

in the literature [4], [5], [19].

Many approaches have been proposed to automate the

analysis of feature models. Most translate feature models

into logic paradigms such as propositional logic [1], [10],

[14], [17], [21] description logic [13], [24] or constraint

programming [3], [22]. Others propose ad-hoc algorithms

and solutions to perform these analyses [12], [18]. Addi-

tionally, these analysis capabilities can also be found in

both commercial and open source tools such as AHEAD

Tool Suite1, FaMa Framework2, Feature Model Plug-in3 and

pure::variants4.

Feature model analysis tools commonly deal with com-

plex data structures and algorithms. This makes analyses far

from trivial and easily leads to errors increasing development

time and reducing reliability of analysis solutions. Current

testing methods in this context mainly rely on the ability

of the tester to decide whether the output of an analysis is

correct. However, this is recognized to be time–consuming,

error–prone and in most cases infeasible due to the com-

binatorial complexity of the analyses. This limitation, also

found in many other software testing domains, is known as

the oracle problem [25] i.e. impossibility to determine the

correctness of a test output.

Metamorphic testing [7], [25] was proposed as a way to

address the oracle problem. The idea behind this technique

is to generate new test cases based on existing test data.

The expected output of the new test cases can be checked

by using known relations (so–called metamorphic relations)

among two or more input data and their expected outputs.

Key benefits of this technique are that it does not require an

oracle and it can be highly automated.

In this paper, we propose using metamorphic testing for

the automated generation of test data for the analyses of fea-

ture models. In particular, we present a set of metamorphic

1. http://www.cs.utexas.edu/users/schwartz/ATS.html

2. http://www.isa.us.es/fama/

3. http://gp.uwaterloo.ca/fmp/

4. http://www.pure-systems.com/



relations between feature models and their set of products

and a test data generator relying on them. Given a feature

model and its known set of products, our tool generates a

set of neighbour models together with their associated sets

of products. Complex feature models representing million of

products can be efficiently generated by applying this pro-

cess iteratively. Once generated, products are automatically

inspected to get the expected output of a number of analyses

over the models. A key benefit of our approach is that it is

highly generic being suitable to test any operation extracting

information from the set of products of a feature model. In

order to show the feasibility of our approach, we evaluated

the ability of our test data generator to detect faults in three

different scenarios, namely:

● Mutation testing. We introduced a number of artificial

faults into three of the analysis reasoners integrated into

the FaMa framework and checked the effectiveness of

our generator to detect them. As a result, we got an

overall mutation score of over 98% in the three reason-

ers with average detection times under 7.5 seconds.

● A real fault. We developed a mock tool including a

motivating fault found in the literature and checked the

ability of our approach to detect it automatically. As a

result, the fault was detected in all the operations tested

with a score of 91.6% and an average detection time

of 20.2 seconds.

● A real tool. We finally evaluated our approach with a

recent release of the FaMa Framework, FaMa v1.0.0

alpha, detecting two defects.

The remainder of the paper is structured as follows:

Section 2 presents feature models, their analyses and meta-

morphic testing in a nutshell. A detailed description of our

metamorphic relations and test data generator is presented

in Section 3. Section 4 describes the evaluation of our

approach in different scenarios. Finally, we summarize our

conclusions and describe our future work in Section 5.

2. Preliminaries

2.1. Feature models

A feature model defines the valid combination of features

in a domain. A feature model is visually represented as a

tree–like structure in which nodes represent features, and

edges illustrate the relationships among them. Figure 1

shows a simplified example of a feature model representing

an e–commerce SPL. The model illustrates how features are

used to specify and build on–line shopping systems. The

software of each application is determined by the features

that it provides. The root feature (i.e. E-Shop) identifies the

SPL.

Feature models were first introduced in 1990 as a part of

the FODA (Feature–Oriented Domain Analysis) method [15]

as a means to represent the commonalities and variabilities

of system families. Since then, feature modelling has been

widely adopted by the software product line community

and a number of extensions have been proposed in attempts

to improve properties such as succinctness and naturalness

[19]. Nevertheless, there seems to be a consensus that at

a minimum feature models should be able to represent the

following relationships among features:

● Mandatory. If a child feature is mandatory, it is

included in all products in which its parent feature

appears. For instance, every on–line shopping system in

our example must implement a catalogue of products.

● Optional. If a child feature is defined as optional, it can

be optionally included in products in which its parent

feature appears. For instance, banners is defined as an

optional feature.

● Alternative. A set of child features are defined as

alternative if only one feature can be selected when

its parent feature is part of the product. In our SPL,

a shopping system has to implement high or medium

security policy but not both in the same product.

● Or-Relation. A set of child features are said to have

an or-relation with their parent when one or more of

them can be included in the products in which its parent

feature appears. A shopping system can implement

several payment modules: bank draft, credit card or

both of them.

Notice that a child feature can only appear in a product

if its parent feature does. The root feature is a part of all

the products within the SPL. In addition to the parental

relationships between features, a feature model can also

contain cross-tree constraints between features. These are

typically of the form:

● Requires. If a feature A requires a feature B, the

inclusion of A in a product implies the inclusion of B

in such product. On–line shopping systems accepting

payments with credit card must implement a high

security policy.

● Excludes. If a feature A excludes a feature B, both

features cannot be part of the same product. Shopping

systems implementing a mobile GUI must not include

support for banners.

2.2. Automated analysis of feature models

The automated analysis of feature models deals with

the computer–aided extraction of information from feature

models. From the information obtained, marketing strategies

and technical decisions can be derived. Catalogues with a

number of analysis operations identified on feature models

are reported in the literature [4], [5], [19]. Next, we summa-

rize some of the analysis operations we will refer to through

the rest of the paper.
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Figure 1. A sample feature model

● Determining if a feature model is void. This operation

takes a feature model as input and returns a value

stating whether the feature model is void or not. A

feature model is void if it represents no products. [1],

[3], [12], [13], [14], [17], [18], [19], [21], [24].

● Finding out if a product is valid. This operation

checks whether an input product (i.e. set of features)

belongs to the set of products represented by a given

feature model or not. As an example, let us consider

the feature model of Figure 1 and the following prod-

uct P={E-Shop, Catalogue, Info, Description, Security,

Medium, GUI, PC}. Notice that P is not a valid product

of the product line represented by the model because it

does not include the mandatory feature ‘Payment’. [1],

[3], [14], [17], [18], [19], [21], [24].

● Obtaining all products. This operation takes a feature

model as input and returns all the products represented

by the model. [1], [3], [12], [14], [21].

● Calculating the number of products. This operation

returns the number of products represented by a feature

model. The model in Figure 1 represents 2016 different

products. [3], [12], [17].

● Calculating variability. This operation takes a feature

model as input and returns the ratio between the number

of products and 2
n − 1 where n is the number of

features in the model [3]. This operation may be used to

measure the flexibility of the product line. For instance,

a small factor means that the number of combinations of

features is very limited compared to the total number of

potential products. In Figure 1, Variability = 0.00048.

● Calculating commonality. This operation takes a fea-

ture model and a feature as inputs and returns a value

representing the proportion of valid products in which

the feature appears [3]. This operation may be used

to prioritize the order in which the features are to be

developed and can also be used to detect dead features

[22]. In Figure 1, Commonality(Banners) = 25%.

Previous operations can be performed automatically using

different approaches. Most translate feature models into

specific logic paradigms such as propositional logic [1],

[14], [17], [21] description logic [13], [24] or constraint

programming [3], [22]. Others propose ad-hoc algorithms

and solutions to perform these analyses [12], [18]. Finally,

previous analysis capabilities can also be found in sev-

eral commercial and open source tools such as AHEAD

Tool Suite, FaMa Framework, Feature Model Plug-in and

pure::variants.

2.3. Metamorphic testing

An oracle in software testing is a procedure by which

testers can decide whether the output of a program is correct

[25]. In some situations, the oracle is not available or it

is too difficult to apply. This limitation is referred in the

testing literature as the oracle problem [26]. Consider, as

an example, checking the results of complicated numerical

computations or the processing or non-trivial outputs like the

code generated by a compiler. Furthermore, even when the

oracle is available, the manual prediction and comparison

of the results are in most cases time–consuming and error–

prone.

Metamorphic testing [7], [25] was proposed as a way to

address the oracle problem. The idea behind this technique

is to generate new test cases based on existing test data.

The expected output of the new test cases can be checked

by using so–called metamorphic relations, that is, known

relations among two or more input data and their expected

outputs. As a positive result of this technique, there is no

need for an oracle and the testing process can be highly

automated.

Consider, as an example, a program that compute the

cosine function (cos(x)). Suppose the program produces

output −0.3999 when run with input x = 42 radians. An im-

portant property of the cosine function is cos(x) = cos(−x).
Using this property as a metamorphic relation, we could



design a new test case with x = −42. Assume the output

of the program for this input is 0.4235. When comparing

both outputs, we could easily conclude the program is not

correct.

Metamorphic testing has shown to be effective in a

number of testing domains including numerical programs

[8], graph theory [9] or service–oriented applications [6].

3. Our approach

3.1. Metamorphic relations on feature models

In this section, we define a set of metamorphic relations

between feature models and their corresponding set of

products. We relate feature models using the concept of

neighbourhood. Given a feature model, FM , we say that

FM ′ is a neighbour model if it can be derived from FM

by adding or removing a relationship or constraint R. The

metamorphic relations between the products of a model

and the one of their neighbours are then determined by R

as follows:

Mandatory. Consider the models and associated set of

products depicted in Figure 2. FM ′ is created from FM

by adding a mandatory feature (‘D’) to it. The semantics

of mandatory relationships state that mandatory features

must always be part of the products in which is parent

feature appears. Based on this, we conclude that the set

of expected products of FM’ is correct iff it preserves

the set of products of FM and extends it by adding the

new mandatory feature,‘D’, in all the products including its

parent feature,‘A’. In the example, therefore, this relation is

fulfilled.

B

A

C B

A

C D

P1 = {A,C}

P2 = {A,B,C}

P1' = {A,C,D}

P2' = {A,B,C,D}

FM FM’

Neighbours

Metamorphic relation

Figure 2. Neighbour model. Mandatory feature added

Formally, let f be the mandatory feature added to the

model and pf its parent feature. Consider the functions

prods(FM), returning the set of products of an input fea-

ture models, and features(P ), returning the set of features

of a given product. We use the symbol ‘#’ to refer to the

cardinality (i.e. number of elements) of a set. We define the

relation between the set of products of FM and the one of

FM ′ as follows:

#prods(FM ′) =#prods(FM)∧

∀P ′(P ′ ∈ prods(FM ′) ⇔ ∃P ∈ prods(FM)⋅

(pf ∈ features(P ) ∧ P ′ = P ∪ {f})∨

(pf ∉ features(P ) ∧ P ′ = P ))

(1)

Optional. Let f be the optional feature added to the

model and pf its parent feature. Consider the function

filter(FM,S,E) that returns the set of products of FM

including the features of S and excluding the features of E.

The metamorphic relation between FM and FM ′ is defined

as follows:

#prods(FM ′) =#prods(FM) +#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ prods(FM ′) ⇔ ∃P ∈ prods(FM)⋅

P ′ = P ∨ (pf ∈ features(P ) ∧ P ′ = P ∪ {f}))

(2)

Alternative. Let C be the set of alternative subfeatures

added to the model and pf their parent feature. The relation

between the set of products of FM and FM ′ is defined as

follows:

#prods(FM ′) =#prods(FM) + (#C − 1)#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ prods(FM ′) ⇔ ∃P ∈ prods(FM)⋅

(pf ∈ features(P ) ∧ ∃c ∈ C ⋅ P ′ = P ∪ {c})∨

(pf ∉ features(P ) ∧ P ′ = P ))
(3)

Or. Let C be the set of subfeatures added to the model and

pf their parent feature. We denote with ℘(C) the powerset

of C i.e. the set of all subsets in C. This metamorphic relation

is defined as follows:

#prods(FM ′) =#prods(FM) + (2#C
− 2)#filter(FM,{pf},∅)∧

∀P ′(P ′ ∈ prods(FM ′) ⇔ ∃P ∈ prods(FM)⋅

(pf ∈ features(P ) ∧ ∃S ∈ ℘(C) ⋅ P ′ = P ∪ S)∨

(pf ∉ features(P ) ∧ P ′ = P )))
(4)

Requires. Let f and g be the origin and destination features

of the new requires constraint added to the model. The

relation between the set of products of FM and FM ′ is

defined as follows:

prods(FM ′) = prods(FM) ∖ filter(FM,{f},{g}) (5)

Excludes. Let f and g be the origin and destination features

of the new excludes constraint added to the model. This

metamorphic relation is defined as follows:

prods(FM ′) = prods(FM) ∖ filter(FM,{f, g},∅) (6)

3.2. Automated test data generation

The semantics of a feature model is defined by the set

of products that it represents [19]. Most analysis operations

on feature models can be answered by inspecting this set

adequately. Based on this, we propose a two–step process to



automatically generate test data for the analyses of feature

models as follows:

Feature model generation. We propose using previous

metamorphic relations together with model transformations

to generate feature models and their respective set of prod-

ucts. Note that this is a singular application of metamorphic

testing. Instead of using metamorphic relations to check the

output of different computations, we use them to actually

compute the output of follow–up test cases. Figure 3 illus-

trates an example of our approach. The process starts with

an input feature model whose set of products is known. A

number of step–wise transformations are then applied to the

model. Each transformation produces a neighbour model

as well as its corresponding set of products according to

the metamorphic relations. Transformations can be applied

either randomly or using heuristics. This process is repeated

until a feature model (and corresponding set of products)

with the desired properties is generated.

Test data extraction. Once a feature model with the desired

properties is generated, it is used as non-trivial input for

the analysis. Similarly, its set of products is automatically

inspected to get the output of a number of analysis oper-

ations i.e. any operation that extracts information from the

set of products of the model. As an example, consider the

model and set of products generated in Figure 3 and the

analysis operations described in Section 2.2. We can obtain

the expected output of all of them by simply answering the

following questions:

● Is the model void? No, the set of products is not empty.

● Is P={A,C,F} a valid product? Yes. It is included in

the set.

● How many different products represent the model? 6

different products.

● What is the variability of the model? 6/27 − 1 = 0.047

● What is the commonality of feature B? Feature B is

included in 4 out of the 6 products of the set. Therefore

its commonality is 66.6%

We may remark that we could have also used a ‘pure’

metamorphic approach, start with a known feature model,

transform this to obtain a neighbour model, and use meta-

morphic relations to check the outputs of the tool under test.

However, this strategy would force us to define metamorphic

relations for each operation meanwhile our approach can be

used generically to generate test data for any analysis that

extracts information from the set of products. Key benefit

of our approach is that it can be easily automated enabling

the generation and execution of test cases without the need

for a human oracle.

3.3. A prototype tool

As a part of our proposal, we implemented a prototype

tool relying on our metamorphic relations. The tool receives

a feature model and its associated set of products as input

and returns a modified version of the model and its expected

set of products as output. If no inputs are specified, a new

model is generated from scratch.

Our prototype applies random transformations to the input

model increasing its size progressively. The set of products is

efficiently computed after each transformation according to

the metamorphic relations presented in Section 3.1. Transfor-

mations are performed according to a number of parameters

including number of features, percentage of constraints,

maximum number of subfeatures on a relationship and

percentage of each type of relationship to be generated.

The number of products of a feature model increases

exponentially with the number of features. This was a

challenge during the development of our tool causing fre-

quent time deadlocks and memory overflows. To overcome

these problems, we optimized our implementation using

efficient data structures (e.g. boolean arrays) and limiting

the number of products of the models generated. Using this

setup, feature models with up to 11 million products were

generated in a standard laptop machine within a few seconds.

The tool was developed on top of FaMa Benchmarking

System v0.7 (FaMa BS)5. This system provides a number

of capabilities for benchmarking in the context of feature

models including random generators as well as readers and

writers for different formats. Figure 4 depicts a random fea-

ture model generated with our prototype tool and exported

from FaMa BS to the graph visualization tool GraphViz6.

The model has 20 features and 20% of constraints. Its set

of products contains 22,832 different feature combinations.
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Figure 4. Input feature model generated with our tool

4. Evaluation

4.1. Evaluation using mutation testing

In order to measure the effectiveness of our proposal,

we evaluated the ability of our test data generator to detect

faults in the software under test (i.e. so–called fault-based

5. http://www.isa.us.es/fama/?FaMa Benchmarking

6. http://www.graphviz.org/
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Figure 3. An example of random feature model generation using metamorphic relations

adequacy criterion). To that purpose, we applied mutation

testing on an open source framework for the analysis of

feature models.

Mutation testing [11] is a common fault–based testing

technique that measures the effectiveness of test cases.

Briefly, the method works as follows. First, simple faults

are introduced in a program creating a collection of faulty

versions, called mutants. The mutants are created from the

original program by applying syntactic changes to its source

code. Each syntactic change is determined by a so–called

mutation operator. Test cases are then used to check whether

the mutants and the original program produce different

responses. If a test case distinguishes the original program

from a mutant we say the mutant has been killed and the

test case has proved to be effective at finding faults in the

program. Otherwise, the mutant remains alive. Mutants that

keep the program’s semantics unchanged and thus cannot

be detected are referred to as equivalent. The percentage

of killed mutants with respect to the total number of them

(discarding equivalent mutants) provides an adequacy mea-

surement of the test suite called mutation score.

4.1.1. Experimental setup. We selected FaMa Framework

as a good candidate to be mutated. FaMa is an open source

framework integrating different reasoners for the automated

analysis of feature models and currently being integrated

into the commercial tools MOSKitt7 and pure::variants8.

As creators of the tool, it was feasible for us to use it

for the mutations. In particular, we selected three reasoners

integrated into the framework, namely: Sat4jReasoner v0.9.2

(using satisfiability problems by means of Sat4j9 solver),

JavaBDDReasoner v0.9.2 (using binary decision diagrams

by means of JavaBDD10 solver) and JaCoPReasoner v0.8.3

(using constraint programming by means of JaCoP11 solver).

Each one of these reasoners uses a different paradigm to

perform the analyses and was coded by different developers,

providing the required heterogeneity for the evaluation of

our approach. For each reasoner, the six analysis operations

presented in Section 2.2 were tested.

7. http://www.moskitt.org

8. In the context of the DiVA European project (http://www.ict-diva.eu/)

9. http://www.sat4j.org/

10. http://javabdd.sourceforge.net/

11. http://jacop.osolpro.com/

To automate the mutation process, we used MuClipse

Eclipse plug-in v1.312. MuClipse is a Java visual tool for

mutation testing based on MuJava [16]. It supports a wide

variety of operators and can be used for both generating

mutants and executing them in separated steps. Despite this,

we still found several limitation in the tool. On the one

hand, the current version of MuClipse does not support Java

1.5 code features. This forced us to make slight changes in

the code, basically removing annotations and generic types

when needed. On the other hand, we found the execution

component provided by this and other related tools not

flexible enough, providing as a result mainly mutation score

and list of alive and killed mutants. To address our needs,

we developed a custom execution module providing some

extra functionality including: i) custom results such as

time required to kill each mutant and number of mutants

generated by each operator, ii) results in Comma Separated

Values (CSV) format for its later processing in spreadsheets,

and iii) filtering capability to specify which mutants should

be considered or ignored during the execution.

Test cases were generated randomly using our prototype

tool as described in Section 3.2. In the cases of operations

receiving additional inputs apart from the feature model (e.g.

valid product), these were selected using a basic partition

equivalence strategy. For each operation, test cases with

the desired properties were generated and run until a fault

was found or a timeout was exceeded. Feature models

were generated with an initial size of 10 features and 10%

(with respect to the number of features) of constraints for

efficiency. This size was then incremented progressively

according to a configurable increasing factor. This factor was

typically set to 10% and 1% (every 20 test cases generated)

for features and constraints respectively. The maximum size

of the set of products was equally limited for efficiency.

This was configured according to the complexity of each

operation and the performance of each reasoner with typical

values of 2000, 5000 and 11000000. For the evaluation of

our approach, we followed three steps, namely:

1) Reasoners testing. Prior to their analysis, we checked

whether the original reasoner passed all the tests. A

timeout of 60 seconds was used. As a result, we

detected and fixed a defect affecting the computation

12. http://muclipse.sourceforge.net/



of the set of products in JaCoPReasoner. We found

this fault to be especially motivating since it was also

present in the current release of FaMa (see Section 4.2

for details).

2) Mutants generation. We applied all the traditional

mutation operators available in MuClipse, a total of

15. Specific mutation operators for object–oriented

code were discarded to keep the number of mutants

manageable. For details about these operators we refer

the reader to [16].

3) Mutants execution. For each mutant, we ran our test

data generator and tried to find a test case that kills

it. An initial timeout of 60 seconds was set for each

execution. This timeout was then repeatedly incre-

mented by 60 seconds (until a maximum of 600) with

remaining alive mutants recorded. Equivalent mutants

were manually identified and discarded after each

execution.

Both the generation and execution of mutants was per-

formed in a laptop machine equipped with an Intel Pentium

Dual CPU T2370@1.73GHz and 2048 MB of RAM memory

running Windows Vista Business Edition and Java 1.6.0 05.

4.1.2. Analysis of results. Table 1 shows information about

the size of the reasoners and the number of generated

mutants. Lines of code (LoC) do not include lines in blank

and comments. Out of the 749 generated mutants, 94 of

them (i.e. 13.4%) were identified as semantically equivalent.

In addition to these, we manually discarded 87 mutants

(i.e. 11.6%) affecting secondary functionality of the subject

programs (e.g. computation of statistics) not addressed by

our current test data generator.

Tables 2, 3 and 4 show the results of the mutation process

on Sat4jReasoner, JavaBDDReasoner and JaCoPReasoner

respectively. For each operation, the number of classes

involved, number of executed mutants, test data generation

results and mutation score are presented. Test data results

include average and maximum time required to kill each

mutant, average and maximum number of test cases gener-

ated to kill a mutant and maximum timeout that showed to

be effective in killing any mutant, i.e. further increments in

the timeout did not kill any new mutant.

Note that the functionality of each operation was scattered

in several classes. Some of these were reusable being used in

Reasoner LoC Mutants Equivalent Discarded

Sat4jReasoner 743 262 27 47
JavaBDDReasoner 625 302 28 37
JaCoPReasoner 686 185 46 3

Total 2054 749 101 87

Table 1. Mutants generation results

more than one operation. Mutants on these reusable classes

were evaluated separately with the test data of each operation

using them for more accurate mutation scores. This explains

why the number of executed mutants on each reasoner

(detailed in Tables 2, 3 and 4) is higher that the number

of mutants generated for that reasoner (showed in Table 1).

Results revealed an overall mutation score of over 98% in

the three reasoners. Operation Products, #Products, Variabil-

ity and Commonality showed a mutation score of 100% in all

the reasoners with an average number of test cases required

to kill each mutant under 2. This suggests that faults in these

operations are easily killable. On the other hand, faults in the

operations VoidFM and ValidProduct appeared to be more

difficult to detect. We found that mutants on these operations

required input models to have a very specific pattern in order

to be revealed. As a consequence of this, the average time

and number of test cases in these operations were noticeable

higher than in the rest of analyses tested.

The maximum average time to kill a mutant was 7.4

seconds. In the worst case, our test data generator spent

566.5 seconds before finding a test case that killed the

mutant. In this time, 414 different test cases were generated

and run. This shows the efficiency of the generation process.

The maximum timeouts required to kill a mutant were 600

seconds for the operation VoidFM, 120 for the operation

ValidProduct and 60 seconds for the rest of analyses. This

gives an idea of the minimum timeout that should be used

when applying our approach in real scenarios.

Figure 5 depicts a spread graph with the size (number of

features and constraints) of the feature models that killed

mutants in the operation VoidFM. As illustrated, small fea-

ture models were in most cases sufficient to find faults. This

was also the trend in the rest of the operations. This suggests

that the procedure used for the generation of models, starting

from smaller and moving progressively to bigger ones, is

adequate and efficient.

Figure 5. Feature models killing mutants in the opera-

tion VoidFM



Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 55 0 37.6 566.5 95.1 414 600 100
ValidProduct 5 109 3 4.3 88.6 12 305 120 97.2
Products 2 86 0 0.6 3.4 1.5 12 60 100
#Products 2 57 0 0.7 2.4 1.8 8 60 100
Variability 3 82 0 0.6 1.7 1.3 5 60 100
Commonality 5 109 0 0.6 3.8 1.5 13 60 100

Total 19 498 3 7.4 566.5 18.9 414 99.3

Table 2. Test data generation results using traditional operators in Sat4jReasoner

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 75 3 6.6 111.7 29.3 350 120 96
ValidProduct 5 129 5 1 34.6 3.8 207 60 96.1
Products 2 130 0 0.7 34.6 1.4 12 60 100
#Products 2 77 0 0.5 1.4 1.6 6 60 100
Variability 3 104 0 0.5 2.4 1.6 12 60 100
Commonality 5 131 0 0.5 3 1.5 16 60 100

Total 19 646 8 1.6 111.7 6.5 350 98.7

Table 3. Test data generation results using traditional operators in JavaBDDReasoner

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 8 0 1.5 8.3 11.3 83 60 100
ValidProduct 5 61 0 0.7 1.2 1.3 5 60 100
Products 2 37 0 0.5 0.7 1 1 60 100
#Products 2 13 0 0.5 0.7 1 1 60 100
Variability 3 36 0 0.5 0.7 1 1 60 100
Commonality 5 66 0 0.5 0.7 1.1 3 60 100

Total 19 221 0 0.7 8.3 2.8 83 100

Table 4. Test data generation results using traditional operators in JaCoPReasoner

Operation Av Time (s) Max Time (s) Av TCs Max TCs Timeout (s) Score

VoidFM 78.2 229.1 515.8 905 600 100
ValidProduct 38.4 43.7 268.4 322 600 50
Products 1.1 2.9 5.7 19 60 100
#Products 1.0 2.7 5.4 16 60 100
Variability 1.2 2.1 6.4 13 60 100
Commonality 1.4 3 7.8 20 60 100

Total 20.2 229.1 134.9 905 91.6

Table 5. Evaluation results using a motivating fault reported in the literature



Finally, we may mention that experimentation with

Sat4jReasoner revealed a serious defect affecting its scal-

ability. The reasoner created a temporary file for each

execution but it did not delete it afterward. We found that

the more temporary files were created, the slower become

the creation of new ones with delays of up to 30 seconds in

the executions of operations. Once detected, the defect was

fixed and the experiments repeated. This suggests that our

approach could also be applicable to scalability testing.

4.2. Evaluation using real tools and faults

4.2.1. A motivating fault. Consider the work of Batory in

SPLC’05 [1], one of the seminal papers in the community

of automated analysis of feature models. The paper included

a bug (later fixed13) in the mapping of a feature model to a

propositional formula. We implemented this wrong mapping

into a mock reasoner for FaMa using JavaBDD and checked

the effectiveness of our approach in detecting the fault.

Figure 6 illustrates an example of the wrong output caused

by the fault. This manifests itself in alternative relationships

whose parent feature is not mandatory making reasoners to

consider as valid product those including multiple alternative

subfeatures (P3). As a result, the set of products returned

by the tool is erroneously larger than the actual one. For

instance, the number of products returned by our faulty tool

when using the model in Figure 1 as input is 3584 (instead

of the actual 2016). Note that this is a motivating fault since

it can easily remain undetected even when using an input

with the problematic pattern. Hence, in the previous example

(either with ‘security’ feature as mandatory or optional), the

mock tool correctly identifies the model as non void (i.e.

it represents at least one product), and so the fault remains

latent.

Security

MediumHigh

P1={Security,High}

P2={Security,Medium}
P3={High,Medium}

Figure 6. Wrong set of products obtained with the faulty

reasoner

Table 5 depicts the results of the evaluation. The testing

procedure was similar to the one used with mutation testing.

A maximum timeout of 600 seconds was used. The results

are based on 10 executions. The fault was detected in all the

executions performed in 5 out of 6 operations. Average and

maximum times were higher than the ones obtained when

using mutants but still low being 229.1 seconds (3.8 minutes)

in the worst case. The fault remained latent in the 50% of the

executions performed in the ValidProduct operation. When

13. ftp://ftp.cs.utexas.edu/pub/predator/splc05.pdf

examining the data, we concluded that this was due to the

basic strategies used for the selection of inputs products

for this operation. We presume that using more complex

heuristic for this purpose would improve the results.

4.2.2. FaMa v1.0.0 alpha. Finally, we evaluated our tool

by trying to detect faults in a recent release of the FaMa

Framework, FaMa v1.0.0 alpha. A timeout of 600 seconds

was used for all the operations since we did not know a

priori the existence of faults. Tests revealed two defects.

The first one, also detected during our experimental work

with mutation, was caused by an unexpected behaviour

of JaCoP solver when dealing with certain heuristics and

void models in the operation Products. In these cases, the

solver did not instantiate an array of variables raising a null

pointer exception. The second fault affected the operations

ValidProduct and Commonality in Sat4jReasoner. The source

of the problem was a bug in the creation of propositional

clauses in the so-called staged configurations, a new feature

of the tool.

5. Conclusions and future work

In this paper, we presented a set of metamorphic relations

on feature models and an automated test data generator

relying on them. Given a feature model and its set of

products, our tool generates neighbouring models and their

corresponding set of products. Generated products are then

inspected to obtain the expected output of a number of analy-

sis over the models. Non-trivial feature models representing

millions of products can be efficiently generated applying

this process iteratively. In order to evaluate our approach,

we checked the effectiveness of our tool to detect faults

using mutation testing as well as real faults and tools. Two

defects were detected in a recent release of FaMa, an open

source framework currently being integrated into several

commercial tools. Our results show that the application of

metamorphic testing on the domain of automated analysis

of feature models is efficient and effective detecting most

faults in a few seconds without the need of a human oracle.

We identify several challenges for our future work in two

main directions:

● Address more operations. A wide number of analysis

operations on feature models focus on detecting anoma-

lies in the models such as redundancies [23] or dead

features [22]. We plan to extend our tool for generating

test data for these operations. To this purpose, we intend

to design heuristics for the generation of input feature

models containing different types of inconsistencies.

● Combination with other testing strategies. In our cur-

rent approach, feature models are created from scratch

for simplicity. However, it is known that metamorphic

testing produces better results when combined with

other test case selection strategies that generate the



initial set of test cases. We are currently working in the

design of this set of test cases using black-box testing

techniques. A preliminary version of this test suite is

available in [20].

Our prototype tool together with the mutants and test

classes used in our evaluation are available at http://www.

lsi.us.es/∼segura/files/material/icst10/.
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