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This paper investigates community structure in the US Airport Network as it 

evolved from 1990 to 2010 by looking at six bi-monthly intervals in 1990, 2000 and 

2010, using data obtained from the Bureau of Transportation Statistics of the US 

Department of Transport. The data contained monthly records of origin-destination 

pairs of domestic airports and the number of passengers carried. The topological 

properties and the volume of people travelling are both studied in detail, revealing 

high heterogeneity in space and time. A recently-developed community structure 

detection method, accounting for the spatial nature of these networks, is applied and 

reveals a picture of the communities within. The patterns of communities plotted for 

each bi-monthly interval reveal some interesting seasonal variations of passenger 

flows and airport clusters that do not occupy a single US region. The long-term 

evolution of the network between those years is explored and found to have 

consistently improved its stability. The more recent structure of the network (2010) 

is compared with migration patterns among the four US macro-regions (West, 
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Midwest, Northeast and South) in order to identify possible relationships and the 

results highlight a clear overlap between US domestic air travel and migration. 

Keywords: Air transportation; community structure; United States Airport Network; 

migration.  

1. Introduction 

A common approach to dealing with complex systems is to make use of network theory 

to simulate symmetric or, more generally, asymmetric relations among discrete objects. 

Transportation [19], the Internet [1], mobile phone [21], power [15], social, and neural 

networks are just some examples of complex systems where network theory has been 

applied. In fact, complex systems are often modelled as complex networks, i.e. graphs 

with non-trivial topological characteristics, because this provides a powerful abstraction 

that can eliminate the unnecessary complexity of the system while maintaining the key 

properties and interactions. Complex networks usually have nodes and links arranged in 

space, but topology alone does not contain all the vital information and the spatial 

constraints could, and typically do, affect the structure and properties of these spatial 

networks (see [6] for an overview).  

Transportation networks are a good example of spatial networks. Their network 

topology is not only characterised by spatial aspects such as the location of nodes and 

the length of links but also by the association of a “transport cost” to the link length; 

implying that longer links are typically balanced by some benefit, such as connecting to 

a high-degree node, or a node in an attractive location. Transportation networks typify 

the specific nature of spatial networks particularly with regard to issues such as 

congestion, fast-growing urban sprawl and disease propagation. Network structure and 

dynamics play a key role in most, if not all, of these challenges. Transportation networks 

can be planar (not to be confused with planar graphs), as in road and rail networks, or 

non-planar, as in airport networks. In addition, transportation networks are usually 

weighted, where the link weight describes the intensity of some form of interaction, e.g. 

the amount of traffic. Air transportation networks are an important example of spatial 

networks. Nodes identify airports and links represent the existence of a direct air service 

among them. Weights on links may represent the number of passengers flying on that 

connection, and the distribution of weights is an initial indication of the existence of 

possible strong heterogeneities [5]. 
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The existence of links among airports depends on factors related to both airline 

strategies and passenger demand. Airlines decide to operate at a given airport on the 

basis of a significant demand, allowing them to reach satisfactory load factors. Location 

and socio-economic characteristics of the airport catchment area are the key factors 

generating air traffic demand. The airport choice made by both airlines and travellers 

depends on factors that can be ultimately reduced to time and monetary costs. For 

example, reduced airport charges may help airlines to offer lower air fares to potential 

travellers, and hence to induce more flights. The airport network is an example of a 

heterogeneous network where the hubs have high connectivity, high weight (in terms of 

traffic) and long-distance links [5]. 

In recent years, the analysis of complex transport networks has received considerable 

attention, mainly in terms of commuting networks [19, 35, 37]. Airport networks have 

also been studied to characterise their level of degree correlations and clustering, their 

evolution in time, and their potential scale-free properties [3, 22, 24, 40]. Concerning 

airport networks, it is of interest to look at their community structure, which is a 

prominent feature in many biological [33], social [7] and technological [7] complex 

systems. Community structure is defined as the presence of highly intra-connected 

modules of nodes that are loosely inter-connected to the rest of the network. In other 

words, nodes are organised in clusters and most links are inside those clusters. The 

reason for this phenomenon is that nodes that share functional similarity and/or 

dependency tend to interact more and therefore they should be more connected. There 

are two main advantages of this community architecture: the first is efficiency, as most 

interactions are within modules which are internally well-connected, thereby reducing 

the path length (the number of links that separate a pair of nodes); and the second is 

robustness, as entire modules may fail autonomously, without severely affecting the 

operation of other modules, and hence, the function of the entire network. Therefore, the 

emergence of community structures in airport networks has implications for their 

efficiency and robustness, as well as their socio-economic characteristics. In terms of 

network robustness, network failure due to external factors such as bad weather 

conditions, volcanic eruptions, and political or security issues, may have significant 

impact on the air traffic depending on the criticality of the involved nodes and the extent 

of their influence. In terms of socio-economic characteristics, the emergence of 

community structure depends on the location and distribution of relevant activities. 

Concentration of activities in a given area generally means concentration of short trips in 
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that area, and this is a typical commuting pattern. For medium-long distance trips, the 

main contributing factor is mass migration rather than commuting, and air transportation 

plays an important role in facilitating easier migration of workers. Within larger 

countries, such as the United States, a new kind of “commuting by air” can be identified, 

as people working in different parts of the country during the week return home at 

weekends. The changes in the availability, frequency and cost of air travel facilitate trips 

for migrants located far from traditional gateways (large airports with hub functions 

(hub-and-spoke) and inter-continental links) [12]. 

Over the past few decades air travel in the US has changed considerably. Apart from 

the obvious increase in the number of airports, connections and passengers, the structure 

(topology) of the US Airport Network (USAN) has transformed, thereby affecting all 

aspects of air travel. Up to the 1970s the USAN had mainly a hub-and-spoke 

architecture: flights coming from many origins (spokes) converge to the airport (hub) 

from which new flights start toward other destinations (spokes). The hub-and-spoke 

architecture is characterised by a high spatial network concentration, and a time co-

ordination of flights at the hub according to a “flight wave” concept [11]. The ideal wave 

is the set of arriving and departing flights such that for each arriving flight there is a 

departing one allowing travellers to get an easy transfer to the final destination, and the 

integration of air services at the hub (e.g. baggage transfer). The main disadvantage of 

the hub-and-spoke architecture for passengers is that they would have to change flights 

at the hub, taking more time to reach their final destination. Furthermore, passengers 

travelling between other destinations may experience poor service, including infrequent 

flights and many changes [25]. As a result, a number of low-cost airlines emerged in the 

1980s, providing point-to-point direct services between poorly connected destinations. 

One example is JetBlue, which is still considered very successful even when compared 

against larger airlines, such as American Airlines and United Airlines [8]. Consequently, 

the resulting USAN topology is a combination of both hub-and-spoke and point-to-point 

architectures. 

Migration can be thought of as population redistribution within a country or between 

countries. It is often linked to an asymmetric distribution of employment and affluence: 

people are attracted to areas with better job markets, services and quality of life. These 

aspects relate to the concept of “city competitiveness”, in other words, attractive cities 

(or regions) are efficient, accessible and offer economic opportunities to both investors 

and workers [9, 14, 16, 17]. In terms of accessibility, attractive areas have efficient 
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transport systems mainly in terms of external connections linking those areas to other 

parts of a large territory. In this context, air services can play an important role because 

they provide fast links among distant locations, even though there may be alternative 

forms of transportation. In large countries, such as the US, the domestic airport network 

is a key factor in facilitating domestic migration, i.e. the movement of people within the 

United States. Particularly, migrants are defined as people moving among states (inter-

state migration). Incoming migration (in-migration) is defined as movements into an area 

during a given period, while outgoing migration (out-migration) is defined as 

movements out of an area during the same period. 

The aim of this paper is to identify a coherent community structure in the evolving 

USAN, and to use it to investigate the relationship between air travel and migration 

within the US. Section 2 presents the research methodology; section 3 summarises the 

main results; section 4 provides a detailed discussion; and section 5 concludes this paper. 

2. Research Methodology 

This section presents the network model and the current state-of-the-art in community 

structure detection. In addition to a description of the USAN network model, there are 

details about the origin of the data being modelled, the mechanisms of community 

structure, and a justification for choosing a particular method for detecting spatially-

independent communities.  

2.1. Network Model 

To investigate the evolution of the USAN from 1990 to 2010 the network is modelled in 

a discrete time-series consisting of three stages: 1990, 2000 and 2010. Each of those is 

further split into six bi-monthly intervals, in order to capture finer temporal detail and to 

explore seasonal variations in the network. Hence, the network model consists of 18 

network snapshots depicting topology and traffic for a two-month time-slice. Each 

network is defined by a set of nodes (the airports) and a set of links (the direct flight 

connections), representing topology. In addition, the links are weighted by the total 

number of passengers (both inbound and outbound) that flew on that connection within 

the specified time-slice. Data were obtained from the Bureau of Transportation Statistics 

(BTS) [10], of the US Department of Transport. More specifically, data contained 

monthly records of origin-destination pairs of domestic airports and the number of 

passengers carried. Using network modelling both dynamics on the network in terms of 
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traffic fluctuations and dynamics of the network in terms of topology fluctuations are 

studied. The more recent structure of the network (reference year: 2010) will be 

compared with migration patterns among the four US macro-regions (West, Midwest, 

Northeast and South), in order to identify possible relationships. Fig. 1 shows a map of 

the US regions and states, including the locations of the main airports in terms of 2010 

passenger flows. 

 

 

Fig. 1. US macro-regions and major airports in 2010. Adapted from [31]. 

2.2. Community Structure 

In recent years, research on complex networks has proposed many community detection 

methods [28] that aim to discover the most sensible partition of a network into 

communities. Most of them work on the principle of modularity [34] optimisation, 

aiming to maximise the modularity benefit function describing the quality of a network 

partition. The more links that fall within a community compared to an ensemble of 
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benchmark random networks with the same community structure, then the more bias 

there is for links to connect to nodes belonging to the same community, and therefore the 

higher the modularity Q (Eq. 1). In essence, modularity measures how sharply the 

modules are defined. 

 

Q = (fraction of links within communities) – (expected fraction of such links)              (1) 

 

The expected fraction of links within communities is calculated from an ensemble of 

random networks that resemble the network under scrutiny in terms of its strength (total 

weight on all adjacent links) distribution. In addition, it is necessary to quantify the 

average level of interaction between a pair of nodes, and this is achieved by defining a 

null model matrix Pij that describes the expected weight of a link between nodes i and j, 

over the ensemble. The standard choice for Pij, defined by Newman and Girvan (NG) 

[34], preserves the strength of nodes in the random networks: 

 

Pij
NG

 = ki kj /2m  (2) 

 

where ki is the strength of node i and m is the total weight in the network. A limitation of 

this null model, and of community detection methods that use it, is that only network 

topology and traffic are considered, but this is insufficient for networks embedded in 

space, such as the USAN. The reason for this is that most spatial networks (excluding 

the Internet for example) are very biased towards short-range connections due to the cost 

involved in long-range interactions in physical space. In terms of topology, an airport 

network is not a typical spatial network, as long-range connections are common. 

However, in terms of traffic, the higher financial and temporal costs involved in long-

range travel play an important role for passengers, thereby affecting the flow on the 

network. Hence, standard community detection methods (typically based on the NG null 

model) will discover communities of nodes that are spatially close, as opposed to 

communities that have particularly strong internal interactions [29, 13, 4, 2, 20]. To 

address this, Expert et al. [21] proposed an alternative null model for Pij that takes into 

account the effect of space by favouring communities of nodes i and j that are more 

connected than expected, given the physical distance dij between them: 

 

Pij
Spa

 = Ni Nj f(dij) (3) 
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where Ni is the importance (typically the strength) of node i and f(dij) is the function that 

incorporates the effect of space. This so-called deterrence function describes the 

expected level of interaction between nodes i and j that are separated by some distance 

dij. In other words, the function defines how interaction decays, analogous to gravity, as 

distance between objects increases. 

Expert’s null model has been shown to uncover space-independent community 

structure in the Belgian mobile network [21], where the NG null model fails to do so. 

Hence, to identify coherent community structure that reflects particularly high-traffic 

connections while also considering spatial effects, Expert’s null model is applied to the 

USAN network model. The inputs are the adjacency matrix Aij (encoding topology and 

passenger flows), the distance matrix Dij (containing the Euclidean distance between all 

pairs of airports), the importance vector Ni (holding the passenger flow at each airport), 

and the bin size, which is used to bin the data from the distance matrix. Due to distance 

being expressed in terms of degrees of arc length, where one degree is approximately 60 

miles, the largest distance in the distance matrix is 149. Therefore, it is necessary to 

select a bin size such that the bins are sufficiently populated, without losing too much 

spatial resolution. The bin populations and the deterrence function were checked for bin 

sizes 0.1, 1, 2 and 3, and 1 was chosen as it provided balanced bin populations and a 

smooth deterrence function. The output of Expert’s null model is the modularity matrix 

Qij = (Aij – Pij
Spa), which is then fed into a community detection algorithm [27] (Expert et 

al. used the same algorithm in [21]) that searches for a network partition, maximising 

modularity.  

 3. Results 

Expert’s model is used in each of the 18 USANs (representing topology and passengers 

for a bi-monthly period). The output of the community detection algorithm is a vector, 

assigning each airport to a specific community in which all members have particularly 

strong interactions in terms of passenger flows between them, given their physical 

separation. Due to the potentially large number of nearly-optimal partitions [23], a non-

deterministic implementation of the algorithm is applied twice to each network snapshot, 

in order to discover better partitions and to check their stability (similar partitions for the 

same snapshot). This is achieved using Normalised Variation of Information (NVI) [32], 

which measures the distance between two partitions in the range 0-1 (0 if they are 
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identical, approaching 1 if they are very different). The average NVI values across the 

six snapshots for the years 1990, 2000 and 2010 are 0.40, 0.34 and 0.26, respectively. 

These values indicate that the community detection is considerably stable.  

Figs. 2-4 represent the USAN at various stages over time, where each airport is 

denoted by a circle with a surface area that is directly proportional to the passenger flow 

(inbound and outbound passengers), and the colour represents the community. Airport 

connections and airport-to-airport flows are not shown for clarity, and colour is not 

consistent across the networks as it is only used to differentiate between different 

communities in a single network (the software used does not allow the user to 

consistently assign colours to communities). In other words, the figures below depict the 

size of airports by passengers handled, and the groups of identically coloured airports 

that have particularly strong passenger flows between them. Alaska, Hawaii and the 

Mariana Islands are not shown here but they represent a very small fraction of the 

network. The airport in the bottom right is for the Virgin Islands. In the following 

analysis of results, the term “hub” is used to describe an airport that handles a high 

volume of passengers, and the terms “community” and “cluster” are used 

interchangeably.  

3.1. Year 1990 

Fig. 2 depicts bi-monthly snapshots of the USAN for the year 1990.  

 

  

(A) JAN-FEB 1990.    (B) MAR-APR 1990. 
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(C) MAY-JUN 1990.    (D) JUL-AUG 1990. 

     

(E) SEP-OCT 1990.    (F) NOV-DEC 1990. 

 

Fig. 2. Community structure in the USAN in the year 1990. Colour denotes community and node surface area 

is proportional to passenger flow at airport.   

 

In Jan-Feb (Fig. 2(A)) there is a well-defined cyan community of west-coast airports, 

such as Los Angeles (LA) and San Francisco, together with Chicago, indicating high 

passenger mobility between those locations. In Fig. 2(B) the network for Mar-Apr 

implies a particularly large community (light-green) of the main US airports. This means 

that there were particularly active interactions between all the light-green locations 

during this time, in contrast to the previous image for Jan-Feb. May-Jun in Fig. 2(C) 

displays a geographically clustered set of communities in the east, together with the 

largest community in red which spans almost the entire US. In other words, the 

geographically clustered communities represent the regions where passengers mainly 

flew locally, and the red community refers to long-distance passengers. Jul-Aug (Fig. 

2(D)) shows a very inter-mixed network, with significant long-distance travel suggested 

by the spatial spanning of the communities. However, the cyan Dallas cluster is an 

exception, as it covers only Dallas and small nearby airports. Sep-Oct (Fig. 2(E)) sees an 

overall decline in air travel flagged by the noticeable reduction in general size of circles, 

matching the end of the tourist season, and two large communities in blue and green. In 

Fig. 2(F) Nov-Dec has no major change in traffic patterns apart from the fact that 

Chicago (a key US hub) is taken over by the spanning blue community, implying that it 

was used extensively for air travel, particularly among these blue regions. 

3.2. Year 2000 

Fig. 3 depicts bi-monthly snapshots of the USAN for the year 2000.  
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(A) JAN-FEB 2000.    (B) MAR-APR 2000. 

 

    

(C) MAY-JUN 2000.    (D) JUL-AUG 2000. 

 

    

(E) SEP-OCT 2000.    (F) NOV-DEC 2000. 

 

Fig. 3. Community structure in the USAN in the year 2000. Colour denotes community and node surface area 

is proportional to passenger flow at airport.    

 

Jan-Feb in Fig. 3(A) displays a prevailing cyan community of most major airports 

dominating the west and a large part of the rest of the US. In Fig. 3(B), Mar-Apr displays 

a very similar pattern but the number of passengers has increased, which is reflected by 

the larger circles. In particular, yellow Atlanta (ATL) is clearly the leading US airport in 

terms of passengers handled during this period. May-Jun in Fig. 3(C) suggests that 

Dallas and Chicago have separated from the largest community in the previous image, 

forming their own community (in blue) with a few more airports in the north-east. 

Again, Atlanta is nearly the only member of its yellow cluster, but its size implies that it 
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plays the role of the main hub in the US, connecting many of the other regions. This will 

be explored in more detail in the discussion section. Jul-Aug (Fig. 3(D)) appears similar 

to the networks for Jan-Apr, with a main green cluster covering most of the US and 

Atlanta still on its own. In Fig. 3(E) Sep-Oct the number of passengers has predictably 

decreased. The east appears to be mixed while the west, Dallas and Chicago are all part 

of the same red cluster. Nov-Dec in Fig. 3(F) is similar to the previous network for Sep-

Oct. 

3.3. Year 2010 

Fig. 4 depicts bi-monthly snapshots of the USAN for the year 2010.  

 

     
(A) JAN-FEB 2010.    (B) MAR-APR 2010. 

 

      

(C) MAY-JUN 2010.    (D) JUL-AUG 2010. 

 

     

(E) SEP-OCT 2010.    (F) NOV-DEC 2010. 

 

Fig. 4. Community structure in the USAN in the year 2010. Colour denotes community and node surface area 

is proportional to passenger flow at airport.    
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Fig. 4(A) Jan-Feb has two large clusters in red and green covering the west and a large 

part of the US, respectively. Atlanta (blue) is still the largest hub but passenger demand 

is low due to the low season. Mar-Apr in Fig. 4(B) shows an increase in passengers and 

a clearly dominating red community in the west. The south is covered by the pink Dallas 

cluster, and yellow Atlanta and light-green Chicago are the first and second largest hubs, 

respectively. May-Jun in Fig. 4(C) is different in two respects. Firstly, Chicago has 

formed a yellow cluster covering the south-west and the east, and secondly, orange 

Dallas has separated from the south cluster, so it has become more of a long-distance 

travel airport than in the previous two months. Atlanta is still the largest airport by far, 

providing the connections for many more passengers than any other airport in the US. 

Jul-Aug (Fig. 4(D)) is very similar to May-Jun. This means that there is a particularly 

high volume of travellers among the east coast, the west coast and Chicago. Sep-Oct 

(Fig. 4(E)) has a good mix of many clusters, suggesting that during these months there 

has been more long-distance travel within the US. The green, yellow and blue 

communities are particularly well spread out, highlighting the extent of long-range 

travel. Nov-Dec (Fig. 4(F)) is similar to the previous two months but now the Chicago 

and LA clusters have merged again (see May-Jun and Jul-Aug), forming one of the two 

largest clusters (red and green).  

4. Discussion 

First of all, it is important to highlight the fact that some communities have airports that 

are very far apart, suggesting that spatial community detection discovers more 

meaningful communities that are not occupying a single region on the map. The seasonal 

variation within each of the three years, and the long-term evolution of the network 

between those years, are explored in the following two sub-sections. 

4.1. Seasonal Variation 

The seasonal variation in passenger flows within each year is investigated qualitatively 

by visually examining the obtained community structure, and quantitatively, using 

Normalised Mutual Information (NMI) [18].  

In terms of qualitative analysis, there appear to be significant changes in the 

community structure of the USAN in 1990. In other words, there were considerable 

seasonal variations in the volume of passengers on network connections. Specifically, 
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Jan-Feb had a very mixed structure, Mar-Apr had a large (green) super-cluster, and the 

rest of the year was mixed again, with some similarities between May-Jun and Sep-Oct. 

In the last two months of the year, Chicago joined the blue LA cluster, forming a similar 

structure to Jan-Feb, which indicates the presence of an annual cycle of passenger 

demand. Throughout 2000 (apart from May-Jun), the community structure remained 

fairly stable, implying low seasonal variation. In particular, the network had a large 

super-cluster covering most of the US, and Atlanta was the super-hub. May-Jun, 

however, was different as Dallas and Chicago were in a separate cluster of their own, so 

there was a particularly strong passenger flow between them and other smaller airports 

in the north-east, during these months. In 2010, similarly to 1990, there were notable 

fluctuations in the community structure of the network. Jan-Feb was mixed, Mar-Apr 

had a dominant red cluster, and in the rest of the year there were two dominant clusters 

(Denver and Chicago). LA and San Francisco formed their own community in green in 

Sep-Oct.  

Quantitative analysis of network snapshots involves NMI, which measures the 

similarity between two network partitions (in this case two consecutive snapshots), 

returning 1 if they are identical and 0 if they are completely independent. It is typically 

used to quantify the stability of community structure over time, but it is also used in tests 

of community detection algorithms [28]. In order to calculate NMI, it was necessary to 

filter airports that do not appear in all snapshots for a given year. These few, small 

airports are rarely used and their traffic is very low, so their effect on the network is 

insignificant. 
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Fig. 5. Normalised Mutual Information (NMI) of consecutive network snapshots. 

 

Fig. 5 presents NMI over time. For example, JAN-APR refers to the stability of the 

community structure in the period January to April, using the NMI of the partitions for 

Jan-Feb and Mar-Apr. The connecting lines do not indicate continuity, but are there to 

facilitate interpretation of the graph. Fig. 5 suggests that in general, the community 

structure is fairly stable over the course of a year as the NMI is always above 0.5. In 

addition, annual stability has increased over the three years investigated as the average 

NMIs for 1990, 2000 and 2010 are 0.63, 0.68 and 0.71, respectively. Specifically, for 

May-Aug and Jul-Oct the network has shown consistent improvement in stability over 

its evolution, whereas for Jan-Apr it has become more unstable. The intervals Mar-Jun 

and Sep-Dec are virtually unchanged over the two decades. In particular, Jan-Apr 2000 

and May-Aug 2010 were highly stable (NMI > 0.8), while 1990 was a relatively unstable 

year. The existence of an annual cycle is confirmed and quantified by calculating the 

NMI of the pair Jan-Feb and Nov-Dec, which is 0.69, 0.79 and 0.52 for the years 1990, 

2000 and 2010, respectively. In other words, in terms of community structure, Jan-Feb 

resembles Nov-Dec (not so much in 2010), indicating the presence of an annual cycle of 

passenger demand. 

4.2. Evolution 
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This section describes the evolution of the USAN from 1990 to 2010, by focusing on 

three key issues: volume of air travel, bi-monthly snapshots, and the main hub Atlanta. 

In addition, the migration levels between, and within, the four US macro-regions are 

discussed. 

4.2.1. Volume of Air Travel  

The quantity of domestic air traffic can be described by the total number of passengers 

carried across the USAN. Since the surface area of the airport nodes in Figs. 2-4 is 

proportional to the number of passengers, it is easy to determine the volume of air travel 

by observing the size of the nodes.  

The volume of air travel grew significantly from 1990 to 2000, with a particularly 

strong concentration of travellers via Atlanta. The first decade of the 21st century, 

however, did not see a significant increase in air travel, which, to a certain extent, may 

have been caused by key events, such as the September 11 terrorist attacks in 2001, and 

the start of the global economic recession in 2008. It is interesting that although most 

airports did not grow much from 2000 to 2010, there are some, such as Denver, that did 

experience a steady growth in terms of passengers. The specific changes in passenger 

distribution among airports are highlighted by the changes in the size of circles in Figs. 

2-4. 

4.2.2. Bi-monthly Snapshots 

In addition to the analysis of seasonal variation, it is also necessary to study long-term 

evolution, by focusing on individual bi-monthly snapshots and observing the changes in 

the network from 1990 to 2000, and from 2000 to 2010. Therefore, each of the six bi-

monthly periods is analysed separately in order to illustrate the precise changes in 

passenger flows and community structure for the specified period, that have occurred in 

each of the two decades. 

January-February 

In terms of community structure, 1990 has a mixed pattern of clusters apart from the 

south (Fig. 2(A)), 2000 has a large cyan super-cluster covering all of the US (Fig. 3(A)), 

and 2010 again has a mixed structure (Fig. 4(A)). This indicates that in 1990 and 2010 

there were numerous popular connections that saw a large number of air passengers, but 

in 2000 the passengers were more evenly distributed among the possible connections, 



17 

 

resulting in a single super-community. In addition, Atlanta and some airports in the 

south and north-east had their own specific traffic patterns, as shown in Fig. 3(A). 

March-April 

Generally, the community structure for this period is stable, but from 2000 to 2010 there 

is a clear transition of two hubs – Chicago and Dallas – from the main cluster to their 

own local-scale clusters (Figs. 3(B) & 4(B)). In other words, these two airports became 

regional hubs in the first decade of the 21st century, at least for the months of March and 

April. 

May-June  

Community structure changes significantly for the period 1990-2010, highlighting the 

specific changes in passenger trends over the years. In particular, 1990 is composed of 

one large red cluster covering all but the south, one medium-sized pink cluster in the 

south, and several regional clusters (Fig. 2(C)). This structure indicates that the red 

airports are the national long-range hubs, the south is somewhat more isolated, and the 

rest of the airports provide more local services. On the other hand, in 2000 Chicago and 

Dallas belong to the same cluster, and Atlanta is by far the top airport in the US (Fig. 

3(C)). In 2010, there are two main clusters – the Chicago cluster in yellow, and the 

Denver cluster in blue – that cover the US together with Atlanta and Dallas, acting as 

national super-hubs (Fig. 4(C)). 

July-August 

Community structure in July-August suggests that in 1990 passengers preferred specific 

long-range connections (Fig. 2(D)). Most clusters cover large areas of the US, so many 

people travelled all over the US, specifically among airports of the same colour. On the 

other hand, in 2000 passengers were more evenly distributed within the green cluster, 

and more intricately concentrated on certain routes only in the north-east (Fig. 3(D)); 

while in 2010 the picture is, again, completely different, with two large clusters in red 

and pink, and two key hubs – Atlanta and Dallas – in blue and green, respectively (Fig. 

4(D)). 

September-October 

The network in 1990 (Fig. 2(E)) is mainly composed of the blue LA cluster and the 

green Dallas cluster, with Chicago and Atlanta as hubs, and the usual mix of clusters in 
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the densely populated north-east. In 2000, however, there is one red super-cluster, 

Atlanta is the main hub, and there is also a lot of activity in the Chicago region, as 

illustrated by the many colours that indicate the specific passenger trends in September-

October (Fig. 3(E)). 2010 has a mix of multiple large clusters revealing new passenger 

flows (Fig. 4(E)). This is a sign of long-range travel among community members that are 

far apart. 

November-December 

In 1990 (Fig. 2(F)) the USAN is split into a large blue cluster and a yellow Dallas cluster 

in the south, but in 2000 (Fig. 3(F)) they have converged to a single yellow super-cluster, 

covering all but some regions in the north-east and the main hub Atlanta. In 2010 (Fig. 

4(F)), the super-cluster has broken down, leaving Dallas as a national hub, and two red 

and green clusters spanning a large part of the US. 

4.2.3. Atlanta 

The role of ATL as a leading US airport depends on factors, such as air services and 

their locations, as well as investments into growth and development. In 1967, the city of 

Atlanta and the airlines began to work on a master plan for the future development of the 

airport. Many investments were made in the following years, leading to new passenger 

terminals, runways, and facilities both inside (such as the people mover system linking 

parts of the terminal), and outside (such as the Red/Gold rail line, operated by the 

Metropolitan Atlanta Rapid Transit Authority, linking the airport to the counties of 

Fulton and DeKalb, in addition to Atlanta itself). 

ATL is also the primary base of many airlines, such as Delta Air Lines, who built one 

of the world’s largest airline bases in 1930. Delta was an early adopter of the hub-and-

spoke system, with Atlanta as its primary hub between the Midwest and Florida. This 

gave it an early competitive advantage, as Florida has been an attractive destination 

within the US for many decades. Although there is a decrease in the volume of migration 

in recent years, Florida and the South are still very popular destinations. 

In 1990, Atlanta was one of the three leading US airports for domestic flights. By 

2000 it became the top airport (Figs. 2-4). Atlanta is also the only significant member in 

its community for all three years. This implies that it is equally well connected to other 

airports, thereby possibly serving as a national hub. Since ATL handles so many 

passengers but there are no other major airports of the same colour, it follows that all 
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ATL connections have relatively similar traffic loads, with longer connections having 

less traffic due to the effect of spatial separation. Therefore, ATL has no strong 

preferential attachment to any other major airport. To verify that Atlanta is a national 

hub, it is also necessary to check its number of direct connections. Table 1 summarizes 

ATL’s number of connections and the highest number of connections for the months 

Jan-Feb, in each of the years studied. 

 
Table 1. Atlanta’s connections. 

 

 1990 2000 2010 

Atlanta 101 142 167 

Max 139 142 172 

 

Clearly, Atlanta ranks very high in terms of connections, so it has a direct influence on a 

large part of the US territory. For example, in Jan-Feb 2010, ATL handled 10.7 million 

passengers (top in the US) on 167 connections, with an average of 64,000 passengers per 

connection, compared with the US highest figures of 172 and 73,000, respectively. In 

summary, ATL became the top US hub for domestic flights by the year 2000. 

4.2.4. Migration 

According to recent figures and US Census data [39], American people move many 

times during their adult lives, mainly in their twenties. Preferred destinations of domestic 

migration were Southern states, mainly Florida, possibly because they are considered 

attractive places to live and work. Although US domestic migration has fallen noticeably 

since the 1980s, it is still higher than that within most other developed countries and 

during the period 2000-2004 it continued to redistribute the country’s population [36]. 

Nevertheless, the current slowdown in domestic migration due to the impact of the 

economic situation has changed the picture of movements within the US. In-migration 

towards states like Arizona, Florida and Nevada has slowed down, while Massachusetts, 

New York and California now have considerably less out-migration [26, 39]. In the 

years 2009 and 2010 mobility among states slowed nationwide and only a small 

percentage difference was observed during the two-year period (Table 2). 

 

Table 2. In-migration, representing the number of people migrating to specific US states in 2009-2010 [39]. 
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State 

Year 

2010 

Year 

2009 Diff % 

 

State 

Year 

2010 

Year 

2009 Diff % 

Alabama 108,951 124,658 -0.14  Montana 35,641 31,015 0.13 

Alaska 36,345 40,474 -0.11  Nebraska 51,290 53,214 -0.04 

Arizona 223,324 226,457 -0.01  Nevada 103,179 109,257 -0.06 

Arkansas 79,214 85,857 -0.08  New Hampshire 39,423 37,940 0.04 

California 445,972 460,161 -0.03  New Jersey 130,101 136,212 -0.05 

Colorado 187,240 182,854 0.02  New Mexico 74,237 64,797 0.13 

Connecticut 79,360 81,546 -0.03  New York 276,167 277,482 0.00 

Delaware 31,713 35,085 -0.11  North Carolina 265,206 284,171 -0.07 

District of Columbia  51,244 38,907 0.24  North Dakota 30,100 29,970 0.00 

Florida 495,857 475,871 0.04  Ohio 174,773 171,894 0.02 

Georgia 250,469 280,221 -0.12  Oklahoma 106,720 117,850 -0.10 

Hawaii 53,581 53,270 0.01  Oregon 117,521 127,489 -0.08 

Idaho 55,871 57,790 -0.03  Pennsylvania 241,855 232,316 0.04 

Illinois 206,014 206,151 0.00  Rhode Island 32,335 32,108 0.01 

Indiana 127,925 132,755 -0.04  South Carolina 152,710 33,616 0.78 

Iowa 72,706 74,704 -0.03  South Dakota 25,777 145,873 -4.66 

Kansas 95,127 102,695 -0.08  Tennessee 159,778 29,632 0.81 

Kentucky 118,622 122,184 -0.03  Texas 490,738 168,174 0.66 

Louisiana 98,291 90,957 0.07  Utah 78,163 511,166 -5.54 

Maine 27,962 24,672 0.12  Vermont 22,529 90,375 -3.01 

Maryland 165,096 174,958 -0.06  Virginia 260,813 19,390 0.93 

Massachusetts 143,247 148,500 -0.04  Washington 191,784 271,600 -0.42 

Michigan 117,581 118,054 0.00  West Virginia 39,791 192,654 -3.84 

Minnesota 89,911 90,944 -0.01  Wisconsin 93,586 50,155 0.46 

Mississippi 73,135 67,245 0.08  Wyoming 28,046 95,475 -2.40 

Missouri 146,093 150,271 -0.03  Puerto Rico 31,732 30,889 0.03 

 

Despite the current tendency to stagnancy, the role of the airport network in the context 

of US domestic migration is important. Since an airport network is continuously 

evolving depending on passenger demand, it is increasingly well-optimised for a number 

of functions, such as carrying more passengers, minimising flight changes for the 

average passenger, and making profit. As the USAN has evolved to attract passengers 

that are typically travelling to popular destinations, it is directly facilitating migration. 

Although most passengers fly for short-term business or leisure, there is evidence that a 

significant fraction of passengers are in fact migrating with a migration probability 

inversely proportional to the distance [30, 38].  
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According to Census data, Figs. 6-8 show the migration patterns for the years 1990, 

2000 and 2010. Data refer to people that are moving to a given macro-region or within it. 

The scale is relative to the maximum value and therefore not consistent across the three 

years, but they are comparable, in order to identify any potential variations in migration 

patterns over the two decades. Migration within the macro-regions is higher than that 

among them (decay of interaction as distance increases), and migration within the South 

is the highest, suggesting strong dynamics among the member States. Furthermore, the 

South region attracts the most people from outside for all three years. This is in line with 

the fact that Atlanta airport (located in the South) has the highest passenger flow, as 

discussed above, but it does not necessarily follow that the entire flow is related to the 

South, as many of the passengers will change flights in Atlanta en route to other regions. 

Nevertheless, the migration patterns do have a clear overlap with the community 

structure discovered in the USAN. 
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Fig. 6. 1990 migration patterns among the four macro-regions: West, Midwest, Northeast and South. 
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Fig. 7. 2000 migration patterns among the four macro-regions: West, Midwest, Northeast and South. 
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Fig. 8. 2010 migration patterns among the four macro-regions: West, Midwest, Northeast and South. 
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5. Conclusion 

The US Airport Network is a complex system that is continuously evolving to meet the 

growing demands for air travel. Investigating the community structure within has 

illuminated important hidden characteristics of the network’s topology and dynamics. 

Specifically, the findings reveal high heterogeneity in both space and time. In other 

words, the network is non-uniform (in space) and non-linear (in time) in terms of its 

connections and traffic. In addition, spatial community detection has identified a more 

realistic picture of the intricate structure within the network, which is invaluable for 

understanding this critical transportation system. Furthermore, this network model may 

be used for forecasting future trends in the US Airport Network. For example, the 

identification of reliable communities can be the first step to study how external factors, 

such as natural disasters (e.g. tornados, which are common in large parts of the US), 

affect the function of the network. Moreover, the communities emerging from socio-

economic interactions, as in the case of migration, reflect both the social influence radii 

and the activity system configuration (the distribution of activities in terms of location). 

Again, variations in the activity system will possibly modify such relationships and the 

resulting community structure. Finally, there is a clear relationship between domestic US 

air travel and migration. In particular, the identified community structures map well onto 

the migration patterns among the four macro-regions and within the region. 
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