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Abstract

Stochastic Programming brings together models of optimum resource allocation and models of
randomness to create a robust decision making framework. The models of randomness with their
finite, discrete realisations are called Scenario Generators. In a compendium report we have
considered the modelling perspective of Scenario Generation and its integration within Stochastic
Programming. In this paper we investigate the role of such a tool within the context of a combined
information and decision support system. We analyse the roles of decision models and descriptive
models, and also examine how these can be integrated with data marts of analytic organisational
data and decision data. Recent developments in On-Line Analytical Processing (OLAP) tools and
multidimensional data viewing are taken into consideration. We finally introduce illustrative
examples of optimisation, simulation models and results analysis to explain our multifaceted view

of modelling.
Keywords : Scenario Generation, Stochastic Programming, DSS ; OLAP.



1 Introduction and Motivations

1.1 Role of Business Analytics within organisational IS

Two basic modelling paradigms come together in stochastic programming (SP). These are : (a)
model of optimum resource allocation and (b) model of randomness respectively. It is well
established that in the tealm of OR/MS and its contribution to managetial decision making four
categories of models are of interest. For a detailed discussion see Mitra (1988) :

®  Descriptive Models as defined by a set of mathematical relations which simply predicts how a
physical, industrial or a social system may behave.

®  Normative Models constitute the basis for (quantitative) decision making by a superhuman
following an entirely rational, that is, logically scrupulous set of arguments. Hence
quantitative decision problems and idealised decision makers are postulated in order to
define these models.

®  Prescriptive Models  involve systematic analysis of problems as carried out by normally
intelligent persons who apply intuition and judgement. Two distinctive features of this
approach are uncertainty analysis and preference (or value or utility) analysis.

®  Decision Models are in some sense a derived category as they combine the concept underlying
the normative models and prescriptive models.

Within the organisational context, the deployment of such models and their role in the IS
infrastructure is recognised as “Business Analytics”. Optimisation based Decision Support Systems
(DSS) are assuming an increasingly important role in many industries and public organisations.
Optimisation modelling and solution techniques have seen sustained developments from the eatly
sixties until now. The main achievements have come from the improvements in model
conceptualisations, solution algorithms and software techniques. Optimisation models are
considered as critical components of an organisation’s analytical information technology (IT)
systems, as they are used to analyse and control critical business measures such as cost, profit,
quality, and time. In the context of organisational information systems (IS) (Koutsoukis and Mitra,
2003) quantitative models constitute an important component within the information value chain
(IVC). Typically, transactional (operational) data which is available in a firm is analysed and
synthesised to create analytic data or information, which is the first link of the information value
chain. The analytic data is stored in data marts, which are subsets of the overall collection of data
within a firm and is called data warehouse.
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Figure 1. The information value chain

In this context, optimisation models and the tools which enable their formulation and solution are
considered to be inference engines for knowledge discovery. They operate on the analytic data
stored in the data marts to provide decision makers with decision data which is inferred from the
models. Optimisation models can also be used within the more general framework of simulation,
enabling decision makers and analysts to take advantage of descriptive models as well as
prescriptive models. Another important aspect of the information value chain is that the decision
data which is created by (the optimisation) models is added to the analytic data, and naturally
becomes a part of the data mart. An example of such a process is the use of prescriptive models to
obtain a set of optimum decisions, which are then used as input for a desctiptive (simulation)
model for risk analysis under alternative scenatios; together they make up a valuable data mart.

The ever growing number of industrial strength applications underlines the importance of
optimisation within the information value chain. Beyond the well established application domains
such as supply chain management and transportation, other fields are also benefiting from
optimisation based applications. This is due to two factors: the advances in optimisation techniques
and tools and the evolution of the IT and information system infrastructure, which greatly facilitate
the integration of the OR tools with the firm’s data sources. This seamless integration is essential
for an effective use of optimisation as a Decision Support System within a firm.

1.2 Optimum decision making under uncertainty

Optimmm decision making concerns a class of problems where it is necessary to make decisions to
optimise one or more given objectives, subject to appropriate restrictions. Mathematical
Programming (MP) models have made considerable contribution to optimum decision making, as
they enable the modeller to capture the structure of the problem and to quantify the effects of the
decisions in terms of the objectives of the problem owner also known as the decision maker.

The future, due to its very nature, is naturally linked with wncertainty. When using LP or IP for
optimum decision making, modellets ate requited to analyse the available data in order to identify
the parameters which are to be considered in the model. Aggregation and estimation intervene in
this important phase of the LP/IP modelling process. In many situations the parameter values do
not remain constant and are vatiable or “volatile”.



The class of problems for which the assumption of a deterministic wotld (that is, model parameters
are known exactly), is relaxed and often referred to as optimum decision making under uncertainty, since
some, if not all, the model parameters may be uncertain.

In these cases the modeller needs to take into account the effects induced by uncertainty into the
underlying optimisation models. An early approach in the investigation of these effects was the use
of sensitivity analysis. Unfortunately, as shown in (Higle and Wallace, 2002) this approach shows a
number of limitations, and may provide misleading conclusions in respect of the nature of the
solutions. In general sensitivity analysis is not a suitable approach for understanding the effects of
random behaviour of the model parameters.

In many real world problems, the uncertainty relating to one or more parameters can be modelled
by means of probability distributions. In essence, every uncertain parameter is represented by a
random variable over some canonical probability space; this in turn quantifies the uncertainty.
Stochastic Programming (SP) enables modellers to incorporate this quantifiable uncertainty into an
underlying optimisation model. Stochastic Programming models combine the paradigm of dynamic
programming with modelling of random parameters, providing optimal decisions which hedge
against future uncertainties.

The optimum decision model together with the constraints constitutes the core of the problem that
has to be solved and varies with respect to the specific characteristics of each individual application.
The second element is the model of randomness. Once the distribution is established, different
scenatios that follow the underlying probability distribution are used to represent the uncertainty. A
major issue in any application of stochastic programming is the representation of the underlying
random data process.

Figure 2: Breakdown of Stochastic Programming

1.3 Applications of Stochastic Programming

The successful application of Linear and Integer Programming models to decision problems in
their turn have opened up the scope of applying Stochastic Programming models in decision
making where time and uncertainty affect the decisions. Moreover advances in hardware as well as
software techniques and solution methods have made SP a viable optimisation tool for decision
making under uncertainty. Finance and Supply Chain planning are typical areas where deterministic
optimisation models have proven to be extremely inadequate since the model parameters are by
their very nature uncertain. Many problem domains in which SP is finding progressive applications
are considered below.



Finance: Basic concepts of Asset and Liability Management (ALM) models under
uncertainty were developed by Kallberg et al. (1982) and Kusy and Ziemba (1980).
Subsequently a number of substantial applications wete developed. They include the
Russell-Yasuda Kasai model by Carino et al. (1994). Mulvey (Mulvey, 1994) developed a
framework for modelling financial planning problems based on multistage stochastic
programs. Applications include risk management for institutions, banks, government entities,
pension plans, and insurance companies. The approach also applies to individual investors
who are interested in integrating investment choices with savings and borrowing strategies. A
dynamic discrete-time structure addresses realistic financial issues. The resulting stochastic
program is enormous by cutrent computer standards, but it possesses a special structure that
lends itself to parallel and distributed optimisation algorithms. Solving these stochastic
programs presents a major challenge for the computational operations research and
computer science community. The CALM stochastic programming model for dynamic asset-
liability management (Dempster and Consigli, 1998) is also based on multistage stochastic
programming. The CALM model was designed to deal with uncertainty affecting both assets
(in either the portfolio or the market) and liabilities (in the form of scenario dependent
payments or borrowing costs). The portfolio manager, given an initial wealth, seeks the
maximization of terminal wealth at the horizon, with investment returns modelled as discrete
state random vectors. ALM models were extended to capture the increasing complexity of
the fixed income securities markets (Zenios, 1995). The author also found that the use of
stochastic models is well justified given their superior performance over traditional
immunization techniques. In Dempster et al. (2003) the authors introduced strategic DFA
(Dynamic Financial Analysis) based on dynamic stochastic optimisation. This approach is
described in terms of an illustrative case study of a joint university/industry project to create
a decision support system for strategic asset liability management involving global asset
classes and defined contribution pension plans. Although the application of the system is to
fund design and risk management, the approach and techniques described are much more
broadly applicable to strategic financial planning problems. De Lange et al. (2004) examine
the rationale for financial reinsurance in the casualty insurance business. This concept refers
to an investment strategy that uses the financial markets to hedge insurance risk.
Applications of SP in finance are also discussed in ( Vladimirou, 2004).

Supply chain: Manufacturing flexibility has received much attention in recent years,
especially after the advent of flexible and computer-controlled manufacturing systems; see
Sethi and Sethi (1990) for extensive reviews. Much research has focused on determining
optimal investment decisions on flexible and dedicated capacity at the strategic level, under
the assumption of a single production period or a single point at which all uncertainty is
resolved (e.g. Eppen et al. (1989)). Jordan and Turnquist (1983) study the benefits of partial
manufacturing process flexibility in multi-plant multi-product settings and introduce the
concept of chaining. Dominguez-Ballesteros (2002) proposes a two stage stochastic
programming model for strategic and tactical supply chain planning. The wotk developed in
SCHUMANN (SCHUMANN, 2000) provides a recent example of a prototype supply chain
optimisation-based DSS. The software tool was built to aid supply chain planning and
management in the automobile sector (Escudero et al., 1999) as well as in the pharmaceutical
sector. In (Santoso et al. 2003), the authors investigate the use of SP for realistic scale supply
chain network design. Poojari et al. (2004) studies a decision model for natural oil buying
policy under uncertainty. Mirhassani et al (2000) and Messina et al. (1996) focus their studies
on stochastic integer programming models for supply chain planning problems. An
application of a stochastic mixed 0-1 approach to supply chain planning for helping to decide
the production system topology under uncertainty is studied in Alonso-Ayuso et al. (2003).

Transportation: Transportation and logistics represented some of the earliest applications
of stochastic programming. Dantzig (1955) used fleet management (in an airline setting) as
an early motivation for optimisation under uncertainty. Ermoliev et al. (1988) formulated the



planning of empty shipping containers as a stochastic program. There has been a rich history
of research in fleet management in the context of the “car distribution problem” of railroads.
Most of this work consists of deterministic linear programming models. Dejax and Crainic
(1987) provide a thorough review of the research in fleet management at the time, covering
both rail and intermodal container applications. Crainic et al. (1993) provide a general
stochastic, dynamic model for container distribution. Jordan and Turnquist (1983) provide a
stochastic formulation of the empty car distribution problem. In their model, a car could be
assigned to at most one demand, and cars could not be repositioned more than once. This
structure allowed the problem to be formulated as a non-linear programming problem.
Powell (1986,1987) extended this methodological approach, using the trucking industry as
the context, to multistage problems with reusable resources. This formulation involved
forming deterministic decision variables which specified the percentage of the supply of
trucks at a node that would be moved loaded or empty from one location to another. Powell
(see Powell and Carvalho (1998)) solved the problem as a sequence of network problems,
using linear approximations of the value of the future. This approach was computationally
quite casy, and scaled to much harder problems. Powell et al. (2002) showed how the
technique could be applied to the heterogeneous resource allocation problem, which is a
more general problem than the multicommodity flow problem (the resoutce attribute space
is much larger). Topaloglu and Powell (2001) applied similar techniques to stochastic
multicommodity flow problems. This problem class introduces the additional complexity
that multicommodity problems, combined with non-linear approximations of the future,
produce sequences of (usually integer) multicommodity flow problems.

¢ Telecommunication : Telecommunications have a long tradition of application of
advanced mathematical modelling methods. Stochastic optimisation is the methodology of
choice for optimal decision support under uncertainty, see Ermoliev (1988), Kall and Wallace
(1994), Birge and Louveaux (1997). While traditional design approach is centred around
minimization of the network costs under technological and quality of service constraints,
systematic application of stochastic programming techniques includes incorporation of
modern tools like evaluation of real options. Comprehensive models which include pricing
decisions and binary variables provide a motivation for further development of this
methodology. There are several examples of stochastic optimisation models for design
problems at the network level. For related examples see Bonatti and Gaivoronsky (1994), Sen
et al. (1992), Tomasgard et al. (1998), Dempster et al. (2000), Andrade et al. (2002).

¢ Environment : Most of the environmental problems are characterised by two main features.
On one side, environmental processes and resources are often characterised by irreversibility,
ie. their consumption, conversion, exploitation and degradation can be a one-way decision.
On the other side, the uncertainty deriving from incomplete knowledge concerning natural
processes and the effects of human actions on those processes, call for a particular attention
in choosing the modelling techniques to be deployed. The theoretical framework for decision
making in environmental applications in the presence of uncertainty is the quasi-option value
approach, are discussed by Arrow and fisher (1974) and subsequently investigated, in its
different features, in papers by Conrad (1980), Hanemann (1989) and Coggins and Ramezani
(1998), among others. Clarke and Reed (1990) focus on optimal strategies for gradual
conversion, involving stochastic dynamic programming. Bosetti et al. (2002) propose a
multistage stochastic programming approach to land allocation while Gassmann (1987)
adopts SP for forestry problems.

In addition to the application of SP techniques to specific problems, researchers have focused on
the perfecting and improving algorithms for the solution of such problems, (Birge and Wets,
1986), (Laporte and Loveaux 1993), (Higle and Sen., 2004). Solution methods for SP with integer
variables have been studied and proposed in (Van deVlerk 2001), (Escudero et al, 1999),
(Schultz, 2003) and Cerisola and Ramos (2002).



1.4 Modelling Systems, Database and Constituents

Whereas in section 1.2, we have highlighted the importance of optimisation within an
organisational IS here we consider a modelling perspective. In the different stages of the
optimisation process, various constituents undertake different roles and interact with each other.
These constituents and their interaction are set out in Figure 3.

Solving Expert

Model
Specialist -Analyst,
Database expert

Domain Expert

Decision-Maker

Figure 3 Optimisation Process and Constituents

The ftechnical experts (modelling experts, database experts, solver experts, and domain experts, depending on
their expertise) have access to all system components including the underlying models, databases,
and can change the solver strategy. The different technical experts collaborate to cteate a domain-
specific application by integrating the different tools for the different stages of the process. The
decision maker(s) are the constituents that utilise the (application) system. Typically the decision
makers have access to the data and solution analysis routines available in the database, and use the
underlying models and data as a black box. These are only interested in the solution values, which
are expressed in terms of decisions. Hereafter, they analyse and report the results that are in the
analytic database. Accordingly, thete is a need to have integrated optimisation tools for all the
constituents involved. These tools must be capable of providing a set of features that ideally allow
the different experts and problem owner(s) to complete the life cycle of the LP, MIP, IP, QP, SP
based optimisation application. The traditional view of a mathematical programming based
modelling and solving environment is shown in Figure 4.

End User Interface

Modelling

Models systems A‘» Solution

algorithms
A

Figure 4 . Traditional view of an optimisation-based application



The architecture is centred on the (algebraic) modelling systems, which process one or more
algebraic models and the analytical data in order to generate a model instance. The instance is then
passed onto the solvers (which implement one or more of solution algorithms). These optimise the
model instance and return the values of the optimum decisions and objective (decision data) to the
modelling system, which in turn stores them into the database. The components are typically
controlled by a Graphical User Interface (GUI).

1.5 Guided Tour.

The rest of this paper is organised in the following way. We provide a short introduction to
Stochastic Programming in section 2 which also includes a list of the available software tools for
SP. This section is complemented by an explanation of relevant model definitions and stochastic
measures in Appendix A and by a review of a few well established scenatio generation models in
Appendix B. In section 3 we first give an overview of organisational information system and
position the roles of analytic database and multidimensional database including On-Line Analytical
Processing (OLAP) views. The connection of IS to our decision modelling and desctiption
modelling methods is essential, as this enables the embedding of models within business analytics,
business processes or business rules as appropriate. In section 4 we provide a high level conceptual
architecture of the integrated system. We consider the role of scenario generation and scenario trees
and how these relate to the SP decision model. The use of Algebraic Modelling Languages (AMLs)
to formulate optimisation models and the extensions of AMLs to construct SP models are
discussed and the integrated system is introduced in a summary form. In section 5 we illustrate our
combined modelling framework of decision making followed by evaluation through simulation
using an illustrative case study. We describe an Asset Liability Management (ALM) model. For the
purpose of generating scenarios we outline a multistage extension of Moment Matching
approximation. We then consider the results of the decision model obtained by computing the
solutions of the Expected Value, Here-and-Now ( for both two-stage and multistage) formulation
of the ALLM problem. These first stage decisions are then fixed to create simulation runs for the
Wait and See model and the frequency distribution of the objective solution values are computed.
We discuss the in-sample stability of a scenario generation method, and present, stochastic
measures and risk measures (VaR and CVaR) are presented as obtained by the simulation. Our
conclusions are presented and discussed in section 6.
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2 Stochastic Programming

2.1 Background to SP

Stochastic Programming is now a well established mathematical programming paradigm which
explicitly incorporate uncertainty in the form of probability distributions of some parameters. These
models can be further categorised taking into account the way in which such uncertainty is
expressed and dealt with in the underlying linear optimisation model. The classification of
stochastic programming problems leads to a working taxonomy shown in figure 5.

SF problems

¥ ¥
Chance
Diztribution Fecourze - )
e i Conztramed
Frobleims Froblems
Prob leme
rr - - Expected Digtrib utionn- Scenario -
Wat and wnee oy B | ., )
WElue nazedq nased

Figure 5 Taxonomy of SP problems.

These problem classes can be illustrated by first considering the linear programming problem:

Z = mincx
subjectto Ax=b
x>0

where Ae R™";c,xe R";be R"

Let (€2, 3, P) denote a (discrete) probability space where §(®), @e£2 denote the realizations of the

uncertain parameters. Let the realizations of A, 4, ¢ for a given event @be defined as:

f(a)) or é:w =(A,b,0),

The associated probabilities of these realizations are often denoted as p(E(@)) or Doy For

notational convenience these probabilities are denoted simply as p(@).
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Distribution Problems

The optimisation problems which provide the distribution of the objective function value for
different realisations of the random parameters and also for the expected value of such parameters
are broadly known as the distribution problems.

Expected value problem

The Expected Value (EV) model is constructed by replacing the random parameters by their
expected values. Such an EV model is thus a linear program, as the uncertainty is dealt with before
it is introduced into the underlying linear optimisation model. It is common practice to formulate
and solve the EV problem in order to gain some insight into the decision problem.

Wait and see problems

Wait and See (WS) problems assume that the decision-maker is somehow able to wait until the
uncertainty is resolved before implementing the optimal decisions. This approach therefore relies
upon perfect information about the future. Because of its very assumptions such solution cannot be
implemented and is known as the “passive approach”. Wait and see models are often used to
analyse the probability distribution of the objective value, and consist of a family of LP models,
each associated with an individual scenario.

Recourse Problems.
Here and Now Problens

Assuming Z as solution of the objective functions, simple (single stage) stochastic programming
model can be formulated as follows:

Z,y =min E[c(@)x]

where xe€ F

and  F=[F*
weQ

The optimal objective function value Zpn denotes the minimum expected costs of the stochastic

optimisation problem. The optimal solution x*€ I hedges against all possible events e (2 that may
occur in the future.

A description of the Here and Now problems can be found in Appendix A, together with the
uncertainty measures : value of the stochastic solution (VSS) and the expected value of perfect
information (EVPI) (CARISMA SP workshop notes (2000), Infanger (1994)).

2.2 SP Software Tools

The Algebraic Modelling Languages (AML) have played an important role in the acceptance of
mathematical programming techniques as an aid to decision making. AMLs are declarative
languages which enable practitioners to rapidly build structured and scalable optimisation models.
Modern systems based on algebraic modelling languages support the formulation and
implementation of Linear Programming (LP), Mixed Integer Programming (MIP), Quadratic
Programming (QP), and to some extent Non-Linear Programming (NLP) models. These systems
are readily connected to linear or non-linear optimisers for the solution of the models under
investigation, and are able to interact with corporate data warehouses and data marts stored in
relational, object oriented or in other emerging standards. Until recently, however, the investigation
of stochastic programming models could not take advantage of comparable tools. In fact, the
practical exploitation of SP presents vatious difficulties, which affect the whole process of

12



modelling, instantiation, solution and analysis of the results of SP problems. Recently there has
been considerable progress in the development and application of SP:

® the links between the structure of stochastic programming models and the models of
randomness which provide the quantification of the uncertainty and their joint adoption for
a given problem are better understood.

® integrated modelling environments have been developed which combine of scenario
generators, modelling systems based on extended algebraic modelling languages, solution
algorithms and analysis tools in a single softwate environment support the creation and
investigation of stochastic programming problems.

SP Software Tools

JJ Bisshop, et al. Paragon Decision Tech. ~ AIMMS Modelling System
A Meeraus, et al. GAMS GAMS Modelling System
B Kristjansson Maximal Software MPL Modelling System
R Fourer, et al. Northwestern University AMPL Modelling System

MAH Dempster, et al. Cambridge University STOCHGEN  Modelling System

E Fragniere, et al. University of Geneva SETSTOCH  Modelling System

A King, et al. IBM/COIN-OR OSL/SE, SMI = Solver

HI Gassmann, et al. Dalhousie University MSLiP Solver

G Infanger et. AL Stanford University DECIS Solver

P Kall, et al. University of Ziirich SLP-IOR Modelling System / Solver
G Mitra, et al. Brunel University SPInE Modelling System / Solver

Table 1 SP Software tools

13



3 Information Systems Components

3.1 Transactional Data, Analytic Data and Information Value Chain

In an organisational context, the role of the information system has become well established. In
general data across the organisation is classified in two groups, namely transactional data and
analytic data. Typically the transactional database system is optimised for performance and
efficiency rather than supporting analytical features. In contrast the analytical database is carefully
prepared for exploitation and decision support. (Berson and Smith 1997).

Analytic data is usually stored in data warehouses; these repositoties of subject otiented integrated
and non volatile information are aimed at supporting the knowledge analyst to make better and
faster decisions. The data in the warehouse are modelled as a multidimensional item; this approach
facilitates the query engines to aggregate data across many dimensions in order to detect trends. We
take a particular perspective of data and infrastructure in our modelling system. This view is called
the information value chain IVC) paradigm that commences with the analysis and synthesis of
transactional data to create analytic data or information, which is the first step in the information
value chain.

Data > > Information > > Knowledge >

Transactional Analytic Databases Interfaces
(Operational) DBs _
oDSs Data Warehouses Data Marts EIS-OLAP

Figure 6: Information Value Chain.

Quantitative models constitute an important component within the IVC (Koutsoukis and Mitra.,
2003). Optimisation models are used within the framework of simulation, enabling the analysts to
take advantage of desctiptive models as well as presctiptive models. An important aspect of IVC is
that the decision data which is created by the optimisation models is itself analytic data, and can
therefore be fed into the chain again. As an example of the importance of IVC we can observe the
use of prescriptive (optimisation) models to obtain a set of optimum decisions, which are then used
as input for a descriptive (simulation) model for risk analysis under alternative scenatios.

The tetm decision database denotes the collection of data repositories that are used for decision
support applications. We use the term decision database to denote data marts that are used to store
the results of our model-driven investigations. For instance a decision-maker or an end-user is
typically interested in working with the optimisation results, in order to proceed with the decision
making process. In this case, it is easily seen that the decision making process is very much related
to the ‘new’ information, namely the optimisation results. Hence, a decision database requires some
of form medium-term storage for the inferred information generated by the optimisation models.

Data Modelling, Decision Modelling, and Model Investigation, are logical steps, which play a
leading role both in the interaction of information systems and decision technologies; taken
together they lead to business analytics. It is easily seen that Data Modelling and Decision
modelling closely interact with each other. The following list describes these logical constructs and
their relationship to knowledge.

14



® Data Modelling refers to the ‘structuted’ internal representation and external presentation of
recorded facts. Broadly speaking this provides the decision-maker with information about
their decision problem.

® Decision Modelling is the development of a model, or a range of models that captures the
structure as well as the decisions in respect of a given problem. These models are used to
evaluate possible decisions (actions) in a given problem domain, and the probable outcomes
of these actions.

® Model Analysis and Investigation refers to the instantiation of the model with data, and the
evaluation of the model parameters as well as the results in order to gain confidence and
insight into the model.

Typically, data modelling involves defining relationships between data items leading to a relational
data model, or identifying categories that are then used to define multidimensional tables, leading to
a multidimensional data model. Decision modelling involves the development of models that are
used for decision-making. Model analysis and investigation is often a descriptive analysis of the
results obtained which is applied to gain insight, or knowledge with respect to a given decision
problem. In particular, during the analysis phase, a series of ‘what-if® investigations are used to
change patameters and, therefore, to evaluate the understanding of the problem by the decision-
maker. A generic representation of the decision problem is also desirable and this is achieved
through the interaction between data modelling and symbolic modelling. In MP models there is a
direct mapping between the sets and indices that form the decision model and the structure of the
data used to instantiate the decision model. This close coupling and physical separation of data
modelling and decision modelling leads to a number of distinct advantages for the implementation
and use of decision support systems:

® Large amounts of data are managed and maintained by database systems, which are built for
this purpose, instead of MP modelling systems.

® Decision models can be variously instantiated with the use of different data marts.
® The information used to develop the decision support system is available in databases.

® Database systems, and data marts in particular, are easily connected to a range of analytical
tools which can facilitate the analysis of optimisation results. Therefore analysis of
optimisation results is easier to achieve by using dedicated data marts, and standard database
technology.

The Decision Database

It is easily seen that for any given decision support system, data models, symbolic models, and
algorithmic tools interact. In many optimisation based DSS there exists an inherently strong
coupling of data models, symbolic models and algorithms, also called an inference engine (Shapiro,
1993). In general, one can consider the decision database as a data mart, in which the data models
provide information about the problem at hand, decision models describe the decision problem, or
the known telationships between the known information, and the algorithms generate the set of
optimal, ot near optimal “solutions” for the problem at hand. In stochastic programming
applications, the decision database may consist of three main types of information: deterministic
information (or information invariable to the uncertainty of the future), stochastic information (possible
characteristics of future uncertainty and the information that is subject to that uncertainty), as well
as the solutions (possible courses of action in the uncertain future). Further, it will include different
solutions from different solving methods for a particular problem (output results, e.g., “wait-and-
see’ scenario analysis, and ‘here-and-now’ solutions). To summarise an optimisation-based DSS is
an application-specific information systems, consisting of Database Tools, Algebraic Modelling
Tools, and Algorithmic (‘solving’) tools, with additional analytical tools which are often used to
provide further insight into the problem at hand. These additional analytical tools may consist, for
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example, of (Relational) Online Analytical Processing (R)YOLAP tools which can help an analyst
achieve a fast and descriptive overview of the data, in order to study the problem, and make
appropriate reports. In Section 4.4 we revisit some of these aspects to illustrate how this relates to
our combined SP and simulation framework.

3.2 OLAP: Multidimensional View and Datacube

Since the inception of the term OLAP (Codd et al, 1993), the technology is recognized as a
promising approach for the analysis and navigation of data warehouses and multidimensional data.
OLAP systems enable powetful decision support based on multidimensional analysis of large
amounts of summary data commonly drawn from a number of different transactional databases.
OLAP's multidimensional data model and data aggregation techniques organize and summatize
large amounts of data to facilitate quick evaluation using online analysis and graphical tools. In this
section we will discuss the data operators that we use to generate our set of numeric summary
tables corresponding to a given aggregation hierarchy.

The OLAP data are organized in multidimensional cubes containing measured values that are
characterized by a number of hierarchical dimensions. The typical operations on data cubes include
roll-up (increasing the level of aggregation), drill-down (decreasing the level of aggregation or
increasing detail) along one or more dimension hierarchies, slice-and-dice (selection and projection),
and pivot (re-orienting the multidimensional view of data). For a detail discussion on these
operations, see (Codd et al. 1993) and (Koutsoukis and Mitra, 2003).

Data warehouses and related OLAP technologies continue to receive strong interest from the
research community as well as from industry, since OLAP tools present their users with a
multidimensional perspective of the data and facilitate the writing of reports involving aggregations
along the various dimensions of the data set.

In order to build effective decision support systems in the presence of large data warehouses and
complex underlying queries, it is very important to present and process data effectively. Moreover,
decision support tools need to connect alternative modelling paradigms, artificial intelligence
methods, and database technologies with multidimensional data technologies such as OLAP. These
disciplines and enabling technologies together are applied to achieve one or more data mining tasks.

The diagram below shows how OLAP views are integrated in a decision support system. The
architecture logic is based on the IVC: from the Transactional Databases to the Analytical
Databases, and from Data to information leading to new knowledge, an OLAP viewer is used to
present and analyse raw data, analytic data and decision data.
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Figure 7 OLAP and Information Value Chain

The multidimensional approach offers a number of advantages over traditional types of database
management systems (DBMSs), including automatic application of the pre-specified aggregation
functions (automatic aggregation) (Rafanelli and Shoshani, 1990), visual querying, and good query
petformance due to the use of pre- aggregation (Gupta et al., 1995, Pedersen and Jensen, 1999).
Additionally, the dimensional approach is a natural fit for data analysis problems. To be able to
capture the complex data found, the data model for the OLAP system is able to handle irregular
dimension hierarchies that do not fit the balanced-tree hierarchies (Pedersen and Jensen, 1999). In
general, OLAP cubes are a multi-dimensional representation of data, in which each attribute of a
given data entity is considered as a separate dimension. For our purpose an OLAP data cube
consists of a lattice of cuboids each of which represents a certain level of hierarchy. The Cube’s
aggregate functions compute statistics for a given set of values within each cuboid. Table 2 shows
alternative aggregate functions, which can be grouped into three categories namely: distributive,
algebraic, and holistic (Gray, 1995).

Aggregation Function
Data Type Distributive Function | Algebraic Function Holistic Function
Set of Count, Min, Average, Median, Rank,
Numbers Max, Sum Standard Deviation Most Frequent,

Table 2 Aggregate Functions for OLAP data cube

In a traditional SQL relational database, aggregate functions and the GROUP BY operator function
only produce one out of N aggregates at a time. An OLAP data cube is an aggregate operator
which computes all N aggregates in one shot.

The ability of OLAP to support multidimensional data, makes it naturally suitable as a viewing and
analysis tool for decision support systems which are based on multistage stochastic programming
models. Indeed, as discussed in section 2, the uncertain parameters of these models as well as the
event-dependent optimum decisions are usually represented by at least two dimensions, namely the
time and the scenarios. As an example, consider the problem of generating and representing a
number of possible future prices of a set of assets for a given number of time periods. In section 4
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we desctibe how these values (analytic data) are computed by processing transactional (in our case:
market) data using scenario generators. A relational table which contains this data should have at least
the following fields, whete the first three taken together define a primary key:

®  Asset

® DPeriod

®  Scenatio
® Price

In other words, we have a price for each triplet (Asset, Period, Scenario). Using an OLAP Cube, the
data can be aggregated (rolled-up), or disaggregated (drilled-down) to obtain progtessively
summarised information or increasing detailed information respectively. This is illustrated in Figure
8 below:

Aggregate 0 - D Data Cube
|:| [Asset [Period[Scenario [Price |
[ALL JaLL |ALL ] 5.15]
Average
Asset Period|Scenario _|Price
Group by 1- D Data Cube UALL |ALL 024
Asset 2[ALL_|ALL 10.162069
3]JALL |ALL 2.4108309
Value (1 4[ALL_[ALL 4.0341134
S|ALL |ALL 9.3705672
Value 2 6[ALL_[ALL 3.7087038
T|ALL |ALL 13.445068
S8|ALL |ALL 6.0159124
9JALL [ALL 1.4141097
10JALL |ALL 0.6728426
Average
Asset |Period |Scenario |Price
Group by 2 -D Data Cube 1 ALl 021
Assetl Asset2 i -
ssetl Asoet?  ByPeriod i 2[ALL 025
Value (1 1 3JALL 0.25
Value (2 2 1|ALL 9.84
alue( 2 2[ALL 1032
2 3JALL 10.32
10 1|ALL 0.67
10 2|ALL 0.67
Average | 10 3JALL 0.67
Group by 3-D Data Cube
Assetl Asset2 By Period By Scenario Asset |Period [Scenario [ Value
1 1 1 0.21
[Val 1
alue ( i i 2 021
1 1 3 0.21
Value (2)|
10 3 898 0.727029
10 3 899 0.665327
‘ ‘ ‘ ‘ ‘ ‘ 10 3 900 0.670015
Average
Figure 8 OLAP cuboids

The 0-D cube is obtained by rolling up all three dimensions Asset, Period and Scenario. Using
Average as the aggregate function, we obtain a single scalar which is the “average price of all period,
of all scenarios and for all assets”. By drilling down this cube along one dimension, we obtain 1-D
cubes (one per dimension) which in our example contain:

® The average asset price for each asset calculated over all periods and scenarios
® The average asset price for each period calculated over all assets and scenarios

® The average asset price for each scenario calculated over all assets and periods
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By applying the drill down procedure to a 1D cuboid, we obtain a 2D cuboid and so on, until we
expand all dimensions and obtain the full detailed data (in this case, a 3D cuboid). Besides roll-up
and drill down, the slice and dice operations also enable OLAP users to create cuboids of smaller
dimensions. Slicing into one dimension is very much like drilling one level down into that
dimension but the number of entries displayed is limited to that specified in the slice command. A
dice operation is like a slice on more than one dimension. Slicing and dicing therefore lead to a view
in which only a subset of the data is shown. When the data is represented in 1D or 2D cuboids, it
can also be visualised using 2D or 3D graphs. For instance, the 2D cuboid obtained by slicing into
the asset dimension (selecting the data pertaining to one single asset) is shown in Figure 9 below.
The 3D graph represents the price for a given asset in all time periods and for all scenarios. Some
of the scenario data paths are highlighted.

VALUES

SCENARIOS

PERIODS

Figure 9 OLAP Datacube of asset price “datapaths”

A 2D graph with multiple series can also be used to display a 2D cuboid. For instance, the figure
below shows the transactional (market) data used to generate the scenarios used in the previous
examples.
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Figure 10: Time Series View: 10 Assets for the 65 time periods:
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4 Integrating Scenario Generation and SP Software Tools

4.1 Scenario Trees.

Two stage stochastic programs with recourse (see Section 2) when stated explicitly take the form of
large linear programs of a special structure which capture the realisations of the random parameters.
In the two-stage case, let represent ¢ the vector of all random parameters in a model. The

probability distribution of & is assumed to be discrete with a finite number of realisations &, . The
probability of each realisation is defined as :

K
py =P(,) fork=1.K where p, 20 and ) p, =1
k=1

For multistage Stochastic Programming one assumes that the random vector & follow a stochastic
process &, over the planning hotizon. If the process is assumed to be discrete, with Probability

P(&,) the uncertainty can be represented through a multilevel event tree which defines the

possible sequence of realizations also known as data paths. In general these are called scenarios,
over the whole planning horizon, see Figure 12.
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Figure 11 Multistage Tree
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Levels in the tree are associated to decision stages. In particular if we denote N, the set of nodes at
the 7 the level, then each node #» € IN;, represents a particular realization sequence of the data

process and it can be thought as a particular state of the system at a given time. A probability T, can
be associated with each node # at level #such that:

m,=pl & 10EY D, =1 7,>0 =2.T

neN,

Hence, arcs in the tree represent the probability distribution of &

The random data representing the uncertainty of the future are expressed in stochastic
programming by a scenario tree. In the two stage stochastic programmes the structure of the tree
encapsulates the first and second stage phases. The beginning of the planning horizon is
represented by a sole root node and extends lineatly to nodes until the end of the first stage. Each
level in the first stage is represented by a single node since the states of the world during the first
stage time periods are known with certainty. Moving to the second stage the tree branches into
nodes only at level t=k+1 as shown in the figure below. From each of these nodes discrete flat
scenarios commence with nodes at each time period an optimum decision has to be taken until
level t=T. This means that the scenatio tree is nothing else but a fan of individual scenarios
®O={W, ..., O} which occur with probabilities p;=P (0 5) V s.

» . *r—————0
& & *r——— — —e o2
@ # *r——— — —g =2
- * -————— ™
! . *——— — —p T
- - ——— g =K
Second Stage
| ] 1 1 ] ] 1 ]
=1 t=2 =k t=k+1 =k+2 =k+3 =k+4 =T

Figure 12: Scenario Tree for Two-stage Stochastic Programming

A representative scenatio tree corresponding to the multistage stochastic programming formulation
can be visualised as a tree starting similarly with the previous case with a sole root node at time 0
and branches into a finite number of nodes at level 1. This branching continues for all stages of the
problem until level T. It is worth pointing out that although a node can have a finite number of
descendants, a descendant could only have one immediate predecessor. A multistage scenario tree is
considered to be balanced if the number of all descendants of the nodes at all stages 0<t<T is
equal.
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Figure 13 : Multistage tree

The decision on the number of the stages, time periods and the branching scheme is a very
important initial step for a “good” tepresentation of the uncertainty. The distinction between stages
and time periods is essential because it is always possible in a specific application the number of the
time periods to be greater than the corresponding nodes. Thus between two nodes, more than two
time periods may exist. As a result in the two-stage stochastic progtam the stages ate fixed to two
but the decision on the number of the time periods for the recourse actions remains to be
identified. In general, stages and time periods relate to points in time, that is, (in the planning
hortizon) that are important for the decision maker. The expiration date of an option contract ot the
dates a pension fund has to pay the contributions to the participants are examples of such
situations. For a portfolio manager who wishes to rebalance his portfolio quattetly and has a
planning horizon of twelve months, the problem translates into a multistage stochastic program
with four decision stages each made of three time petiods.

4.2 Scenario Generation

As discussed in the previous section, the data for a stochastic optimisation model is provided in the
form of scenario trees; these ate created using scenario generation methods which may be very
specific to the domain of application (see section 2).

A major focus of scenario generation is to create a tree-structure of scenatios that “best”
approximates a given undetlying distribution of the random parameters. The ctiterion for choosing
the “best” approximation is usually based on some measure which quantifies the distance of the
generated scenario tree from the underlying distribution.

In general, a scenatio generation procedure (for multistage problems) involves some or all the
following steps:

® Assumption of a model which explains the behaviour of the random parameters (for
instance, econometric models for intetrest rates, etc.)
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¢ Estimation/Calibration of parameters for the chosen model which uses historical

data/subjective view.

® Generation of data trajectories paths according to the chosen model or discretisation of the
distributions using approximation of statistical properties.

® Conditional sampling of the trajectories so that a scenario tree with the desired properties

can be constructed

In many cases, practitioners also apply some reduction techniques to the resulting scenario tree
to provide model instances which can be tealistically optimised by the available computational
resources. Table 3 shows the most common techniques which may be adopted for the different

steps defined above.

Purpose

Methods

Generation of data trajectories

Econometric Models and Time series:

o Autoregressive Models : AR(p)

o Moving Average Models : MA(q)

o  Autoregressive Moving Average Models : ARMA (p,q)

O Generalised Autoregressive Conditional Heteroscedasticity :
GARCH (p,q)

Vector Auto Regressive models: VAR

o  Bayesian VAR

o0 Reduced Rank Regression

e}

Diffusion Processes :
o Wiener Processes (Brownian Motion)
o Generalised Wiener Processes (Brownian motion with drift)

Other methods:
O Neural networks

Discretisation

Statistical Approximation

o  Property Matching (Hoyland and Wallace, 2001)
o Moment Matching (Hoyland et al, 2003)

o Non parametric methods

Sampling

o Random sampling
o  Stratified Sampling
o Bootstrapping

Tree construction and

o  Optimal discretisation (Pflug and Hochreiter, 2003)

. . o Barycentric Approximation (Frauendorfer 1996)
Conditional Sampling o Sequential Clustering (Dupacova et. al, 2001)
Reduction o  Scenatio Reduction (Dupacova et al., 2003)

Internal Sampling

o  Stochastic Decomposition (Higle and Sen 1996)

Sochastic Quasi-gradient (Ermoliev 1988)

o  EVPI-based Importance Sampling (Dempster and Thomson
1999)

e}

Table 3 Techniques used in scenario generation
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As an alternative to generating scenarios which ate then used to instantiate large deterministic
equivalent models, Internal Sampling techniques are methods for solving stochastic programming
problems which sample from the underlying distributions duting the solution procedute.

4.3 Integrating Scenarios and Decision Models

We introduced the concept of scenatios and noted that the scenatio tree within SP serves two
different purposes: (i) define the model uncertainty, (i) specify the algebraic structure of the
decision variables and constraints.

A scenatio generator ¢ captures in a procedural form a domain-specific model of randomness. In
patticular it uses historical information, an event tree structure and some other specification
parameters. We can thus separate the main groups of parameters as H : History, =z : Event Tree,
0 : Remaining Parameters. The set of scenarios & is then seen as the collection of scenarios which
are output by the generation procedure:

¢o(H,7,0) = =

In the algebraic form of the SP model we also need to specify the ‘“variable and constraint’ tree
structure, which we label as 7. Thus using the extended AML we provide a specification of 7 in the
SP model through the #ree declaration.

For consistency, of course, we need the two trees to be congruent. In other words we need to
ensure that the event tree structure 7 used by the special purpose scenatio generator is ‘compatible’
with the 7 specified in the SP model (Valente and Mitra. 2001). The requirement for scenatio
generator parameter passing and tree consistency conditions are illustrated in Figure 15. When a
special purpose scenario generator is connected to SPInE, the two trees 7 and 7 ate compared for
consistency. The scenatio generator then creates the set of scenarios and the associated probabilities

plw).
Alternatively, the modelling system can “import” the tree structure and allocate variables and
constraints accordingly. This automatically avoids the problem of tree consistency.

. o ¢ : Scenario tree structure
Consistency condition: 1’ : SP model tree structure
T - ,.c’ ¢ ' Model of randomness
- 9 : Other parameters of ¢
H : Historical data
T\ E : Set of scenarios
6
\ J SP recourse
Model of SUE e (reqr:i?(ej: |tree

:'" T randomness s’e_t' structure):
b PO TH)=% R
| J
Vo N
| H .
R — |

Figure 14 SG Overview Scheme

The issues involved in the integration of scenario generators with a modelling system such as
SPInE can be summarised as follows:

® Data consistency : The data exchange between SG and SP Modelling System should be
consistent and also should provide a well defined structure of the data tree. The types and
the dimension of the information contained should be compact and functional.
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¢ Data communication: a common format for the representation of the data trees has to be
defined. A standard method of generation and data flows between the objects has to be
identified as well. Independently from the data used the organisation of the information
should keep the same format in a way that make the transmission easy and quick to analyse.

¢ Data viewing, Modelling system and SG interoperability: The objects involved in the
optimisation system should be independent, but at the same time should have a solid data
communication interface: this enables for instance the interoperability of different SGs. Data
viewing plays an important role in the solution process: data analysis and data reliability are
the main objectives to achieve.

¢ Standard interface: The data interface for the presentation of the scenarios to the modelling
system is based on ODBC connections. This allows the scenario generator to store the
output in virtually any type of database (including text files). The flexible interface with
scenario generators and the ability to create in-sample scenarios for SP model optimisation
and out-of-sample scenarios for simulation make the connection to external generators a
valuable feature of stochastic modelling systems.

Taking into account the above requirements we are creating a library of scenario generators
based on the techniques illustrated in Table 3. The availability of such a library makes it possible
to formulate within the same modelling environment stochastic programming models which
cover different application domains (Finance, Supply Chain, Energy). A well defined interface of
SG libary enables other practitioners to add their own scenario generators to the system, leading
to a very versatile platform for the investigation of SP problems (see also Di Domenica et al.

2004).

4.4 System overview

We discuss the development of a modelling and analysis environment which combines MDDB,
OLAP, procedural languages and declarative modelling languages and suppotts the modeller in the
automatic generation of multi-period stochastic models and the browsing of data and solutions
across different time stages and over different scenarios. The system is designed to integrate
Databases, OLAP viewers, Modelling Systems which include Scenario Generation, algebraic
description of SPs, and SP Optimisation Solvers and simulation within a single application system.
The system components are also referred to objects which are designed and specified to a common
standatd such that, where necessary, these can be replaced by alternative components. For example
we use FortMP solver but the solver object is defined in such a way that it can be easily replaced by
other leading industry solvers such as CPLEX or XPRESS.
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Figure 15 System Overview

Data flow through the system and interoperability present considerable design challenges. In the
diagram above the relations and data flows of the different objects in the system are illustrated. The
database is organised in three main sections: transactional data, analytic model data, decision data
(see section 3). Scenario Generator and the software tools (SP Optimisation and OLAP) have all a
specific role within the system. Initially the transactional data are analysed to create analytic data
which can be viewed by the user through OLAP technology: a suitable interface is created to
support the query and the analysis. The historical data is processed into an analytic data mart which
is used by the Scenario Generator. The resulting scenario tree data is combined with the algebraic
model description to instantiate an SP decision model. The SP solver processes the machine
readable instance of the SP model created in external SMPS or in internal SIR format and the
results are then put back into the analytic decision database. This step is followed by the results
evaluation through simulation runs or other diagnostic tests.
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SG is used to create scenarios for optimisation as well as to create scenarios for simulation.
Simulation is very useful and can be displayed for different purposes including :

® Evaluation of the stability (robustness) of a SP solution
® Hvaluation of the stability of the SG itself (Pflug and Hochreiter, 2003)

® Quantification of the risk associated with a given decision.

The system we developed shows that the integration between these objects is possible. In the next
section a case study explains step by step the solution process and stability tests.

There is another user perspective of the software environment which comprises of four interacting
functional modules and the resulting system architecture is displayed in figure below.

Also see (Kutsoukis et al. 2001)

[ Function(s) DSS Process Software Tool User Interaction |
Model Execution . ) Solver: e
. Computational Soluti iy
and Solving omputational-Solution Optimiser(FortSP)
.............................................................. Lower
Modelling: Symbolic (Decision) Modelling Modelling
e.g. Forecast i
Opti?nisation (SP) Scenario Generation Environment(SPInE)
Data exploration: Analytic Database/Data Modelling Database System
Roll-Up
Drill Down .
What if Interface for the Analysis of Data, Ilrcjtle r(f;al(j?.EIS ,
Graphs Decision Models, and Solutions €9 o Higher

Figure 16 DSS, Software and User Interaction

The functionalities of the four modules are explained below.
External Interface: This module enables the user to query the system.

Information System :

®  Database Systerr: it represents the repository of input data for the optimisation and evaluation
models. The DB system also maintains and analyses the solutions of the SP models. More
specifically the DB system is split into two parts, namely:

a) Data Tables: contain all the input data tables which determine the instances of the
problem generated by the Modelling System. Similarly, the output data tables contain the
solutions supplied by the SP Optimisation System; all these tables can be viewed through
OLAP technology in the IS system. In addition to model data they include optimisation
results and simulation results

b)  Procedures: In order to support SP modellers in defining the models and scenarios, tools
such as non-linear solver for parameter estimation and simulators for sampling are
included. Furthermore, it contains the following procedures for the communication
between different modules:

o Procedures for generating scenarios.
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o Procedures for building the deterministic equivalent model;

o Procedures for analysing, browsing and representing the results of the
Optimisation Modules.

Modelling Systenr: We use SPInE (Stochastic Programming Integrated Environment) (Messina and
Mitra 1997; Valente et al. 2004) as modelling tool for SP. In SPInE the user can build his own
library of models which can be used for studying and analysing different instances of the problem.
SPInE brings together the Scenario Generator output tree and the algebraic model. The SP model
can be created in external SMPS format, or internal SIR format and an XML realisation is under
consideration. SPInE aims to facilitate model construction, model investigation, solution reporting
and overall browsing of a stochastic programming application.

SP Optimisation Systenr. The system provides computational solution of the SP problems generated
by the Modelling System. It includes presolving procedures and optimisation algorithms for the
solution of large scale stochastic LP/ILP problems. The SP-optimisation suite uses the embedded
solver FortSP (Mitra et al. 2004) to process a range of SP models.
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5 A Case Study

5.1 The experimental set up

We present a case study involving a small prototype model; the purpose of the case study is to
illustrate the combined paradigm of data modelling, scenario generation, decision making under
uncertainty via SP modelling and result evaluation using SPInE.

We describe an Asset Liability Management (ALM) model in section 5.2; in section 5.3 we outline a
multistage extension of Moment Matching approximation, which is used for generating scenarios
for a two-stage and multistage SP model. We then consider the results of the decision model
obtained by computing the solutions of the Expected Value, Here-and-Now ( for both two-stage
and multistage formulation of the ALM problem). These first stage decisions are then fixed to
create simulation runs for the Wait and See model and the frequency distribution of the objective
solution values are computed. The analysis of results and the evaluation step through simulation
cover the following aspects. In section 5.4 we present the stochastic measures, in section 5.5 we
discuss the “In sample stability” and in section 5.6 the risk measures (Var and CVar) are presented.

5.2 The Decision Model

The finance industry, rather belatedly, has embraced the Markowitz mean-variance model
(Markowitz 1952; see also Jobst et al. 2001) for portfolio planning and asset/liability management
applications. A major criticism of this approach (Luenberger 1997) is that it is a single period, static
model. Carino and Turner (Carino and Turner 1997) illustrate the superiority of Stochastic
Programming dynamic asset allocation models, over the mean-variance approach. In fact, active
portfolio management breaks away from myopic static decisions and implies revisiting the strategy,
and re-balancing of the portfolio positions as financial conditions change. We use an ALM
multistage Stochastic Programming model with downside risk constraints (Kyriakis 2001).

Algebraic formulation
The ALM problem:

An investor faces the problem of creating a portfolio allocating assets out of a universe of I assets.
Each asset is charactetised by a price, which is (the only) random variable. The possible future
prices are represented by an event tree. The goal of the investor is to maximise the portfolio wealth
at the end of the time horizon T. He needs to take into account future obligations (liabilities). Asset
buying and selling decisions are made, and each trade has an associated transaction cost. The
deviation of the portfolio value from a predefined target is taken as measure of the risk. In each
time stage the investor can decide the amount of assets to buy, sell and hold in the portfolio.

We formulate this problem as a two-stage as well as a multistage stochastic program with recourse,
(Messina et al. 1997):

Sets and indices:

T denotes the number of time period in the time horizon
Assets is the set of assets in our universe, where | Assets| =1
Scenarios is the set of scenarios, where | Seenarios| = S¢
t=1.T denote time periods,
i=1.1 denote an asset,
s=1.5¢ indicates a scenatio.
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Parameters:

Pricei 1€ Assets,t=1..T, s € Scenarios is the price of assetiin period t, for scenario s
Ds s € Scenarios is the weight (probability) associated to scenario s
L, 20 t=1..T'is the expected liability at time period t
F, 20 t=1..T'is the funding available in time petiod t
A >0 t=7..T'is the predefined target for time petiod t
HO; 20 1€ Assers is the initial composition of the portfolio
R 20 is the maximum deviation from the target accepted by the investor (in fraction)
220 is the transaction cost rate

Decision variables:
His 201 e Assets t=1..1,s € Scenarios is the amount of assets of type i held in time period t under scenario s
Bis 201 € Assers t=1."T,s € Scenarios is the amount of assets of type i bought in time petiod t under scenatio s

Sis 201 € Assets,t=1..T,s € Scenarios is the amount of assets of type i sold in time petiod t under scenario s

Objective function:
Maximise the expected value of the final portfolio wealth:

Sc 1
max z D, z price H
s=1 i=1
Subyect to:
Asset holding constraints:
H, = HO, + B, -S,, t=11i=1.1,s=1..Sc
Hits = Hit—ls + Bits - Sits t=2.T i= 1--1,5 =1..Sc
Fund Balance constraints:
I I
(1 - g)lZ:I: priceitsSits - Lt + Ft = (1 + g)lZ:I: priceitsBits t — 1..T,S — 1..SC
Downside risk constraints:
I
A - price H, <AR t=2.T,s=1.5c

i=1

To complete the formulation we add to this a set of non-anticipativity constraints, which depend
on the event tree structure.
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5.3 Scenario Generation

Hoyland et al. (2003) have proposed the Moment Matching method, in which a discrete
distribution is constructed to fit the first four marginal moments of the probability distribution of a
given random vector, while maintaining the correlations between the vector’s elements. The
authors assume that the correlation matrix and the first four marginal moments (Mean, Variance,
Skewness, Kurtosis) are supplied by the decision maker. The structure of the algorithm is presented
below in a summary form: (i) Generate n discrete univatiate random vatiables, each satisfying a
specification for the first four moments. (ii) Transform them so that the resulting random vector is
consistent with the given correlation matrix. The transformation will distort the marginal moments
of higher than second order. Hence, it is needed to start out with a different set of higher moments,
so that the right ones can be obtained. The procedure would lead to the desired values for the
correlations and the marginal moments if the generated univariate random variables were
independent. This is, however, true only when the number of outcomes goes to infinity and all the
scenarios are equally probable. With a limited number of outcomes, and possibly distinct
probabilities, the marginal moments and the correlations will therefore not fully match the
specifications.

We extend the Moment Matching method to create multistage scenario trees. According to the
chosen scenario tree structure, a number of samples for the next stage is generated using the
Moment Matching code provided by Hoyland et al. (2003). Each new sample is then added to the
historical data, the moments recalculated and a set of new samples generated and added as a sub-
tree of the current node. The process is applied recursively for the number of stages required. The
data manipulation procedures use a hierarchical data structure and the procedutes for input/output
are designed in a way that OLAP viewer (see section 3) can easily browse.

5.4 Optimisation and Stochastic Measures

Given the ALM model and a set of 2500 scenarios for the asset prices generated using the method
desctibed in section 5.3, we use SPInE to generate and solve the three related models Here-and-
Now (HN), Wait-and-See (WS) and Expected Value (EV). Using the decisions obtained for EV,
SPInE also computes the Expectation of the Expected Value (EEV) problem over all the
scenarios. The optimum objective function value for these models are set out below :

e WS:67189.4
e HN:0613544
o EV: 54846

e EEV:60567.2

These are then used to compute the stochastic measures Expected Value of Perfect Information
(EVPI) and Value of Stochastic Solution (VSS). These measures are designed to indicate whether or
not randomness has much impact on the optimum decisions computed for the given problem :

e EVPI = (WS-HN) = 5834.91774172
o VSS = (HN-EEV) = 787.229642443

These results, however, are based at the assumption that the scenario tree, which is used adequately
and accurately represents the model’s uncertainty. Simulation is used to vetify this assumption and
test the reliability of the scenario generation method in terms of stability. Other approaches such as
the contamination technique desctibed in (Dupacova et. al 2000) are also used to perform an
analysis of the robustness of the optimal value of a stochastic programming model.
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5.5 Simulation: Stability of the scenario generation
Stability

For a scenario-generation method there are two desirable aspects which need consideration. Since
the first stage Here-and-Now decisions are influenced by the randomness of the parameter, the first
aspect is in-sample stability; that is, if we generate several trees (with the same input) and solve the
stochastic optimisation problem with these trees, we should get neatly the same optimal values. The
second aspect is that the scenario tree should not introduce any bias, compared to the true solution
(out-of-sample stability).

In- sample stability

In sample stability (see Kaut and Wallace, 2003) therefore assures the “relative robustness” of a
scenatio generation method. The main purpose of a scenario generator is to provide a discrete
approximation of a given stochastic process (the model of randomness). If the number of scenarios
is too small, however, the corresponding scenario tree may not be able to represent the undetlying
random process appropriately, and different scenario trees of the same size may lead to very
different solutions. The in-sample stability is measured as the distance of the objective functions
obtained by solving the same problem with different scenario trees (of the same size) generated
with the same method. In other words, the scenario generation method is compared with itself. In
our case study we decided to adopt a three-stage tree with fifty scenatios in each stage.
Subsequently we catried out one hundred simulation runs in order to measure the stability. In each
simulation, we generate a scenario tree and use SPInE to solve the relating model instance. The
distribution of the objectives obtained by the simulation is used to extract the following measures

of stability.

|Stability measured by : Value

Min 57344.52844
Max 60055.20384
Range 2710.675393
Mean 59419.04298
Stdev 492.7932547|
Relative Max Deviation 4.56%
Relative Mean Deviation 0.83%

Table 4 Stability Table

® Min : Min represents the minimum objective value of all the simulation runs (in our case

100)
® Max : Max represents the maximum objective value of all the simulation runs

® Range : The value “Range” is the difference between Max and Min and represent the
maximum spread between all the runs

® Mean: We simply computed the Mean of all the objective values.
® Stdev : Stdev is the Standard Deviation of all the objective values

® Relative Max Deviation : this measure is expressed by the fraction between the Range and

Range
the Mean. In other words RMD = g
Mean
¢ Relative Mean Deviation : this measure is expressed by the fraction between the Standard
Stdev
Deviation and the Mean. In other words RMnD =
Mean
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We observe that the value given by the RMnD is less than 1%, therefore can assume that the
scenario generation method used in this study is stable. Use of larger samples in the simulation
runs, will provide more reliable values of stability measures with a smaller error interval.

5.6 Simulation: Computation of risk measures

Simulation is also used to evaluate the outcome of a given decision. Another set of simulation runs
are therefore undertaken to analyse the risk profile (measured in terms of VaR, CvaR and variance)
of three sets of decisions for our ALM model; these decisions are obtained by solving: (i) The HN
optimum decision (multistage), (i) The HN optimum decision (twostage), (ii)The EV optimum
decision.

We use a scenario tree with 2.500 scenarios to compute the three solutions above. Subsequently we
generate a larger tree with 10.000 scenarios to simulate their performance and obtain the
distributions of the objective function values for each set of stage decisions.

In Table 5 we set out the results obtained by the second set of simulations runs which use 10.000
scenarios:

EV HN (MS) HN (TS)

VaR 44537.35 48370.01  48358.62
CvaR 41419.95 45054.09  45065.22
Variance 113806893.41 52421392.19 52374316.20
Mean 60798.51 61413.73  61413.96

Table 5 Simulation Results

e EV: Expected Value Problem
e HN (MS) : Here-and-Now Problem Multistage Scenario tree
e HN (TS) : Here-and-Now Problem Two-stage Scenario tree

The Table 10 displays the summary of each run: The distribution of the objective function values
for the three sets of decisions are shown in figure 18.
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Figure 17 EV, HN(MS) and HN(TS)
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It is easily seen that the SP approach provides solutions which are much more robust than those
obtained by deterministic EV approach. Indeed the variance is almost half, while in terms of VaR
and Cvar, the HN solutions outperform the EV solution by about 10%.

6 Discussions and Conclusions

The success of Linear Programming and Mixed Integer Programming has in turn fuelled
considerable interest in the study of Stochastic Programming and more recently Stochastic Mixed
Integer Programming. (SMIP). SP has wide ranging applications in situations where uncertainty and
risk are taken into consideration in the planning process.

A natural evolution of the SP and SMIP models ate to bring together (optimum) decision making
with simulation evaluation. Our future research focus is therefore to develop modelling and
solution environments (Valente et al 2004, Poojari et al 2004) which enable the problem owners to
apply a “decision engine” with which they can study “hedged” decisions and “risk” decisions under
conditions of uncertainty. For instance see Dempster (2003) and Ziemba et al. (1998)

There is thus considerable interest and growing adoption of SP as an important decision making
tool. In this paper we have taken an integrated view of SP with data and information modelling as
well as simulation modelling. Although we use well established modelling and solution components
in our system, our approach is highly innovative, since we bring a completely new perspective to
the entire modelling process.

Our case study is carefully chosen and underpins our belief that ex ante decision modelling should
be closely coupled with ex post simulation modelling as this supports the decision maker (problem
owner) to gain more confidence in the modelling process. The connection to data and information
modelling is equally important, since this enables the problem owner to extend systems into an
embedded application of “business analytics”.

The system architecture described in this paper is “desktop’ oriented and uses well defined internal
system components which incorporates modelling language, scenario generation, data interchange.

The emerging trend is towards open architecture of web services (Valente et al. 2004). The
advantage of this approach is that “best of breed” established components developed by different
researchers and developers can be connected together to rapidly create proof of concept quality
applications.
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Appendix A: SP Model Definition and Stochastic Measures

Here and Now Problems

The formulation of the classical two-stage SP model with recourse is as follows:

Z = mincx + Q(x)
subject to Ax=b

x>0

where :

Q(x) =min E [g(w)y(w)]
subject to D(w)y(w)=h(w)+ B(w)x

y(w)=0
we Q

The matrix 4 and the vector & are known with certainty. The function Q(x, @) is a non-linear term
which is referred to as the recourse function. The technology matrix B(@), the recourse matrix
D(@), the right-hand side vector 4(@), and the vector of objective function coefficients g(@) of this
linear program may be random. For a given first stage decision x, the corresponding recourse
actions_y(@) are obtained by solving the sub-problem associated with the recourse function Q(x).

As the future unfolds in several sequential steps and subsequent recourse actions are taken, one
deals with the generalisation of the two-stage recourse problem, known as multistage stochastic
programming problem with recourse. A decision made in stage t should take into account all future
realisations of the random parameters and such decision only affects the remaining decisions in
stages t+1 ... T. In Stochastic Programming this concept is known as non-anticipativity. The
general formulation of a multistage recourse problem is set out in the equations below:

Z,,x =min { ox + Eg [nzinczxz +E: [rrin@x} tot Ee e e HEHCTXT ﬂ}

X1

subject to:
A,y =b,
A+ Ay, =0,
A+ Ay, + Ay, =0,
Appe,+ 0 Apyx, + Ayyxes + + Ay =by
0, <x,<u,;

whete: t =1,...,T represents the stages in the planning hotizon and the vectors:

E=(b,e,A,,.A) Viel2,..,T]
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are random vectors on a probability space (€2, 5, P).

Stochastic Measures

It can be shown that the three objective function values Zggy, Zun, Zws are connected by the
following ordered relationship:

Z, <Z,<Z

ws HN — “EEV
The inequality:
Zin S Zppy

can be argued in the following way: any feasible solution of the average value approximation is
already considered in the Here and Now model, thetefore the optimal Here and Now objective
must be better.

The value of the stochastic solution (VSS)

The difference between these two solutions defines the Value of the Stochastic Solution (VSS):
VSS=Z,., —Z,,

This is a measure of how much can be saved by implementing the (computationally expensive)
Here and Now solution as opposed to the deterministic expected value solution. The practical
computation of VSS is strictly related to the approach used in the computation of Zggy-.

The expected value of perfect information (EVPI)

Another important index is represented by the Expected Value of Perfect Information (EVPI):
EVPI =7, —Zy,

This property of stochastic optimisation problems is interpreted as the expected value of the
amount the decision maker is willing to pay to have perfect information (i.e. knowledge) about the
future scenarios. A relatively small EVPI indicates that better forecasts will not lead to much
improvement; a relatively large EVPI means that incomplete information about the future may
prove costly.

Bounds on EVPI and VSS
Some useful bounds on the EVPI and VSS ate presented below:
O<SEVPI<Z, —Z,, <Zyyw —Zy,

0SVSS < Zy —Zy1

These can help in estimating the relative benefit of implementing the computationally costly
Stochastic Programming solution, as opposed to approximate solutions obtained by processing the
Expected Value LP problem.
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