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Abstract 
We study the hydrodynamics of wedge, knuckle and box cross-sectional profiles undergoing transient 

extreme motions, in particular forced entry and exit at constant velocity or acceleration. Extensive data 

for the forces, pressures and free-surface profiles is generated by an extension of a fully-nonlinear 

boundary-integral method. The code is thoroughly checked by altering the time step and particle 

spacing on the bodies and Lagrangian free-surface markers, and, for the wedge, checking self-similarity 
for the infinite Froude number (gravity free) constant velocity entry. Difficulties with inviscid flow 

around sharp corners are discussed. Results for exit are of particular interest since no zero-gravity 

approximation is valid and this precludes application of existing slamming theories in reverse. Whilst 

entry generally gives larger free-surface motions (spray jets), pressures and hence forces, calculation of 

exit is needed for the velocity of subsequent slamming and so is of practical interest too. 

These results are compared with an approximate analytical model, based on Schwarz-Christoffel 

transformations to calculate the infinite-frequency added mass of the cross-section below the mean 

water line. For constant acceleration of both entry and exit, the analytical theory is good during the 

early stages of motion. Later, the assumption of an undisturbed mean water level is clearly violated; the 

exact calculations show a large amount of draw-down (up-rise), the free-surface making contact with 

the body well below (above) the mean water level. We therefore examine the effect of reducing 

(increasing) the submerged body volume to take account of this, which prolongs the agreement between 

the results considerably and therefore might be used to improve practical calculation of extreme ship 

motions using existing strip theory codes. 

Full sets of numerical data input/output are provided in the appendices, together with some 

mathematical details. We also speculate on the possible application of John's equation to wedge entry. 
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Introduction 

Chapter 1 Introduction 

Definition of problem and a discussion of previous studies. 

1.0 Overview 

The problem of a body executing large motions near or through a free surface is extremely 

challenging mathematically: a boundary-value problem can be formulated under the usual assumptions 

of incompressibility and irrotationality (see 1.1 - 1.3), but the non-linear conditions must be applied on 
the free surface whose position is not known a priori and must be calculated as part of the problem. 
This suggests some simplification to the problem might be desirable; the usual formulation for floating 

body hydrodynamics is given in section 1.4, primarily to show how the infinite frequency added mass is 

related to that of a body in unbounded fluid which is used in the analytical theory of Chapter 3. 

For the extreme motions considered here, linearisation is, of course, of very limited validity in general. 
Section 1.5 therefore reviews non-linear theories of waves (without floating bodies present) which sets 

the present numerical work in mathematical and historical context. The wave loading from extreme 

events is reviewed in sections 1.6 and 1.7 where slamming loads are especially considered. 

1.1 Statement of the problem 

The fluid is assumed to be irrotational 

Vxv=O 

and so we can assume that the velocity vector can be represented by the gradient of a scalar velocity 

potential 0 which will depend on the space co-ordinates and time. We define 

V= v4) 

We also assume the fluid is incompressible, which requires 

V. v=O 
Combining these results we obtain Laplace's equation 

V10=0 

The problems considered in this thesis are all two-dimensional in the vertical x-y plane. Thus if the 

velocity vector 

v= u(x, y)i + v(x, Y) i 

then the incompressibility condition states 
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V'v=-+-=0 
äx ay 

This can be satisfied automatically if we define 

u= and v=- where yr is a suitably smooth scalar function. 

Then O v= 
au 

+_a-=0, so the fluid velocity can be written as 
0-Y 0-Y & ay 

V=! -j=Vx 
ay ax 

where yg = (0,0, p) is the stream function. 

We may now define the complex potential as 

R(z) =ý+ 141 

2 

where z=x+ iy is the complex form of the space co-ordinates, 4 is the velocity potential and y is the 

stream function. 

The two velocity components can be obtained by differentiating either of the real functions 0 or y, so 

it follows that 

u=c= andv= =- 

these are known as the Cauchy-Riemann equations. 

So the complex potential ß is an analytic function of the complex variable z, and its derivative gives 

the complex conjugate of the fluid velocity, 

=u-iv. dz 

1.2 Nature of added mass in unbounded fluid 
Physically we interpret the added mass as representing the amount of fluid accelerated by a body 

moving through the fluid domain. Contrary to real masses, where the mass m is independent of the 

direction of the acceleration, the added mass will change with the body motion direction. Consider the 

added mass as a volume of fluid particles that are accelerated with the body. Although in reality the 

particles will be accelerated to varying degrees dependent on their proximity to the body, we can think 

of the added mass to be a weighted average of the entire fluid mass. This is made precise by considering 

the relationship between the added mass and the kinetic energy of the fluid. We define the added mass 

(see e. g. Newman (1977)) as 
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500 
ma=Pfý dS 

s 

then from the divergence theorem we can write 

p 
J4 ds = PJJv-(4V4)dV =P 

Jj(V4 
. V4)dV 

SVV 

since V2 = 0. We assume that 4 vanishes sufficiently quickly at infinity for the integrals to exist. 

The kinetic energy of the fluid is 

T= 
2pJJ(UV4)-(LN4)dV= 

2PU2 
JJvO"V4dV 

Vv 

that is 

T=2 U2ma 

where U is the body velocity. 

An additional property of the added mass is its relation to the dipole moment of the body which is the 

leading order term in the far field. This important fact is demonstrated in Appendix B, also see Newman 

(1977), and used in Chapter 3. 

1.3 Boundary value problem 
The situation we first consider may be depicted as in Figure 1.1 

P=Po 

V2C=0 

=0 an 

yý 

Y 
, ............... 

y= 70, t) 

Figure 1.1 Unbounded ideal fluid and the boundary conditions 

The field equation is Laplace's equation 
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2 (1.1) 

which we must solve in the region -oo <y< q(x, t). For simplicity in this section, we assume that rl is 

a single-valued function of x, i. e. we preclude overturning free-surfaces here. 

On the seabed we have a fixed boundary condition on y= -h or we assume that the fluid velocity 

tends to zero as y- -oo, that is 

=0 on y= -h or 
an 

0ý 0 as y -+ -oo. (1.2) 

To solve for 4 and so for v requires two boundary conditions linking 4 and il at the free surface. 

Using Bernoulli's equation for unsteady flow, we can state 

at 
P° +2 (Vý)Z + gy = F(t) on y= 71(x, 1) 

where po is constant atmospheric pressure taken as our zero reference i. e. po = 0. If we define a new 

velocity potential 

r 
dý _- 

JF(i)dt 

noting that the velocities are unaffected :v= Oc = V4 , then we obtain 

1.3 
+2(V+)2 +gy =0 on y= 9(x, t) 

This is the dynamic boundary condition. 

We note that the free surface moves with the fluid and any particle in the free-surface will remain in the 

free-surface for all time t>0. This can be stated as 

D 
Dt 

{Y - q(X, ý)} =0 

that is 

=0 on y= il(x, t) 
(1.4) 

0a cäar 
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This is the kinematic boundary condition. 

Equations (1.1), (1.2), (1.3) and (1.4) combined with a suitable far field condition constitute a boundary 

value problem for the velocity potential D. These boundary conditions are applied to the function 

y= 17(x, 1) and require non-linear solutions. To simplify the task of solving the boundary-value 

problem, ship hydrodynamicists usually linearise the boundary conditions as follows. 

If we assume that both the amplitude and wavelength are small in comparison with the depth of the fluid 

then we may linearise the boundary conditions by taking Irll, lvrll and IO(DI to be small. We then 

retain linear terms and discard all quadratic terms and higher, reducing the conditions to 

+g-n=0 on y=0 
ýý 5ý 

and 

00 
- =0 on =O 

(1.6) 

We can eliminate the surface elevation from (1.5) and (1.6) to obtain a single mixed boundary condition 

az(D OD (1.7) 
ý2 

+g-=0ony=0 

Hence, the linearised boundary value problem is defined by (1.1), (1.2), (1.7) and a suitable radiation 

condition (here 
-- 

X(D -+ 0 as x -* co ): 
-=0 

on any rigid boundary, such as the seabed for 

finite depth water (or V (D -º 0 as for infinitely deep water). 

The heuristic approach above can be made rigorous by Taylor expanding the boundary conditions about 

the undisturbed free-surface position, see e. g. Dean & Dalrymple (1984). Hence equations (1.5)-(1.7) 

represent conditions for the first-order problem in wave steepness. Dean & Dalrymple (1984), Newman 

(1977) and many other books give the solution for monochromatic waves moving in the positive x- 

direction as (D = 
wg 

e'ýe'('ý-"Df) where k and w are related by the dispersion relation wZ9=k for 

infinitely deep water or (0; /9 
=k tanh(kh) for finite depth water. 

1.4 Linear floating body hydrodynamics 

We now introduce a floating body into the fluid domain 
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linearised free-surface 

v2a=O 

0 
an 

Figure 1.2 Body in the linearised f uid domain 

..... .... ....... ... ............ 

'tD 
=v"n dz 

6 

A new boundary condition is required on the body matching the normal velocities of the fluid and body 

surface: 

=v"n ön 

Although this condition looks linear, it is in fact non-linear since it must be applied on the moving body 

surface. For consistency with the linearisation of the free-surface ship hydrodynamicists usually apply 

this condition on the mean body position resulting in a fully-linear problem. 

We now consider the motion of the body. In two-dimensions the body has three modes of motion: 

vertical (heave), horizontal (sway) and rotational (roll). For three-dimensional models there are a 

further three modes (surge, yaw and pitch) that will not be considered here. 

In general our system consists of a body moving in a fluid with waves incident upon it, represented 

diagrammatically in Figure 1.3. The great advantage of linearising the boundary value problem is that 

this general system can be decomposed into: a fixed body with waves incident upon it (Figure 1.4), a 

body in heave motion radiating waves (Figure 1.5), a body in sway motion radiating waves (Figure 1.6), 

and a body in roll motion radiating waves (Figure 1.7). 

zinc 

Figure 1.3 Three modes of motion for two-dimensional body in waves 
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(1) diffracted (Diliffracted 

(D inc 
F-7-1 

Figure 1.4 Fixed body in waves: Diffraction problem 

0 
radiated (Dradiated 

Figure 1.5 Body in heave motion: Radiation problem 

0 
radiated 

4)radiated 

Figure 1.6 Body in sway motion: Radiation problem 

< 4) 
rodiaied 

(Dradiated 

Figure 1.7 Body in roll motion: Radiation problem 

We can state the total velocity potential as the sum 

33 

= incident +4)diffracted + xj(l)j = (Iscaaered + xjOJ 

j=1 j=1 

7 

where x, cj = 0, adafe4 for each mode of motion, so that cj is the radiation potential generated by a 

body moving with unit velocity amplitude. 

The equation of motion of a ship in the i direction can be defined as 

3 

F=Zm; 1xj +d xj+(k; 1+BU)xjp 
felDa 

%dS 
i`1 Se 

where my is the inertia, dy is the applied damping, ky is the applied spring, By is the buoyancy, SB 

is the body surface and n; is the components of the normal vector. 

If we consider the contributions from the radiated waves we have 
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Fradiated, =PJ 
at 

n, Ä. S 

SB 

is the force in the i direction due to unit velocity movement in the j direction. This is equal to a force in 

phase with the acceleration and a force in phase with the velocity, so 

3 

Frodiated; =- mad xj- bij ij 

j=l 

and the equation of motion becomes 

3 

F, - Fradwted, = Fscattered, -Z 
(MY + r0U )zj + (d; + b, ý )xj + (ky + B; j )xj 

i=I 

The nature of the boundary-value problem for radiation shows the connection between this frequency- 

dependent added mass and that of a body for unbounded fluid. The boundary condition (1.7) with the 

assumed time dependence c=4 e1°' gives 

-wZ 9S + guýt =0 on y=0 (or - ko +=0 in deep water) 

so for infinite frequency we get 0=0 on y=0. Thus translational heave modes correspond to a 

double (reflected) body moving in unbounded fluid, see Newman (1977). 

1.5 Wave theories 

For the entry and exit problems considered here it is clearly necessary to go beyond the above linear 

theory. It is therefore worthwhile to examine existing non-linear theories of waves. Wave theories may 

be divided into two categories - steady and unsteady. The theory for steady waves is much more 

advanced than for unsteady waves, because we can move with the wave's phase velocity effectively 

freezing the free-surface. This simplifies the mathematics; the free-surface becomes a steady streamline 

on which the stream function yi is constant. Using this fact, Dean (1965) formulated his stream 

function theory by expanding y as a Fourier series, each of the terms satisfying Laplace's equation, the 

bottom boundary condition and periodicity. Since the kinematic free-surface boundary condition is 

satisfied exactly this leaves the dynamic boundary condition to determine the unknown coefficients in 

the Fourier series (for details see Dean & Dalrymple (1984)). Another related approach, which uses the 

velocity potential 4 instead of the stream function yr is that of Chaplear (1961) but this requires 

consideration of both free-surface boundary conditions. 

Although generally applicable to any water depth, wavelength and wave height, the stream function 

formulation does not converge for short wave components because of exponentially large factors in the 

Fourier expansion. Rienecker & Fenton (1981) include such behaviour in a formalism which is 
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uniformly convergent. As such this numerical method supersedes all previous theories from the 

practical point of view, at least for steady waves. 

For unsteady waves there is no such convenient reference frame. Bridging these two categories is the 

linear perturbation analysis of Longuet-Higgins (1978 a& b), which treats time dependent perturbations 

about the steady, but non-linear, wave solution given by series expansion methods, see especially 

Williams (1985). More recently Longuet-Higgins & Dommermuth (1997) and Longuet-Higgins & 

Tanaka (1997) have studied perturbations which are localised around the wave crest and are thought to 

lead to whitecapping. 

Unsteady waves require more sophisticated mathematical techniques. Analytical techniques are almost 

non-existent apart from simple linear superposition of Airy wave components, see Newman (1977). We 

are therefore forced to rely on numerical methods for accurate information and checking these against 

the analytical results for steady waves and accurate unsteady wave experiments. Steady wave theories 

provide a good check on numerical results from programs designed for unsteady waves. 

The first successful model of an overturning wave was that of Longuet-Higgins & Cokelet (1976). Prior 

to this work, computations based on a grid discretisation throughout the entire fluid were far too 

computationally expensive to resolve the crest well enough for overturning. Longuet-Higgins & 

Cokelet's major contribution was to realise that the complex potential ß is an entire function of z and 

so the fluid region can be specified by contour integrals around the fluid boundaries (a consequence of 

Cauchy's theorem). Cokelet (1978) went on to look at the internal flow field in the breaking region, 

while New (1983) has given very accurate dynamics of the free-surface particles. Another interesting 

feature is the use of Lagrangian marked particles which tend to cluster in regions of sharp curvature, 

just where they are required. 

Longuet-Higgins & Cokelet's method works in a transformed plane since for periodic waves this closes 

the contour of integration. For finite-depth studies the fluid occupies an annulus in the transformed 

plane, New, McIver & Peregrine (1985). A more direct approach, which is more suitable for 

engineering purposes, is the physical-plane solution of Vinje & Brevig (1981a). Another development, 

Dommermuth et al (1988) and Greenhow & Lin (1985), is that of a "numerical wave tank" in which 

waves are generated by a prescribed arbitrary wavemaker motion. Dommermuth et al (1988) compare 

the resulting waves directly with those in a real wave tank with the same wavemaker motion. One 

outstanding difficulty is how to apply radiation conditions at the other end of the tank, see Cointe et al 

(1988). 

All the above methods are restricted to two-dimensional flow. Three-dimensions has seen limited 

progress, with notable contributions from Isaacson (1981), Xu & Yue (1992) and Baker, Merion & 

Orzag (1981). The latter is applied in two-dimensions but is extendable to three. 
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1.6 Wave loading on fixed bodies 

The destructive power of large waves is of major concern and an understanding of the loads induced is 

essential to the design and operation of offshore structures. These waves give rise to slamming or 
impact loads of short duration and large pressures at initial contact with the structure followed by 

engulfment forces as the wave passes over it. The physical and mathematical modelling and 

experimentation involved in determining the fluid loading is different for these two phases. Also the 

effect upon the structure is likely to be different. The slamming or impact forces are important locally, 

giving rise to local damage, crack propagation and fatigue problems, and are related to the crest impact 

velocity of the wave. The engulfment forces are important globally, giving rise to overall motion of the 

body and are related to the dynamics of the entire wave. The models for impact and engulfment are 
different and we concentrate on each separately. 

There have been very few experiments performed in deep sea at full scale, a notable exception being 

Kjeldsen (1981) who measured impacts on an oil rig and various measurements of ship slamming 

pressures. The situation for coastal structures is more advanced, see e. g. Partensky (1988) and 

Blackmore & Hewson (1984). 

During impact on a body we may ignore gravity since the local accelerations of the fluid particles 

exceed g by substantial factors (Cooker (1990) quotes theoretical results of 2000-3000 g). This greatly 

simplifies the mathematical modelling, usually to one involving the momentum transfer of an equivalent 

(added) mass of water moving with the relative speed of impact between the body. On the other hand 

the short duration and high magnitude of the impact peak presents a considerable experimental 

challenge. Notwithstanding this, there is a considerable body of literature on these measurements, in 

contrast to the easier engul&nent problem that has very little coverage. The scaling-up of the impact is 

difficult because the initial stages and hence rise time and magnitude of the peak may be influenced by 

the cushion of air between the body and the free-surface, and the compressibility of the water, see 

Moutzouris (1979), Lundgren (1969) and Scott (1975). Such effects are most significant when the body 

and free surface align; we call this flat water entry. 

Flat water entry of cylinders can occur when the body is aligned with the water surface in the impact 

zone. This can either occur for horizontal cylinders in the surf zone (between the trough and crest 

elevations), see Kaplan & Silbert (1976) and Campbell & Weynberg (1980), or for vertical or almost 

vertical cylinders in very steep waves, see e. g. Takagi et al (1986), Tanimoto et al (1986) and 

particularly the very detailed results of Zhou et al (1991). (Note: this effect is different from "ringing" 

caused by high frequency resonance of the structure with higher harmonic components of steep waves 

see Chaplin et al (1997). ) Campbell & Weynberg's results show that exact alignment is not necessary 

for impacts, and that a strip theory may be used to evaluate the body forces during impact, at least for 

free-surface/cylinder axis angles up to 8 degrees. This motivates and justifies the strip theory approach 

of this thesis. For flat water entry, it is possible to give the pressure profile around the body during 

submergence for some shapes; for a flat plate see Wagner (1932), Chuang (1967) and Howison et at 
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(1991) who applies the flat plate model to wedges, Greenhow (1987) and Zhao & Faltinsen (1993) for 

wedges, Greenhow & Li (1987) and Greenhow & Moyo (1997) for cylinders. 

Flat water entry of a wall, where the wave form is almost exactly aligned with the wave front, gives the 
largest impact pressures. The subject has been extensively studied for application to coastal defences 

and a good review, extensive numerical calculations and a useful analytical model can be found in 

Cooker (1990) and Zhang et al (1996). In the latter and in Peregrine & Thais (1996) the effect of 

compressing pockets of air is considered. 

The problem of engulfment has not received so much attention as the impact problem. Although of 
lower magnitude, these forces last considerably longer and thus can give rise to large motions and/or 

mooring forces. 

The general problem of extreme wave loading has also been studied to some extent. The usual 

procedure is to ignore the wave/body interaction non-linearities completely. Forces are then given for 

Morison's equation where the drag and inertia coefficients are those measured in unbounded fluid, 

whereas the fluid velocity and acceleration field are given by the equivalent linear design wave. This 

has been shown to be justified for two-dimensional bodies submerged by about two body radii, see 
Vinje & Brevig (1981 b). On the other hand, the body's effect on the wave can be strong, see Brevig et 

al (1981), Skourup & Jonsson (1992) and Miyata & Lee (1990). Another approach is to consider the 

wave's non-linear velocity and acceleration fields as input to Morison type calculations, see Rainey 

(1989) for results correct to second order in the Stokes' expansion, and Chaplin (1984) and (1988) for 

experimental results. 

Engulfment problems can be divided up into two types, relative entry and relative exit; for both types 

there are two sources of non-linearity, due to the free-surface, and due to the wetted body shape 

changing appreciably. The conventional approach, as in Kaplan & Silbert (1976), is to equate this 

problem to the similar problem of slamming at the same relative entry velocity. Experiments show this 

is valid if the wavelength is greater than 40 body diameters. The approach then ignores gravity and 

solves for the added masses of the double-body problem with a line of equipotential (4 = Oat the 

undisturbed free-surface position). In the vertical motion problem, this corresponds to translation, while 

in the horizontal motion the image motion opposes that of the body -a type of shearing mode, see 

section 1.4 and Newman (1977). 

For relative exit (defined as moving closer to, or upwards through the free-surface) the validity of the 

double-body model is open to doubt since now gravity must be important, see Greenhow (1993). 

Oristland (1987) obtains reasonable agreement between numerical and experimental results by leaving 

out the slamming terms (v2 ) altogether. This does not conserve energy however, see Cross (1993). The 

disagreement between the experimental results and theory is not unexpected, since the approximation of 

the free-surface as a line of equipotential is no longer valid, and so the choice of added mass coefficient 

is inappropriate. Some exact calculations supporting this viewpoint are given in Greenhow (1988). 

Indeed it is seen that the so-called slamming (v2) terms may actually give rise to forces in the wrong 
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direction in some cases. A primary aim of this thesis is to examine the use of such added mass models 
for ship sections. 

1.7 Transient motion problems 

When a body impacts an initially calm water surface, impulse or slamming loads with high pressure 

occur. This work seeks to quantify these pressure distributions, the forces on the body and the resulting 
fluid motion. It is motivated by Lloyds Register and their interest in the slamming of ship bows as they 

exit and re-enter the water in heavy seas. Although the study presented is concerned with slamming 
loads on ship hulls, the findings are also useful in the study of slamming on the underside of the deck 

between the hulls of multi-hull vessels. The two-dimensional interaction between solid bodies and the 
free-surface also has more general application to many areas of engineering, especially in ocean and 

coastal engineering. Examples in these fields include the effect of waves on breakwaters and wave 

energy devices, wave loading in the splash zone on the cross-members oil rigs, marine operations where 
bodies are lowered through the free-surface by crane, extreme loading (such as those arising from an 

earthquake) on floating bridges and dams, as well as the aforementioned ship slamming and extreme 

ship motions. In the case of ship slamming the magnitude and distribution of the pressure can be 

sufficient to deform the bow area quite severely, as has been recorded by Yamamoto et al (1985). 

The physical and mathematical modelling of the system is complex as we must include body elasticity, 

air and air/water mixture compressibility effects, at least in the early stages of impact, and viscous 

effects causing vortex shedding in the later stages. The experimentalist also faces additional problems 

of sensitivity to initial conditions and the repeatability of the early stages. All of the above situations 

can be considered by assuming that they are equivalent to the entry of a body into calm water with 

velocity equal to the relative velocity of the body and the moving surface. Such an assumption has been 

justified for fixed cylinders being engulfed in waves by Ridley (1982) and is expected to hold when the 

body velocity greatly exceeds the fluid velocities within the wave, as is the case for free-fall lifeboats 

for example. Early work focussed on modelling the fluid/structure interaction via added mass 

considerations. Even today this forms the basis of most practical calculation methods. The energy in the 

fluid boundary, see Bassett (1888) and Greenhow and Li (1987) and this gives rise to inviscid forces 

which are proportional to the body velocity squared; this makes it difficult or impossible to separate 

viscous loading (also x v2 according to Morison's equation) which requires Reynolds' scaling, from 

inviscid loading, which requires Froude scaling. Obviously this makes interpretation of data from model 

experiments problematical. 

Slamming for a wedge has been extensively studied more exactly by Wagner (1932), Garabedian 
(1953) and Mackie (1969). Armand & Cointe (1986), Cointe (1991) and Howison, Ockendon & Wilson 

(1991) who have further developed and extended Wagner's theory by using matched asymptotic 

expansions for impacting bodies with small deadrise angles. Dobrovol'skaya (1969) presented 

similarity solutions for wedges forced through the free-surface at a constant velocity. The solution has 

application to any deadrise angle a, however it is not in explicit form and numerical results are only 
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presented for a <_ 30° 
. 

Hughes (1972) gave results for a= 45° whilst Zhao & Faltinsen (1993) 

covered the entire range of a (see also Keady (1998) for further discussion and downloadable Matlab 

code). In this sense, the zero gravity entry of a wedge is now solved. Furthermore, Fraenkel & McLeod 

(1997) proved the existence and uniqueness of Dobrovol'skaya's similarity solution for all a. A useful 

review of slamming is given by Korobkin & Pukhnochov (1988). 

These analytical techniques are only successful for rather simple geometries for the flow domain. It was 

not until the work of Nichols & Hirt (1977) that numerical solutions of more general fluid/structure 

interactions that included time dependence and gravity were practical, this was achieved by 

discretisation of the whole fluid domain. The early stages of water entry of a cylinder were modelled 

with some success but the method was computationally expensive and unsuitable for more general 

problems. 

On the other hand the linearised frequency domain model used in early papers by Dean (1948), Ursell 

(1950), Ogilvie (1963), Evans et al (1979) and others analytically solved the steady-state sinusoidal 

problems of waves diffracting over a fixed body and of a moving body radiating waves. By 

convolution, the transient motion problem can also be solved semi-analytically. The diffraction and 

radiation problems have also been solved to second order in wave steepness by Ogilvie (1963) and Wu 

(1993). 

For our purposes, however, we require a method that incorporates the full non-linearity of the free- 

surface boundary conditions and applies the body condition on the actual body position rather than on 

the mean position of the body surface. The latter requirement implies that any series expansion method 

that applies the boundary conditions only on the initial body position will only be valid for a short time 

after the beginning of the motion. King & Needham (1994) apply such a series expansion method to an 

impulsively started vertical wavemaker moving with constant velocity or constant acceleration. 

Similarly Tyvand & Miloh (1995 a, b) offer a solution for a submerged circular cylinder. 

If the entry velocity is small we can assume the free-surface displacements are small and linearise the 

free-surface condition and keep the body boundary conditions exact, Chapman (1979) uses such a 

method. Alternatively, Borg (1957) considers a slender wedge (large deadrise angle) so that even at 

high velocity the free-surface displacements will remain small. Both Moran (1965) and Mackie (1962 

& 1965) also use this slenderness assumption. 

To manage high speed entry of non-slender wedges Wagner's (1932) approach (see also von Karman 

(1929), Pierson (1951) and Fabula (1957)) is to equate the body force with the rate of change of the 

body's added mass as it enters the water multiplied by its velocity. This simple approach is widely used 

and can be implemented for a variety of body shapes: cylinders in Faltinsen et al (1977), spheres in 

Miloh (1981), cones in Shiffman & Spencer (1951) and boxes in Riabouchinski (1920). We can also 

take the free-surface up-rise into account using Wagner's (1932) approximate method. The wedge entry 

problem is modelled by an expanding flat plate where the width is defined by the instantaneous 

waterline of the body during penetration. The solution results in the pressure distribution on the wetted 
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wedge surface. At the two ends of the plate the fluid is infinite and so Wagner's equations are invalid 

here and require matching to a local jet solution (see Wagner (1932) or Howison et al (1991) for a 

modern treatment), but they do predict the maximum pressure some way from the wedge vertex as has 

been observed for small deadrise angles by Chuang (1967). However it is overly simplistic to 

approximate a wedge by a flat plate for intermediate deadrise angles. 

Practical application of these theories is limited to either low speed, slender body, zero-gravity or self- 

similar situations. This changed when Longuet-Higgins & Cokelet (1976) formulated the problem as a 

boundary-value problem that only required us to solve on the free-surface boundary. The contour of 

integration is closed by a conformal map that ensures periodicity and maps large depths to the origin. A 

Green's function technique is applied in this mapped plane that results in a Fredholm integral equation 

of the first kind for the unknown normal fluid velocity at the free-surface. When we map back to the 

physical plane the method gives spectacular results. Vinje & Brevig (1981 a, b) extended and enhanced 

this method using Cauchy's theorem in the physical, rather than mapped plane. Further work by Brevig 

et al (1981), Telste (1987), Greenhow (1987), Terent'ev (1991), Hepworth (1991) and Greenhow 

(1993) has produced the numerical method for non-surface-piercing bodies. The numerical method for 

surface piercing bodies of Vinje & Brevig (1981 a) described in Chapter 2 gives accurate results so long 

as the deadrise angle is greater than 45 degrees. Using another numerical scheme, Zhao & Faltinsen 

(1993) have given accurate results for the body forces and pressures when the deadrise angle is smaller, 

but their numerical scheme cuts off any ejected spray jets. This is not detrimental to the calculation of 

the body forces since the jets are thin and their internal pressure is almost atmospheric. A similar 

procedure has been used in Chapter 6. 

The complex potential model of the flow region has two other benefits. Firstly, simple functions can be 

used to model flows: for example, In z will model a source, sink or vortex, the sign of the coefficient of 

In z defining which; e-"*z produces linearised water waves with a wavenumber of k, and examples of 

its use can be found in Patterson (1976) or Milne-Thompson (1986). Secondly, we can conformally 

map one fluid flow to another. Consequently we may map the flow around a body to uniform flow in 

another plane. This assists in the calculation of a body's added mass, the large z behaviour can be 

related to the dipole moment (see Appendix B), making it unnecessary to handle the more complicated 
local flow around the body. Mappings for simple body shapes can be found in Newman (1977). The 

Schwartz-Christoffel mapping technique is required for more complicated shapes, implementation of 

this can also be found in Chapter 3. 

Here we will consider only the inviscid loading due to two-dimensional fluid motion in the vertical 
plane, on wedges, boxes and knuckled bodies moving in initially calm deep water. For the numerical 

work we do not make any linearising assumptions on the free-surface or body boundary conditions. We 

study the exit as well as the entry phase; the exit phase is less amenable to analytical treatment (gravity 

cannot be ignored for example) but it is important since it can give rise to appreciable hydrodynamic 

forces which may affect the body motion and the subsequent slamming forces and pressures on the next 

entry phase. A major aim of this thesis is to compare these essentially exact numerical results with those 
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predicted by simple added mass modelling. The quantification of errors introduced by this analytical 

model is important since it is believed that only approximate models such as this (rather than full 

numerical calculations) could be incorporated into practical strip theory models and codes to be used 
for predicting extremes of displacement, bow acceleration, shear forces and bending moments on a 

slamming ship in regular and irregular seas, see e. g. Belik, Bishop & Price (1983). 
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Chapter 2 The Fully Non-Linear Calculation 

Explanation of the methods used to obtain the numerical results 

and a verification of the scheme's implementation. 

Abstract 

A derivation of the numerical methods and considerations as to how they are used and 
implemented on a computer is given. Extensive checking of the numerical code and sensitivity to 
discretisation is carried out. 

Introduction 

Some of the information in this chapter is taken from Vinje & Brevig (1981b). The rest is 

either derivations of their results or the inclusion of new methods made by either Dr M. J. Greenhow or 

myself. 

The problem is solved as an initial-value problem, given the initial position and velocity 

potential of the free-surface fluid particles and the body position and velocity. We assume the domain is 

periodic in space. Using a Cauchy contour integral, with a linear variation of the known part of the 

complex potential between nodes, we can obtain the unknown part of the complex potential at each time 

step and march forwards in time. 

Problem Formulation 

The problem is considered as a mixed Eulerian/Lagrangian system, so we consider the free 

surface elevation with reference to a co-ordinate system with a fixed origin at the mean water level. We 

treat the fluid as homogeneous, incompressible and irrotational so that potential theory governed by 

Laplace's equation is applicable. The fluid motion is considered in two dimensions only. We will 

describe the fluid motion using both the velocity potential, ý, and the stream function, V. We can 

therefore define the complex potential as 

P(z, t) = W, y, r) +iw(x, v, t) 

where z=x +ry . 

(2.1) 

We can now solve the problem as an initial-value problem given the position and velocity of the body, 

and the velocity potential and elevation of the free surface particles. The positions of the free-surface 

particles can be time-stepped using the kinematic boundary condition which states that a particle in the 

free surface will remain in the free surface. Thus : 
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Dz 
-=u+Iv=w Dt 

(2.2) 

where the material (or Lagrangian) derivative of any quantity may be related to its Eulerian derivative 

by : 

Do a 
=+V4. VO 

Dr at 

From Bernoulli's equation we can derive the dynamic free-surface boundary condition as follows 

+p° +v 
2 

+gy =F(t) 
P 

We can absorb F(t) into 4 and we know that ww = (u-ivxu+iv) = u2 +v2 = (V4)2 . Hence the 

dynamic boundary condition is 

030 
__%i 

Pa 
at 2 -gy- 

p 

where pp is the atmospheric pressure on the free surface. However, we are using a Lagrangian 

description so we must define the dynamic boundary condition as 

D$=*W_gy 
_- 

PQ (2.3) 

Dt 2p 

using the material derivative. We further assume throughout that Pa = 0. 

We can find the velocities, w, by the differentiation of the complex potential with respect to z, that is 

w(z, r) = 
`ý t) 

= u(x, y, r) - iv(x, y, t) 

Since ß(z, t) is an analytic function of z, Cauchy's integral theorem is valid, 

Zdz=0 (2.4) 

where C is any closed contour lying within the fluid. We choose C to be the free surface, the wetted 

surface of the body, the bottom and the two vertical sides of the fluid volume, and we assume zo is 

outside the contour C. 

Now we let zo approach a point Zk on the contour C; in the limit we have 

4a dz =jßk =ja dz+ja dz=o 
(2.5) 

C 
Z-Zý 

C+C 
Z-Zk 

C 
Z-Zk 

C 
Z-Zk 
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where C. is a semicircle of radius e centred on Zk . Along C. we have 

Z=Zk +se1a and dz=ciefUda=(z-zk)ida. 

We know by Laurent expansion of the complex potential that 

R(z) = P(Zk) +` x) e; c. E+ O(6 2 )+... 

So we can state, from the residue theorem 

R() °`` R(Zk) 
'+ 

*zk) 
e"c +U 62 1+... 

z dz -- 
J (z - zk )ida 

C 
ZZk 

0 
Z-Zk 

e 

=1 P(zk) k+ 
a'3 k)1e(e'°"k 

-1) + O(e 2 )+ 

That is 

lim 
d ß(z) 

dZ _ ha k 
ß(zk ) 

ý1Z-Zk e-0Cs 

(2.6) 

where ak is the angle between the surface either side of point k as shown in Figure 2.1. Analytically 

this is it for any smooth part of the contour, but may be different from it numerically as shown. 

ak 

Figure 2.1 Angle ak given by the nodal points in the numerical scheme 

If we let dz be replaced by e'a ds 
, where ds is a line element of the contour, then substituting (2.6) into 

(2.5) we obtain 

-iI 
z) dz =akß(zk)-i 

f '8(z) e; eds 
(2.7) 

CZ-Zk Ckk 

where Ck is the indented contour omitting the singular point Zk . 

Now, we can set either the real or the imaginary part of (2.7) equal to zero. However, this is not an 

arbitrary choice without consequences for the numerical scheme, see below. We divide the contour C 

into two parts, C0 and C,,, where $ is known on C0 and w is known on C,,. 
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If we assume that Zk is on C,, , thus ý is the unknown, we take the real part of (2.7) to be zero giving 

Re -if 
R(Z) 

dZ =a k+(Zk) - Re if (4(s) + iw(s)) e10 ds 
C 

Z-Zk 
Ct 

Z-Zk 

.0 
=ak ý(Zk) - Re j(ý(s) 

+ iW (s)) 1e ds 
Ct 

Z-Zk 

=ak 4(Zk) - 
JRe{4 

(s) 1ere }d_ JRe iy1(s) ie'o ds 
Ct 

L Z-Zk 
Ct 

Z-Zk 

+ JW(s) Re eye d=0 ds 
ý 

= akVzk )+ j$(s) h eie 
Z-Zk Z-Zk 

Ck Ct 

This equation is of the form 

if 
ß(z) A 

(2.8) 
-Re i9 dz =ak+(Zk)+ 

f 
ý(S)9(Zk)S)(IS+j(Zk)=O 

CZ 
Zk 

Ck 

where the functions g and j are known. 

This is an inhomogeneous Fredhoim equation of the second kind. Note that taking the imaginary part of 

(2.7) when 4 is unknown produces Fredholm integral equation of the first kind, see comments below. 

Similarly, if we consider Zk on C4 
, e. g. y is the unknown, we put the imaginary part of (2.7) equal to 

zero and we derive 

Im -i9 
(Z) 

ý =0LkW(Zk)+im -i f ß(zk) 
eyeds 

C 
Z-Zk 

Cr 
Z-Zk 

=akW(Zk)+ j(4(s)+it. p(s))-ie'ads 
Ck 

Z-Zk 

=akW(zk)+Im 
J_+(S ) 

-ie'Ods +Im J W(s) 
erects 

Cr 
Z-Zk 

Ck 
Z-Zk 

eio e'o =akW(zt)- 
J4(s)Re }&+Js)iin{ 

ds=0 
Ck 

ýZ-Zk 

Ck 

ýZ-Zk 

Similarly this is of the form 

Re I ß(z) 
dz = -a kW (Zk) + h(zk) - 

$W(s)l(zk8)d3=0 
(2.9) 

C 
Z-Zk 

ck 

with h and I known functions. 
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Again, this is an inhomogeneous Fredholm integral equation of the second kind. Furthermore the 

complementary situation when we take the real part of (2.7) when y is unknown gives us another 
Fredholm integral equation of the first kind. 

Fredholm integral equations of the first kind do not, generally, have a unique solution; for this reason 

we are specific about which part of the equation we set equal to zero. 

If zo -3 Zk and Zk is on a smooth part of C and Co is the indented contour omitting the singular point 

zo, then 

rt1(zo) + Re f ß(z) 
dz =0 

(2.10) 
z-z0 

Co 

when Zk is on C4 , and 

) 
(2.11) 

7t4(zo) + Re ij 
ß(z 

dz =0 
co z-zo 

when Zk is on C. . Note that in the implemented numerical scheme iris replaced by ak (as shown in 

Figure 2.1). 

Equations (2.10) and (2.11) together form a Fredholm integral equation of the second kind on C that 

can be solved to obtain the unknown part of ß(z) =4+ iyr on C. 

In the numerical calculations we use the following approximation to the integral stated in (2.8) and (2.9) 

P(Z) 
dz =- 

N 

CZ- 
Zk 

j. I 

where the Fk J will be explained in the following section (see Numerical Method). 

For the same reasons as for ß(z) we know that 60(z, 'Yet is an analytic function of z inside the fluid 

domain. Then in a similar manner we can derive from 

4 
+i' at at dz _o 

z-zo 

that when zo is on C# 



The Fully Non-Linear Calculation 21 

66z, t) (2.12) 
0 'V(x0, Y0, f)+Re ja 

X dz =0 d` 
Co 

z-zp 

and when zo is on C. 

aQ(z, 0 (2.13) 
00(xo, Yo, r)+Re 

ij cl dz =0 ä 
Co z-zo 

From equations (2.12) and (2.13) we can find the derivative of the complex potential with respect to 

time along the contour. 

Now we know the complex potential and its time derivative on the contour, we can find their values 
inside the same contour if required using 

R(zo, t) =1 
lß(z't) dz 

(2.14) 

2ti 
cz- zo 

and 

ap(z, t) (2.15) 
ap(zo, t) 1o dz 

at 2ni z- zo 

Also since Cauchy's integral formula can be extended to derivatives, defined as 

(20) =nIjf 
(z) 

dz 
21ci 

c 
(Z - ZO )n+l 

and we know that w=, we conclude 

I 
w(Z0't) 2ni 

I ß(z, t) (2.16) 

c 
(z-z0)2 

öß(z, t) (2.17) 
öw(zo, t) 1 

,j 
öt dz 

at 2ýi7c(z-zo)Z 

dw(zo, t) 2y ß(z, t) (2.18) 
3ý dz 2ýri 

c 
(z-Zo) 

Higher time derivatives of ß(z, t) can also be found in the same way, and this opens up the possibility 

of a multi-step method such as that of Dold and Peregrine (1986) who considered waves evolving 
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towards breaking. In our case, however, when surface-piercing bodies are involved and undergo large 

motions, the number of equations changes continuously and a single-step method is therefore far easier 

to implement on a machine. 

We calculate the acceleration of the fluid particles at the free surface from the kinematic boundary 

condition since 

ax (x, y, t) + is 
y 

(x, y, t) = 
Dw(z, t) (2.19) 

Dt 

where the subscripts denote the direction of acceleration. Whilst the acceleration inside the contour is 

calculated using 

äw dw (2.20) 
ax (x, y, t)+iay(x, y, t)=-+w. - öt dt 

The terms on the right hand side can be found using (2.16), (2.17) and (2.18). 

The pressure at the free surface is zero in accordance with (2.3), while the pressure inside the contour 

can be found by a rearrangement of Bernoulli's equation, giving 

-P(x, Y, t) 
_ 

-+-ww+g 

P 

Numerical Method 

We numerically solve equations (2.10), (2.11), (2.12) and (2.13) using the collocation method. 

The contour C is divided up into a discrete number of points. We shall call these nodes, see Figure 2.2. 

Binary p ß, a , etc. are known at each of these nodes. Either the real or imaginary part of the variables 
a 

/- Zl 

ZN 

Figure 2.2 Node allocation along the contour at t=0 

Between the nodal points we assume that 0 and 
0R 

vary linearly in z. We can then write ß(z) as 
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Z-Z Z- Z'_ 
ß(z) =' of-I +I ßj for z3-1 <_ z: 5 z3 ZJ-1 -Z i zj - zj-1 

Z-Zj Z-Zj+1 
R(z) =ß j+l +Pj for zj <- z <- z j+l Z j+1 -Z iZj- Zj+I 

So we can write the complex potential and its time derivative as 

P(z) _ Aj13J 

aß(Z) 
_ 

aRj 
at at J 

Where the influence function at node zj is defined as 

z- zj+1 

Zj - Zj+1 

A (Z) 
Z-zß_1 

Zj -zß_1 

and zero elsewhere on C. 

for z on C between zj and z, +, 
(2.21) 

for z on C between zß_1 and zj 

If we now consider the contour integral (2.4) we have 

E Ajßj 

R(Z) 
dz= jj dz -ý, (Ilk, j +I2k, j)Oj 

C 
Z-Zk 

c 
Z-Zk 

j 

where 

ti 
2-2 

- I11 zý Zk -Zj-1 Zi -Zk 
Ilk j=j dz= [Z+Zk In(Z-Zk)-Zf_I 1n(Z-Zk), = In +1 

zj IZ1- 
Zj-1 Z- Zk Zj-Z j-1 zJ-1 Zj -Z_ Zi-1 - Zk 

zJ +l 
r Z-Zj+1 11rtZk Z" Z 12 k, j =J(:! Z = 12 + Zk 1n(Z 

- Zk -Z j+l 
In(Z - Zk )J , +ý 

=k- 
/+1 +1 -k1 

Zj -Z j+l Z- Zk Zj - Zj+l ll J z1 Zj-2 j+l 

4 

Zi - Zk 
- 

zi 

We can now introduce the function 

-z ý k- zj-1 
j_Z 

k+ zk- zý+1 zj+l - zk (2.22) 
In( 

1 
tk, 

j - 
Il 

k, j + 12 
k, j -z 

/I Zj -Zj-1 Zj_1 -Zk Zj -Zj+1 Zj -Zk 

However, because lim0(z In 
i) 

=0 some special cases must be explicitly considered for this function 

(2.22) as follows 
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k= 1= r_ = 
Zj-1 -z+1 

In 
Z j+l -Z j-1 

Zj -Zj+l Zj -Zj-1 

ZJj+1 -Z f-1 ZJ- ZI+l 
k=j+1= I'j+lj = In 

Zj - Zj-1 Zj-1 - Zj+l 

k=j = rJ, J =lnz'+1-Z' Z. 1-1 -ZJ 

Finally we note that when j =1 j -1= N and when j=N=j+ 1= 1, see Figure 2.2. 

So we can write 

I ß(z) 
dz- '; (Z; 

_t, Z; )Z; +i, Zk)R; (Z;, t) 
(2.23) 

CZ Zk i 

and similarly 

aß(z) (2.24) 
at aßß (Zý , r) 

ZZ 
`Z r', (Z, -I, ZJ'Z'+I, Zk) 

at 

Cki 

where Zk is the node in question. 

When we solve the equations (2.23) and (2.24) we take the real and imaginary parts as specified by 

equations (2.10), (2.11), (2.12) and (2.13). Since we know 4 on the free surface (see (2.3)) then the free 

surface is part of C4 . 

The body surface is part of Ci,, , which can be explained by considering the kinematic boundary 

condition on the body, that is 

= v'. n 
as 

(2.25) 

where v" is the body velocity at the point in question. We can express this in terms of the velocity of the 

centre of gravity, v'o, and the rotational velocity of the body, 6. So 

f=vo+dlkxp 

where (x - xo )i + (y - yo) j is the radius vector from the centre of gravity (xo, yo) to the point 

(x, y) , and k is a third dimensional vector for calculation purposes only (coming out of the page in 

Figure 2.3). 
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body surface 

free surface 
ii 

(xo, Yo) j 

(XIV) 

e 

Figure 2.3 Vectors acting upon a body node (x, y). 

If we define n=kxs then we can deduce 

dye=(v" n)ds=v" (Qxd)=-(i xk)"a=-(v"oxk+6p)-& 

Changing to Cartesian co-ordinates this is 

4= -yodr + zody - Ä((x - xo )d + (Y - Yo)dYl 

since vo = zoi +, yo j. We now integrate this to obtain 

w=xo(Y-Yo)-Mx -xo)- 
I 6R2 +Wo(t) 

where R2 =(X_ X0 )2 +(Y_ YO )2 and O(t) is an arbitrary time-dependent constant which we shall set 

equal to zero. We know from the definition of the material derivative that 

D=6v 
+i Vyr 

Dt at 

Now 

e 8(x-xo) o '9(y-Yo) 
-1 

Zä9 8R2 
öt 

(x-xo)-Yo + (Y-Yo)+xo 
ät 2R öt 2e öt 

=-Yo(x-xo)-Yo(x-zo)+xo(Y-Yo)+zo(1'- 3'0)- 
2 

R28-8[(x-xo)(x-zo)+(Y-Yo)(Y-Yo)] 

o 
=-h(x-xo)-YO c+zo(y-YO)+icoy-I RZ9-9[(x-xaxx-zo)+(Y-YOX. _- 0)) 

(2.26) 

and 
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v41= 'ý+ '5 
ox ay 

=(-Yo -Ä(x-xo))i +(xo -6(Y-Yo))J 
v =xi+YJ 

_ (xo -e(Y-Yo))i +(yo +A(x-xo))j . 

Hence 

oar=-yi+xj. 

So 

v. VW =-xoy+. yox+((x-xo)x+(Y-Yo)Y)9 
. 

So we obtain the material derivative explicitly as 

ý', Y, r) 
=zo(Y-Yo)-Yo(x-xo)- 

2 
R2A+8[(x-x0)z + 

(2.27) 
0 (Y-Yo)Yo] 

The bottom of the fluid domain forms a streamline where w and are constant, and is part of C., 

The vertical boundaries connecting the bottom and the free surface can be regarded as neither a part of 

C+ and of C,, since both 4), ,i and are unknown here. We therefore assume that the problem at at 

is periodic in space, and hence only 4) and or y and may be regarded as unknowns at all nodes. 
at at 

So for each node an equation of the form (2.10), (2.11), (2.12) or (2.13) may be established. In the 

calculations presented here, the vertical boundaries are placed a great distance from the body and so the 

assumed periodicity does not affect the calculations. 

We can now solve the system of linear equations to obtain 0 and 
ß 

at all nodes on the contour C. 

To calculate the accelerations we must calculate the forces and moments acting upon the body. These in 

turn are calculated by integrating the pressures along the wetted surface of the body, assuming (again) a 
linear variation between nodes. We find the pressure at each node using Bernoulli's equation 

Pj Wiwi tý 

P2 _gy1 
(2.28) 

So if we require the pressure distribution on the wetted surface of the body, we need to find . Since 

we know W, and can find from (2.26), on the wetted body. Consider 



The Fully Non-Linear Calculation 27 

-IV olý (2.29) 
+i N aR at at dz -jrk, 

j(zj-IgZj, Zj+lZk) at =o 

Ckj. I 

On the free surface we know 4 and w= 
ddz 

, so we can use 

04j wiwi 
_- 

Pa 
at 2- 

ýý 
p 

(2.30) 

30 to find j. Along the vertical boundaries we do not know 4 and gyp, or and , 
but they can be 

at at at 

found using periodicity. If we consider the three of the infinite array of domains side by side, we know 

" on the vertical boundaries of the centre domain, and w on the two either side, then we must know 4 

and yi on the common boundaries. A numerical approach to this is presented later. 

Along the bottom yi is unknown but constant, and can therefore be assumed to be zero. This implies that 

OV 
=0 here also 

We stated earlier that we use (2.26) to find . However we do not know the accelerations (k o, yo ,9) 

at this stage, so to solve (2.29) we split (2.26) into four parts, these being 

_ 
W'' 

+x 
0'2 

+ 
V'3 

+9 
4J4 

at at ° 8r y0 at at 

where 

ovil 
=-yox +zoyj -O[(xi -zo)(zi -zo)+(Y3 -YoXYj -Yo)] 

Olt N j2 
at = (Yj -Yo) 

Cav ,3= 
-(Xi - XO ) 

at 
OVj4 12 

at 2" 

We then solve the linear system of four equations 

. 31 l (2.31) 
1: rk J+i fit" 

I=0 for n=1,4 
f-t 

i. e. Ax,, = bn for n =1,4 

It is useful to note that the coefficient matrix A (in Ax,, = b� for n=1,4 ) used to solve the above is 

the same as that used to solve (2.23). 
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We calculate j 090i 
using (2.30), all others (n=2,4) we set to zero. Each of the four sub-problems is 

unphysical, but the whole solution formed by adding the sub-problems is seen to satisfy all the physical 
boundary conditions. 

The solution of this system can then be used to calculate the pressure along the wetted surface 
(between points Nl and N2 in Figure 2.2) as 

pjI _ -xji -2 ww, -gyp for j= N1, N2 

Pin = -x jn for n=2,4 

If we now calculate the hydrodynamic forces and moments for each of these pressures (Fs� , Fr,, , M� ), 

the following system of equations can be stated 

Fxi + Fx2xo + Fx3Yo + Fx46 = mzo (2.32) 

Fy, +Fy2xo +Fy3Yo +Fy4Ä-mg=mYo 

MI+M210+M3yo+M46=16 

This gives us the translational and rotational accelerations of the body. The total solution of (2.31) can 
be written as 

xi = xil +XOxj2 +Yox! 3 +8x14 

and the pressure as 

Pi = Pji +4Pj2 +YoPfl +OPj4 

For a time-stepping algorithm to work, w(z, t) must be calculated along the free surface. If we calculate 

w from (2.3) we find it is singular when 0 varies linearly between nodes. So instead we calculate w 

using a central differentiation method. At a node j we state 

(2.33) 
I` 

/I 
-aj-1/'j-1 tQjQj tQj+l/6j+l -E 

where Eis an error term. If we use Taylor's theorem to expand the complex potential about a, we have 

ao (n) (2.34) 
ßj-1 - 

Rj 
(zj-1 -Z! )n 

n-O 
n. 

w 
2: 

0j(n) 
n ß 

j+l - 
(Zj+l -zj) 

n-0 
n! 

Substituting (2.34) into (2.33), we can then deduce. 
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(P. ) 
=(aj-1 +Qj +aj+l)Rj +{aj-1(zj-1-zj)+aj+l(zj+l -z )}CBzýJ 

J 

z 
+ (aj-l(Zl-1 -Zj)2 +aj+l(Zj+l -Zj)2J(aZR 2j 

00 
+1 

ß"(I) 
{aj-1(Zj_1 -Z, )n+a, 

+, 
(zj� -Z1)"} 

ns3 
It. 

So we can conclude that 

aj-1 + a, + a, +1 =0 

) =1 ai-1(zi-l - zj )+a, +, (zj+, - zj 
ai-1(zj_l -zß)2 +aj+l(zj+l -zß)2 =0 

co p. (n) 
J 

n 
{aj-1(zj_l - zj + aj+l (zj+l - zj )" }=E 

n-3 

So the solution of the linear system of equations is 

aj_1 = 
Zj+1 -zj 

(zj+l 
-zjXzj+l -zj)-(zj_1 -zj)2 

Zj_I - Zj 
aj+l - 

(Zj-1 -ZjXZj+l -Zj)-(Zj+1 -Zj)2 

al =-a, -, -aj+i 

(2.35) 

At the endpoints of the free surface we can still use the central differentiation scheme by considering 

the periodicity of the system. We allow the points to join up; thus the last free surface point in one 
domain is the first free surface point in the next. Hence 

Zp =Z, +(ZN3_1 -ZN3) 

Zr,, =ZN3 -(Z1 -Z2) 

So we may say 

_ 
Z2 - Z1 

a1_1 -I (Z2 
-Z1ýzP -z1)-(ZP -z1)2 

ZP -Zl 
al+l = (Zp 

-ZI/N` 
`, 

Z2 -Zl)` -(Z2 -Zl`2 

Zm -ZN3) 
aN3-i - 

Zm -ZN3)(ZN3-1 -ZN3)- 
/ ý 
(ZN3-I -ZN3)2 

aN3+1 -2 
ZN3-1 -ZN3 

(ZN3-1 
-ZN3)(Zm -ZN3)-(Z. -ZN3)2 

Thus we have fully-defined the complex velocity w. We use this same scheme to calculate the 

acceleration by replacing 
- 

with 
ß. 

We determine the body motion using 
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mz = Fx 

my = Fy 

IÄ =M 

(2.36) 

with reference to the centre of gravity. The forces are calculated as before. To integrate equations (2.36) 

and equations (2.2) and (2.3) in time we use Hamming's fourth-order predictor/corrector method with a 
Runge-Kutta starting routine. This method is remarkably stable and is described as follows. 

Time Stepping Procedure 

To step forward in time we must find numerical methods to solve 

Dz 
-=u+iv Dt 

__ 
1 
2w w-ý'-Po Dt p 

(2.37) 

We use a second-order Runge-Kutta and Hamming's fourth-order predictor/corrector to do this, see 
Gerald & Wheatley (1994). 

Second-Order Runge-Kutta Algorithm 

The solution of the differential equation 

y(t) = ä(`) = f(y(t)) 
is found as 

Yn+l =Yn +I At(kt +k2) 

where 

Yn = 
At. ) 

At =to+1 -tn 

k1 = f(yn) = Yn 

k2 =. f(yn +At "k1) = f(Yn+1) =Yn+1 

That is, we use Euler's method to predict a value of y�+1. 

The truncation error is of the form e, = Kit 3+ O(&4) , where K depends upon f(y(t)) and its 

higher-order derivatives. 
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Hamming's Fourth Order Predictor/Corrector 

This multi-step method requires four starting values for y and f(y). These values are calculated 
from the Runge-Kutta method above. The algorithm may be stated as 

1. Calculate the starting values y,, and f,, for n=0,3. 

2. Calculate the predictor 

Pn+l = Yn-3 i43 Ot(2Yn -Yn-1 + 2Yn-2 

3. Calculate the modifier 
112 

Mn+l = Pn+l - 121(Pn - 
C,, ) where (P4 - C4) =0 

4. Calculate the time derivative of the modified predictor 

Yn+l ° . 
%( Mn+1 

5. Calculate the corrector 

Cn+l = 
[9Yn 

8- 
Yn-2 +3&($+ l +2j',, 

6. Calculate the final value at t,, + At 

Yn+1 - Cn+l + 
121 `Pn+l - Cn+l 

Note that the method has a local truncation error of O(et5) . 

Numerical Solutions 

The numerical solutions of (2.14) to (2.18) are found from 

21 
4. 

z(zo 

)d-Zrj(zj-,, 
zj'zj+i'z°)Rj(zj't) 

c i. 
aß(z, t) 

nr oa 
at 27ti 

cz- zo i. 
at 

1 KZ t) w(zo, t)-2zci z 
dz=EI'2j(zi-,, zj, zj+I, zo)aj( lzj't) 

c 
(z-zo) i 

ez, t) 
vn1't) 

/ 
öt 

2 
dz %l 21(zi-ý, zj, zj, I, zo)ßj 

(zj, t) 
öt 2ni 

c 
(z-zo) 

i 

_21 
ß(z't)3 

tü F3i(zi-I, z1, zi+1, zo)ß, (Z,, t) 
dt 2ai 

c 
(z-zo) 
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where 

r= 
ZO -Zj-1 In 

Zj -z0 
+ 

ZO -Zj+1 
In 

Zj+l -ZO 

zi -z _Z j-1 ZjZjiý1 j-1 -0ý ý+1 ý0 

r2 =1 In 
zj - z° 

+1 In 
zJ+l - zj 

zi -zj_z-z o -z Zjý1 j-1 -0 ý ý+1 ý0 

raj =]1Z 

(zjzj 
_1 -2zj +z0 

+2zj 
-Zj+l -ZO]+ I2 

(zj 
_z0ý -Zj-1 zj -Zj+l JI 

(z 
-Zj-1ýZj-1 -ZO) 

(z 
-Zj+lxZj+l -Zo) 

Derivation of these functions may be found in Vinje & Brevig (1981 a). 

Numerical Implementation 

The above numerical scheme was originally implemented by Vinje & Brevig using FORTRAN 

77. Enhancements have since been made by Dr M Greenhow and myself. These have included routines 
to handle forced motion, the distribution of points for different body shapes and the tailoring of output 

making it more amenable to spreadsheet input. 

The program accepts input from a data file (wed. dat) describing the initial conditions of the body and 
parameters required to time step the numerical scheme. 

Output is in the form of six files 

1. wed. out - original output file as defined by Vinje & Brevig, it remains purely for reasons of 
backward compatibility. 

2. wed. plt -a brief summary of the run for each time step. 

3. wed. dep - the body depth, velocity and acceleration for each step in both x and y 
directions. 

4. wed. for - the force on the body in the x and y direction and the body moment. 

5. wed. sur - co-ordinates of each point (node) for every time step, this is used to obtain the 

surface profiles. 

6. wed. pre - pressure at each point (node) for every time step, this is used to obtain the 

pressure profiles. 

Verification of Numerical Results 

There is a dual purpose to the work that has been completed for this section. The main 

objective was to ensure that the results from the Vinje & Brevig code could be relied upon. The second 

purpose is to decide upon an optimum or at least viable set of input variables. The data input to the 

program contains many variables, some of which have a significant impact on the accuracy of the run. 

Especially significant are the variables concerned with point distribution; we can define the number of 
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points on the surface / body and the distribution ratio for the surface / body. These play a significant 

role since they specify the extent to which the program can numerically resolve the particle motions and 
hence the forces experienced by the body. 

We shall use two methods to ensure the program is working correctly, self-similarity and variable 

sensitivity. 

Self-similarity 

Produce a sufficiently long lasting high velocity, zero gravity run that will enable us to compare 

medium and large time data. Self-similarity, as explained in Chapter 6, requires 

Xz(s, t) = z(As, xt) = z(S, T) 

where q= As and r=Xt. 

In our case we demonstrate this self-similarity by comparing the surface profile A at t=a with the 

surface profile B at t=b. For surface profile B we set b=Y and double the x and y co-ordinate 

values. If surface profile B coincides with surface profile A then we have demonstrated self-similarity. 

The run under consideration involves a wedge, of half-angle 10, entering the fluid domain at lms'' 

(Froude number 0.583). The specific input data is given in Table 2.1, the variables of which are 

explained later in the Variable sensitivity section and Appendix E. The surface and body have fine 

discretisation, the time steps are small and the wedge is thin to ensure the model continues for large 

time. Gravity has been set to zero in this case, as is required for self-similarity. 

2000 0.001 0.1 14 0 11 0 10 0 10 
0 1 0 1000 1000 
(0.0,0.29) (0.0, -1.0) 0 0 (0.0,0.29) 
20 10 80 
1 0 0 
0.0075 0.001 
0 0 0 
0.85 
80 
0.95 0.3 1 18 36 

Table 2.1 Input data required to produce run suitable for self-similarity study 
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Graph 2.1 Surface profile of entering wedge for t=0.2 

Graph 2.2 Surface profile of entering wedge for t=0.4 

The surface profiles produced for time t= 02 and t=0.4 are presented in Graph 2.1 and Graph 2.2 

respectively. The surface profile of t=0.2, with x and y values doubled, is overlaid on the surface 

profile from Graph 2.2 and presented on Graph 2.3. 
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Graph 2.3 Surface profiles demonstrating self-similarity. 

Clearly the model produces self-similar results for the bulk of the flow, but the jet would need further 

resolution. To explore this we examine the systems sensitivity to resolution variable changes in the 

following section. 

Variable sensitivity 
Produce a selection of runs that have all physical variables in common; the differing variables being 

those that do not change the free-surface profile and pressure distribution but only their resolution along 

the contour. That is, we can change the number of points on the free surface to increase accuracy but we 

cannot change the height of the wedge, since this would produce a completely different physical 

situation that would not allow comparison. 

Eight test were carried out for the symmetric exit of a wedge of half angle a=30°, and a 

Froude number of 0.404. The form of the input file (wed. dat) is as follows; the variables to be changed 

are named: 

200 DT 0.1 14 0 11 1 10 0 10 
0 1 0 3.0 1.0 
(0.0, -0.05) (0.0,0.2) 0 0 (0.0, -0.05) 
4 1 NF 
1 0 0 
0 10 
0.000388437 0.001 0 
RATIO 
NBODY 
RATBOD 0.025 0.1 30 60 
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The named variables represent 

DT 

NF 

RATIO 

NBODY 

RATBOD 

The time step 

The number of points on the free surface 

The distribution ratio of points on the free surface 

The number of points on the body 

The distribution ratio of points on the body 

These variables were varied in the runs to produce a range of results. If the program numerics are stable 

then the results should all be the same (to within a certain degree of accuracy, allowing for round-off 

errors). The data table for the runs listing the variable values and the respective run name is presented 

as: 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

DT 0.005 0.005 0.02 0.01 0.01 0.01 0.01 0.01 

NF 70 70 70 80 76 76 70 90 

RATIO 0.83 0.83 0.83 0.95 0.89 0.8 0.83 0.9 

NBODY 20 30 20 20 20 20 20 30 

RATBOD 0.9 0.9 0.95 0.9 0.9 0.8 0.9 0.9 

The differing step size means that the results can only be compared at certain intervals, where the times 

all coincide. Some of the runs did not last for very many time steps, due to the point distributions being 

poor. However, the runs are still a good test since if the numerics at the beginning, before breakdown at 

some localised part of the free surface, still agree with the other runs, then the program is giving 

accurate results. From the data produced from the program, the graphs of the surface profiles at certain 

depths (where all runs coincide, except those that did not run long enough) and the graph of the forces 

experienced by the wedge were produced, a selection of which follows. The axes of the graphs, x and y, 

are non-dimensionalised with respect to the submerged depth of the body when in equilibrium. All 

values given are non-dimensionalised as follows 

where de is the body draft at equilibrium and g is gravity. " Time - multiplied by 
F, 

T 

" Depth - divided by de . 

" Velocity - divided by Jgd, . 

" Acceleration - divided by g. 
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" Pressure - divided by degp . 

" Force - divided by the buoyancy force given by pgb' where V is the submerged volume at 

equilibrium. 

The wedge is exiting the fluid so we will expect any difference to occur as the wedge vertex gets closer 

to the surface, since there will be fewer points on the wedge and thus poorer resolution. If you study 
Graph 2.4, Graph 2.5 and Graph 2.6 you will note that all the curves superimpose one-another. The 

points do not coincide, but we would not expect them to since the number of points and the distances 

between them vary for each run. 

0.00 

-0. sc 

-isc 

-2. a 

-2.51 

1. 

xld 

tTeatl 
tTat2 
t Tast3 
-e--T«4 

-o-Te t5 
tT%t6 
tTW7 
tTest8 

Graph 24 Surface profile for a exiting wedge at a depth of y/d=0.063/0.025=2.52. 
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Graph 2.5 Surface profile of a exiting wedge at a depth of y/d=0.061/0.025=2.44. 
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Graph 2.6 Surface profile to a exiting wedge at a depth of y/d=0.059/0.025=2.36. 
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Graph 2.7 has some discrepancies in the surface. Test 3 and Test 8 are showing signs of a jet forming 

and rushing up the side of the wedge, this will be followed by break down. Test 8 in fact breaks down 

before the next common time step hence the omission in Graph 2.8. Test 2 is showing similar 

tendencies. Note the sudden drop in the surface which breaks down before the next common time step. 
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Graph 2.7 Surface profile of a exiting wedge at a depth of y/d=0.043/0.025=1.72. 
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In Graph 2.8 we see the final step of Test 3, as the jet rises up the wedge numerical errors are 
introduced due to the pressure inversion at the jet tip. These errors are propagated and result in the 

sudden acceleration of another point downwards, as one can see from the third surface point, 
breakdown is imminent. 
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Graph 28 Surface profile of a exiting wedge at a depth ofy/d=0.035/0.015=1.4. 

Now the poorly resolved test cases have broken down but we have agreement in the remaining runs. We 

are left with a well-resolved propagating wave as the wedge nears complete exit. 
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Graph 2.9 Surface profile of a exiting wedge at a depth of y/d=0.031/0.025=1.24. 

So, generally we have good agreement between the test cases. Can we rely on these cases to 

demonstrate the consistency of the code? Let us look at the force curve to see if the differences appear 

there too. 

1.20T 

100 

a 010 

0.60 

0,40 

0.20 

Graph 1.10 Non-dimensional vertical force experienced by wedge during exit (non-dimensionalised using 
buoyancy force at initial displacement) 

Looking at the graph we see only slight variations in the global force values (omitting the final values at 

breakdown which, of course, contain numerical error), so each wedge is undergoing the same basic 

global interaction with the fluid. Force comparisons, being integrals of the pressure distributions over 

the entire body, are only a rather crude test of accuracy, but may be all that is needed for most practical 

0.00 rt __ýaýý" i 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 

lion-dkimelonal Tim. 
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applications. On the other hand, the surface profiles will be affected by the resolution of the points. It is 

a careful balancing act between the point distribution on the body and on the surface. Test 2 broke 

down because the point spacing on the body was too cramped compared to that on the surface causing 

resolution errors. The opposite is true of Test 3 where the surface points are better resolved than those 

on the body. Since the linear variation that is assumed in 4 will not be a good approximation if the body 

points are too far apart. Test 8 is a similar case, that is the body is poorly resolved in comparison to the 

other test cases. If the free surface is poorly resolved, points miss the formation of a wave and "fall 

through the gap", so we have a single point rising with a wave whilst the others remain still, and this 

causes a numerical instability. If a surface is too well resolved, we have the situation that small 
localised jets form rather than a propagating wave which may well be physical, but leads to breakdown. 

However, the force results testify that the exact resolution of the free surface is not necessary for 

comparison with the analytic model. Furthermore we can conclude that the code is correct for our 

purposes and proceed to use the results in the later sections. 

The above results show the viability of the code. The exact relationship between free surface 

and body resolution cannot be specified in general; it will change depending on the system under 

examination. For instance, Test 1 may be construed as the best resolution for this system (due to its 

longevity) however it may not be the best for wedge entry, or a transience study. The only way to 

identify good values for the resolution variables is through trial and error, a continual compare-and- 

contrast strategy. 
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Transient motion 

Now we have verified the results obtained from the code we shall proceed to demonstrate the 

results that can be produced. Under consideration is a body displaced from its equilibrium position then 

released to move under the influence of gravity alone. For this demonstration of transient motion we 

shall consider both a wedge and a box body. 

The following graphs are a sequence of snapshots of the body and surrounding free surface as 

the body undergoes transient motion. Accompanying each graph is a table of results describing the body 

status for each snapshot. 

Graph 2.11 to Graph 2.13 depict a wedge undergoing transient motion when released from various 

displacements from the equilibrium position. Likewise Graph 2.14 to Graph 2.16 depict a box 

undergoing transient motion. 

As a further demonstration of the programs capabilities we also display further data produced for the 

case considered in Graph 2.14. We present graphs of the pressure profile across the wetted body 

surface, Graph 2.17, and the vertical forces experienced by the wetted surface, Graph 2.18, during the 

transient motion. The pressure is non-dimensionalised by dividing by dpg, and the forces are non- 

dimensionalised using the buoyancy forces at equilibrium pgV. 
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Graph 2.11 Transient motion of a wedge of half angle it/6 (note that the vertical scale is exaggerated). Initially 

the body is displaced upwards by 0.4 from its equilibrium position and released under the influence of gravity. (a) 

to (i) show the progressive motion of the wedge as it oscillates about its equilibrium position and the waves 

radiated by the body. Each surface profile represents a non-dimensional time step of 0.990. Note the clustering of 

points in (i) this leads to breakdown of the calculation as the nodes intercept one another, this is due to the 

excessive motion of the wedge a consequence of the large initial displacement. Below is a table of the data for 

each profile non-dimensionalised as explained previously. 

Time Depth Velocity Acceleration 

a 0.495 -0.663 -9.567 -0.373 
b 1.486 -0.989 -13.193 0.155 
c 2.476 -1.196 -2.479 0.319 
d 3.467 -1.123 6.853 0.094 
e 4.457 -0.962 4.354 -0.166 
f 5.447 -0.931 -1.233 -0.085 
g 6.438 -0.986 -2.436 0.023 
h 7.428 -1.029 -0.813 0.047 
i 8.419 -1.028 0.728 0.029 
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Graph 2.12 Transient motion of a wedge of half angle 79/6 (exaggerated vertical scale). Initially the body is 

displaced upwards by 0.2 from its equilibrium position and released under the influence of gravity. (a) to (h) show 

the progressive motion of the wedge as it oscillates about its equilibrium position and the waves radiated by the 

body. In comparison with Graph 2.11 the amplitude of the radiated waves is small, and the deviation from the 

equilibrium position is also small, this is due to the relatively small initial displacement. Each surface profile 

represents a non-dimensional time step of 3.467. Below is a table of the data for each profile non-dimensionalised 

as explained previously. 

Time Depth Velocity Acceleration 
a 3.467 -1.072 3.388 0.052 
b 6.933 -1.004 -1.504 0.019 
c 10.400 -0.988 0.034 -0.024 
d 13.866 -1.003 0.157 0.003 
e 17.332 -0.999 -0.300 0.001 
f 20.800 -0.996 -0.095 -0.004 
g 24.266 -0.998 -0.046 0.002 
h 27.732 -1.01 -0.430 0.020 
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Graph 2.13 Transient motion of a wedge of half angle 7t/6 (exaggerated vertical scale). Initially the body is 

displaced downwards by 0.2 from its equilibrium position and released under the influence of gravity. (a) to (h) 

show the progressive motion of the wedge as it oscillates about its equilibrium position and the waves radiated by 

the body. Again, as in Graph 2.12, the amplitudes of the radiated waves are small, and the deviation from the 

equilibrium position is also small. Each surface profile represents a non-dimensional time step of 1.486. Below is 

a table of the data for each profile non-dimensionalised as explained previously. 

Time Depth Velocity Acceleration 

a 1.486 -1.004 7.319 -0.067 
b 2.971 -0.884 -1.183 -0.118 
c 4.457 -0.996 -3.185 0.046 
d 5.943 -1.036 1.132 0.057 

e 7.428 -0.981 0.727 -0.049 
f 8.914 -0.991 -0.663 0.004 
g 10.400 -1.006 -0.167 0.001 
h 11.885 -1.001 0.449 0.005 
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Graph 114 Transient motion of a box of aspect ratio beam / draft = 1.2 (vertical scale is exaggerated). Initially 

the body is displaced downwards by 0.6 from its equilibrium position and released under the influence of 

gravity. (a) to (h) show the progressive motion of the box as it oscillates about its equilibrium position and the 

waves radiated by the body. Each surface profile represents a non-dimensional time step of 3.132. Note there are 
large amplitude waves away from the body and comparatively minor surface disturbance near the body, this is 

contrary to the case of a wedge (see Graph 2.11 - Graph 2.13). Below is a table of the data for each profile non- 
dimensionalised as explained previously. 

Time Depth Velocity Acceleration 

a 0.626 -1.553 0.585 0.218 
b 3.759 -0.693 0.651 -0.197 
c 6.891 -0.994 -0.890 0.030 
d 10.023 -1.191 0.502 0.083 

e 13.155 -0.830 -0.005 -0.103 
f 16.287 -1.111 -0.347 0.058 
g 19.419 -0.939 0.347 0.003 
h 22.551 -0.951 -0.157 -0.039 
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Graph 2.15 Transient motion of a box of aspect ratio beam / draft = 1.2 (vertical scale is exaggerated). Initially 

the body is displaced upwards by 0.2 from its equilibrium position and released under the influence of gravity. (a) 

to (h) show the progressive motion of the box as it oscillates about its equilibrium position and the waves radiated 

by the body. The wave amplitudes are less that those displayed in Graph 2.14 a result in the decrease in the initial 

displacement. Each surface profile represents a non-dimensional time step of 7.517. Below is a table of the data 

for each profile non-dimensionalised as explained previously. 

Time Depth Velocity Acceleration 
a 2.819 -1.041 -0.444 0.032 
b 10.336 -0.947 -0.216 -0.203 
c 17.853 -0.941 -0.036 -0.026 
d 25.370 -0.965 0.037 -0.015 
e 32.887 -0.996 0.042 -0.003 
f 40.404 -1.002 0.036 0.002 
g 47.921 -0.984 0.004 0.001 
h 55.438 -1.015 -0.020 0.004 
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Graph 2.16 Transient motion of a box of aspect ratio beam / draft = 1.2 (vertical scale is exaggerated). Initially 

the body is displaced downwards by 0.2 from its equilibrium position and released under the influence of 

gravity. (a) to (h) show the progressive motion of the box as it oscillates about its equilibrium position and the 

waves radiated by the body. Again note the lack of surface disturbance as in Graph 2.15. Each surface profile 

represents a non-dimensional time step of 7.517. Below is a table of the data for each profile non-dimensionalised 

as explained previously. 

Time Depth Velocity Acceleration 

a 2.819 -0.967 0.428 -0.032 
b 10.336 -1.052 0.207 0.020 
c 17.853 -1.057 0.035 0.024 
d 25.370 -1.034 -0.035 0.014 
e 32.887 -1.004 -0.038 0.003 
f 40.404 -0.998 -0.035 -0.002 
g 47.921 -1.015 -0.003 -0.001 
h 55.438 -0.986 0.017 -0.003 
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Graph 2.17 Graph of non-dimensional force against time for the transient motion of a box as described in Graph 

2.14. The marked points represent the steps presented in Graph 2.14 and the figures beside are the forces on the 

wetted surface of the body at that time. 
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Graph 1.18 The non-dimensional pressure acting at the nodes on the wetted surface of the body. The x axis 

represents the non-dimensional distance from the centre of the body. Each step in Graph 2.14 has a 

corresponding pressure curve in the diagram. 

The reader may note the disturbance in the pressure curves at x=1. Calculation of the pressure at the 

body comers is unreliable due to the integrable singularities present. A full discussion of this problem is 

given in Chapter 4 and Chapter 5. 

0; iiii 
05 10 15 20 25 

NondimensionalTime 

0.5 1.0 1.5 2.0 2.6 3.0 
Nondnismlonal xdishnm around body from bd 
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Conclusion 

In this chapter we have demonstrated the viability of the fully non-linear numerical theory and 

its implementation in Fortran. Furthermore, we have presented graphs indicating the capabilities of the 

code to produce near physical results. In the next chapter we will derive an analytical method to 

approximate the fully non-linear solution. Chapters 4 and 5 will then compare the theory presented here 

with that in the following chapter for bodies exiting and entering the fluid domain. 
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Chapter 3 Analytic Theory 

A derivation of the analytic theory and approximate added mass 
used to calculate the forces experienced by a body moving 

through the fluid domain 

Abstract 

This chapter describes the derivation of the analytic theory as applied to the problem of a body 

moving in the fluid domain. An explanation is given of the analytical theory and the method of 

application to the problem. 

Introduction 

This chapter is concerned with obtaining an analytical description of a body moving in fluid. 

The main priority will be the forces acting upon the body. Three systems are under consideration, a 

wedge, a box and a knuckled body. Each shall be considered separately; although there is some 

commonality at points in the derivation, it will be repeated for clarity. 

We consider each body in motion through a quintessent fluid from a prescribed position. As 

the body shifts in the fluid domain it experiences hydrostatic and hydrodynamic pressures upon its 

wetted surface. These are integrated to give hydrostatic and hydrodynamic forces which are due to the 

interaction with the fluid particles and their subsequent acceleration. An analytical theory is 

implemented in an attempt to produce a practical method of calculation. The motivation is to develop a 

simpler theory that is able to calculate the forces experienced by the body without the need for 

extensive numerical calculations, and which could be included in strip theory codes dealing with large- 

amplitude (slamming) calculations. 

Wedge Theory 

Firstly we consider a wedge with half-angle a (Figure 3.1), initially at a depth d, leaving the 

fluid with constant velocity / acceleration. 

4-a-+ 
Y=O Still water level 

b=dy 

av 

Figure 3.1 Wedge of half angle a in a state of equilibrium 
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This theory consists of the buoyancy force (also known as the hydrostatic force) and the added 

mass force (referred to as the hydrodynamic force). The buoyancy force is defined as: 

Fn = pgV(1) (3.1) 

where p is the body density, g is gravitational acceleration, and V(t) is submerged volume, that is, the 

instantaneous portion of the body below the undisturbed free surface level at y=0. The added mass 

force is defined from the energy in the fluid/body system. The kinetic energy is 

T= (mo +mb )v2 
2 

The potential energy can be defined as 

(3.2) 

0 (3.3) 
V= 

j(pgt1-mb9)dY=(P8v-mbg)Y 

-Y 

We set the total energy as 

L=T+V=2 (m0 + mb )$2 + (pgV - mb g)y 
(3.4) 

Applying Lagrange's equation 

-d C4)=o 
Now 

l2 
(ma + mb )2y) 01 d Ma 

oy dt lJ2 
ddy 

Y2 + (P9V - me g) - dt 
d 

and 

m 
dtl2(ma+mb)2yJ=imo+mit)Y+dýa 

d 
Y=(mo+mb)Y+d YZ 

We find 

oZ dc1 dma 2 -=-2Y+ (pgV - mb g) -Imo + Mb )Y =0 

Hence 

MbP+meg-P8d = -maY- 
I dma 

y2 
(3.5) 
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Where the left-hand side is the equation of motion and the right-hand side is the added mass force, 

-F,,. So we state Fa as 

dma 
Fa =1 V2 +mav 

(3.6) 

where m, is the added mass, y is the vertical axis, and y&y are replaced by v&v (the vertical 

velocity and acceleration). Although exact, this is not currently in a form we can utilise because we 

have no simple means of calculating the added mass exactly. In general the added mass would depend 

on the entire history of motion (i. e. memory) by the virtue of wave radiation. However analytical 

progress is possible if we approximate the free surface by a line of equipotential ý=0 on y=0. Such an 

approximation is essentially pragmatic but does correspond to 

i. the initial conditions used for the numerical calculations, meaning that comparisons 
between analytic and numerical results should agree at t=0. 

ii. the high-frequency limit for the usual time-independent linear theory used in most 

seakeeping theories. This can also be thought of as the zero gravity limit used in slamming 

calculations since the initial local accelerations of spray jets usually greatly exceed g. 

Then from Wagner (1932) the added mass is : 

mQ =pb2Gtana 

and 

dm 
-d 

{ppb2Gtana) 

where 

rl 1+2Jr(l -«) 
c_ n2 -t n iý + 

(3.7) 

(3.8) 

(3.9) 

and b=d-y is the submerged depth of the wedge, where d is initial depth and y is change in depth. 

The r(. )are Gamma functions, the evaluation of these Gamma functions is performed using the 

following identities (see Abramowitz and Stegun (1965)): 

r(i+x) = xr(x) (3.10) 
r(x)r(1- x) =" 

sin Er 
r(l+x) =1+alx+a2x2 +a3x3 +a4x4 +asx5 
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where 

a, = -0.5748646 
a2 = 0.9512363 

a3 = -0.6998588 
a4 = 0.4245549 

a5 = -0.1010678 

Wagner (1932) states his results for ma without explanation, and it is worth deriving the result here for 

comparison with the more complicated body geometry considered later. We consider the Schwartz- 

Christoffel mapping, see e. g. Milne-Thomson (1968). 

Figure 3.2 Flow past a wedge in the upper half- Figure 3.3 Uniform flow in the upper half-plane 

plane 

From the Schwartz-Christoffel theorem we can state 

a=a-ý rz+2a aa I --1 
z=K 

Jýý 
+ 1) Q (ý -1) n dd +L 

0 
2a 

z=K ja dC+L 
(1-ýz)n 0 

At point C: ý=0, z=aim L=ai 

2a 

At point D: c=1, z=bib=K J ýý 
add+ai 

° (1-ý2)n 

Using the identity 

I'(9)r(P) 
_ 

(r9-' (1- I) P-1 dt 
r(9+P)oJ 
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from Abramowitz & Stegun (1965), and the substitution ý= 41- we can derive 

t a- t(l-a 
b=K ý2\ rt +- 

(b 
aiýK- 

F(" 
2) 

r(1 
') 

We now set K= IKIe-" where Al I= b 

cosa I, 
Ia 

- 
Ir(i-a) 
2) 

So we can express 

a 
nl 

z-IKI 
f 1- 2ýdc+ai=IKI 

jýl+a Z 
+.. dý+b 

0( JR 

since W 
J(1- 1T2 ndC 

=b- ai 
0 

Integrating gives z=I KII ý-a+... 
l 71 

z Thus = z'+ 
a1+... 

where z' =I 
Z' 

by series reversion. 
lt 

We require ß(z) --> z as z -)- oo for unit velocity at oo . So 

a(Z) =1Ký=Z+1x12 "i+... 

The added mass can be derived from the dipole coefficient as explained in Newman (1977) and 

Appendix B. So taking the coefficient of 1/a we can conclude 

(! i+vJ=I2a 
_ 

(a 2 +b2 )aa 

)12 
where V= b2 tan a (the body volume) 

P [r( it 2)r'1 it ] Using further identities defined in Abramowitz and Stegun (1965) we can obtain the equation 

M. +b' I =b2 tan cc 
rn 

a (ý. )r(2 

r( -C, + 
1)rra 

+ 
1) 

rc 2n2 



Analytic Theory 56 

with minor manipulation we finally obtain equation (3.7) as stated by Wagner (1932). Graph 3.1 depicts 

the relationship between the added mass, mQ , and the wedge half angle, cc. The added mass is non- 

dimensionalised in two different manners. On the left we non-dimensionalise with respect to the 

submerged body depth, b. 

mQ 
_tan 

aQ 
pitb2 lt 

On the right we non-dimensionalise with respect to the body half width, a=b tan a. We non- 
dimensionalise with respect to body half width to allow for comparisons with other body cross sections 

presented in later sections. 

ma 

pica 2 

16 

14 

I2 

lo 

8 

6 

14 
2 

a 

0.5 

0.45 

0.4 

0.35 

0.3 
a 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

90 

Graph 3.1 Non-dimensionalised added mass (w. r. t. depth & half width) against half angle a 

2 
We note that the added mass for the wedge approaches Pxa 

2 as a approaches 90 degrees. We 

expect this result since it is the added mass for a flat plate of half width a (equivalent to the displaced 

mass of a cylinder radius a) 

Differentiating the added mass with respect toy, noting that b is a function of y: 

dm- 
= _2pbG tan a 

(3.11) 

dy 

Hence, by substitution we can obtain the added mass force in a form suitable for comparison with the 

numerical calculations: 

0i ri+I 
0 10 20 30 40 50 60 70 80 
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Fa = pG tana (-bvg 
+b2v) (3.12) 

The values of FQ and Fb can now be calculated, since the body velocity, v, and hence submergence (d 

- y) is known for either the constant velocity or constant acceleration cases considered here. The results 
are calculated for a sufficiently long time period to produce two sets of comparable results from this 

and the numerical calculations. 

Box Body Theory 

So far we have considered a wedge shaped body in the fluid domain. We now extend these 

theories to the case of a box shaped body. 

surface 

Figure 3.4 Box body in the fluid domain 

We expect this to be a more complex situation for several reasons. In the case of the wedge the 

submerged body shape is always self-similar, i. e. always a triangle similar to that in the initial 

conditions (provided the free surface is assumed flat). This is not the case with a box body. As the body 

moves in the fluid domain so its aspect ratio changes, the limiting case being that of a flat plate on the 

free surface. Another difference in the analytical models is that the flow around the wedge is regular at 

the vertex, but singular at the body/free surface intersection points, whereas the box has singularities at 

the corners but is regular at the body/free surface intersection points. Finally the flat bottom of the box 

may be expected to have a significant effect on the added mass when it is close to the surface. 

To calculate the added mass of a box-body we use a Schwarz-Christoffel transformation. The 

situation is as follows. We wish to find the transformation that allows us to map the flow around a box- 

body (Figure 3.5) to that of uniform flow in the upper half-plane (Figure 3.6) 

<..... - a -> 
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Figure 3.5 Flow past a box-body in the upper half- Figure 3.6 Uniform flow in the upper half-plane 

plane 

However, to do this we must work backwards from the result. Using the Schwarz-Christoffel 

transformation we can map the uniform flow in the upper half-plane to the flow around the body as 
follows. 

z=K 
f (c-B)" (c_E)" dc+L 

0 

If we take B=-p, C=-1, D=1 and E=p and using the values of a, ß, X,, and S that can be seen from Figure 

3.6. we get 

a/2 37t/2 3a/2 n/21 

z=K 
f («+P) dd+L 

0 

Simplifying 

ý 
_t 

tt 
_t z=Kf(c+p) 2(c+1)2(c-1)2(ý-p) Zdc+L 

0 

Kf 
Fjý2- 12 

dý +L 
0p) 

From the diagrams it can be seen that when 

Atc=O z=ai=>L=ai 
1Z 

Ate =l z=b+ ai =Kj-- 
lz 

dý + ai ýK=1b where lpl >1 
op 1_ßz 

pZ -ýZ 
dý 

0 

J Z-_ýzdý+b+ai 
Ate=p z=b=K 

Fdý+ai=Kf 

P2 

-ai=K 
j 

ýZ - Pzdý 1 

(3.13) 
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P2 

a=Kj 
Pb2 _2 

dd which is real 

So 

ßz (3.14) 1 
dý 

bo pz 
_ 

VP2 
dý 

Now, we know 

F22dý+ai=Kf ý2 -p 
Fý22 

ýZ -1 
z=Kf 

ýZ - p2 
d+ Kf dý+K f 

W2 

- p2 
dc +ai 

P 

=KJ4 +b 
4 FP2ý2 

P P 

> _> 2( lz 
=K 

Jý1-. 2ý 
1-I fJ 4+b 

Using the following series expansions 

m (1 1 (3.15) 

1Z11 m1II -nl 

C1- =1---..... _ýi'- ýi 2ý2 
m_o 

c2 m! 

m1l (3.16) 
2 

2-n) 

2g 2 

i(--ý2-) 

i 
m-0 

We can then write 

z=KJI 

ý,. ( l 
1-2 

Zr 
+... J(1+2 

p2 
rZ 

+... 
ýdý+b 

p` b 

Ký1+2(p2-1) +... 
)dý+b 

P 

2 
zm KK -K 

(p 

2 

1) - 
+.... +constant term 

So we have, through series reversion 
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zA 
Kz 

=ß_ 
(P2 -1) l+A 

2ý Kc 

=A=(Pz -1)K 
2 

z 

K(P 2 
1) Z+.... 

We require ß(z) -z as z -ý oo that is, 3(ý) -f Ký as ý -* oo thus, 

P(Z) =z+p2 
1) 

K2 
Z 

+.... 

2 
where 

(p 
2- 

1) 
K2 is the required dipole coefficient needed for the added mass calculation. 

This is the flow around the double body 

do 
=o A 

Figure 3.7 Flow around the double body 

So, if subscript T stands for the total double body flow we have 

IVT + 
maT) 

= 27i 
(0Z -1) K2 

pJ2 

We only require the flow in the shaded region of Figure 3.7, so 

m° 
=2 27t 

(p22 
KZ -dT= lt 

(P2 1) 
K2 -b' P 

where VT = 4ab and `d = 2ab. Hence 

ma 
_ 

n(P2 -1)K2 
p2ab 4ab 

However, this formula is not particularly useful since b varies with time, thus the following is used 
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ma (p2 -1)K2 2b 

pira2 2a2 era 

(3.17) 

The whole double-body flow formula (as it appears in Riabouchinski (1920)) can be obtained by 

multiplying (3.17) through by a factor of 2. 

Substituting in for the previously calculated values K, b and a we obtain 

_ý2 
(3.18) 

J( dý 
M. (P) (PZ -1) 2 P2 _C2 
Pita2 p F22dß 2 it p2- 

-1[ 2j Tf22 
_ý 

provided Ip1 >I. 

We can convert this form, containing complicated integrals, into an elliptic integral form. From 
Gradshteyn and Ryzhik (1994) we state 

u222 
f 

/b2 
-x dc = aE(rl, t) -a-b F(rj, t) where rl=sin -ý u 

and t=b 
o a2 -xZ aba 

and 

l 
Va 

x2 -b2 b2 a2 u2 az -b2 J2 
-x2 

dx= aE(%, q)- 
a 

F(ß, 9) where =sin-Z 2 and q= 
uR -b a 

we can deduce 

\j12_x2 
=PE(' 

1P 
_ F(ý 

0 

flj; 
F_X2 2, pp2, P 

pZfZ 
-1 x2-1 2 

2dx=pE(-, 
p)-1 F(, p 1) 

p -x 
1pp2p 

Now E(2 , k) = E(k) and F(2 , k) = K(k) where k is the modulus. Also if k' =k2 -1 , 

)= E(k') and K'(k) = K(k') . Then setting k=p= we can derive 
i F-k 

E'(k 
p 



Analytic Theory 62 

ýZ 
Jp2_x2 x -Idx 12 

Ec(k)-kZ 
2 (k) 

1-k 1-k2 

J 12- x2 
_E(k)- 1-k2K(k) 

-x2 1-k2 

If we now consider the parameter m rather than the modulus k, which by definition 

E(cp, k) =J 1-k2 sin2 Ach 
0 

and similarly for K, then we can find 

and E((p / m) =f 1- m sine Ad9 where m=k2 
0 

1-x2 dZ 
ö p2 -x2_ E'(k)-k2K'(k) 

_ 
E'(m)-mK'(m) 

jx2 
_1 

E(k)-(1-k2)K(k) E(m)-(1-m)K(m) 
J 

p2 -xz 
dx 

p2 -1 

x2-' 
_ 

p2 _X2' 

Hence 

M. (P) 

Paz 

becomes 

k2 m 
[E(k) 

- (1- k2 )K(k)]2 [E(m) - (1- m)K(m)]2 

(p2 -1) 
P2 

2 
ýd j 

p2 _ý2 
ý' 

2 

2o P2 2d 

71 j' Z 

1, p2 _C2 

Ma 
__ 

m-2[ E'(m) - mK'(m) 1 (3.19) 

Pna2 2[E(m)-(1-m)K(m)]Z n 
ILE(m)-(1-m)K(m)J 

This is, in fact, the half body form of the equations for the added mass of a box stated in Riabouchinski 
(1920), as discussed in the following section. 

If we consider the graph of this against a non-dimensional ratio of b/a we have Graph 3.2. 

Again we note that if we let depth b approach zero then so to does b/a , once again we have the 

situation of a flat plate and mo p7ta 
2. So the theory is consistent with flat plate and wedge theory. 

V2 

We also comment on the range of results we are most concerned with. These will be most specifically in 

the range 0< b/a < 2, since if we are considering cases based on real world examples, a ship cross- 
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section will always fall below b= 2a (except for the bow cross-section of some military ships). The 

minimum of zero allows for the (almost) complete exit of the body from the fluid. 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

Graph 3.2 Non-dimensional added mass against non-dimensional body ratio for changing box-body cross section 

The Riabouchinski Method 

Riabouchinski (1920) states that the added mass of a box body is 

Mmd (3.20) 
Mo (E(m)-(1-m). K(m))2 'r I 

Where M is the added mass, Mo = 2n(1/2)2 is used to non-dimensionalise the added mass, E is a 

complete elliptic integral of the first kind and K is a complete elliptic integral of the second kind 

defined (see Abramowitz & Stegun (1965)) as 

I 

K(m) = 
J((1_t)(1_mt))dt 

0 
I 

E(m) =f (1-t) , 
Y2 

(1-mt), 
Y2 

dt 
0 

a being the modular angle, d is the box depth and I is the box width as seen in Figure 3.8 

0II1I+ 

0 20 40 60 90 100 120 140 

Depth! Ha11VNdth 
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0° 

Figure 3.8 Description of box-body according to Riabouchinski 

The distances a and b in Figure 3.8 are the variables referred to in the added mass calculations (see 

Figure 3.7). 

The body ratio, /, referred to in (3.20) is related to parameter m by 

d E(1-m)-mK(1-m) 
1 E(m) - (1- m)K(m) 

(3.21) 

Comparing this with the second part of (3.19) shows they are the same, considering the identities 
E'(m) = E(1- m) and K'(m) = K(1- m) , so that (3.20) is double (3.19). Since we have verified our 
derivation with that of an independent theory we shall proceed with our equation for the added mass of 
the half body as given in (3.19). 

Comparison of theory 

Now, to be able to compare the analytical theory with the numerical results we have obtained 
we need to dispose of this parameter m. As seen from the previous equations, both the added mass and 
the body dimension ratio are dependent on the parameter m and this makes direct application of the 

added mass theory, which needs the depth derivative of ma also, very cumbersome. We circumvent this 

problem with help from Mathematica® (see Appendix C). 

We then obtain a fitted expression of practical use for the non-dimensional added mass 

( 13 2 (3.22) 
m 

P= 2a= Mp =0505589+0.26405 
ä 

-0.0251687 
ä+0.00104839(2 I2 -0.000014487(ä) 

where b has been replaced with the variable y and a is considered constant. (3.22) is a reasonable 

approximation of the exact value of ma over the range 0<b<2 as can been seen from Graph 3.3. 
a 
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Graph 3.3 Comparison of exact added mass (Elliptic Functions) and approximated added mass (Numerical Fit) 

for changing box-body cross section 

The derivative with respect to the depth variable is therefore approximated by : 

dMa 
=10.0251687 

0.001572585 yy (3.23) 
- 0.132025 +--0.000028974 2 dy aaaa 

These can be substituted into the added mass force equation 

1 dma 
Fa=2 y +may 

where y is the depth variable. 

Knuckled Body Theory 

The previous two sections present theories for the generic geometries of a wedge and a box. 

Here we look at a more specific "ship-shaped" pentagonal geometry, in accordance with discussions 

with Lloyds Register. 

of F 
0 0.5 t 1.5 2 2.5 3 33 

Depth! HaWdth 
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Figure 3.9 Knuckle body in the f uid domain 

Face 

Analytically this body has some of the difficulties of both the bodies considered previously, as 

expected, since the knuckled body can be considered a composite of a box and a wedge. Again we have 

two singularities one at each knuckle, the flow over the vertex and at the body/free surface intersection 

points is regular. The problem of the flat bottom no longer arises. We do however have to consider the 

final calculation of the added mass force in two parts; we need an expression for the added mass of the 

knuckle body whilst b>0, but once b=0, we need only consider the (already known) added mass of 

a wedge, since what is above the free surface is of no hydrodynamic consequence. Using the slightly 

more complicated Schwartz-Christoffel transformation described below we calculate an integral 

representation of the added mass of this pentagonal body, and evaluate these integrals to obtain 

equations comparable to the numerical solution. 

The body, for the purposes of the Schwartz-Christoffel transformation, is treated as a hexagon 

(see Figure 3.10) to ensure ý=0 on the vertical axis represents our approximate free surface. This does 

not affect the final results but makes analytical progress possible. As in the previous sections we use the 

Schwartz-Christoffel transformation to map the flow past the half body to that of a uniform flow, the 

two planes being as follows 

Figure 3.10 Flow pasta pentagonal body in the Figure 3.11 Uniform flow in the upper half-plane 

upper half-plane 

By the standard transformation we can write 

2a > 
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a=a a+a a+a- na 
K f(« 

+p) n+ 1) I (ý -1) n (C, - p) R di +L 
0 

a 

z=K 
f (ýZ-O"cE 

dd+L 
0 (ý2 _p2) 

Ate=Oz=ia L=ia 

AtC=lz=b+ia K= b 

1 (1-ýZ 

« 
dd 

0 (p2 _ý2 

i - 
_n Atý=pz=c c=K 

f( 1) 
« 

dd+ia 
0 (ý2 _p2)a 

a 
2 

_n 
c=b+ia+K 

J( 1ý 
a e-'add 

I (p2 _ý2ýa 

So taking the real and imaginary parts of the above we have 

p ý-p2 ýa 
(3.24) 

K2- 
1 "dý- c-b a 

JCZ) 
cos cc sina 

The above can also be expressed as a ratio, G(p, a), as follows 

a (3.25) ' /-2 
b" dý 

c-b a P2 -ý2 G(P, a) _=_ b cos ab sin aIa i j 1-ý 
dý 

0 P2 _ý2 

This then defines body dimension ratios in terms of p and a. So 

a=G 
sin a and 'c 

=G cos a 
(3.26) 

bb 

Note the similarities between the above derivation and that shown in the previous section. 

Now we can state that, 

which is real provided p>1 

a 
2_1 

z=K 
f(ýi 

-Z 
dd+ia+c-ia 

pP 
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This can be expanded into 

a a -a 

Cý2Z p2 
= 

ý1-ý2 rz ý1- 
2) 

n 
TE ý2 

Thus 

z=K 
J1+a 2 

(p2 -1)+... dc+c 
n 

p 

Integrating (3.27) gives 

z Ký -Ka (p 2 -1) +... +constant term 
71 

Reverting the above to obtain 

zAa (p 21A 
Kz it Ký 

=A=a (Pz -1)K 
7t 

= =z+a(PZ-1)K+... K it z 
We require ß(z) --ý z as z -+ oo for unit velocity at oo. 

ßß(Q-+Ký as c-ý co 

Hence we have 

ßßz) - z+a (P2 -1) 
K2 

+... 
Ir z 

(3.27) 

(3.28) 

Where the Yz term in (3.28) is known as the dipole. From the dipole coefficient we can again derive 

the added mass. Consider the double body in a flow as pictured in Figure 3.12 

2a - 

Figure 3.12 Flow past the double body 

Then the added mass can be stated as 
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(VT +mor 2, a (p2 - 1)KZ 
(3.29) 

_ 
pl) Ir 

where b' T= 2a(b + c) and T denotes total body flow. 

We require the flow around the half body, so set `d = a(b + c) and we have 

ma 
1=2 

p{2a(p2 -1)K2 -2a(b+c)} 

Non-dimensionalised this becomes 

mQ a KZ (b+c) 

2= 
(P2 -1) Z 

P= Ir a 

(3.30) 

A graph of (3.30) plotted against the non-dimensional depth is given in Graph 3.4. You may note that if 

a= in (3.30) then b=c and we have the added mass for a box body, as derived in the previous 

section. 
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Graph 3.4 Non-dimensional added mass against non-dimensional body ratio for a knuckled body cross section 

with a=11. /4. 

Comparison of theory 
As we noted in the previous section, to be able to compare the analytical theory with the 

numerical results we must dispose of the parameter, in this case p, in the added mass equation. We do 

this using Mathematicao as explained in Appendix C. 
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We require an expression dependent on body dimensions as in the previous sections however, here we 

have three variables b, a and a. To facilitate a numerical fit we fix a= it/4 , an angle representative of 

a ship like cross-section. So we get an expression for the added mass that is purely dependent on the 

body dimensions 

lZ mo 
= 0.337702 + 0.040939 y-0.0148583( 1aI+ 0207481 

(3.31) 
y 

p 2a \a/ a 'Ta 

- 0.005001961n(22 ) 
a 

where depth b has been replaced by the depth variable y, and a is treated as constant. 

If we inspect the graph of this against a non-dimensional body ratio b/a , Graph 3.5. 
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Graph 3.5 Comparison of exact non-dimensional added mass (Numerical Integration) and approximated added 

mass (Numerical Fit) for a knuckled body cross section with a= Z14 

The sparsity of points in Graph 3.5 between 0.5 and 1 is a result of the step size used in Mathematics®. 

Two separate calculations have been performed to produce the results (0 to I and I upwards) to achieve 

a denser plot in the 0.5 to I range would involve producing a calculation of over 10,000 steps. This is 

possible but the trend is perfectly apparent without going to such lengths precision. 

Note that non-dimensional added mass when b=0 is equivalent to that of the wedge when a=45, i. e. the 

knuckled body becomes a wedge when b=0. 

We also find the derivative of the added mass with respect to y 
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dMa 
= 

0.040939 y 0.103741 (3.32) 

dy a-0.0297166 a2 
- Fay - 0.00500196 y 

These can be substituted into the equation for the added mass force 

Fa =l 
dma 2 2,3' +maY 

producing an equation that is comparable to the numerical data. 

Conclusion 

We now have the analytic theory for each body shape in a suitable form for comparison with 

the numerical results obtained from the solution described in Chapter 2. It is worth noting that the 

method can be extended to even more complicated body shapes. Indeed the vortex shedding flow 

around a rather complicated body shape with bilge keels in slow sway (horizontal) motion was analysed 

using the Schwartz-Christoffel mapping by Faltinsen & Sortland (1987). The following chapters will 

present the numerical results and make comparisons. 
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Chapter 4 Body Exit from Initially Calm Water 

A comparison of numerical and analytic theories used to calculate 
the forces experienced by a body leaving the fluid domain 

Abstract 

This chapter reviews the application of two non-linear theories, analytical and numerical, to 

the problem of a body exiting the fluid domain. The objective of this work is to appraise the analytical 

model and suggest modifications that would allow better approximation of the non-linear method for 

use in practical calculations such as extreme ship motions and slamming. Presented are the numerical 

results for constant velocity, and constant acceleration, exit of bodies from the fluid domain. From these 

results conclusions are drawn, indicating the limitations of the current analytical theory and the future 

direction of this research. The bodies we consider are those of a wedge, a box and a knuckle (inverted 

pentagon). 

Introduction 

This chapter is concerned with obtaining and comparing data from a full non-linear solution of 

the body-exit problem and an analytical solution of the same problem. The main priority will be the 

forces acting on the body. 

As the body leaves the fluid domain it experiences hydrostatic and hydrodynamic pressures upon its 

wetted surface. These are integrated to give hydrostatic and hydrodynamic forces which are due to the 

interaction with the fluid particles and their subsequent acceleration. The analytical theory is also 

implemented in an attempt to produce a practical method of calculation, and the two sets of force results 

are compared. The motivation is to present a simpler theory that is able to calculate the forces 

experienced by the body without the need for extensive numerical calculations, and which could be 

included in strip theory codes dealing with large-amplitude (slamming) calculations. 

In the following sections we consider the body exiting the fluid at both constant acceleration and 

constant velocity. For each we examine all body shapes (wedge, box and knuckle) for a variety of initial 

conditions. Where possible we use comparable initial conditions to allow for comparison between these 

body shapes. 

For each case considered we present four graphs: 

1. A comparison of the total vertical force experienced by the body and the buoyancy force. 

The vertical force is calculated using the fully non-linear numerical method. The buoyancy 

force is calculated using pgV where ̀ d is the time-dependent volume of the body below the 

initial free surface. 
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2. We consider the added mass force, F, , and compare it with the difference between the 

total vertical force and the buoyancy force as considered in the first graph. The intention is 

to examine whether the added mass force and the buoyancy force together account for the 

total force given by the fully non-linear calculation. 

3. The pressure distribution across the wetted surface of the body as a time-stepped 

progression. The previous graphs displays the total force acting upon the body, whereas the 

pressure distribution are presented to illustrate how these forces arise. Each graph contains 

several time intervals taken over the course of the body motion. 

4. The free-surface profiles given at the time intervals used in the pressure distribution. 

All graphs are non-dimensional, this is done in the following manner: 

where de is the draft at equilibrium and g is gravity. " Time - multiplied by 
r, 

ý7d- 

"x and y co-ordinates - divided by de 
. 

" Force - divided by the buoyancy force given by pgV where b' is the submerged volume at 

equilibrium. 

" Pressure -divided by dpg. 

One of the following parameterises the problem : 

" Acceleration - divided by g, in the constant acceleration case. 

" The Froude number is defined as , where v is the velocity in the constant velocity 
fýe 

case. 

Constant acceleration 

The following section gives the results produced for constant acceleration of a body from the 

fluid domain. We consider constant acceleration as a simplification of free motion. Setting acceleration 

to be constant allows easy comparison of these results with values calculated using the analytical 

method. 

For each body shape we consider constant accelerated exit at g/5 and g/2. 

Tables containing the example numerical results can be found in Appendix A. 
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Wedge 

The first case under consideration is that of constant acceleration at g/5 of a wedge with a 

half angle of 45 degrees, height of 1.7 and an initial vertex depth of -1.67 (where the minus sign 

indicates below the free surface). 

Examining Graph 4.1 we note the curves have similar gradients, until we reach the "blip" around a time 

of 2.7. As the body exits the fluid so the number of points on the body reduces, when more than one 

point (actually two, one from either side) is removed due to a large draw-down, or poor discretisation, 

a small error occurs. The reduction in points on the body is matched by a reduction in the size of the 

calculation matrix, this in turn results in a blip in the numerical results. A few time steps later we see 

that the blip has disappeared and the numerics settle down again, producing physically reasonable 

results. 

In Graph 4.2 we see the analytical theory accounts for, at least, the initial difference between the two 

forces presented in Graph 4.1 as expected since both numerical and analytical theories solve the same 

boundary value problem initially i. e. a double-body reflection in a line of equipotential. As we progress 

along the time axis, the two curves become more disparate. This is one of the limitations of the 

analytical theory. If we again consider the free surface profile, Graph 4.4, we note the movement of the 

surface near the body is rapid. As we progress in time, so the surface draws down the body. Now the 

added-mass theory is calculated on the assumption of a fixed free-surface of zero potential (i. e. at the x- 

axis in Graph 4.4), and so neglects the draw-down. As one can see, at times this will be considerable 

approximation. Similarly, the buoyancy is calculated using the depth below the initial free-surface 

(effectively the fixed free-surface of zero potential) and so this force is also compromised by the draw- 

down. A further analysis of this effect will be given in Chapter 6. 
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Graph 4.1 Comparison of total force and buoyancy force for an exiting wedge (a-7114, a/g=0.2) 
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Graph 4.2 Comparison of analytical added mass and force difference for an exiting wedge (a=7C/4, a/g=0.2) 

In Graph 4.3 you will see negative pressures arising near the final steps (i, j and k). This can be 

attributed to the jet formation shown in Graph 4.4, similar negative pressure effects are noticed in runs 

with the free surface discretised more finely, see also Greenhow (1987) for the entry case. In Graph 4.4 

we have artificially held the jet onto the body by keeping the intersection point in contact with the body 

by means of implementing the body boundary condition 
4=v,,. 

More physically the jet would fall 

away from the body under the effect of gravity, the particles moving as free projectiles since within the 

jet the pressure and pressure gradients are small. Therefore, the negative pressures do not arise from 

numerical inaccuracy but rather from an inappropriate use of the body boundary condition in the jet 

region. 

Graph 4.4 gives the free-surface profiles for the time steps displayed in Graph 4.3. Note the negative 

pressures correspond with the jet moving up the body. The non-dimensional times for these graphs are 

given in the following table 

Label a b c d e f g h i j k 

Time 0 0.34 0.69 1.03 1.37 1.72 2.06 2.40 2.74 3.09 3.43 
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Graph 4.3 Non-dimensional pressure on half wetted surface of exiting wedge (a=71, /4, a/g=0.2) 
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Graph 4.4 Free surface profile of exiting wedge (a= 11J4, a! g=D. 2) 
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We now consider the same body exiting the fluid at the higher constant acceleration of g/2. 
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Graph 4.5 Comparison of total force and buoyancy force of exiting wedge (a=2'4, a/g=0.5) 

The first feature to notice about Graph 4.5 is the greater disparity between the buoyancy force and the 

total force at time 0, the total force is less than that in the g/5 case. So the added-mass component must 

be considerably larger in this case, which we expect since the acceleration is larger, this is demonstrated 

explicitly in Graph 4.6. 
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Graph 4.6 Comparison of analytical added mass and force difference for an exiting wedge (a=9114, a/g=O. 5) 

50 

Here we have agreement between the two theories for a longer period of time. Let us examine the free- 

surface profiles to see if we can account for this improvement. Looking at Graph 4.8 we see the draw- 

0.50 1.00 1.50 2.00 2.50 
Non-dimensional Time 
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down is as severe as that in the g/5 case. We conclude that at higher accelerations the added-mass 

force more accurately approximates the force difference. We attribute this to the relatively smaller 

contribution from the velocity term which the analytical theory does not predict so well. 

Label a b c d e f g h i j 

Time 0 0.23 0.46 0.69 0.91 1.14 1.37 1.60 1.83 2.06 
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Graph 4.7 Non-dimensional pressure on half wetted surface of exiting wedge (a=914, a/g=0.5) 

This pressure distribution indicates that the penultimate body point (the point before the body/surface 

interface) has almost continuous negative pressure, a situation normally attributed to jet development. 

However, the free-surface profiles Graph 4.8, show the negative pressures must be a result of poor 

numerical discretisation of the very rapid draw down of the free surface near the intersection point, 

which the numerics are unable to follow accurately enough. In effect, the wetted surface of the wedge is 

not accurately predicted here, but the pressures and pressure gradient along the wedge surface are both 

low, so that the force calculations are not significantly affected. The situation is, in fact, rather similar to 

that of entry, where accurate jet calculation is not needed for force calculations - indeed the calculation 

of Zhao & Faltinsen (1993) completely removes the jets. 

It is also possible that for low enough deadrise angles and high enough velocities, the pressure may 

actually invert across the free surface, as in the cylinder calculations of Greenhow & Moyo (1997). 

Since there are significant numerical problems in determining when this happens (the local flow is quite 

sensitive to discretisation of the draw-down region), an analytical study would be very desirable here. 

However, as outlined in the introduction, no such theories appear to be available at present. 
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Graph 4.8 Free-surface profile of exiting wedge (a=Ir/4, alg=0.5) 

Box 

We now consider a box body of height 1.7, width 2 and an initial depth of -1.63 exiting the fluid 

domain at a constant acceleration of g15. 

Studying Graph 4.9 and Graph 4.10 together we see that the buoyancy and total force have a virtually 

constant difference (varying by 0.05). The added mass force accounts for this difference well for early 

times. As we approach complete exit the two curves in Graph 4.10 diverge in opposite directions. Again 

we can qualify this from the draw-down. As the draw-down increases so the buoyancy force 

overestimates the actual buoyancy contribution, thus increasing the force difference. This gives the 

difference curve in Graph 4.10 a negative gradient when in fact it should be positive. 
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Graph 4.9 Comparison of total force and buoyancy force for an exiting box (a/g=0.1) 
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Graph 4.10 Comparison of analytical added mass and force difference for an exiting box (a/g=0.2) 

Now let us study the pressure distribution. We note the x-axis represents the distance around the body 

from the keel, that is we measure the perimeter distance from the bottom centre around to the point in 

question. 

First we note the lower pressure trend around 1.00. The first point to drop in pressure is the point before 

the body corner, the seventh point from the y-axis in Graph 4.12. This is caused by a singularity at the 

corner. This can be demonstrated as follows. 

Consider the mapping ý= z3 the mapped plane would be ß(Q = UC , graphically that is 
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z- plane 

P(z) 

Figure 4.1 Flow past a corner 

WO = 

ý- plane 

0 

Figure 4.2 Uniform f ow in the upper half-plane 

So P(z) = Uz 
Y3 

which has yi =0 on 0=0 and p=0 on 0= 3Y2 as required. 

Note that this flow is only valid locally since ß(z) -* oo as Izl -* oo . 

Furthermore since 

P(z) - O(zY) then 

4(Z) 
NO(Z-i3)=v_ 

4(Z) 
-OEZ 

Y 
dz dz 

So complex velocity is singular. 

Though the corner is a singularity we may still calculate forces on the body at this point. Since 

pressure in steady flow is from the v2 terms in Bernoulli's equation we can deduce 

z P --- O(z 13) which is singular. 

However, we can still integrate to give a finite force by considering an element between the 

origin and zo 

F=[ dz - 
j'n 

z 
adz 

- O(z0Y) which is finite. 

In reality we would get vortex shedding from these corners. The effect of this can be seen on Graph 

4.11. At the corner the numerical scheme has attempted to calculate the pressure at the singularity, the 

curves should actually approach the line keel distance=l asymptotically. Therefore at the corner we 

must expect the numerical pressure results, which are based on an inviscid model, to be completely in 

error. We have clustered the points here to pick up the singular behaviour near the corner correctly, and 

to highlight this problem with the inviscid formulation. However, the force results, for such sensible 

body discretisation, may not be particularly sensitive to this very localised error and remain realistic; 

the difference at t=0 in Graph 4.10 quantifies this error as small for this case (approximately 0.5% of 

the total body force, 2-3% of the force difference). 
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If we study the free-surface in Graph 4.12 we notice the draw-down is less than that experienced by the 

wedge. The box body experiences less local free-surface interaction than the wedge as mentioned in 

Chapter 2. 
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Graph 4.11 Non-dimensional pressure on half wetted surface of exiting box (alg=0.2) 
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The clustering of points near the corners of the body required to reduce the force error incurred by the 

presence of a singularity can be seen in Graph 4.12. The points are distributed on the vertical body 

boundary such that they cluster around the corners and at the boundary midpoint, the latter being 

implemented for the transient motion case. 

Non-dimensional diatanw around body from keel 
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Graph 4.12 Free-surface profile of exiting box (a/g=0.2) 

Let us consider the same body, this time accelerated at g/2. Again the first thing we note is the reduced 
force due to the high acceleration. Also for the first time we get negative forces near the end of the 

motion, as can be seen in Graph 4.13. The difference in the gradients of the curves in Graph 4.14 can 

again be accounted for by the draw-down effect. 
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Graph 4.13 Comparison of total force and buoyancy force for an exiting box (a/g=0.5) 
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Graph 4.14 Comparison of analytical added mass and numerical difference for an exiting box (a/g=0.5) 

The discrepancy between the added mass force and the difference force at t=0 is a result of the error in 

the flow pressure at the body comer. Considering the pressure distribution, Graph 4.15, we see the 

pressure change near the corner is more noticeable. Although the positive pressures are less than those 

of the g/5 example the negative pressures are larger, this is due to numerical error when the model 

attempts to resolve the singular pressure on the corner. If we consider the free-surface profile, Graph 

4.17, we notice that clustering occurs in the free-surface points on the last three graphs (g, h and i). The 

negative pressures and forces are correct as far as the model is concerned. However, in reality the 
inviscid model is invalid since strong vortices will be shed from the sharp comers when the flow starts 

to move around them. Given this it is pointless to resolve the inviscid flow more accurately, we use the 
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later stages of the results purely as a comparison with the knuckle body (which also suffers from the 

same problems although the singularity is not as strong). 

Label a b c d e f g h i 
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Graph 4.15 Non-dimensional pressure on half wetted surface of exiting box (alg=0. S) 
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Graph 4.16 Non-dimensional pressure, including singularity, on half wetted surface of exiting box (a/g=0.5) 
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In Graph 4.16 we demonstrate how the pressure curve looks schematically taking the pressure 

singularity at the corner into account. 
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Graph 4.17 Free-surface profile of exiting box (alg=0.5) 

Knuckle 
We finally consider a knuckled body of total height 2, apex height 1, half angle a= n/4 and initial 

depth -1.67. 
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The first observation when considering the knuckled body is that it consists of two different body 

shapes, the wedge and the box. Since the final stages of the exit are basically wedge exit albeit with 
different initial conditions arising from the earlier flow, and we would expect some results to 
approximate those already presented. The buoyancy and analytical theory is an excellent approximation 
of the total force for t<0.5 and acceptable for t<1.0, a tendency that was suggested in Graph 4.1 and 
Graph 4.5. If we consider the free surfaces at this time (h and i on Graph 4.21) we see it is around the 
zero potential level i. e. a height of zero. 
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Graph 4.18 Comparison of total force and buoyancy force for an exiting knuckle (alg=0.2) 
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Graph 4.19 Comparison of analytical added mass and force difference for an exiting knuckle (a/g=0.2) 

w 

The sudden gradient change on the analytical curve just after t= 25 in Graph 4.19 is caused by the 
transition from knuckle added mass theory to wedge added mass theory (see Chapter 3 for detail). 

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4: 50 
Non-dimsnslonsl Tin* 



Body Exit from Initially Calm Water 88 

There is only a small negative pressure in the final time step as you can see in Graph 4.20 and if we 

look at Graph 4.21 we see this is due to the beginnings of a jet as the body rises above the mean free 

surface level and is followed by the free-surface. While some of the upward motion is understandably 

physical, being similar to a standing wave, the negative pressure indicates the free surface is not 

drawing fast enough down the body. Better numerical resolution might resolve this problem but since it 

occurs right at the end of the calculation when the force is insignificant, we have not pursued this. 

Label a b c d e f g h i j 
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Graph 4.20 Non-dimensional pressure on half wetted surface of exiting knuckle (a/g=0.2) 
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One thing to notice on the free-surface profiles is how the free-surface suddenly draws down as we 

make the transition from the wall-sided body section to the wedge section. 

NondMNntlonal distance around body from ks. 
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Graph 4.21 Free-surface profile of exiting knuckle (a/g=0.2) 

Let us follow with the higher acceleration case. The body dimensions and initial depth remain the same 
but this time the acceleration is g/2. Looking at Graph 4.22, we see, as expected, that the total force is 

less than that experienced by the slower case, and again we see that the tendency is for the analytical 
theory to approximate the total force better in the final stages as the body nears complete exit. We 

notice the large "blip" in the results around the time of 1.2. This is caused by the knuckle emergence 

and hence the disappearance of the weakly singular flow around the knuckle with associated negative 

pressures, see Graph 4.24. On Graph 4.23 we see an example of excellent approximation by the 

analytical model for almost half the run time. 



Body Exit from Initially Calm Water 90 

2.50 

2.00 

1.50 

I 
1.00 

= 0.50 

0.00 
C 

s An 

Non-llmenslonW Time 

Graph 4.22 Comparison of total force and buoyancy force for an exiting knuckle (a/g=0.5) 
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Graph 4.23 Comparison of analytical added mass and force difference for an exiting knuckle (alg=0.5) 
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We see negative pressures are experience by the body in the later stages of motion. Once again these 

pressures are centred around the knuckle, that is the gradient change between wall-sided and wedge- 

sided body. If we study Graph 4.25 we see these pressures arise as the free-surface approaches the 

corner, as in the box-body case this is caused by a singularity at the knuckle. We therefore generalise 
the theory we presented in the previous section. 

Consider the mapping ý= z" the mapped plane would be ßQ = U4, graphically that is 
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it/ 
a 

z- plane ý- plane 

Figure 4.3 Flow past a knuckle 

Figure 4.4 Uniform flow in the upper half-plane 

So P(z) = Uz' which has yi =0 on 0=0 and y=0 on 0= as required. 

Note that this flow is only valid locally since ß(z) -> oo as Izl -> oc. 

Furthermore since 

P(z) - O(z") then 

dß(z) 
O(Z(,, -, ) v= 

dam) 
O(za-' ) 

So v is singular if a<0. 

Though the knuckle is a singularity we may still calculate forces on the body at this point. 

Since pressure in steady flow is from the v2 terms in Bernoulli's equation we can deduce 

P_ O(Z2(, -I)) which is singular if a<1. 

However, we can still integrate to give a finite force by considering an element between the 

origin and zo 

F= 
[PdZ 

-tz 2oi-2 dz _ O(zo 2, -I) which is finite. 

For our particular knuckled body cases we have a=<I and so a singularity exists at the knuckle. 

So we can expect the pressure at the corner to be incorrect, and is a result of the numerical scheme 

attempting to calculate pressure at the singularity. 

If we consider the final two time steps we see the body has already almost completely exited the fluid 

domain because the free-surface is well below the zero potential level. The profiles do continue for 

several more time steps and exhibit the free-surface following the body up, the appearance is that of a 

jet. However, the results seem spurious for reasons given when discarding the last stage of Graph 4.21 

and so they have been omitted here. 
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Graph 4.24 Non-dimensional pressure on half wetted surface of exiting knuckle (a/g=0.5) 
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As for the box body we have clustered the points around the knuckled body such that they are denser 

near the body corners, this can be seen in Graph 4.25. Again this is done with the intention of reducing 

the force errors caused by the presence of a singularity at the corner. 

Non-dimensional distance around body from keel 
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Graph 4.25 Free-surface profile of exiting knuckle (a/g=0.5) 

Constant velocity 
We switch our attention to the case of constant velocity exit. Since the acceleration is therefore zero, we 

use this to isolate the contribution of the 
d 

portion of the added mass force. 

Wedge 

We return to the wedge case first. Consider a wedge of half angle 7c/6, height 1.7 and initial depth - 
1.67 exiting the fluid domain at a constant velocity, Froude number 0.117. 

First impressions are that the buoyancy performs an excellent job of approximating the total force, 

although we must remember the velocity is small. Graph 4.27 suggests that the added mass force is a 

very poor measure for this case, however we should note the size of the force we are considering and 

compare with those in the previous section. 
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Graph 4.26 Comparison of total force and buoyancy force for an exiting wedge (a= )U6. F, =0.117) 
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Graph 4.27 Comparison of analytical added mass and force difference for an exiting wedge (a=2'6, F, =0.117) 

The pressure distribution in Graph 4.28 is virtually linear, being dominated by hydrostatic pressure. 
Note the nodal intersection point, at zero pressure, does not have a fixed distance from the keel because 

it is not fixed on the body as are the other body points within this numerical scheme, but is a free- 

surface point. Given the very weak hydrodynamic interaction present we have not continued the 

calculations. 

Label a b c d e f g h i 

Time 0 0.69 1.37 2.06 2.74 3.43 4.12 4.80 5.49 

1.00 2.00 3.00 4.00 5.00 6.00 
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Graph 4.28 Non-dimensional pressure on half wetted surface of exiting wedge (a=7T16, Fr=0.117) 
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Graph 4.29 Free-surface profile of exiting wedge (a=91/6, F, =0.117) 

Now consider a wedge of half angle n/4, height 1.7 and initial depth -1.0. This body is exiting at twice 

the speed of the previous example, Froude number 0.233, and is wider, so we can expect stronger 
hydrodynamic interaction. 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
Non-dimensional x 
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Graph 4.30 Comparison of total force and buoyancy force for an exiting wedge (a=2'4, F, =0.233) 
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Graph 4.31 Comparison of analytical added mass and force difference for an exiting wedge (a=2/4, F, =0.233) 

Label a b c d e f g h i 

Time 0 0.23 0.46 0.69 0.91 1.14 1.37 1.60 1.83 
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Graph 4.32 Non-dimensional pressure on half wetted surface of exiting wedge (a=7! /4, Fr=0.233) 
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Graph 4.33 Free-surface profile of exiting wedge (a=1 /4, F, =0.233) 

Once again, we increase the constant velocity of the wedge, Froude number 0.583. 
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Graph 4.34 Comparison of total force and buoyancy force for an exiting wedge (a= )l, �4, F, =0.583) 
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Graph 4.35 Comparison of analytical added mass and force difference for an exiting wedge (a=1114, F, =0.583) 

Label a b c d e f g 

Time 0 0.17 0.34 0.51 0.69 0.86 1.03 
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Graph 4.36 Non-dimensional pressure on half wetted surface of exiting wedge (a=7174, F, =0.583) 
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Graph 4.37 Free-surface profile of exiting wedge (a=914, F, =0.583) 

For the final wedge case under consideration the Froude number is increased to 1.166, double that of 

the previous example, as an experiment in how far we can "push" the model. 
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Graph 4.38 Comparison of total force and buoyancy force for an exiting wedge (a=7C/4, F, =1.166) 
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Graph 4.39 Comparison of analytical added mass and force difference for an exiting wedge (a=)C/4, F, =1.166) 

We see the difference between the analytical theory and the force difference in Graph 4.39 is a lot 

larger than in previous examples (it has steadily increased). The poor agreement is due to draw-down 

making 
dm 

change more rapidly than we can predict using the model, implying stronger hydrodynamic 

forces. Refer to Chapter 6 for further investigation into draw-down. 

Label a b c d e f g h 

Time 0 0.10 0.21 0.31 0.41 0.51 0.62 0.72 
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Graph 4.40 Non-dimensional pressure on half wetted surface of exiting wedge (a=91/4, Fr=1.166) 
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Graph 4.41 Free-surface profile of exiting wedge (c -71J4, Fr 1.166) 

Although the analytical method does not cope well with the constant velocity wedge exit we have 

provided a full selection of results for comparison with future work. 

Box 
We move our attention to the case of a box body exiting the fluid domain. We consider four cases, the 

first three having Froude numbers equal to those in the first three wedge cases, for the final cases we (as 

for the wedge) we "push" the model to its limits. 
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Our first case is that of a box of height 1.7, width 2 and initial depth -1.63, exiting with Froude number 
0.117. 
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Graph 4.42 Comparison of total force and buoyancy force for an exiting box (F, =0.117) 
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Graph 4.43 Comparison of analytical added mass and force difference for an exiting box (F, =0.117) 

From the following pressure distribution, Graph 4.44, we see this example is very hydrostatic. 
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Graph 4.44 Non-dimensional pressure on half wetted surface of an exiting box (F, =0.117) 
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The motion is slow enough that the intersection point moves up the wall side of the body without 

problems, as is shown by the free-surface profile given in Graph 4.45. 
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Graph 4.45 Free-surface profile of exiting box (F, -0.117) 

We increase the Froude number to 0.233. 
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Graph 4.46 Comparison of total force and buoyancy force for an exiting box (Fr=0.233) 
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Graph 4.47 Comparison of analytical added mass and force difference for an exiting box (F, =0.233) 

Label a b c d e f g h i 
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Graph 4.48 Non-dimensional pressure on half wetted surface of an exiting box (F, =0.233) 
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The motion is again uneventful, with just a small draw-down of the free-surface. 
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Graph 4.49 Free-surface profile of exiting box (F, =0.233) 

Taking a larger Froude number, this time 0.583, the motion becomes more interesting. 
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Graph 4.50 Comparison of total force and buoyancy force for an exiting box (Fr=0.583) 

Here we see almost linear force curves, with slightly differing gradients, the overestimate of the 
buoyancy increasing with time. 
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Graph 4.51 Comparison of analytical added mass and force difference for an exiting box (F, =0.583) 

Label a b c d e f g h i 

Time 0 0.23 0.46 0.69 0.91 1.14 1.37 1.60 1.83 

DO 
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Graph 4.52 Non-dimensional pressure on half wetted surface of an exiting box (Fr=O. 583) 
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We can see the reason for the buoyancy overestimating the total force when we study the free-surface in 

Graph 4.53, the draw-down is now quite large, hence the buoyancy should be calculated using the 

smaller submerged body volume rather than the draft taken from the line of zero potential. 

Non-dimensional dkdance around body from kul 
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Graph 4.53 Free-surface profile of exiting box (F, =0.583) 

Now we increase the Froude number to 2.915, to see what effect it has on our model. 
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Graph 4.54 Comparison of total force and buoyancy force for an exiting box (F, =2.915) 

55 

It is immediately apparent that the two forces differ greatly, and we would expect the added mass to 

play a larger part at such high velocities. 
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Graph 4.55 Comparison of analytical added mass and force di f erence for and exiting box (Fr=2.915) 

0 

However, the theory does not account for such a large difference. Considering the pressure distribution 

we see that there are complications at the corners as expected, resulting in large negative pressures 

which obviously impact the force calculations given above. 

Label a b c d e f g h 

Time 0 0.05 0.09 0.14 0.18 0.23 0.27 0.32 
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Graph 4.56 Non-dimensional pressure on half wetted surface of an exiting box (F, =2.915) 
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The resolution in Graph 4.56 makes it difficult to separate the results for each time step, so Graph 4.57 

provides a closer view. 
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Graph 4.57 Close-up of Non-dimensional pressure on half wetted surface of an exiting box (F, =2.915) 

The free-surface profile, Graph 4.58, shows the large draw-down involved in such a fast motion, and 

when considered over such a short time span it is easy to see why the analytical theory has limited 

applicability. 
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Graph 4.58 Free-surface profile of exiting box (F,. =2.915) 

Knuckle 

Finally, we consider a knuckle body exiting the fluid domain. We follow the pattern of results used 

previously with a body of height 2, vertex height 1, half angle 7c/4 and initial depth -1.67 exiting with 

Froude number 0.117. 
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Graph 4.59 Comparison of total force and buoyancy force for an exiting knuckle (a=7I14, F, =0.117) 
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Graph 4.60 Comparison of analytical added mass and force difference for an exiting knuckle (4--Z4, F, =0.117) 

The sudden change in gradient at non-dimensional time 6.0 is caused by the transition from knuckle 
body to wedge as the intersection point passes around the knuckle. Considering such a discontinuity the 
theory copes well, and achieves a somewhat smoother transition. However, that is offset by the fact that 

apart from the good initial agreement, the theory underestimates the force difference drastically. 

Label a b c d e f g h 

Time 0 1.83 3.66 5.49 7.32 9.15 10.98 12.81 
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Graph 4.61 Non-dimensional pressure on half wetted surface of an exiting knuckle (a=2 '4, F, =0.117) 

The free-surface profile is rather uneventful, we note a small draw-down in stage b, and some wave 
propagation that results from this in c onwards, as we have already demonstrated in the box body 

examples. 
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Graph 4.62 Free-surface profile of exiting knuckle (a=)f/4, F, =O. 117) 

Next the Froude is increased to 0.233. 

0.20 0.40 0.60 0.80 1.00 1.20 1.40 
Mon-dimensional distance around body from keel 



Body Exit from Initially Calm Water 116 

2.50 

2.00 

1.50-- 

1.00-- 

0.50-- 

0.00 

L 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 
Non. d6Mnslonal Tim. 

Graph 4.63 Comparison of total force and buoyancy force for an exiting knuckle (a=7U4, Fr=0.233) 
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Graph 4.64 Comparison of analytical added mass and force difference for an exiting knuckle (a=91/4, F, =0.117) 

Once again initial agreement is good, but the later stages are more disparate than the slower case. 

Label a b c d e f g 

Time 0 0.46 0.91 1.37 1.83 2.29 2.74 
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Graph 4.65 Non-dimensional pressure on half wetted surface of an exiting knuckle (a=W4, Fr=0.233) 

We see larger movements in the free-surface than in the previous example, rather than propagating 
waves the intersection point moves down the body (producing the now familiar draw-down) and then 
begins to follow the body up. 
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Graph 4.66 Free-surface profile of exiting knuckle (6 -914, F, =0.233) 

Higher Froude numbers proved difficult for the knuckle body exit, so we have taken a step back and 

slowed the motion to a Froude number of 0.058. 
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Graph 4.67 Comparison of total force and buoyancy force for an exiting knuckle (a= 914, F, =0.058) 
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Graph 4.68 Comparison of analytical added mass and force difference for an exiting knuckle (a=7r14, F, =0.058) 

We suspect that the curve fluctuation between t= 10 and t= 25 is caused by a physical occurrence 

rather than numerical error. To test this we have plotted the locus of the intersection point of the free- 

surface and the body between these times in Graph 4.69. It is clear from this graph that the fluctuations 

in the total force, and so the force difference, are a direct result of the intersection point moving up and 

down the body in a "lapping" motion. 
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Graph 4.69 Locus of intersection point for given time 
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Graph 4.70 Non-dimensional pressure on half wetted surface of an exiting knuckle (a= 914, F, =0.058) 
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Graph 4.71 Free-surface profile of exiting knuckle (a=1il4, F, =0.058) 

Conclusions 

Analysis of the graphs has shown that the theory copes well in the early time steps with accelerated exit 

of all body forms. Constant velocity exit, however, appears to be more illusive. In both cases the draw- 

down effect is not included and can account for some of the difference at larger time, refer to Chapter 6 

for investigation. The numerical results for the box, and to a lesser extent for the knuckle, obviously do 

not predict the singular pressures at the comers. However it was shown that this singularity is 

integrable, and so force comparisons of numerical and analytical results, whilst degraded in some cases, 

are still possible. 
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Chapter 5 Body Entry into Initially Calm Water 

A comparison of numerical and analytic theories used to calculate 
the forces experienced by a body entering the fluid domain 

Abstract 

This chapter reviews the application of two non-linear theories, analytical and numerical, to 
the problem of a body entering the fluid domain. The objective of this work is to appraise the analytical 
model and suggest modifications that would allow better approximation of the non-linear method for 

use in practical calculations such as extreme ship motions and slamming. Presented are the numerical 
results for constant velocity, and constant acceleration, entry of bodies into the fluid domain. From 
these results conclusions are drawn, indicating the limitations of the current analytical theory and the 
future direction of this research. The bodies we consider are those of a wedge, a box and a knuckle 
(inverted pentagon). 

Introduction 

This chapter is concerned with obtaining and comparing data from the fully non-linear solution 
of the body-entry problem and an analytical solution of the same problem. The main priority will be the 
forces acting on the body. 

As the body enters the fluid domain it experiences hydrostatic and hydrodynamic pressures upon its 

wetted surface. These are integrated to give hydrodynamic forces which are due to the interaction with 
the fluid particles and their subsequent acceleration. The analytical theory is also implemented in an 
attempt to produce a practical method of calculation, and the two sets of force results are compared. 
The motivation is to present a simpler theory that is able to calculate the forces experienced by the body 

without the need for extensive numerical calculations, and which could be included in strip theory 

codes dealing with large-amplitude (slamming) calculations. 

In the following sections we consider the body entering the fluid at both constant acceleration and 
constant velocity. For each we examine all body shapes (wedge, box and knuckle) for a variety of initial 

conditions. Where possible we use comparable initial conditions to allow for comparison between these 
body shapes. 

For each case considered we present four graphs: 

1. A comparison of the total vertical force experienced by the body and the buoyancy force. 

The vertical force is calculated using the fully non-linear numerical method. The buoyancy 

force is calculated using pgV where ̀ d is the time-dependent volume of the body below the 

initial free surface. 
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2. We consider the added mass force, FQ , and compare it with the difference between the 

total vertical force and the buoyancy force as considered in the first graph. The intention is 

to examine whether the added mass force and the buoyancy force together account for the 
total force given by the fully non-linear calculation. 

3. The pressure distribution across the wetted surface of the body as a time stepped 
progression. The previous graphs displays the total force acting upon the body, the pressure 
distribution is presented to illustrate how these forces arise. Each graph contains several 
time intervals taken over the course of the body motion. 

4. The free-surface profiles given at the time intervals used in the pressure distribution. 

All graphs are non-dimensional, as follows: 

" Time - multiplied by where de is the submerged depth at equilibrium and g is 
e 

gravity. 

"x and y co-ordinates - divided by de 

" Force - divided by the buoyancy force given by pgV where V is the submerged volume at 

equilibrium. 

" Pressure - divided by dpg. . 

One of the following parameterises the problem : 

" Acceleration - divided by g, in the constant acceleration case. 

v2 
" The Froude number is defined as , where v is the velocity in the constant velocity 

äde 

case. 

Constant acceleration 

The following section gives the results produced by constant acceleration entry of a body into 
the fluid domain. We consider constant acceleration as a simplification of free motion. Setting the 

acceleration to be constant allows easy comparison of these results with values calculated using the 

analytical method. 

For each body shape we consider constant accelerated exit at g/5 and g/2. 

Tables containing the sample numerical results can be found in Appendix A. 
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Wedge 

The first case under consideration is that of constant acceleration at g/5 of a wedge with a 

half angle of 45 degrees, height of 1.7 and an initial vertex depth of -0.33 (where the minus sign 
indicates below the free surface). Note that this vertex depth introduces a characteristic length scale 
into the problem, so the resulting flow cannot be self-similar, as in the usual slamming calculations 

where the body enters the fluid at the vertex tip at t=0. We also have included gravity in the 

calculations, whereas self-similarity also requires g=0. 
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Graph 5.1 Comparison of Total Force and Buoyancy Force -Entering Wedge (a=iV2, a/g=0.2) 

The gradient of the buoyancy curve in Graph 5.1 does not agree with that of the total force as well as in 

the exit case. We expect the forces to diverge with time since the body volume increases with time, 

making larger contributions to the force calculations. We note that the total force overestimates the 

buoyancy, a consequence of "up-rise" rather than the "draw-down" in the exit case, this will be more 

pronounced as the body velocity increases. 
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Graph 5.2 Comparison of Analytical Added Mass and Force Difference - Entering Wedge (a=*2, alg=0.2) 

Initial inspection of Graph 5.2 indicates that the added mass theory does not perform as well for entry 

as for exit. We do have good agreement for small t, although the duration of this agreement is shorter 
than that for exit. This can be attributed to the shorter duration of the complete motion before 

breakdown. As is evident in Graph 5.4 large surface motions develop more rapidly than in the exit 

scenario, and as already demonstrated the larger the surface motion the greater the detrimental effects 

on the added mass theory (since we assume a fixed surface). 

Taking pressure calculations at the following non-dimensional times 

Label a b c d e f g h i 

Time 0 0.14 0.29 0.43 0.57 0.71 0.86 1.00 1.14 

provides us with a graphical representation of the pressure gradients across the wetted surface of the 
half-body. 
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Graph 5.3 Non-dimensional initial pressure on half wetted surface of entering wedge (a=, r/2, a/g=0.2) 

We note the free-surface profiles at these times in Graph 5.4. 
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Graph 5.4 Free-surface profile for entering wedge (a=i'2, alg=0.2) 

We know consider the same body entering the fluid at the higher constant acceleration of g/2- 
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Graph 5.5 Comparison of Total Force and Buoyancy Force - Entering Wedge (a=nI4, a/g=0.5) 

The forces at t=0 are noticeably different in Graph 5.5 a result of the body starting above its 

equilibrium position. The added mass calculations matches this difference, as we see below 
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Graph 5.6 Comparison ofAnalytical Added Mass and Force Difference -Entering Wedge (a--d4, a/g=0.5) 

Again, we consider the pressure gradients at the given times 

Label a b c d e f g h i 

Time 0 0.09 0.17 0.26 0.34 0.43 0.51 0.60 0.69 
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With larger velocity (larger time) we have negative pressures near the free surface, attributable to jet 

formation. These can be seen in Graph 5.8. 
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Graph 5.7 Non-dimensional initial pressure on half wetted surface of entering wedge (a-i14, a/g=0.5) 
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Graph 5.8 Free-surface profile for entering wedge (a=w4, a/g=0.5) 
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Box 

We now consider a box body of height 1.7, width 2 and an initial depth of -0.33 entering the fluid 

domain at a constant acceleration of g15. 
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Graph 5.9 Comparison of Total Force and Buoyancy Force - Entering Box (a/g=0.2) 

The agreement between the gradients of the two curves in Graph 5.9 is an improvement on the wedge 

entry. The fluid undergoes less violent motion upon entry of a wall-sided body. The added mass force 

has a very small gradient appearing almost constant. 
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Graph 5.10 Comparison of Analytical Added Mass and Force Difference -Entering Box (a/g=0.2) 

Considering the pressures at specified times gives a far different picture to those previously seen. We 

can see the effect the corner plays in the pressure distribution around the wetted surface, an effect 

already explained in Chapter 4. 
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Label a b c d e f g 
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Graph 5.11 Non-dimensional initial pressure on half wetted surface of entering box (a/g=0.2) 
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The free-surface profiles in Graph 5.12 demonstrate a smoother motion. The surface rises more as a 
step than a jet, the body affects a larger portion of the fluid and its surface (not as localised as the 

wedge motion) due to the flat bottom. 
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Graph 5.12 Free-surface profile for entering box (a/g=0.2) 

Let us consider the same body, at an acceleration of g/2. The higher acceleration gives rise to larger 

differences between the two force calculations, but these differences are still accounted for by the added 

mass for small t. 
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Graph 5.13 Comparison of Total Force and Buoyancy Force -Entering Box (a/g=0.5) 
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Graph 5.14 Comparison of Analytical Added Mass and Force Difference -Entering Box (a/g=0.5) 

Consider the pressure at the given times. 

Label a b c d e f g h 

Time 0 0.29 0.63 0.86 1.14 1.43 1.72 2.00 

We see the singularity of the body corner affecting the pressure calculation. As discussed in Chapter 4, 

the numerical scheme attempts to calculate a pressure value at the singularity which, as you would 

expect, is wrong. 
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Graph 5.15 Non-dimensional initial pressure on half wetted surface of entering box (a/g=0.5) 
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Again the profiles show the steady rise of the surface, with a slightly more localised effect. 
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Graph 5.16 Free-surface profile for entering box (a/g=0.5) 

Knuckle 
Finally consider a knuckled body of total height 2, apex height 1, half angle n/4 and initial depth -1.0. 
The increased initial submergence is to avoid the problems caused by the intersection point traversing 

the singularity at the body knuckle. 
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Graph 5.17 Comparison of Total Force and Buoyancy Force -Entering Knuckle (a=id4, a/g=0.1) 

The forces correspond with those seen in the case of a box body, again due to the wall sides. However, 

as can be seen in Graph 5.18 the wedge portion of the body has a noticeable effect on the added mass 
calculation, producing results that approximate the force difference to a greater extent than those given 
previously for large t. 
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Graph 5.18 Comparison ofAnalytical Added Mass and Force Difference -Entering Knuckle (aß-'4, a/g=0.1) 

The singularities at the knuckles have a noticeable effect on the pressure gradients, but to a lesser extent 
than those of the box body for reason given in Chapter 4. 
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Label a b c d e f g h i 

Time 0 0.43 0.86 1.29 1.72 2.14 2.57 3.00 3.43 
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Graph 5.19 Non-dimensional initial pressure on half wetted surface of entering knuckle (a=ßr/4, a/g=0.2) 

The surface profiles can be related to those of the box body, as would be expected since the intersection 

point is always on the wall-sided part of the body. We do see an effect not seen in the box body 

profiles, at stage g the beginnings of a radiated wave can just be distinguished from the general "up- 

rise" of the surface. 

We see that at stage i the top of the body is below the free surface. At this point we enforce an artificial 

condition fixing the intersection point to the top corner of the body. This produces a false free-surface 

profile but has no significant impact on the force calculations and so enables us to continue for several 

more time-steps. 
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Graph 5.20 Free-surface profile for entering knuckle (a= 4, a/g=0.2) 

Let us follow with the higher acceleration case, the body dimensions and initial depth remain the same 
but this time acceleration is g/2. 
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Graph 5.21 Comparison of Total Force and Buoyancy Force -Entering Knuckle (a=ie4, a/g=0.5) 

Again the gradients are very similar, this in turn means the added mass has a better chance of 

approximating the difference. As can been seen from previous cases if the buoyancy performs well then 

the added mass model then performs better. It follows since if the gradients are very similar the 

difference between the total force and buoyancy force will be almost constant, indicating a smooth, 

non-violent fluid motion. In turn the added-mass model performs better when fluid motion is not 

violent. 
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The knuckle has a more pronounced effect on the pressure gradient at this higher acceleration. We also 
see the development of negative pressures close to the surface for large t, an indication of numerical 
problems approaching rather than jet formation. 
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Graph 5.23 Non-dimensional initial pressure on half wetted surface of entering knuckle (a-, r/4, a/g=0.5) 

As in the previous case the development of a radiating wave is definitely noticeable in the fmal stages 

of the motion. 

In stages h and i we again have an engulfment situation that we have avoided by fixing the intersection 

point to the top corner of the body as we did in Graph 5.20. 
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Graph 5.24 Free-surface profile for entering knuckle (a--vd4, a/g=0.5) 

Constant velocity 
Once again we consider the case of constant velocity exit. 

Wedge 

Let us return to the wedge case first. Consider a wedge of half angle n/4, height 1.7 and initial depth - 
0.33 entering the fluid domain at a constant velocity, Froude number 0.117. 
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Graph 5.25 Comparison of Total Force and Buoyancy Force - Entering Wedge (a-, r/4, Fr=0.117) 

We see in Graph 5.25 that the buoyancy still provides a reasonable approximation of the forces on the 
body. However, Graph 5.26 leaves us in no doubt that the analytical method does not handle the zero 

acceleration case at all. The results show a virtually constant added mass contribution. 
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Graph 5.26 Comparison ofAnalytical Added Mass and Force Difference - Entering Wedge (a --. -*4, Fr=0.117) 

If we consider the pressure gradients on the body we can see why the method is failing. 

Label a b c d e f g h 

Time 0 0.09 0.17 0.26 0.34 0.43 0.51 0.60 
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The pressures become negative at an early stage in the motion, as we have seen in previous examples 
this usually indicates the formation of a jet. This is confirmed when we study Graph 5.28, by stage d we 

can clearly see the beginnings of a jet. When we reach stage f the jet is ready to fall away from the body 
(a situation we artificially restrict) and so the calculations start to break down. A similar effect was 

noted by Greenhow (1987). 
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Graph 5.27 Non-dimensional initial pressure on half wetted surface of entering wedge (a-id4, Fr=0.117) 
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Graph 5.28 Free-surface profile for entering wedge (aw'4, Fr=0.117) 
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Next is another wedge this time of half angle n/4, height 1.7 and initial depth -1.0. This body is 

entering at twice the speed of the previous example, Froude number 0.233. 
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Graph 5.29 Comparison of Total Force and Buoyancy Force - Entering Wedge (a=ir/4, Fr=0.233) 

We can see just from the force results in Graph 5.29 that the method is having considerable trouble 

controlling the intersection point, this is reflected in the jagged profile of the total force curve. 

0.00 

0.07 

0.00 

0.05 

0.04 

0.03 

0.02 

0.01 

0.004- 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.18 0.18 0.20 

Non. dNMmlonal Tkm 

Graph 5.30 Comparison of Analytical Added Mass and Force Difference -Entering Wedge (a=yd4, Fr=0.233) 

The initial difference cannot be attributed to draw-down (up-rise) as is testified by Chapter 6. 

As in the previous example we see the analytical method is inadequate at approximating the force 

difference. Also we have a negative pressure next to the surface on the first step (t =0), it is suggested 

this is a numerical symptom of the impulsive start. 
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Label a b c d e f g h i 

Time 0 0.02 0.05 0.07 0.09 0.11 0.14 0.16 0.18 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

_n in 

Non-dimanalonal x 

-a 
-U-b 
tC 

-43-B 
t( 

-4-Q 
-aý-h 

Graph 5.31 Non-dimensional initial pressure on half wetted surface of entering wedge (a--. ir/4, Fr=0.233) 

The surface profiles confirm that jet formation is present at an early stage. 
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Graph 5.32 Free-surface profile for entering wedge (a= v'4, Fr=0.233) 

Further wedge runs are omitted since the above examples have already demonstrated a trend, one which 

results in very early breakdown of the calculations. 

Box 

Instead we move our attention on to the box body. Here we have a box of height 2, width 0.33 at an 
initial submergence of -0.33 and Froude 0.117. 
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Graph 5.33 Comparison of Total Force and Buoyancy Force - Entering Box (Fr=0.117) 
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The buoyancy force and the numerical force coincide, from Graph 5.33 they look identical however 

inspection of the following graph shows there is a slight difference. The agreement is to be expected 

considering that the body is thin and the Froude number is low. 
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Graph 5.34 Comparison of Analytical Added Mass and Force Difference -Entering Box (Fr=0.11 

00 

We have a difference between the two curves at t=0, as in the wedge examples we believe this is 

attributable to the impulsive start of the body. This is not a physical problem, that is, the numerics 

should agree with the correct analytical result. So we conclude it is the numerics which cannot handle 

the impulsive start and the analytical theory is correct at t=0. 

The pressure gradients in Graph 5.35 are dominated by hydrostatics. 

Label a b c d e f g h i j k 

Time 0 1.29 2.57 3.86 5.15 6.43 7.72 9.01 10.29 11.58 12.87 
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Graph 5.35 Non-dimensional initial pressure on half wetted surface of entering box (Fr=0.117) 
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The surface profiles are just as uneventful, with very little surface movement throughout the body 

motion. 
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Graph 5.36 Free-surface profile for entering box (Fr=0.117) 

If we increase the entry velocity and change the body width to 2, raising the Froude number to 0.233 the 

buoyancy force matches the total force closely. 
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Graph 5.37 Comparison of Total Force and Buoyancy Force - Entering Box (Fr=0.233) 

However, the analytical added mass and force difference still disagree. 
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Graph 5.38 Comparison ofAnalytical Added Mass and Force Difference -Entering Box (Fr=0.233) 

In the case of F1=0.117 the body motion is slow enough to make the contribution of the singularity to 

the pressure negligible. Here we see that the singularities present on the body comer appearing in the 

pressure gradient, Graph 5.39 
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Graph 5.39 Non-dimensional initial pressure on half wetted surface of entering box (Fr=0.233) 
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The surface profiles show motion on the free-surface as it rises up the body and then returns in a full 

wave motion. 
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Graph 5.40 Free-surface profile for entering box (Fr=0.233) 

Let us move the box faster with a Froude of 0.583, a significant increase. 
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Graph 5.41 Comparison of Total Force and Buoyancy Force - Entering Box (Fr=0.583) 

The buoyancy and total force continue to attain good agreement at this higher Froude number. 
However, the discrepancy between the analytical added mass and the force difference is increasing as 
does the Froude number this can be seen in Graph 5.42. This indicates a breakdown of the method, the 

combined difficulties of high Froude number and constant velocity motion has rendered the analytical 

model unsuitable, the surface profiles however are still of use for reference. 
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Graph 5.42 Comparison ofAnalytical Added Mass and Force Difference -Entering Box (Fr=0.583) 

Obviously with the higher velocity the singularities make a major impression on the pressure gradient as 
their field of influence increases. 
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Label a b c d e f g h i 

Time 0 0.23 0.46 0.69 0.91 1.14 1.37 1.60 1.83 
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Graph 5.43 Non-dimensional initial pressure on half wetted surface of entering box (Fr=0.583) 
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A large "up-rise" of the surface is apparent in the surface profiles. 
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Graph 5.44 Free-surface profile for entering box (Fr=0.583) 

For reference we also present the free-surface profiles, Graph 5.45, for the same body entering with 
Froude number 2.915. The non-dimensional times are given in the table below. 

Label a b c d e f g h I 

Time 0 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.27 

The surface profile demonstrates the effect such a large Froude number has on the surface motion. The 
intersection point moves rapidly up the side of the body, which would effectively result in a jet. 
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Graph 5.45 Free-surface profile for entering box (Fr=2.915) 

Knuckle 
Finally we consider the constant velocity case of the knuckled body of height 2, vertex height 1, half 

angle n/4 and initial depth -1.0, starting with a very small Froude of 0.058. 



Body Entry into Initially Calm Water 155 

0.60 

0.50 

0.40 

0.30 

0.20-- 

0.10-- 

0.001- 
0.00 

Graph 5.46 Comparison of Total Force and Buoyancy Force - Entering Knuckle (a=ir/4, Fr=0.058) 

For such a low Froude number the two force calculations compare favourably. And considering the 

difference as represented in Graph 5.47 the contribution made by the analytical added mass is a bonus 

but hardly significant considering the numerical magnitude of the difference. 
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Graph 5.47 Comparison of Analytical Added Mass and Force Difference -Entering Knuckle (aß'4, Fr=0.058) 

The pressure distribution along the body is linear as could be expected from previous evidence. 

Label a b c d e f g h I j 

Time 0 0.81 1.62 2.43 3.23 4.04 4.85 5.66 6.47 7.28 
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Graph 5.48 Non-dimensional initial pressure on half wetted surface of entering knuckle (a=, d4, Fr=0.058) 

The surface profile is similarly uneventful at such low Froude number, with minimal surface 
disturbance in the form of a radiated wave. 
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Graph 5.49 Free-surface profile for entering knuckle (a--w'4, Fr=0.058) 

If we double the Froude number (effectively doubling the velocity) the results begin to move apart 
(further runs, not presented here, continue the trend). 



Body Entry into Initially Calm Water 158 

0.90 

0.80 

0.70 

0.60-- 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 
0.00 

Graph 5.50 Comparison of Total Force and Buoyancy Force - Entering Knuckle (a-- e4, Fr=0.117) 

The buoyancy force still provides a reasonable approximation of the total force. The differences shown 

in Graph 5.51 are five times those in the previous Froude number considered, so the analytical method 

fails drastically. 
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Graph 5.51 Comparison of Analytical Added Mass and Force Difference - Entering Knuckle (a---914, Fr=0.117) 

Label a b c d e f g h i j k 
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Graph 5.52 Non-dimensional initial pressure on half wetted surface of entering knuckle (a=, r/4, Fr=0.117) 

The pressure graph is still practically linear, contributing again to the evidence that it is the analytical 

theory that is unsuitable for these cases. 
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Graph 5.53 Free-surface prof le for entering knuckle (a=m'4, Fr=0.117) 
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Conclusions 

We have shown in this chapter that the analytical method can achieve significant results for small time 

in the case of accelerated motion. However, with constant velocity the results are far from adequate. 
This eliminates the use of the analytical method for any constant velocity cases of a body entering the 

fluid domain. Although this may be considered a limitation we have still shown significant progress for 

the "real" world situation of a body accelerating into a fluid as applicable to ship slamming. 
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Chapter 6 Draw-down Analysis 

An examination of the draw-down effect on added mass 
calculations. 

Abstract 

The effects of including draw-down in the calculations for buoyancy and added mass are 
demonstrated. 

Introduction 

It is proposed that many of the differences encountered between the numerical and analytical 

schemes described in Chapter 4 and Chapter 5 can be attributed to the effect of draw-down/up-rise of 

the free surface adjacent to the body. In this Chapter we will examine the effect of including the draw- 

down in the calculations used in the aforementioned chapters. This is a purely empirical method as 

currently there exists no way of predicting the draw-down short of fully non-linear numerical 

calculation. However draw-down might easily be meagured from film of model experiments. This 

chapter uses the numerically-calculated free surfaces presented in Chapters 4 and Chapter 5 to quantify 

the draw-down and use it in the force calculations. 

We recall from Chapter 3 that for a wedge in an ideal fluid the buoyancy force can be calculated as 

Fa = pgV(t) 

where V(t) = b2 tan a is the submerged body volume. The added mass force is 

Fp = pG tan cc 
(-bvg +b 2v) 

where b is the submerged depth of the body. 

These forces are calculated on the basis of a flat free-surface of equipotential; we must adjust them to 
take account of the draw-down (up-rise) that occurs. The changes proposed here all relate to the effect 
the draw-down has on the submerged depth of the body as demonstrated in Figure 6.1. 

In Figure 6.1 both b and 8 are assumed to be negative, obviously if the case is that of up-rise then the 

8 value would be positive. 
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Figure 6.1 Effects of draw-down 6 on the submerged depth 

If we replace b with bd in the force calculations, we obtain values that include draw-down. The same 

procedure is used for the box and knuckled body calculations. 

We consider the following body/speed configurations for exiting and entering bodies 

Wedge gg2 constant acceleration -and - M/S 2 
2 

constant velocity 0.2 m/s 

Box 
constant acceleration 

g 
and 

g 
m/s2 52 

constant velocity 0.2 m/s 

Knuckle 
constant acceleration 

g 
and g 

m/s2 52 

constant velocity 0.2 m/s 

Graphs of the "Total Force vs. Buoyancy" and "Added mass vs. Force difference" will be provided to 

compare against those already presented in Chapter 4 and Chapter 5. 

For cases where jets are produced an additional correction has been implemented. If we use the body- 

surface intersection point to determine the up-rise we will over-compensate drastically since the jet is 

very rapid and thin. Instead we cut-off the jet at the point where the free surface is vertical, in a similar 

manner to the method used by Zhao & Faltinsen (1993), refer to Figure 6.2 for clarification. When this 

correction has been implemented the results will be presented on the force graphs together with the 

uncorrected data. 
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ine 

Figure 6.2 Up-rise correction for jets 
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Graph 6.1 Buoyancy and Totalforce, a/g=0.2 

Comparison of this graph with Graph 4.1 shows a marked improvement in the buoyancy forces 

estimation of the total force. Although the initial difference (at t=0) is obviously the same, since we start 

with a flat free-surface, the difference between the two curves reduces as time increases. Note also that 

the local maxima at t-2.75 in the total force curve coincides with the sudden gradient change in the 

buoyancy at this point a jet is beginning to form, causing rapid up-rise. We have introduced the 

correction cutting of the jet at its highest vertical point as in Figure 6.2. This correction brings the 

buoyancy closer to the total force. 
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Graph 6.2 Added mass force and force difference, a/g=0.2 

Comparing Graph 6.2 with Graph 4.2 we see that the added mass force has experienced a small change 
in gradient. The force difference however now has a similar slope to that of the added mass force curve, 

up to the point where a jet develops. Using the correction we maintain proximity of the two data sets. 

Constant accelerated exit at 2 msg. 
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Graph 6.3 Buoyancy and Totalforce, a/g=0.5 

Compare with Graph 4.5. We see a similar picture here to the a/g-0.2 case. The buoyancy still has the 

initial difference, as we would expect, but compares favourably with the total force at the later stages of 

the motion. Unlike the previous example we have no jet creation this time and so the large time results 

are far better. 



Draw-down Analysis 166 

o. « 

-0.2C 

-0.4C 

4M 

Non"dlmsnWonal Time 

50 

Graph 6.4 Added mass force and force difference, a/g=O. 5 

Compare with Graph 4.6. Over the complete motion the actual improvement on the approximation of 
the force difference by the added mass force is not that great compared to the method excluding draw- 

down. However, the most notable difference is that the two curves, again, have very similar gradients 

unlike those in Graph 4.6. 
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Graph 6.5 Buoyancy force and Totalforce, Froude Number 0.117 

Compare with Graph 4.26. There is no real marked improvement here, suffice to note that the small 
"blip" in the total force is mimicked and accentuated by the buoyancy force curve. Surface profiles of 

the model show the intersection point moving rapidly from a position slightly above the mean free- 
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surface to a position below the mean free-surface. This will obviously cause a sudden change in the 
draw-down and thus the "blip" in the buoyancy force curve that is not on the original graph. 

o. o! 

0.0( 
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1- 

Non-dimensional Tina 

Graph 6.6 Added mass force and force difference, Froude Number 0.117 

There is a notable degeneration in the results for Graph 6.6 compared those in Graph 4.27. The added 
mass force has decreased and is now negligible, whereas the difference between the total force and 
buoyancy has actually increased and now fluctuates around the zero force line. 

Entry 
We will now consider the same cases for body entry. 
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Constant accelerated entry at 5ms2. 
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Graph 6.7 Buoyancy and Totalforce, a/g=0.2 

Compare with Graph 5.1. As in the exit case, there is an improvement in the buoyancy forces 

approximation of the Total force. The initial difference remains the same as in Graph 5.1 but the 

gradient now matches the Total force curve. 
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Graph 6.8 Added mass force and force difference, alg=0.2 

Compare with Graph 5.2. Due largely to the improvement in the buoyancy force approximation we now 
have better agreement between the added mass force and the force difference. 
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Constant accelerated entry at 2ms2. 
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Graph 6.9 Buoyancy and Totalforce, a/g=O. 5 

Compare with Graph 5.5. The gradient of the buoyancy curve now more closely matches that of the 

Total force. 
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Graph 6.10 Added mass force and force difference curves, a/g=0. S 

Compare with Graph 5.6. The gradient of the added mass force curve has changed by a large amount. 
The overall improvement in the approximation of the force difference is minimal. If we include the 

additional correction, where the draw-down is measured to the point where the jet becomes vertical 

rather than to the peak of the jet, we see some improvement. This indicates that inclusion of the jet peak 

in the draw-down evaluation is erroneous. 
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constant velocity entry at 0.2 ms'. 
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Graph 6.11 Buoyancy and Totalforce, Froude Number 0.117 

Compare with Graph 5.25. The curves improve in their proximity to one another in the early time steps 
but at later time the differences are greater than those in the non-draw-down case. When the correction 
is also included we find there is an overall improvement on the original results. 
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Graph 6.12 Added mass force and force difference, Froude Number 0.117 

Compare with Graph 5.26. There is a slight improvement on the original result, this is more pronounced 
before t= 02. The correction has significant impact on result after t= 02. The added mass force, as 
demonstrated in Chapter 5, has little impact in the constant velocity case. 
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Graph 6.13 Buoyancy force and Totalforce, a/g=0.2 

Compare with Graph 4.9. Agreement was good for the original case excluding draw-down, because on 
the wall-sided body we do not see as much surface movement in the area local to the intersection point. 
One slight difference is that in later stages of the motion the buoyancy curve approaches the total force 

curve. 
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Graph 6.14Added mass force and force difference, alg=0.2 
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Compare with Graph 4.10. Here the difference is more apparent. The slight change in Graph 6.14 

causes the difference curve to take on a positive gradient. A similar change occurs in the added mass 
force and so we have better agreement. 

Constant accelerated exit at 2 ms2. 
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Graph 6.15 Buoyancy force and Totalforce, a/g=0.5 

Compare with Graph 4.13. This is very similar situation to the previous example, with a slight change in 

the gradient of the buoyancy curve at larger time. 
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Graph 6.16 Added mass force and force difference, alg=0. S 
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Compare with Graph 4.14. Again as in the previous example the small change in the buoyancy has had 

significant impact on the force difference and its comparison with the added mass force. The forces in 
Graph 4.14 differed in the later time stages, whereas now there is agreement throughout the motion. 
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Graph 6.17 Buoyancy force and Totalforce, Froude Number 0.117 

Compare with Graph 4.42. The buoyancy force almost completely accounts for the Total force in this 

case. 
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Graph 6.18 Added mass force and force difference, Froude Number 0.117 

The force difference curve is less linear than in Graph 4.43 but the values remain in the locality of the 

analytical approximation, making the draw-down inclusion beneficial. 
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Entry 

Constant accelerated entry at 5 ms 2. 
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Graph 6.19 Buoyancy force and Totalforce, a/g=0.2 

Compare with Graph 5.9. The buoyancy tends toward the total force, an improvement for larger time. 
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Graph 6 20 Added mass force and force difference, a/g=0.2, 

Compare with Graph 5.10. There is no improvement here at all, in fact the results are better in the non- 
draw-down case. The improvement in the buoyancy forces approximation has been to the added mass 
forces detriment. 
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Constant accelerated entry at 2 ms 2. 
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Graph 6.21 Buoyancy force and Totalforce, a/g=0.5 

A small improvement on Graph 5.13 at large time can be seen. 
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Graph 6.22 Added mass force and force di,, f erence, alg=0.5 

Compare with Graph 5.14. The added mass force has changed little from the case in Graph 5.14 but due 

to the buoyancy force improvement the approximation is not as good. 
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Constant velocity entry at 0.2 ms' 
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Graph 6.23 Buoyancy force and total force, Froude Number 0.117 

Compare with Graph 5.34. The original produced very good results, so improvement would be hard, 

however, let us consider the difference. 
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Graph 6.24 Added mass force and force difference, Froude Number 0.117 

Compare with Graph 5.34. The difference between the buoyancy force and total force produces a 
different curve in this case but the nett improvement, of including the draw-down, is nil. 
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Graph 6.25 Buoyancy and Totalforce, a/g=0.2 

This shows slight improvement over Graph 4.18, with the curves intersecting at two points. A further 

improvement is noticeable with the inclusion of the jet correction. 
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Graph 6.26 Added mass force and force difference, a/g=0. l 

Compare with Graph 4.19. The curves have a similar appearance but the differences between the two 

curves are in the same range as those without the inclusion of draw-down. 



Draw-down Analysis 178 

Constant accelerated exit at g ms2. 
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Graph 6.27 Buoyancy and total force, a/g=0,5 
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Compare with Graph 4.22. Here the draw-down result is smooth and so the benefits are apparent. There 

is more agreement between the two curves at later time than in Graph 4.22. 
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Graph 6.28 Added mass force and force difference, a/g=0.5 
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Compare with Graph 4.23. This result is very encouraging, showing the benefits of draw-down 

inclusion and the need for some empirical/heuristic method of obtaining such draw-down values. 
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Constant velocity exit at 0.2 ms'. 
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Graph 6.29 Buoyancy and Totalforce, Froude Number 0.117 
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Here we have no real improvement on Graph 4.59. The continual fluctuations of the draw-down data 

cause the buoyancy calculations to meander around the total force values. 
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Graph 6.30 Added mass force and force dt, 8erence, Froude Number 0.117 

00 

Until t--6 we have an improvement on Graph 4.60, with a maximum difference of 0.05 (a 50% 

improvement). However the later fluctuations of the intersection point affect the draw-down figures (see 

Chapter 4 for further explanation). 
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Entry 

Constant accelerated entry at 5 ms 2. 
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Graph 6 31 Buoyancy and Totalforce, a/g=0.2 

There is a slight improvement on the buoyancy forces approximation of the Total force compared with 
Graph 5.17. The gradients are very close until t-3 when a plateau in the results appears, the plateau is a 
result of the intersection point reaching the top of the body, from that time the buoyancy force will be 

constant. 
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Graph 6 
. 32 Added mass force and force difference, a/g=0.2 
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Compare with Graph 5.18. The difference between the results has reduced significantly. At t-3 the 

constant buoyancy effects the results, this is included for completeness but should be neglected since it 
is due to the numerical implementation. 

Constant accelerated entry at 2ms2. 
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Graph 6.33 Buoyancy and Totalforce, a/g=0.5 

Compare with Graph 5.21. The gradients compare favourably until t-1.75, here we see a similar plateau 

caused by the fluid surface reaching the top of the body. 
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Graph 6.34 Added mass force and force difference, a/g=O. 5 

We see a slight improvement on the non-draw-down results in Graph 5.22. 
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Constant velocity entry at 0.2 ms'. 
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Graph 6.35 Buoyancy force and Totalforce, Froude Number 0.117 

The results improve on those in Graph 5.50 in the later time stages. 
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Graph 6.36 Added mass force and force difference, Froude Number 0.117 

The initial steps result in a difference as large as those seen in Graph 5.51. At later time the results are a 

good improvement on the non-draw-down case. Since the added mass force is so small this is purely 

reliant on the buoyancy forces approximation of the total force. 

Conclusion 
It appears that draw-down has, as we expected, significantly enhanced our results. The current 

theory assumes a surface at 4=0 and so all body volume calculations rely on that assumption. We 
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have shown in the free surface profiles of Chapter 4 and Chapter 5 that draw-down (and up-rise) can be 
large, and so will have a significant impact on the actual submerged body volume. 

Generally, there is a marked improvement when draw-down is included, except in the constant 

velocity cases. We have established that the added mass model is ineffective in the constant velocity 
cases, so it is difficult to ascertain whether the draw-down correction enhances the results. One measure 
we can use is the improvement of the buoyancy force when compared with the total force calculation. 
Since this does benefit from the inclusion of draw-down, which has been true for all other cases 

presented, we may conclude that draw-down does enhance the calculations for constant velocity cases, 

and so for all cases considered. 

Since such improvements can be made by using a draw-down value then when any such model 
is utilised an approximation of draw-down should be included, this could be obtained by empirical 

methods, i. e. filming a scale model, or an analytical/heuristic approach. 
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Conclusion 

In Chapter 1 we described the nature of the boundary-value problem for the motion of a body in 

inviscid irrotational fluid with a free surface. Existing linear and non-linear theories were discussed 

with particular reference to the topics of this thesis, namely water entry and exit problems which arise 

during extreme motions of bow sections of ships during slamming. The need for fully non-linear 

calculations was outlined, and how the results might be used in practical calculations. 

Chapter 2 demonstrated that the numerical method we have employed provides us with a description of 

a body interacting with the free surface which is sufficiently precise to allow us to use it as a measure 

for the analytical theory presented in Chapter 3 and possible future numerical codes. The 

implementation and extension of the code was extensively tested for stability and accuracy, with 

variations of the discretisation of space and time, for a range of transient motions. Also the self-similar 

flow resulting from zero-gravity entry of a wedge was briefly checked. 

The bulk of the numerical results are given in Chapters 4 and 5 which present an extensive set of runs 

for constant velocity or constant acceleration exit and entry of a wedge, box and knuckle-shaped body. 

These demonstrate the versatility and the limitations of the numerical scheme. Specifically we consider 

the free-surface profiles, the pressure distribution around the body and the resulting body force 

throughout the motion. For the box and, to a lesser extent, the knuckle-shaped body, the pressure 

profiles highlight the singularities at the body corners, which result in infinite pressures at these points. 

This is, of course, a weakness of the inviscid model itself; in reality vortices will be shed from the 

corners to satisfy a Kutta condition here. However it is stressed that the pressure singularities are 

integrable, and do result in finite forces on the body, so that a comparison with added mass theory is 

still possible. 

Current methods for approximating the forces experienced by a body cross-section entering and exiting 

the fluid domain rely on the buoyancy force to be a suitable approximation. In Chapter 4 and 5 it can be 

clearly seen that the buoyancy force, calculated on the basis of a flat free-surface, only loosely 

approximates the forces involved, and then only in situations where the surface remains reasonably 

undisturbed. This analytical model is extended in Chapter 3 by calculating the added mass coefficient 

through the application of the Schwartz-Christoffel mapping the flow in the complex plane to uniform 
flow in the mapped plane and solving the resulting equations. This added mass coefficient is 

incorporated into the force equation and, while still applying the flat free-surface equipotential 

condition, we augment the buoyancy model. Result show that in the small time the added mass model 

can greatly improve the body force approximation, and we note that the small time is where the largest 

forces will be experienced. Thus the methods effectiveness is demonstrated for the immediate 

application to the approximation of forces experienced in the initial stages of motion. This applies to 

both the exit and entry cases. 
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The later stages of the motion are not approximated as well as the initial stages. The later stages are of 

particular relevance to the exiting case, since the final stages of exit motion would define the starting 

conditions of the following entry phase. Consideration of the free surface reveals that the intersection of 

the free-surface and the body does not remain static at the flat free-surface as we have assumed; in fact 

in the high speed cases we experience large movement both up (up-rise) and down (draw-down) the 

body. This has a significant effect on both the buoyancy model and our enhanced model, which 

consider the submerged body volume used in both calculations to be that part of the body below the flat 

free-surface. The non-linear calculations obviously show that this is not the case. 

The numerical results highlighted that especially in the more violent (higher speed) motions, a large 

degree of draw-down/up-rise was observed on the surface profiles, where the body-surface intersection 

point moves rapidly down/up the body surface. In contrast to jet formation for an entering body, the 

rapid downwards free-surface ventilation of an exiting body does not appear to have been previously 

calculated. Both effects are of particular importance since as the current analytical methods are based 

on the assumption of a flat free surface, the larger the draw-down/up-rise observed, the more 

detrimental such an assumption will be. In the box-body cases it can be seen that this draw-down/up- 

rise is a local effect of a more widespread free-surface motion resulting in radiated waves; here the 

body-surface intersection point is moving with this wave motion. A more severe form of up-rise is that 

of jets. This is mostly exhibited in the wedge cases we considered, both in entry and in the last stages of 

exit, and is caused by the rapid up-rise of water on the body surface. As in the case of draw-down/up- 

rise this would also have a significant effect on the analytical models employed here. However, using 

the pressure profiles in conjunction with the free-surface profiles, we may predict that the jet would 

sometimes leave the body by determining the time when the pressure becomes negative in that region. 

Moreover, even in cases where this does not happen, it is noted that the pressures within the jets are 

almost zero and hence make no significant contribution to the force on the body. Thus using the actual 

intersection point (as calculated by the numerical code here) in the present analytical theories when 

jetting occurs is both inaccurate and misleading; chapter 6 therefore provides a pragmatic modification 

to the theory by removing the jets from consideration. We note that this approach also allows the early 

stages of complete immersion (when only spray jets rise above the freeboard) to be studied. 

These results prompted an investigation into the possible improvements resulting from the inclusion of 

such draw-down/up-rise in the analytical model, Chapter 6. To illustrate the impact the inclusion of the 
deviations from the flat free-surface can have on the presented analytical models, we present results that 
include such draw-down/up-rise values in the calculations. The results are very encouraging. The 

buoyancy force experiences a large improvement when the submerged body volume is re-evaluated 

with regard to the draw-down/up-rise, and in some cases can virtually account for the total experienced 
body force. In the more extreme motions the added-mass model is still required (it should still be 

included in the other cases for consistency), and the contribution can be clearly seen. We conclude that 

draw-down/up-rise inclusion is very desirable, but jets need special treatment. However there is a 

problem in general: there is currently no way to predict the position of the free surface a priori without 
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the use of a fully non-linear model to calculate the free-surface, exactly the complication we are striving 
to avoid. In situations where one lacks exact calculations, one could estimate the draw-down/up-rise 
through the use of scale model simulations, and apply the correction empirically to the analytical model. 

The methods presented within this thesis have demonstrated that exact calculation of the interaction of a 
two-dimensional ship section with a non-linear free surface reveals interesting hydrodynamic effects 

such as radiated waves, spray jets and rapid draw-down, but may be too costly for routine calculations. 
We have seen that such calculations can be provided by the analytical methods based on added-mass 

provided that draw-down/up-rise of the free surface local to the body is included. This appears to open 
the way to the application of a modified strip theory in existing codes to extreme ship motions in 

random seas. Within this context, it would be interesting for future workers to examine the sensitivity of 

extremes in such quantities as bow acceleration, bow displacement, shear forces and bending moments 
in the ship's structure, to the choice of analytical model (i. e. buoyancy only, buoyancy plus added mass, 
buoyancy plus added mass with draw-down/rise-up correction). 
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Recommendations 
There are four areas the author would like to see future work directed towards. 

1. Constant velocity added mass 

The poor performance of the added mass at constant velocity has been demonstrated. It would be 

desirable to refine the 
dM/, 

calculation to take account of the draw-down (up-rise) of the free 

surface during exit (entry). The present calculations have done this by considering the instantaneous 

free surface position taken from the numerical calculations; such calculations fully solve the 

problem and will not be generally available. It is possible that data from model-scale experiments or 

some sort of empirical rule could be used instead, and further work is needed here. 

2. John's equation 

The extension of John's equation to build analytical models for high Froude number (high speed or 

zero gravity) wedge entry remains an intriguing possibility. Knowing the r-function allows John's 

equation to be solved for a range of solution types, the simplest being polynomials. Adding these 
linear solutions together to satisfy the body-boundary condition would be straightforward, but 

annulling singularities within the fluid could be difficult (Greenhow(1983)). 

3. Corner flow 

Can the analytical model of flow around the corner singularity be matched to an outer numerical 
flow, and would this improve the force calculations? For consistency, the matching would need to 
be carried out at every time step during the calculation, rather than retrospectively, since the free 

surface is, in principle, dependent on the calculation of the whole flow. 

4. Vortices 

In reality the flow past sharp corners must separate and this would make comparison with 

experiments difficult. An attempt to model the shed vortices, possibly by single or multiple point 

vortex models, should be made taking into account their coupling with the non-linear free surface. 
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Appendix A Numerical Results 

A selection of input and output data for the wedge body 

simulations. 

Abstract 

Input and output data is provided for reference and to assist in the future use of the model. 

Introduction 

We present the data used and obtained in a selection of the wedge runs examined in Chapter 4 

and Chapter 5. The information is provided with the intention of simplifying the use of the model and 

providing a reference for any future results from this and other models. 

The information is provided in three tables 

1. The input data. The setting of each variable is indicated. For flags I have interpreted their meaning, 
for a full description of the role of each variable in the input file refer to Appendix E. 

2. Here we present the force, time, step number for each selected step and the pressure and position of 

each body node. 

3. Finally we provide the surface and body profile for each of the selected steps. Twenty one surface 
points are given. 

Each set of results span two pages and are headed by the particular runs details. 
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Wedge exiting fluid domain with acceleration g 

number of steps 2000 position of cog horizontal, vertical) (0.0, -0.2) 
time step size 0.002 surface width 20 
height step size 0.1 water depth 10 
print only main steps number of points in surface 80 
print hamming predictor NO wave length 1 
start type normal wave amplitude 0 
jets leave body NO still water line 0 
steps till jet leaves body 10 mass density ratio 0.0075 
acceleration 1.962 moment of inertia density ratio 0.001 
print every nth step 10 forward water line 0 
swa allowed NO rear water line 0 
heave allowed YES body 0 
roll allowed NO surface point ratio 0.87 
node removal limit 3 number of body points 60 
node addition limit I body point ratio 0.9 
center of rotation (horizontal, vertical) (0.0, -0.2) distance of cog to vertex 0.3 
velocity of cog (horizontal, vertical) 0.0,0.0 wedge height 0.5 
angle of body to vertical 0 right wedge angle to vertical 45 

_angular velocity about cog 
_0 

total wedge angle 90 

Table A. 1 Input data 

" me m" m" m" 
1. 

.1 
1 1.1 03 1 50 0.7M2G 0.4 2w 1 

o des s Noc las N s 
x Pmwm x Freue x Prawn x PRMR» x Pmun 

1 0. -0 0.31914 -0. 5.136M -0. Ot 8 0. 
0.44763 -0.04286 0.04127 0.36780 -0.10296 0.34220 0.28512 -0.12659 0.34725 0.22625 -0.11679 0.28929 0.22625 -0.02850 0.72374 
0.40030 -0.08969 0.45291 0.31955 -0.14121 0.74469 0.25414 -0.15767 0.74637 0.20116 -0.14188 0.60982 0.20118 . 0.05359 0.70380 
0.35780 -0.13239 0.78479 0.28512 -0.17564 1.06060 0.22625 -0.18548 1.03840 0.17867 -0.16417 0.88008 0.17857 -0.07618 0.69837 
0.31966 -0.17064 1.10230 0.25414 -0.20662 1.34910 0.20116 -0.21056 1.29840 0.16824 -0.18480 1.08420 0.15824 -0.09651 0.82272 
0.28512 -0.20607 1.39940 0.22625 -0.23451 1.61220 0.17857 -0.23314 1.63190 0.13995 -0.20309 1.28460 0.13995 -0.11480 0.95845 
0.25414 -0.23605 1.67440 0.20116 -0.25960 1.86200 0.15824 -0.25347 1.74260 0.12348 -0.21966 1.48840 0.12348 -0.13127 1.09720 
0.22625 -0.28394 1.92760 0.17857 -0.28219 2.07070 0.13906 -0.27178 1.93320 0.10886 -0.23438 1.83060 0.10566 -0.14609 1.23220 
0.20118 -0.28903 2.15990 0.15824 -0.30252 2.26970 0.12348 -0.28823 2.10690 0.08632 -0.24772 1.77850 0.09632 -0.15943 1.36110 
0.17857 -0.31162 2.37230 0.13986 -0.32081 2.45080 0.10566 -0.30305 2.28210 0.08332 -0.26972 1.91300 0.08332 -0.17143 1.48220 
0.15824 -0.33105 2.56630 0.12348 -0.33728 2.61540 0.09532 -0.31639 2.40380 0.07252 -0.27062 2.03430 0.07252 -0.18223 1.59490 
0.13005 -0.35024 2.74300 0.10866 -0.35210 2.78500 0.08332 -0.32839 2.53220 0.06279 -0.28025 2.14430 0.06279 -0.19196 1.69930 
0.12348 -0.38671 2.90390 0.09532 -0.38644 2.90100 0.07252 -0.33919 2.64890 0.05404 -0.28900 2.24460 0.06404 -0.20071 1.79530 
0.10666 -0.38153 3.06030 0.08332 -0.37744 3.02450 0.08279 -0.348992 2.75480 0.04817 -0.29687 2.33690 0.04617 -0.20658 1.88360 
0.09632 -0.39487 3.18330 0.07252 -0.38824 3.13880 0.05404 -0.35767 2.85100 0.03908 -0.30396 2.41920 0.03908 -0.21587 1.96630 
0.05332 -0.40687 3.30420 0.06279 439797 3.23840 0.04617 -0.36554 2.93830 0.03270 -0.31034 2.49630 0.03270 -0.22206 2.04070 
0.07252 -0.41767 3.41390 0.06401 -0.40672 3.33080 0.03908 -0.37263 3.01770 0.02696 -0.31608 2.56540 0.02606 -0.22779 2.10850 
0.06279 -0.42740 3.51340 0.04617 -0.41459 3.41460 0.03270 -0.37901 3.09010 0.02179 -0.32125 2.83250 0.02179 -0.23206 2.17280 
0.05404 -0.43815 3.80380 0.03906 -0.42168 3.49080 0.02606 -0.38475 3.15620 0.01714 -0.32590 2.69150 0.01714 -0.23781 2.23130 
0.04617 -0.44402 3.88680 0.03270 -0.42806 3.56000 0.02179 -0.38902 3.21810 0.01205 -0.33009 2.73630 0.01295 -0.24180 2.28540 
0.03906 -0.46111 3.78010 0.02696 . 0.43380 3.62300 0.01714 -0.39457 3.27330 0.00819 -0.33386 2.77630 0.00919 -0.24566 2.33610 
0.03270 -0.45749 3.82750 0.02179 -0.43897 3.68000 0.01296 -0.30576 3.31810 0.00580 -0.33724 2.82070 0.00680 -0.24896 2.38600 
0.02888 -0.48323 3.88880 0.01714 -0.44362 3.73300 0.00919 -0.40252 3.35960 0.00275 -0.34029 2.86250 0.00275 -0.25200 2.43700 
0.02170 -0.48640 3.94440 0.01295 -0.44781 3.77810 0.00580 -0.40691 3.40110 0.00000 -0.34304 2.92880 0.00000 -0.25476 2.53220 
0.01714 -0.47305 3.99180 0.00919 -0.45157 3.81060 0.00275 -0.40896 3.43970 
0.01296 -0.47724 4.04020 0.00680 -0.46496 3.86800 0.00000 -0.41171 3.49100 
0.00919 -0.48100 4.08180 0.00275 -0.45801 3.89500 
0.00680 -0.48439 4.11950 0.00000 -0.46076 3.93620 
0.00275 -0.48744 4.15420 
0.00000 -0.49019 4.18770 

Table A. 2 Step, Time, Force, Pressure and Nodal position. 
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5 0 10 0 15 0 20 0 25 0 
x y x y x x x y 

Surface 1.35E+00 -9.89E-04 1.16E+00 -5.23E-03 9.62E-01 -1.69E-02 8.60E-01 -3.54E-02 9.45E-01 -4.29E-02 1.25E+00 -1.16E-03 1.09E+00 -6.01E-03 9.12E-01 -1.89E-02 8.20E-01 -3.87E-02 8.92E-01 -4.69E-02 1.16E+00 -1.35E-03 1.02E+00 -6.88E-03 8.68E-01 -2.10E-02 7.85E-01 -4.18E-02 8.44E-01 -5.08E-02 1.09E+00 -1.56E-03 9.64E-01 -7.76E-03 8.29E-01 -2.31E-02 7.54E-01 -4.47E-02 8.02E-01 -5.45E-02 1.02E+00 -1.78E-03 9.14E-01 -8.71E-03 7.96E-01 -2.51E-02 7.27E-01 -4.76E-02 7.65E-01 -5.79E-02 9.65E-01 -2.02E-03 8.71 E-01 -9.70E-03 7.66E-01 -2.72E-02 6.99E-01 -5.06E-02 7.32E-01 -6.08E-02 9.15E-01 -2.28E-03 8.33E-01 -1.07E-02 7.41E-01 -2.93E-02 6.71E-01 -5.38E-02 7.03E-01 -6.33E-02 8.72E-01 -2.55E-03 8.00E-01 -1.18E-02 7.15E-01 -3.16E-02 6.42E-01 -5.72E-02 8.73E-01 -6.59E-02 8.34E-01 -2.82E-03 7.71E-01 -1.28E-02 6.89E-01 -3.42E-02 6.12E-01 -6.05E-02 6.42E-01 -6.82E-02 8.01E-01 -3.13E-03 7.46E-01 -1.39E-02 6.62E-01 -3.72E-02 5.82E-01 -6.39E-02 6.11E-01 -7.04E-02 7.73E-01 -3.42E-03 7.21E-01 -1.51E-02 6.35E-01 -4.05E-02 5.47E-01 -6.66E-02 5.77E-01 -7.17E-02 7.48E-01 -3.70E-03 6.96E-01 -1.65E-02 6.07E-01 -4.44E-02 5.15E-01 -6.84E-02 5.45E-01 -7.27E-02 7.23E-01 -4.08E-03 6.71E-01 -1.82E-02 5.77E-01 -4.84E-02 4.77E-01 -7.12E-02 5.09E-01 -7.31E-02 6.98E-01 -4.49E-03 6.46E-01 -2.02E-02 5.48E-01 -5.27E-02 4.34E-01 -7.39E-02 4.74E-01 -7.26E-02 6.73E-01 -4.94E-03 6.20E-01 -2.26E-02 5.11E-01 -5.73E-02 3.96E-01 -7.44E-02 4.36E-01 -7.25E-02 6.49E-01 -5.55E-03 5.94E-01 -2.54E-02 4.73E-01 -5.91E-02 3.59E-01 -7.32E-02 3.92E-01 -7.35E-02 6.24E-01 -6.30E-03 5.68E-01 -2.96E-02 4.41 E-01 -6.02E-02 3.31 E-0 1 -7.19E-02 3.51 E-01 -7.39E-02 5.99E-01 -7.24E-03 5.36E-01 -3.38E-02 4.13E-01 -6.35E-02 3.08E-01 -7.12E-02 3.08E-01 -7.29E-02 5.74E-01 -8.66E-03 5.05E-01 -3.74E-02 3.91 E-01 -8.89E-02 2.95E-01 -7.25E-02 2.71 E-01 -7.10E-02 5.48E-01 -1.04E-02 4.78E-01 -4.33E-02 3.71E-0 1 -7.69E-02 2.84E-01 -7.87E-02 2.37E-01 -5.01E-02 5.23E-01 -1.60E-02 4.50E-01 -5.16E-02 3.52E-01 -8.46E-02 2.72E-01 -8.77E-02 2.37E-01 -3.32E-02 
me on 4.68E-01 -2.22E-02 4. -01 -6.05E-02 3.19E-01 -9.26E-02 -9.82E-02 2.38E-01 -1.63E-02 
Body 4.48E-01 -4.27E-02 3.58E-01 -1.03E-01 2.85E-01 -1.27E-01 2.26E-01 -1.17E-01 2.26E-01 -2.85E-02 4.00E-01 -8.99E-02 3.20E-01 -1.41E-01 2.54E-01 -1.58E-01 2.01E-01 -1.42E-01 2.01E-01 -5.36E-02 3.58E-01 -1.32E-01 2.85E-01 -1.76E-01 2.28E-01 -1.85E-01 1.79E-01 -1.64E-01 1.79E-01 -7.62E-02 

3.20E-01 -1.71E-01 2.54E-01 -2.07E-01 2.01E-01 -2.11E-01 1.58E-01 -1.85E-01 1.58E-01 -9.65E-02 2.85E-01 -2.05E-01 2.26E-01 -2.35E-01 1.79E-01 -2.33E-01 1.40E-01 -2.03E-01 1.40E-01 -1.15E-01 2.54E-01 -2.36E-01 2.01E-01 -2.60E-01 1.58E-01 -2.53E-01 1.23E-01 -2.20E-01 1.23E-01 -1.31E-01 2.26E-01 -2.64E-01 1.79E-01 -2.82E-01 1.40E-01 -2.72E-01 1.09E-01 -2.34E-01 1.09E-01 -1.46E-01 2.01E-01 -2.89E-01 1.58E-01 -3.03E-01 1.23E-01 -2.88E-01 9.53E-02 -2.48E-01 9.53E-02 -1.59E-01 1.79E-01 -3.12E-01 1.40E-01 -3.21E-01 1.09E-01 -3.03E-01 8.33E-02 -2.60E-01 8.33E-02 -1.71E-01 1.58E-01 -3.32E-01 1.23E-01 -3.37E-01 9.53E-02 -3.16E-01 7.25E-02 -2.71E-01 7.25E-02 -1.82E-01 1.40E-01 -3.50E-01 1.09E-01 -3.52E-01 8.33E-02 -3.28E-01 6.28E-02 -2.80E-01 6.28E-02 -1.92E-01 1.23E-01 -3.67E-01 9.53E-02 -3.65E-01 7.25E-02 -3.39E-01 5.40E-02 -2.89E-01 5.40E-02 -2.01E-01 1.09E-01 -3.82E-01 8.33E-02 -3.77E-01 6.28E-02 -3.49E-01 4.62E-02 -2.97E-01 4.62E-02 -2.09E-01 9.53E-02 -3.95E-01 7.25E-02 -3.88E-01 5.40E-02 -3.58E-01 3.91E-02 -3.04E-01 3.91E-02 -2.16E-01 8.33E-02 -4.07E-01 6.28E-02 -3.98E-01 4.62E-02 -3.66E-01 3.27E-02 -3.10E-01 3.27E-02 -2.22E-01 7.25E-02 -4.18E-01 5.40E-02 -4.07E-01 3.91E-02 -3.73E-01 2.70E-02 -3.16E-01 2.70E-02 -2.28E-01 6.28E-02 -4.27E-01 4.82E-02 -4.15E-01 3.27E-02 -3.79E-01 2.18E-02 -3.21E-01 2.18E-02 -2.33E-01 5.40E-02 -4.36E-01 3.91 E-02 -4.22E-01 2.70E-02 -3.85E-01 1.71 E-02 -3.26E-01 1.71 E-02 -2.38E-01 4.62E-02 -4.44E-01 3.27E-02 -4.28E-01 2.18E-02 -3.90E-01 1.30E-02 -3.30E-01 1.30E-02 -2.42E-01 3.91 E-02 -4.51E-01 2.70E-02 -4.34E-01 1.71E-02 -3.95E-01 9.19E-03 -3.34E-01 9.19E-03 -2.46E-01 3.27E-02 -4.57E-01 2.18E-02 -4.39E-01 1.30E-02 -3.99E-01 5.80E-03 -3.37E-01 5.80E-03 -2.49E-01 2.70E-02 -4.83E-01 1.71E-02 -4.44E-01 9.19E-03 -4.03E-01 2.75E-03 -3.40E-01 2.75E-03 -2.52E-01 2.18E-02 -4.68E-01 1.30E-02 -4.48E-01 5.80E-03 -4.06E-01 0.00E+00 -3.43E-01 0.00E+00 -2.55E-01 1.71E-02 -4.73E-01 9.19E-03 -4.52E-01 2.75E-03 -4.09E-01 
1.30E-02 -4.77E-01 5.80E-03 -4.55E-01 0.00E+00 -4.12E-01 9.19E-03 -4.81E-01 2.75E-03 -4.58E-01 
5.80E-03 -4.84E-01 0.00E+00 -4.61E-01 
2.75E-03 -4.87E-01 0.00E+00 -4.90E-01 

Table A. 3 Free-surface profile 
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Wedge exiting fluid domain with Froude number 0.117 

number of steps 2000 position of cog (horizontal, vertical) (0.0, -0.2) 
time step size 0.0005 surface width 20 
height step size 0.1 water depth 10 

rint only main steps number of points in surface 80 
rint hamming predictor NO wave length 1 

start type normal wave amplitude 0 
jets leave body NO still water line 0 
steps till jet leaves body 10 mass density ratio 0.0075 
acceleration 0 moment of inertia density ratio 0.001 
print every nth step 40 forward water line 0 
sway allowed NO rear water line 0 
heave allowed YES body type 0 
roll allowed NO surface point ratio 0.87 
node removal limit 3 number of body points 60 
node addition limit 1 body point ratio 0.9 
center of rotation (horizontal, vertical) (0.0, -0.2) distance of cog to vertex 0.3 
velocity of cog (horizontal, vertical) 0.0,0.2 wedge height 0.5 

. angle of body to vertical 0 right wedge angle to vertical 30 
angular velocity about cog 0 total wedge angle 60 

Table A. 4 Input data 

" 
1.1 .1 

m" 
1 

m" 
0. 0.75M 1 

m" 

. 
84 1260 

NM 1 m" 
0.627101 51 

No du No d» M M No du 
x Proan x Praan x Praw" x y Prawn x Prawn 

0.25566 1 024710 -00W02 0. 0. 0.21810 
.11 42 0. 

0.23112 -0.06770 0.49899 0.25112 -0.03570 0.20733 0.20658 -0.04m 0.31872 0.20658 -0.01420 0.09427 0.16182 -0.06488 0.45954 
0.20658 -0.11020 0.93849 0.20058 -0.07520 0.62240 0.18449 -0.06145 0.70333 0.18449 -0.05245 0.44951 0.14873 -0.08566 0.77139 
0.18449 -0.14845 1.33150 0.18149 -0.11615 1.00140 0.16462 -0.11888 1.04480 0.15162 -0.08688 0.78094 0.13063 -0.11375 1.04810 
0.16462 -0.16288 1.88130 0.16462 -0.15086 1.34450 0.14073 -0.14966 1.35130 0.14673 -0.11786 1.08220 0.11614 -0.13865 1.29590 
0.14673 -0.21388 1.99430 0.14673 -0.18186 1.65380 0.13083 -0.17775 1.62700 0.13063 -0.14575 1.35430 0.10310 -0.16143 1.81850 
0.13063 -0.24175 2.27470 0.13083 -0.20975 1.93160 0.11614 -0.20285 1.87510 0.11614 -0.17085 1.50580 0.09130 -0.16176 1.71860 
0.11614 -0.26884 2.52040 0.11614 -0.23484 2.18200 0.10310 -0.22543 2.09840 0.10310 -0.19343 1.82090 0.08080 -0.20006 1.69870 
0.10310 -0.28943 2.75240 0.10310 -0.25743 2.40710 0.09138 -0.24576 2.29940 0.09136 -0.21376 2.02010 0.07129 -0.21652 2.06060 
0.09136 -0.30976 2.95660 0.09135 -0.27776 2.60580 0.08060 -0.26106 2.48010 0.08080 -0.23206 2.19960 0.06274 -0.23134 2.20810 
0.08080 -0.32805 3.13810 0.08080 -0.29806 2.79170 0.07129 -0.28052 2.64320 0.07129 -0.24852 2.38110 0.05804 -0.24468 2.33760 
0.07129 -0.34452 3.30230 0.07129 -0.31252 2.95580 0.06274 -0.29634 2.78970 0.08274 -0.26334 2.50570 0.01810 -0.25668 2.45570 
0.08274 -0.35934 3.45000 0.06274 -0.32734 3.10300 0.05504 -0.30888 2.92170 0.05501 -0.27668 2.63770 0.04187 -0.20749 2.56200 
0.05504 -0.37268 3.58280 0.06604 -0.31088 3.23570 0.04810 -0.32068 3.04050 0.04810 -0.26868 2.75570 0.03625 -0.27721 2.65770 
0.04810 -0.58168 3.70240 0.01810 0.35268 3.35510 0.04187 -0.33149 3.14740 0.04187 -0.29949 2.68200 0.03120 . 0.28596 2.74390 
0.04187 -0.39549 3.80990 0.04187 -0.36349 3.40250 0.03625 -0.34121 3.24360 0.03825 -0.30921 2.95770 0.02885 -0.29384 2.82180 
0.03825 -0.40621 3.90670 0.03625 -0.37321 3.55920 0.03120 -0.34996 3.33030 0.03120 -0.31796 3.01390 0.02256 -0.30093 2.89160 
0.03120 -0.41396 3.98390 0.03120 -0.38198 3.04030 0.02605 -0.35784 3.40830 0.02665 -0.32594 3.12150 0.01886 -0.30730 2.96430 
0.02685 -0.42183 4.07230 0.02885 -0.38964 3.72460 0.02256 -0.36492 3.47870 0.02256 -0.33293 3.19150 0.01556 -0.31305 3.01050 
0.02256 -0.42892 4.14300 0.02256 -0.39692 3.79520 0.01886 -0.37130 3.54170 0.01698 -0.33930 3.25420 0.01258 -0.31621 3.08210 
0.01888 . 0.43630 4.20850 0.01888 -0.40330 3.65860 0.01555 -0.37705 3.59850 0.01556 -0.34505 3.31070 0.00990 -0.32268 3.10830 
0.01566 -0.44104 4.26380 0.01556 -0.40904 3.91570 0.01258 -0.38221 3.65000 0.01256 -0.35021 3.36200 0.00748 -0.32705 3.14930 
0.01258 -0.44021 4.31830 0.01258 -0.41421 3.96730 0.00990 . 0.38086 3.09830 0.00990 -0.36486 3.40610 0.00530 . 0.33082 3.18600 
0.00990 -0.45086 4.35190 0.00990 -0.41660 4.01380 0.00748 -0.39105 3.73770 0.00748 -0.38905 3.44920 0.00335 -0.33421 3.22050 
0.00748 -0.45505 4.40370 0.00748 -0.42305 4.05593 0.00630 -0.39182 3.77520 0.00530 -0.36282 3.48880 0.00150 -0.33726 3.25140 
0.00630 -0.45681 4.44150 0.00630 -0.42881 4.09320 0.00335 -0.39621 3.60930 0.00335 -0.38621 3.52050 0.00000 -0.34000 3.28330 
0.00335 -0.46220 4.47500 0.00335 -0.43020 4.12740 0.00150 -0.40126 3.84040 0.00159 -0.98926 3.55130 
0.00159 -0.48528 4.50750 0.00150 -0.43326 4.15860 0.00000 -0.40100 3.87230 0.00000 -0.37200 3.58310 
0.00000 -0.18800 4.53990 0.00000 -0.43800 4.19100 

Table A. 5 Step, Time, Force, Pressure and Nodal position. 
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32 0 64 0 96 0 12 80 16 00 
x y x x x x y 

Surface 1.16E+00 -1.89E-03 1.16E+00 -4.81 E-03 1.05E+00 -1.05E-02 1.15E+00 -1.35E-02 9.39E-01 -1.62E-02 1.06E+00 -2.26E-03 1.05E+00 -5.69E-03 9.60E-01 -1.20E-02 1.04E+00 -1.51E-02 8.57E-01 -1.52E-02 9.66E-01 -2.67E-03 9.65E-01 -6.67E-03 8.81E-01 -1.35E-02 9.51E-01 -1.64E-02 7.86E-01 -1.36E-02 8.89E-01 -3.12E-03 8.87E-01 -7.74E-03 8.12E-01 -1.51E-02 8.70E-01 -1.75E-02 7.24E-01 -1.12E-02 8.22E-01 -3.63E-03 8.19E-01 -6.89E-03 7.52E-01 -1.66E-02 8.00E-01 -1.82E-02 6.70E-01 -8.48E-03 7.63E-01 -4.17E-03 7.60E-01 -1.01E-02 6.98E-01 -1.79E-02 7.37E-01 -1.85E-02 6.24E-01 -5.68E-03 7.12E-01 -4.75E-03 7.09E-01 -1.14E-02 6.52E-01 -1.91E-02 6.83E-01 -1.82E-02 5.85E-01 -3.32E-03 6.68E-01 -5.37E-03 6.64E-01 -1.27E-02 6.10E-01 -2.00E-02 6.35E-01 -1.72E-02 5.52E-01 -1.29E-03 6.29E-01 -6.02E-03 6.24E-01 -1.40E-02 5.74E-01 -2.06E-02 5.93E-01 -1.58E-02 5.24E-01 -8.06E-04 5.96E-01 -6.69E-03 5.90E-01 -1.53E-02 5.42E-01 -2.09E-02 5.57E-01 -1.39E-02 4.97E-01 -4.06E-04 5.67E-01 -7.37E-03 5.59E-01 -1.66E-02 5.14E-01 -2.08E-02 5.25E-01 -1.20E-02 4.74E-01 -7.59E-04 5.41E-01 -8.07E-03 5.33E-01 -1.78E-02 4.86E-01 -2.05E-02 4.98E-01 -9.73E-03 4.49E-01 -3.38E-03 5.15E-01 -8.87E-03 5.06E-01 -1.90E-02 4.57E-01 -1.93E-02 4.73E-01 -8.07E-03 4.21E-01 -5.19E-03 4.90E-01 -9.81 E-03 4.79E-01 -2.03E-02 4.29E-01 -1.80E-02 4.46E-01 -5.34E-03 3.93E-01 -6.78E-03 4.64E-01 -1.09E-02 4.51E-01 -2.17E-02 4.00E-01 -1.51E-02 4.23E-01 -3.74E-03 3.64E-01 -8.36E-03 4.38E-01 -1.23E-02 4.22E-01 -2.28E-02 3.75E-01 -1.24E-02 3.97E-01 -4.24E-03 3.32E-01 -6.83E-03 4.12E-01 -1.40E-02 3.94E-01 -2.38E-02 3.48E-01 -1.03E-02 3.72E-01 -4.67E-03 3.03E-01 -4.67E-03 3.86E-01 -1.59E-02 3.63E-01 -2.33E-02 3.21E-01 -7.80E-03 3.47E-01 -6.25E-03 2.73E-01 -1.68E-03 3.59E-01 -1.89E-02 3.34E-01 -2.19E-02 2.97E-01 -6.83E-03 3.18E-01 -9.76E-03 2.47E-01 -9.02E-04 3.28E-01 -2.13E-02 3.04E-01 -2.02E-02 2.71E-01 -1.03E-02 2.85E-01 -1.12E-02 2.30E-01 -5.02E-03 2.98E-01 -2.34E-02 2.73E-01 -1.50E-02 2.49E-01 -1.42E-02 2.49E-01 -8.31E-03 2.11E-01 -1.01E-02 Intersection 2.56E-01 -2-52E-02 2.47E-01 -8.02E-03 2.23 -01 -1.85E-02 2.16E-01 2.39E-03 -01 -1.42E-02 
Body 2.31E-01 -6.77E-02 2.31E-01 -3.57E-02 2.07E-01 -4.62E-02 2.07E-01 -1.42E-02 1.65E-01 -5.49E-02 2.07E-01 -1.10E-01 2.07E-01 -7.82E-02 1.84E-01 -8.45E-02 1.84E-01 -5.25E-02 1.47E-01 -8.59E-02 1.84E-01 -1.48E-01 1.84E-01 -1.16E-01 1.65E-01 -1.19E-01 1.65E-01 -8.69E-02 1.31E-01 -1.14E-01 1.65E-01 -1.83E-01 1.65E-01 -1.51E-01 1.47E-01 -1.50E-01 1.47E-01 -1.18E-01 1.16E-01 -1.39E-01 1.47E-01 -2.14E-01 1.47E-01 -1.82E-01 1.31E-01 -1.78E-01 1.31E-01 -1.46E-01 1.03E-01 -1.61E-01 1.31E-01 -2.42E-01 1.31E-01 -2.10E-01 1.16E-01 -2.03E-01 1.16E-01 -1.71E-01 9.14E-02 -1.82E-01 1.16E-01 -2.67E-01 1.16E-01 -2.35E-01 1.03E-01 -2.25E-01 1.03E-01 -1.93E-01 8.08E-02 -2.00E-01 1.03E-01 -2.89E-01 1.03E-01 -2.57E-01 9.14E-02 -2.46E-01 9.14E-02 -2.14E-01 7.13E-02 -2.17E-01 9.14E-02 -3.10E-01 9.14E-02 -2.78E-01 8.08E-02 -2.64E-01 8.08E-02 -2.32E-01 8.27E-02 -2.31E-01 8.06E-02 -3.28E-01 8.08E-02 -2.96E-01 7.13E-02 -2.81E-01 7.13E-02 -2.49E-01 5.50E-02 -2.45E-01 7.13E-02 -3.45E-01 7.13E-02 -3.13E-01 6.27E-02 -2.95E-01 6.27E-02 -2.63E-01 4.81E-02 -2.57E-01 

6.27E-02 -3.59E-01 6.27E-02 -3.27E-01 5.50E-02 -3.09E-01 5.50E-02 -2.77E-01 4.19E-02 -2.67E-01 5.50E-02 -3.73E-01 5.50E-02 -3.41E-01 4.81E-02 -3.21E-01 4.81E-02 -2.89E-01 3.63E-02 -2.77E-01 4.81E-02 -3.85E-01 4.81E-02 -3.53E-01 4.19E-02 -3.31E-01 4.19E-02 -2.99E-01 3.12E-02 -2.86E-01 
4.19E-02 -3.95E-01 4.19E-02 -3.63E-01 3.63E-02 -3.41E-01 3.63E-02 -3.09E-01 2.67E-02 -2.94E-01 3.63E-02 -4.05E-01 3.63E-02 -3.73E-01 3.12E-02 -3.50E-01 3.12E-02 -3.18E-01 2.26E-02 -3.01E-01 3.12E-02 -4.14E-01 3.12E-02 -3.82E-01 2.67E-02 -3.58E-01 2.67E-02 -3.26E-01 1.89E-02 -3.07E-01 2.67E-02 -4.22E-01 2.67E-02 -3.90E-01 2.26E-02 -3.65E-01 2.26E-02 -3.33E-01 1.56E-02 -3.13E-01 2.26E-02 -4.29E-01 2.26E-02 -3.97E-01 1.89E-02 -3.71E-01 1.89E-02 -3.39E-01 1.26E-02 -3.18E-01 1.89E-02 -4.35E-01 1.89E-02 -4.03E-01 1.56E-02 -3.77E-01 1.56E-02 -3.45E-01 9.90E-03 -3.23E-01 
1.56E-02 -4.41E-01 1.58E-02 -4.09E-01 1.26E-02 -3.82E-01 1.26E-02 -3.50E-01 7.48E-03 -3.27E-01 1.26E-02 -4.46E-01 1.26E-02 -4.14E-01 9.90E-03 -3.87E-01 9.90E-03 -3.55E-01 5.30E-03 -3.31E-01 9.90E-03 -4.51E-01 9.90E-03 -4.19E-01 7.48E-03 -3.91E-01 7.48E-03 -3.59E-01 3.35E-03 -3.34E-01 
7.48E-03 -4.55E-01 7.48E-03 -4.23E-01 5.30E-03 -3.95E-01 5.30E-03 -3.63E-01 1.59E-03 -3.37E-01 5.30E-03 -4.59E-01 5.30E-03 -4.27E-01 3.35E-0 3 -3.98E-01 3.35E-0 3 -3.66E-01 0.00E+00 -3.40E-01 
3.35E-03 -4 . 62E-01 3.35E-03 -4.30E-01 1.59E-03 -4.01E-01 1.59E-03 -3.69E-01 1.59E-03 -4.65E-01 1.59E-03 -4.33E-01 0.00E+00 -4.04E-01 0.00E+00 -3.72E-01 0.00E+00 -4.88E-01 0.00E+00 -4.36E-01 

Table A. 6 Free-surface profile 
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Wedge entering fluid domain with acceleration 

number of steps 1000 position of cog (horizontal, vertical) (0.0,0.2) 
time step size 0.0025 surface width 20 
height step size 0.1 water depth 10 
print only main steps number of points in surface 80 
print hamming predictor NO wave length 1 
start type normal wave amplitude 0 
jets leave body NO still water line 0 
steps till jet leaves body 10 mass density ratio 0.0075 
acceleration -1.962 moment of inertia density ratio 0.001 
print every nth step I forward water line 0 
sway allowed NO rear water line 0 
heave allowed YES body 0 
roll allowed NO surface point ratio 0.87 
node removal limit 3 number of body points 60 
node addition limit 1 body point ratio 0.9 
center of rotation (horizontal, vertical) 0.0,0.2 distance of cog to vertex 0.3 
velocity of cog (horizontal, vertical) 0.0,0.0 wedge height 0.5 

. angle of body to vertical 0 right wedge angle to vertical 45 
an ular veloci about cog 0 total wedge angle 90 

Table A. 7 Input data 

m" km 1 m" orte m" time " 
t1 .10.076 .10.1125 46 20M 1 0.1875 

No des s 

x Prsss,. x Pmewn x Pnewn x y Pr«a" x y Pm an 
I OMI 0.11712 0.01181 0.00000 0.13408 0.1 1 0 0.18414 

.0 
0.09532 -0.00806 0.14001 0.10666 0.00314 0.10410 0.12348 0.01106 0.08747 0.13996 0.01787 0.06956 0.15824 0.02375 0.02261 
0.08932 -0.01806 0.29289 0.06632 -0,01020 0.27407 alae86 -0.00376 0.27016 0.12348 0.00141 0.25837 0.1ýB6 0.00546 0.28206 
0.07252 -0.02886 0.41670 0.08332 -0.02220 0.40721 0.09532 . 0.01709 0.41755 0.10806 -0.01341 0.43322 0.12348 -0.01101 0.48703 
0.08279 -0.03859 0.52411 0.07252 -0.03300 0.52394 0.08332 -0.02910 0.54889 0.09532 -0.02675 0.68086 0.10886 -0.02683 0.65286 
0.06404 -0.04734 0.61802 0.08279 -0.04273 0.62881 0.07252 -0.03990 0.06125 0.09332 -0.03875 0.71010 0.09532 -0.03917 0.79718 
0.04617 -0.06521 0.70059 0.05404 -0.06148 0.71782 0.06279 -0.04002 0.76231 0.07252 -0.04966 0.82417 0.08332 -0.06117 0.92484 
0.03908 -0.06230 0.77344 0.01617 -0.06935 0.79838 0.06404 -0.05837 0.85198 0.06279 -0.05928 0.92504 0.07252 -0.06197 1.03750 
0.03270 -0.05868 0.83775 0.03908 -0.05644 0.88886 0.04617 -0.08826 0.93150 0.05404 -0,06803 1.01450 0.06279 -0.07170 1.13700 
0.02886 -0.07442 0.89472 0.03270 -0.07282 0.93300 0.03908 -0.07334 1.00230 0.04817 -0.07591 1.09430 0.06404 -0.0e045 1.22690 
0.02179 . 0.07959 0.94614 0.02898 -0.07866 0.98912 0.03270 -0.07972 1.08610 0.03908 -0.08299 1.16510 0.01617 -0.08832 1.30530 
0.01714 -0.08424 0.98981 0.02179 -0.08373 1.03900 0.02898 -0.08546 1.12110 0.03270 -0.08937 1.22810 0.03908 -0.09541 1.37710 
0.01295 -0.08843 1.02930 0.01714 -0,06838 1.08340 0.02179 -0.09063 1.17100 0,02098 -0.09512 1.28430 0.03270 -0.10179 1.44020 
0.00919 -0.00219 1.00420 0.01296 -0.09256 1.12200 0.01714 -0.09528 1.21560 0.02179 -0.10028 1.33480 0.02M -0.10753 1.49690 
0.00580 -0.09668 1.09510 0.00919 -0.08633 1.15740 0.01296 -0.09918 1.25470 0.01714 -0.10493 1.37970 0.02179 -0.11270 1.54790 
0.00275 -0.09803 1.12230 0.00680 -0.09972 1.18840 0.00919 -0.10323 1.28960 0.01295 -0.10912 1.41920 0.01714 -0.11735 1.59330 
0.00000 -0.10138 1.14610 0.00276 -0.10277 1.21000 0.00580 -010862 1.32110 0.00919 -0.11288 1.45460 0.01295 -0.12153 1.63290 

0.00000 -0.10562 1.24120 0.00275 -0.10987 1.34040 0.00580 -0.11628 1.48600 0.00919 -0.12630 1.88850 
0.00000 -0.11242 1.37600 0.00275 -0.11933 1.51580 0.00690 -0.12869 1.70140 

0.00000 -0.12207 1.54860 0.00275 -0.13174 1.73170 
0.00000 -0.13449 1.78610 

Table A. 8 Step, Time, Force, Pressure and Nodal position. 
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1 5 3 0 4 5 6 0 7 5 
x y x x y x x y 

Surface 1.00E+01 2.52E-07 1.00E+01 1.14E-06 1.00E+01 3.02E-06 1.00E+01 6.42E-06 1.00E+01 1.21 E-05 
8.92E+00 2.56E-07 8.92E+00 1.15E-06 8.92E+00 3.07E-06 8.92E+00 6.52E-06 8.92E+00 1.22E-05 
7.96E+00 2.74E-07 7.96E+00 1.24E-06 7.96E+00 3.28E-06 7.96E+00 8.98E-06 7.96E+00 1.31E-05 
7.10E+00 3.08E-07 7.10E+00 1.39E-06 7.10E+00 3.68E-08 7.10E+00 7.83E-06 7.10E+00 1.47E-05 
6.34E+00 3.53E-07 6.34E+00 1.59E-06 6.34E+00 4.23E-06 6.34E+00 9.00E-06 6.34E+00 1.69E-05 
5.66E+00 4.14E-07 5.66E+00 1.86E-06 5.66E+00 4.95E-06 5.66E+00 1.05E-05 5.66E+00 1.98E-05 
5.06E+00 4.91E-07 5.06E+00 2.21E-06 5.06E+00 5.88E-06 5.06E+00 1.25E-05 5.06E+00 2.35E-05 
4.52E+00 5.89E-07 4.52E+00 2.65E-06 4.52E+00 7.05E-06 4.52E+00 1.50E-05 4.52E+00 2.81E-05 
4.05E+00 7.12E-07 4.05E+00 3.21E-08 4.05E+00 8.52E-06 4.05E+00 1.81E-05 4.05E+00 3.40E-05 
3.62E+00 8.66E-07 3.62E+00 3.90E-06 3.62E+00 1.04E-05 3.62E+00 2.21E-05 3.62E+00 4.14E-05 
3.24E+00 1.06E-06 3.24E+00 4.77E-06 3.24E+00 1.27E-05 3.24E+00 2.69E-05 3.24E+00 5.05E-05 
2.90E+00 1.29E-06 2.90E+00 5.84E-06 2.90E+00 1.55E-05 2.90E+00 3.30E-05 2.90E+00 6.19E-05 
2.60E+00 1.59E-06 2.60E+00 7.16E-06 2.60E+00 1.90E-05 2.60E+00 4.04E-05 2.60E+00 7.59E-05 
2.34E+00 1.95E-06 2.34E+00 8.79E-06 2.34E+00 2.33E-05 2.34E+00 4.97E-05 2.34E+00 9.32E-05 
2.10E+00 2.39E-06 2.10E+00 1.08E-05 2.10E+00 2.87E-05 2.10E+00 6.10E-05 2.10E+00 1.14E-04 
1.89E+00 2.94E-06 1.89E+00 1.32E-05 1.89E+00 3.52E-05 1.89E+00 7.49E-05 1.89E+00 1.41E-04 
1.70E+00 3.60E-06 1.70E+00 1.62E-05 1.70E+00 4.32E-05 1.70E+00 9.19E-05 1.70E+00 1.72E-04 
1.53E+00 4.41E-06 1.53E+00 1.99E-05 1.53E+00 5.29E-05 1.53E+00 1.13E-04 1.53E+00 2.11E-04 
1.38E+00 5.40E-06 

1 

1.38E+00 2.43E-05 1.38E+00 6.47E-05 1.38E+00 1.38E-04 1.38E+00 2.58E-04 
1.25E+00 6.58E-06 1.25E+00 2.97E-05 1.25E+00 7.89E-05 1.25E+00 1.68E-04 1.25E+00 3.15E-04 
1.13E+00 8.01E-06 1.13E+00 3.61E-05 1.13E+00 9.60E-05 1.13E+00 2.04E-04 1.13E+00 3.84E-04 

Me on 1.03E+00 1.03E+00 4.38E 5 1.03E+001 1.03E+00 2.48E-04 1.03E+00 4. 
Body 9.35E-01 1.17E-05 9.35E-01 5.29E-05 9.35E-01 1.41E-04 9.35E-01 3.00E-04 9.35E-01 5.64E-04 

8.52E-01 1.41E-05 8.52E-01 6.37E-05 8.52E-01 1.70E-04 8.52E-01 3.62E-04 8.52E-01 6.80E-04 
7.78E-01 1.69E-05 7.78E-01 7.64E-05 7.78E-01 2.04E-04 7.78E-01 4.34E-04 7.78E-01 8.16E-04 
7.12E-01 2.02E-05 7.12E-01 9.13E-05 7.12E-01 2.43E-04 7.12E-01 5.19E-04 7.12E-01 9.76E-04 
6.54E-01 2.40E-05 6.54E-01 1.09E-04 8.54E-01 2.89E-04 6.54E-01 6.17E-04 6.54E-01 1.16E-03 
8.01E-01 2.84E-05 6.01E-01 1.28E-04 6.01E-01 3.42E-04 8.01E-01 7.31E-04 6.01E-01 1.38E-03 
5.55E-01 3.34E-05 5.55E-01 1.51E-04 5.55E-01 4.03E-04 5.55E-01 8.62E-04 5.55E-01 1.63E-03 
5.14E-01 3.91E-05 5.14E-01 1.77E-04 5.14E-01 4.73E-04 5.14E-01 1.01E-03 5.14E-01 1.91E-03 
4.72E-01 4.64E-05 4.72E-01 2.10E-04 4.72E-01 5.62E-04 4.72E-01 1.21E-03 4.72E-01 2.28E-03 
4.31E-01 5.60E-05 4.31E-01 2.54E-04 4.31 E-O1 8.81E-04 4.31E-01 1.46E-03 4.31E-01 2.76E-03 
3.89E-01 6.90E-05 3.89E-01 3.13E-04 3.89E-01 8.42E-04 3.90E-01 1.81E-03 3.90E-01 3.43E-03 
3.48E-01 8.73E-05 3.48E-01 3.97E-04 3.48E-01 1.07E-03 3.48E-01 2.31E-03 3.49E-01 4.39E-03 
3.07E-01 1.14E-04 3.07E-01 5.22E-04 3.07E-01 1.41E-03 3.07E-01 3.07E-03 3.08E-01 5.83E-03 
2.65E-01 1.56E-04 2.65E-01 7.19E-04 2.68E-01 1.97E-03 2.66E-01 4.31E-03 2.87E-01 8.23E-03 
2.24E-01 2.29E-04 2.24E-01 1.07E-03 2.24E-01 2.97E-03 2.25E-01 6.46E-03 2.28E-01 1.18E-02 
1.83E-01 3.82E-04 1.83E-01 1.81E-03 1.84E-01 5.30E-03 1.88E-01 1.21E-02 1.87E-01 2.27E-02 
1.41E-01 7.68E-04 1.42E-01 3.93E-03 1.47E-01 1.03E-02 1.58E-01 1.53E-02 1.72E-01 2.03E-02 
1.21E-01 1.31E-03 1.23E-01 7.90E-03 1.34E-01 2.17E-02 1.48E-01 2.60E-02 1.64E-01 2.96E-02 
1.05E-01 3.63E-03 1.17E-01 1.16E-02 1.23E-01 1.11E-02 1.40E-01 1.79E-02 1.58E-01 2.38E-02 
9.53E-02 -6.08E-03 1.09E-01 3.14E-03 1.09E-01 -3.76E-03 1.23E-01 1.41 E-03 1.40E-01 5.46E-03 
8.33E-02 -1.81E-02 9.53E-02 -1.02E-02 9.53E-02 -1.71E-02 1.09E-01 -1.34E-02 1.23E-01 -1.10E-02 
7.25E-02 -2.89E-02 8.33E-02 -2.22E-02 8.33E-02 -2.91E-02 9.53E-02 -2.67E-02 1.09E-01 -2.58E-02 6.28E-02 -3.86E-02 7.25E-02 -3.30E-02 7.25E-02 -3.99E-02 8.33E-02 -3.88E-02 9.53E-02 -3.92E-02 5.40E-02 -4.73E-02 6.28E-02 -4.27E-02 6.28E-02 -4.96E-02 7.25E-02 -4.98E-02 8.33E-02 -5.12E-02 
4.62E-02 -5.52E-02 5.40E-02 -5.15E-02 5.40E-02 -5.84E-02 6.28E-02 -5.93E-02 7.25E-02 -6.20E-02 3.91E-02 -6.23E-02 4.62E-02 -5.94E-02 4.62E-02 -6.82E-02 5.40E-02 -8.80E-02 6.28E-02 -7.17E-02 
3.27E-02 -6.87E-02 3.91E-02 -6.64E-02 3.91E-02 -7.33E-02 4.62E-02 -7.59E-02 5.40E-02 -8.04E-02 2.70E-02 -7.44E-02 3.27E-02 -7.28E-02 3.27E-02 -7.97E-02 3.91 E-02 -8.30E-02 4.62E-02 -8.83E-02 
2.18E-02 -7.98E-02 2.70E-02 -7.86E-02 2.70E-02 -8.55E-02 3.27E-02 -8.94E-02 3.91E-02 -9.54E-02 1.71E-02 -8.42E-02 2.18E-02 -8.37E-02 2.18E-02 -9.06E-02 2.70E-02 -9.51 E-02 3.27E-02 -1.02E-01 
1.30E-02 -8.84E-02 1.71E-02 -8.84E-02 1.71E-02 -9.53E-02 2.18E-02 -1.00E-01 2.70E-02 -1.08E-01 9.19E-03 -9.22E-02 1.30E-02 -9.26E-02 1.30E-02 -9.95E-02 1.71 E-02 -1.05E-01 2.18E-02 -1.13E-01 
5.80E-03 -9.56E-02 9.19E-03 -9.63E-02 9.19E-03 -1.03E-01 1.30E-02 -1.09E-01 1.71E-02 -1.17E-01 2.75E-03 -9.86E-02 5.80E-03 -9.97E-02 5.80E-03 -1.07E-01 9.19E-03 -1.13E-01 1.30E-02 -1.22E-01 0.00E+00 -1.01E-01 2.75E-03 -1.03E-01 2.75E-03 -1.10E-01 5.80E-03 -1.16E-01 9.19E-03 -1.25E-01 

0.00E+00 -1.08E-01 0.00E+00 -1.12E-01 2.75E-03 -1.19E-01 5.80E-03 -1.29E-01 
0.00E+00 -1.22E-01 2.75E-03 -1.32E-01 

0.00E+00 -1.34E-01 

Table A. 9 Free-surface profile 
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Wedge entering fluid domain with Froude number 0.117 

number of steps 800 position of cog (horizontal, vertical) (0.0,0.2) 
time step size 0.0025 surface width 20 
height step size 0.1 water depth 10 
print only main steps number of points in surface 80 
rint hamming predictor NO wave length 1 

start type normal wave amplitude 0 
jets leave body NO still water line 0 
steps till jet leaves body 10 mass density ratio 0.0075 
acceleration 0 moment of inertia density ratio 0.001 
print every nth step I forward water line 0 
sway allowed NO rear water line 0 
heave allowed YES bod y type 0 
roll allowed NO surface point ratio 0.9 
node removal limit 3 number of body points 60 
node addition limit I bodv Point ratio 0.95 
center of rotation (horizontal, vertical) (0.0,0.2) distance of cog to vertex 0.3 
velocity of cog (horizontal, vertical) (0.0, -0.2) wedge height 0.5 
angle of body to vertical 0 right wedge angle to vertical 45 
angular velocity about cog 0 total wedge angle 90 

Table A. 10 Input data 

m e m@ r mo f«m *0 me 
0.1 0.02 8 .11 1 .11 

0.05 4 0.1 .1 .1 1 40 

No d" No d" t 8 
x Pfuwe x Piaws x Pressure x Prawn x Protun 

1144 1 0.1 0. 0.14M 0. 1 01338 MÖW 0.1 0. 
0.09781 -0.00619 0.16279 0.12414 0.01614 0.06558 0.13835 0.02636 -0.08464 0.15332 0.03732 -0.03785 0.15332 0.03332 -0.05934 
0.08662 -0.01838 0.29498 0.11064 0.00264 0.20106 0.12414 0.01214 0.04658 0.13836 0.02236 -0.06384 0.13836 0.01836 -0.01020 
0.07404 -0.02906 0.39619 0.09781 -0.01019 0.28901 0.11064 -0 . 

00136 0.17047 0.12414 0.00614 0.06087 0.12414 0.00414 0.11000 
0.06304 -0.04060 0.49063 0.08562 -0.02238 0.38518 0.09761 -0.01419 0.28021 0.11064 -0.00590 0.19650 0.11004 -0.00930 0.23345 
0.05259 -0.06141 0.59820 0.07404 -0.03396 0.48401 0.08562 -0.02638 0.38883 0.09781 -0.01819 0.31239 0.09751 -0.02219 0.34914 
0.04267 -0.06133 0.69300 0.06304 -0.04496 0.58211 0.07404 -0.03796 0.49486 0.08562 -0.03038 0.42364 0.08662 -0.03438 0.48162 
0.03324 -0.07076 0.78398 0.06259 -0.06541 0.07776 0.06301 -0.04896 0.59748 0.07404 -0.04190 0.53131 0.07404 -0.04596 0.57011 
0.02428 -0.07972 0.87099 0.04267 -0.06533 0.77034 0.08259 -0.05941 0.09620 0.06304 -0.05296 0.63496 0.06304 -0.05696 0.67431 
0.01577 -0.08823 0.96459 0.03324 -0.07476 0.86953 0.04267 -0.08933 0.79093 0.05259 -0.06341 0.73440 0.05259 -0.06741 0.77412 
0.00786 -0.00032 1.03520 0.02426 -0.08372 0.94533 0.03324 -0.07876 0.88170 0.04207 -0.07333 0.82903 0.04207 -0.07733 0.66962 
0.00000 -0.10400 1.11500 0.01577 -0.09223 1.02800 0.02428 -0.06772 0.96863 0.03324 -0.06276 0.92073 0.03324 -0.08676 0.96091 

0.07168 -0.10032 1.10780 0.01577 -0.09623 1.06210 0.02428 -0.09172 1.00790 0.02428 -0.09572 1.04820 
0.00000 -0.10800 1.18700 0.00768 -0.10432 1.13240 0.01577 -0.10023 1.09150 0.01677 -0.10423 1.13180 

0.00000 -0.11200 1.21190 0.00768 -0.10832 1.17180 0.00768 -0.11232 1.21220 
0.00000 -0.11600 1.25130 0.00000 -0.12000 1.29150 

Table A. 1I Step, Time, Force, Pressure and Nodal position. 
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8 1 6 2 4 3 2 4 0 
x x y x x y x y 

Surface 1.48E+00 1.41E-05 1.48E+00 3.09E-05 1.48E+00 5.10E-05 1.35E+00 9.06E-05 1.35E+00 1.26E-04 
1.35E+00 1.69E-05 1.35E+00 3.72E-05 1.35E+00 6.14E-05 1.23E+00 1.09E-04 1.23E+00 1.51E-04 
1.23E+00 2.04E-05 1.23E+00 4.47E-05 1.23E+00 7.37E-05 1.12E+00 1.31 E-04 1.12E+00 1.81E-04 
1.12E+00 2.44E-05 1.12E+00 5.36E-05 1.12E+00 8.84E-05 1.02E+00 1.56E-04 1.02E+00 2.17E-04 
1.02E+00 2.92E-05 1.02E+00 6.42E-05 1.02E+00 1.06E-04 9.37E-01 1.87E-04 9.37E-01 2.59E-04 
9.37E-01 3.49E-05 9.37E-01 7.66E-05 9.37E-01 1.26E-04 8.59E-01 2.23E-04 8.59E-01 3.09E-04 
8.59E-01 4.15E-05 8.59E-01 9.12E-05 8.59E-01 1.51E-04 7.88E-01 2.64E-04 7.88E-01 3.67E-04 
7.88E-01 4.93E-05 7.88E-01 1.08E-04 7.88E-01 1.79E-04 7.24E-01 3.13E-04 7.24E-01 4.35E-04 
7.24E-01 5.84E-05 7.24E-01 1.28E-04 7.24E-01 2.12E-04 6.67E-01 3.70E-04 6.67E-01 5.14E-04 
8.67E-01 6.89E-05 8.67E-01 1.51E-04 8.87E-01 2.50E-04 6.15E-01 4.36E-04 6.15E-01 6.05E-04 
6.15E-01 8.10E-05 6.15E-01 1.78E-04 6.15E-01 2.95E-04 5.64E-01 5.22E-04 5.64E-01 7.25E-04 
5.64E-01 9.68E-05 5.64E-01 2.13E-04 5.64E-01 3.52E-04 5.12E-01 6.36E-04 5.12E-01 8.85E-04 
5.12E-01 1.18E-04 5.12E-01 2.59E-04 5.12E-01 4.29E-04 4.61E-01 7.94E-04 4.61E-01 1.11E-03 
4.61E-01 1.46E-04 4.61E-01 3.23E-04 4.61E-01 5.35E-04 4.09E-01 1.02E-03 4.09E-01 1.42E-03 
4.09E-01 1.87E-04 4.09E-01 4.14E-04 4.09E-01 6.87E-04 3.58E-01 1.36E-03 3.58E-01 1.91E-03 
3.58E-01 2.49E-04 3.58E-01 5.51E-04 3.58E-01 9.16E-04 3.06E-01 1.93E-03 3.06E-01 2.71E-03 
3.06E-01 3.48E-04 3.06E-01 7.73E-04 3.06E-01 1.29E-03 2.55E-01 2.99E-03 2.55E-01 4.25E-03 
2.55E-01 5.25E-04 2.55E-01 1.18E-03 2.55E-01 1.98E-03 2.04E-01 5.35E-03 2.05E-01 7.32E-03 
2.03E-01 9.09E-04 2.03E-01 2.07E-03 2.03E-01 3.53E-03 1.55E-01 1.82E-02 1.58E-01 2.38E-02 
1.52E-01 2.06E-03 1.52E-01 5.66E-03 1.53E-01 1.17E-02 1.46E-01 2.39E-02 1.48E-01 2.67E-02 
1.26E-01 4.85E-03 1.33E-01 1.50E-02 1.41E-01 2.04E-02 1.54E-01 3.43E-02 1.62E-01 3.74E-02 

Intersection 1.14E-01 1.05E-02 1.49E-01 3.65E-02 1.59E-01 4.34E-02 1.67E-01 4.71 E-02 
Body 9.78E-02 -6.19E-03 1.24E-01 1.61E-02 1.38E-01 2.64E-02 1.53E-01 3.73E-02 1.53E-0 1 3.33E-02 

8.56E-02 -1.84E-02 1.11E-01 2.64E-03 1.24E-01 1.21E-02 1.38E-01 2.24E-02 1.38E-01 1.84E-02 
7.40E-02 -3.00E-02 9.78E-02 -1.02E-02 1.11E-01 -1.36E-03 1.24E-01 8.14E-03 1.24E-01 4.14E-03 
6.30E-02 -4.10E-02 8.56E-02 -2.24E-02 9.78E-02 -1.42E-02 1.11E-01 -5.36E-03 1.11E-01 -9.36E-03 
5.26E-02 -5.14E-02 7.40E-02 -3.40E-02 8.56E-02 -2.64E-02 9.78E-02 -1.82E-02 9.78E-02 -2.22E-02 
4.27E-02 -8.13E-02 6.30E-02 -4.50E-02 7.40E-02 -3.80E-02 8.56E-02 -3.04E-02 8.56E-02 -3.44E-02 
3.32E-02 -7.08E-02 5.26E-02 -5.54E-02 6.30E-02 -4.90E-02 7.40E-02 -4.20E-02 7.40E-02 -4.60E-02 
2.43E-02 -7.97E-02 4.27E-02 -6.53E-02 5.26E-02 -5.94E-02 8.30E-02 -5.30E-02 6.30E-02 -5.70E-02 
1.58E-02 -8.82E-02 3.32E-02 -7.48E-02 4.27E-02 -6.93E-02 5.26E-02 -6.34E-02 5.26E-02 -6.74E-02 
7.68E-03 -9.63E-02 2.43E-02 -8.37E-02 3.32E-02 -7.88E-02 4.27E-02 -7.33E-02 4.27E-02 -7.73E-02 
0.00E+00 -1.04E-01 1.58E-02 -9.22E-02 2.43E-02 -8.77E-02 3.32E-02 -8.28E-02 3.32E-02 -8.68E-02 

7.68E-03 -1.00E-01 1.58E-02 -9.62E-02 2.43E-02 -9.17E-02 2.43E-02 -9.57E-0 2 
0.00E+00 -1.08E-01 7.68E-03 -1.04E-01 1.58E-02 -1.00E-01 1.58E 02 -1.04E-01 

0.00E+00 -1.12E-01 7.68E-03 -1.08E-01 7.68E-03 1-1.12E-01 
0.00E+00 -1,16E-01 0.00E+00 -1.20E-01 

Table A. 12 Free-surface profile 
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Appendix B Added Mass Derivation from Dipole 

Moment 

A derivation of the added mass from the equation of a dipole 

moment. 

Abstract 

A two-dimensional derivation of the added mass from the dipole moment is given. 

Introduction 

Through the use of Green's theorem we demonstrate the relationship between the heave added 

mass for a body in an unbounded fluid and the two-dimensional dipole moment. A three-dimensional 

derivation can be found in Newman (1977). 

Green's Theorem 
The external flow around a body may be represented by a distribution of sinks and sources 

along the body surface. To demonstrate this let us first consider two solutions of Laplace's equation in a 

volume V of fluid bounded by a closed surface S. We use 4 and cp for the two potentials. Application 

of the divergence theorem gives 

jr ý '*? 
= 

ff V. oo dV =f(. o2cp+o o VZ o 0)dV =0 
(B. 1) 

on an 
v 

We replace cp with a source of strength m =1. We define the source point as '= (t, r1,0) as the 

position of the source. For a unit source the potential at the field point x= (x, y, z) is 

In r 
rx - 4)2 + (y - il)' 

)Y2 (B. 2) 
In (l 

(P 271 27t 

We substitute (B. 2) into (B. 1). However, care must be taken since the source potential does not satisfy 

Laplace's equation at the singular point r=0, and so is not valid when the source point is within V. 

We circumvent this by surrounding the source point by a circle of radius e (Figure B. 1). 
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n 

Figure B. I 

Thus 

Ij(, ö(1n r) 
- In r 

cal dS =O 2n l On 8n) 
s+se 

or 

1 j(, a(in r) 
-1n ro1 

r(, ö(ln r) 
-In rI dS 

In l än On) 27c Jl On On) 
s S. 

(B. 3) 

We consider the integrand on the right of (B. 3) in the limit as e -+ 0. The length of S. = 2itr. . The 

normal derivative of In r can be evaluated as 
a(Irr) r, 

this is negative since the normal is in the 

opposite direction to r. So, the first term is singular in proportion to 
1, 

and when multiplied by the area 
r 

2ar ,a 
finite limit will result as e -* 0. The weaker singularity of the second term will give no 

contribution, because in the limit as e -> 0 

1lnrý& S. 

becomes 

ICInCNdlD= 

0 

since lime In e) =0 
C- +O 

2, i 
j6 lim(s I E) A= 0 
0 

For sufficiently small c the potential can be assumed constant and taken outside of the integral sign, so 

the final limiting value of the right-hand side of (B. 3) is 

- 
2ý $(x, y) 

f a(ir) 
dS = 4(x, y) 

S. 
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Thus if (x, y) is inside S 

dS 
(B. 4) 

4(x, y) 2L 
f (t a(anr) 

- In r2 an) 
s/ 

Derivation 

We consider the relation between the translational added-mass coefficient and the dipole moment 
describing the fluid motion at distances from the body moving in the i =1 direction. For sufficiently 
large radial distances r from the body, the disturbance due to the body can be written in the form 

l ý(r 
Z) 

(B. 5) 
ýý =ý=Ao1nr+A. O(Inr)+O(lnr Z) =Aolnr+-+Ol 

l 

where AO is the net source strength, A=A, i+ 0) the dipole moment, and the omitted terms are higher 

order multi-poles which arise from the separable solutions of Laplace's equation when written in polar 

co-ordinates. Since the body is rigid there will be no nett flux through the body surface and hence no 

flux through any other closed surface and so the source strength AO = 0. Thus 

4A. V(1n r) =AL as r -* oo 
(B. 6) 

r 

So the leading order far-field disturbance is identical to that of a dipole. Physically this makes sense 

since far away from the body the body detail will not be "seen" and the body will look like a distant 

circle. 

We can now re-examine equation (B. 4) in the light of (B. 6). Suppose S is given by 

S= Sc, U SB v Cl v c2 as in Figure B. 2 

Figure B. 2 

Integrations along the cuts cancel, while 

-1 
J(, aý r- In r dS -º 0 from (B. 6) 

S. 
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Hence integrating the remaining contribution around SB in the anticlockwise direction gives 

Ox, Y) = 21E 
jln[(x- )z +(Y-71)2]y 

04 
-ý On 

ln[(x-t)Z +(Y-, 1)2]y 
(B. 7) 

Sß 

where the first term is a distribution of sources and the second a distribution of normal dipoles. If 

r=x2+y2 is large compared to the body dimensions and we neglect terms of order r -2 , then from 

Taylor expansions we can write 

In[(x-ý)2 +(Y_ )2]% =1nr- 0(Inr) 

j and where _ 4i + rj and V refers to the (4, n) co-ordinates, i. e. V=-i+ 
ON 

an 

(ln`(x 
- 4)2 +(y _ 11)2 ]%) = -n " V(ln r) 

and n=nji+n2j. 

And so the potential at large distances is 

O= 
1 Ian 

dS In r-1( 
00 

- On) dS " o(ln r) 
(B. 8) 

2n 
S 

ön 2n 
SB 

an 
a 

where the first term represents a source and hence vanishes since there is no net flux through Se . 

Comparing this with (B. 5) we see the terms can be equated as 

e=- 1 f(4 
-en)dS"V(Inr)=A"V(! nr) 21r 8n 

Since A =Ani +Oj then 

Al =_ 
$(4 

-4i)dS 
(B. 9) 

2w On 

The potential must satisfy the body boundary condition so nl =. Hence 

1(' 
A, 

c 
271 an 

& 
SB 

and we know that 
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ma=Pjý dS 

Hence we can write 

1Cb' 
+m 

(B. 10) 

2n p) 

where V J4nl dS is the area of the body. 
SB 

Thus, we have shown that the far-field disturbance and associated dipole moment A are directly related 

to the body volume and the added-mass coefficient ma . 
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Appendix C Simplification of Added Mass Equations 

Using Mathematica® to create simplified expressions for the 

added mass equations for a box and knuckled body 

Abstract 

A full explanation is given of the methods used and commands implemented to produced a 

numerically amenable solution to the added mass equations for a box and knuckled body. 

Introduction 

For both the box and knuckled body analytical theories we encountered problems when 

required to produce an equation that is amenable to a simple time step algorithm. This suggest looking 

for an alternative method of evaluating the integrals involved, an explanation of which follows. 

Box Body 

In Chapter 3 we developed an equation for the added mass of a box body, quoted as 

M. 
_m2 

E'(m) - mK'(m) 1 (C. 1) 

pna2 2[E(m)-(1-m)K(m)]2 it 
ILE(m)-(1-m)K(m) j 

The method used to convert the equation for added mass into one that can be easily implemented in an 

algorithm are as follows 

Evaluate Elliptic Integrals 

Mathematicam has built-in functions to numerically evaluate elliptic integrals, these have been 

used to assist in the linear approximation of the added mass equation. 

Define Mathematics' equations 

ellipl-E1lipticE(ml-(1-m) E1lipticK[m] 

ellip2=E1liptiCE[1-m]-m E1lipticK[1-m] 

ratio(m ]-ellip2/ellipl 

ma[m ]-m/(2 e11ip1^2)-2 ratio[m]/Pi 

Tabulate, Graph and Fit 

We evaluate ratio and m for values 0.1 5m50.99 in steps of 0.01. The results are stored in data 



Simplification of Added Mass Equations 203 

data=Table[{N[ratio[m]], N[ma[m]]}, {m, 0.001,0.999,0.001}] 

and plotted 

1.4 

l 

ma 

0.1 

0.1 

ratio 

Graph C. 1 Functions ratio vs. ma using elliptic integral evaluation 

Fit a function to this data using constants, f, r, rY and r2 

fitma[r ]-Fit[data, (1, Sgrt[r], r, Sqrt[r]^3, r^2}, r] 

=0305589+0264054r - 0.0251 687r + 0.00104839r 
y-0.000014487r 2 

Plot this fitted function 

1. 'e 

1. j 

fitma(r ) 

o. s 
o. ý 
o. ' 
o. ý 
o. 

r 

Graph C. 2 Fitted function fitma for a range or r values 

Compare the two graphs 
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1.1 

fitma(r) 
1.4 

ma 

0. E 

o. ( 
r=ratio 

Graph C. 3 

Graph C. 4 Comparison offitted function fitma and elliptic integral equation 

Clearly the fitted function fitma approximates the equation (C. 1) suitably and so, replacing r with 

depth ratio 
Z, 

we define the linear approximation as 
a 

3 

Ma 
= Ma =0305589+026405 

fa 
- 0.0251687 y+0.001048391 y) 2-0.0000144871 y 

p. na a \a \a/ 

as quoted in Chapter 3. 

Knuckled Body 

In Chapter 3 we developed an equation for the added mass of a knuckled body as 

Mo a2 K2 (b+c) 
z=-(p -1) z- 

p 7r a era 

where 

(C. 2) 

a (C. 3) 

KJ(ý2=11ndc-c-b- a 
Jlp2 ý2 J cos (1 sins 

and the ratio G can be defined as 

P ý2 
a (C. 4) 

c-b aJ 
2_c2J 

bcosa bsina °C 

1-ca; Jp2_2J 

where p is a parameter resulting from the conformal mapping and b, a and a define the body. 
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The method used to convert this equation into one that can be easily implemented in an algorithm is as 
follows 

Numerically integrate 

Each of the integrals in (C. 2) must be numerically integrated in Mathematica® . 

Ix 

1-ýZ n 
p- 

dd is evaluated using the command 

0 

int01[a_, p_]=Nintegrate[((1-z^2)/(p^2-z^2))^a, {z, 0,1}] 

a 
P (p 1s f 

(p 

_ ý2 
dd is evaluated using the command 2) 

intlp[a_, p_]=Nintegrate[(((z/1000)^2-1)/(p^2-(z/1000)^2))^a/1000, {z, 1000,1000 

p}, workingPrecision->201 

Note the z/1000 term, this is used to improve the precision and prevent underflow in the calculation. 

Tabulate 

The results of the numerical integration are tabulated and manipulated. 

data=Table[{p, int01[1/4, p], intlp[1/4, p)}, {p, 1,2.0,0.01}] 

will tabulate the results of the numerical integration for 15p z2 in steps of 0.01, placing the result in 

data. Depending on the computer system you are using it may be required to slice this up into bite sizes 

pieces(i. e. {p, 1,1.1,0.01}, {p, 1.1,1.2,0.01},... ) 

data2-Table[{data[(i, 2]]/data[[i, 3]], N((data([i, 1]]^2- 

1)/2*(1/data([i, 3]])^2]}, {i, 1,97}] 

This re-tabulates the previous data into a more useful form, IG, 
PQ°2 

+b Qý I, placing the results in 
I 

data2. 

Visualise and Fit 

Plotting the resulting data helps to visualise the equations (C. 2) and (C. 4), we can then attempt 

to fit a linear equation to these results, and evaluating its precision using graphs. 

We plot data2 



Simplification of Added Mass Equations 206 

iC 

Ma b+C 
Z+ pia na 

Graph C. 5 The contents of data2 

In a similar manner we calculate the data for the range 2 <_ p5 100 in larger steps of 1. This is then 

combined with data2 to produce one large data set dataall 

plot this 

E 

C 

Ma b+c 

pna2 na 
2 

Graph C. 6 Depiction of the data set datall 

Fit a function containing constants, x and 
/ to this curve 

allfit[x ]-Fit[dataall, {1, x, Sgrt[x]}, x] 

= 0.0690022 + 0.246738) + 0.884717x 

plot the resultant function 

2468 10 
I 

G 

12345 
1 

G 
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3 
allfit(x) 

e 

Graph C. 7Fitted function allfit 

compare the original data with the fitted function 

allfit(x) 

--M b+c 

pita2 na 

Graph C. 8 Comparison of dataall and fitted function allfit 

calculate the difference error between the data and the fitted function 

error-Table[{dataall[(i, 1]], dataall[[i, 2]]-allfit[dataall[[i, l])]}, {i, 1,195}] 

plot this error 

0.04 

0.02 
rte.......... 

difference 

"12345 

-0.02 G 

-0.04 

Graph C. 9 Difference error between dataall and fitted function allfit 

12345 

x=- G 

123456 

x=- 
G 
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Let us concentrate on the data between 0 and 1 since 
ýQ 

will fall mainly in this range. We will define 

the small scale data from dataall as smiscale, where 0 <_ 
I 

<1. 

The small scale data looks like 

0.01 

0.005 
Ma b+c 

Pita2 7ra 

-0.005 

-0.01 

-0.015 

0.2 0.4 

I., 

fý. 

. 40 
00, 

0.6 0.8 1 

Graph C. 10 Small time dataall 

Fit a function to smiscale data using constants, x, x2 and lnx. 

smlerr[x ]=Fit[smiscale, {1, x, x^2, Log[x]}, x] 

= -0.03401 + 0.0734954x - 0.0297166x2 - 0.00500196 In x 

and plot 

U. o: 

o. oo: 
smlerr(x) 

-0.00: 

-0.0: 

-0.01J 

Graph C. I1 Function fitted to smiscale data 

compare fitted function smlerr with smiscale data 
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0.01 

- smlerr (x) 0.00: 

--M b+c 

Pita2 ita 
-0.00! 

-0.0: 

-o. o1 
1 

x=- G 

Graph C. 12 Comparison of smiscale data and function smierr 

define complete fitted function as the original plus small scale fit 

totalfit[x ]=0.6900219732802933+0.246738328479538*x^(1/2)+0.884717431182508*x- 

0.03400997269789174+0.07349543073816949*x-0.02971659513399275*x^2- 
0.005001961506839604*Log[x] 

Plot total fit 

e 

A 

totalfit(x) 

Graph C. 13 Combined fitted function total fit 

overlay on original dataall data 

12345 

x=- 
G 
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_ totalfit(x) 

--M b+c 

pna2 na 

Graph C. 14 Comparison of totalfit function and dataall 

find difference error between them 

totalerr=Table[{dataall[[i, l]], dataall[[i, 2]]-totalfit[dataall[[i, 1]]]}, {i, 1,195}] 

plot this error 

U. u, d 
0.0E 

0.0: 

totalerr(x) 0. W 

0.0�: 

0.0.9 

0.0: 

Graph C. 15 Difference error between totalfit function and dataall 

Within the range that we have interest the error is suitable small to make this linear approximation 

acceptable. 

Evaluate and Simplem 

Evaluate function when x =a 72 

N[totalfit[x]/. x->b(Sgrt[2)*a)J 

-0.656012+ 
0.677559b 

- 
0.0148583b2 

+ 0207481,1= - 0.00500196 in 
b 

aa2 
Va 

a 

123456 

x=- G 

121345 

x=- 
G 
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now find 
Ma 

using N [%_ (2b+a) / (Pi*a) ) 

pita 

0.677559b 0.0148583b2 ýb 2b +a 
= 0.656012 +-+0.207481 0.0050019611 - a a2 aa ra 

simplify the resultant equation with simplify[ %] 

2(l 
= 0.337702 + 0.040939 a-0.0148583(6 

a) 
+ 0.207481 - 0.00500196 In1 

bý 

aYala ))) 

which is, replacing b for the depth variable y. 

(ý (1 M°2 
=0.337702+0.040939Z-0.0148583(Z 

i ) 
+0107481 , I' - 0.005001961n1 yi 

PM aaYala ))) 

as in Chapter 3. 
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Appendix D John's Equation 

Derivation and presentation of results obtained from John's 

equation. 

Abstract 

A derivation of John's equation and it application to high speed wedge entry into the fluid 

domain. Graphical results are presented for reference. 

Introduction 
Time dependent non-linear free surface flows are generally beyond the scope of analysis, even 

in zero gravity. Nevertheless some progress was made in the early 1980's using the semi-Lagrangian 

approach of John (1953) whereby exact solutions relating to the jet, loop and combined jet and loop 

overturning region of a breaking wave were discovered by Longuet-Higgins (1983), New (1983) and 
Greenhow (1983) respectively. Calculation of these flows depends crucially on knowledge of John's r- 
function, see below. 

Although somewhat outside the more practically-orientated scope of this thesis it is interesting 

to look at the self-similar flow arising from zero gravity wedge entry from the semi-Lagrangian point of 

view. Garabedian's (1953) result for the constancy of arc length arises in an extremely simple way and 

has some consequences for a number of other relations derived here. Perhaps more importantly, we 

exploit these relations and the numerical results of Chapter 2 to calculate numerically the r-function. 

Future work might be able to utilise these results to build semi-Lagrangian analytical models whereby 

free-surface solutions could be added in such a way as to satisfy the wedge symmetry and far field 

conditions. 

Constancy of arc length 

If we consider a free surface described by z(s, t) where s is a parameter which is real on the 

free surface (a Lagrangian marker) and t is time. Below the free surface z is complex and is not a 
Lagrangian marker, hence the term semi-Lagrangian (see e. g. Longuet-Higgins 1982) 
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We require self-similarity. Following Garabedian's (1953) notation we therefore have 

X z(s, t) = z(Xs, xt) = z(S, z) (D. 1) 

where q= Xs and t= Xt . We see this relationship explicitly in Graph 2.3, where it is used as a 

stringent check on the numerical results. 

Differentiating with respect to ? 

z(s, t) = szs +tzt 

and putting X=I 

z(s, t) = szs + tz, 

differentiate with respect to t 

zI = szsi +tzu +zt 

so 

szs, + tzl, =0 (D. 2) 

and we know zs = zs + sz� + tz, , then 

szu +tz,,. =0 (D. 3) 

The dynamic condition of John (1953) states that in zero gravity the free-surface particle acceleration is 

normal to the free-surface. Hence 

zn = irz, 3 
(D. 4) 
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with real r. The big advantage of equation (D. 4) is that it is linear; any solutions with the same r- 
function may be added to give the required free-surface. The difficulties lie in satisfying the body 

boundary condition and avoiding singularities within the flow. Multiplying (D. 4) through gives 

zrr zrr = irz., zn 

The left hand side is real so 

9i(zs zn) =0 

so we can say 

91(z, zs, )=0 

ýzX 

=o 
at 

lzsIz = f(s) =[ g(s)] 
or IzI =f g(s)ds 

$ 

(D. 5) 

which states that the arc length Iz, I is constant with respect to I. Alternatively consider the change in 

IzI 2 between two markers s, and s2 i. e. IzI2I=I 
, this is independent of time t. This result was shown by 

22 

Wagner (1932) and a more complicated proof was given by Garabedian (1953). 

Application of John's equation 

As we have already stated in equation (D. 4) 

Zit = irz 

in the (S, T) system this becomes z« = Vzn and zs =7 zs , thus 

iR(S, T) 
ITT =% zs 

-S2 t2 - 12 
Using zn =2 zs, = irz3 we can deduce z,, = -Jr 

SZ 
z3 zsszs = it SZ , hence 

2 

91(Z,. ZJ=0 = =U 
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i. e. at any time the (arc length)2 between s, and s2 does not change as s, -+ s, + as and s2 s2 + as . 
Note if s is initial distance from origin, i. e. particles are labelled by this, then z=s initially. So 

z. , =l Vs at t=0 and Iz3l Z 
=1 Vt also. 

At intersection point z= (A)1 where A is complex and arg(A +iv) =8 on right hand side of wedge 

3t(A) >0 and A) > 0. 

/<ý_ 
locus of intersection 
point 

vt 
x mean free-surface S 

So a� =0i. e. r(0, t) =0 Vt > 0. This feature is shown in the numerical results of Graph D. 1. 

At oo zu -* 0 i. e. lim r(s, t) =0 Vt >0. Again this feature is shown in the numerical results of S100 

Graph D. 1. 

From equations (D. 2) and (D. 4) we have 

z, 1 = is zst = irzs which suggests a new variable zs = A(s, t) with JAI =1 Vt >0 from equation 

(D. 5). 

At = -ir 
tA 

s 

Note AA, = -fr 
s AA1 ¶R(AA1) =0i. e. 

ýt IAIZ =0 as before. 

Suppose A= e10 since IAI = 1, A, = iO1 e'e = it 
t 

e'e 
S 

A, =-r- 
s 

-s r= l-er 
(D. 6) 

Since r(0, t) =0 then this is automatically satisfied. As s -> oo , 0, -+ 0 i. e. surface slope far from the 

wedge stays flat with time. 

The geometrical significance of 9 can be explained as follows. Firstly 



John's Equation 216 

zs =A= e`o(S, r) =z= 
re'@(a, t)da+ At 

of 

Since z= At when s=0i. e. at the intersection point. Notice that fluid particles follow the free surface 

as if they are particles on a string. This arises from the kinematic condition plus the conservation of arc 

length. 

Furthermore 

z(s+Ss, t) -z(s, t) 
lim zs 

Ss-*0 Ss 

And we know Izs I=1. So 0= arg(zs) , so 0 is angle between the x-axis and the tangent at s i. e. the 

slope. 

().. Ä.. ý.. Z(S, 

ýZ(S+BS, 
1)-Z(S, t) 

Z(S + 6s, 1) 

Further -(n - S) <0<0, with equality if the contact angle is zero. 

As s --+ oo 

00 
Z- 

jeýe(o, r)da+[9t(A)+i3(A)lt 

of 

but Z(z) -+ 0 as s -> oo so that 

00 
e, e(Q, ý)dß 3(A)t=0 

of 

f 
sin[6(ß, t)idß + Z(A)t =0 

0 
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Particle dynamics 

Assuming 8 and A, are known 

S 

z=f eie(°'y)da + At 
0 

z, = 
Jeie(°'y)9t (a, t)da +A 
0 

z,, = irzs => z� = irere = il 
ts., 

)ere 
\t 

i. e. z« = -i 
s e, e; s 
t 

r 
If r(s, t) is known then dynamic condition 6r= -r(s, t) 

st 
and 6=-s1 JT 

" r(s, t)dt when 

0 
t=0,0=0 for s>0 

Let us look again at equation (D. 3) in terms of 8 

s 
a(z5 I 

+t 
0(z') 

=0 as at 

But zs = e'e(s, t) so 

SOS+tor =0 

and hence 

s s2 
r=-ý91 _` 9S 

(D. 7) 

From (D. 7) we see that since AS >0 then 0, <0i. e. the free-surface particles move up towards the 

wedge with increasing slope as the flow develops. Notice that when s=0,0, =0 so the contact angle 

stays constant. More generally we expect from self-similarity that 

0(s, t) = 9(xs, Xt) (D. 8) 

(D. 7) follows from this trivially since (with ). =1 +e) 

01 = 1i 
I e(s, t+et)-9(s, t)1- l 

(6(s, t+et)-9(s+es, t+et)1 
B-aol st J B-ýot Et J 

So `-e l; m 
9(s, t+ st) - eis + es, r+ st) e 

sr- B-+oes } -- s 
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But it is also true that (D. 7) z> (D. 8) since if ý=8 as suggested by (D. 8) is a constant and the 

orthogonal variable 

tj= ý2+t2 =t C2+1=s +Z 

thus 

a9 
= e, dt +es _ ret +Ses =0 aºt dt dq Cs + 

on the line where ý=s is a constant. 
t 

S 

t 

; tart 

1 constant 

Figure D. 1 Self-similarity variables 

So 

tot + so, =0 ra 9(s, t) = 9(Xs, . t) (D. 9) 

Numerical calculation of r-function 
To make further progress we need to know the r-function, which we calculate from the time 

derivative of the surface i. e. from (D. 6). 

We obtain values of the r-function using the numerical data for the entry of a wedge, half angle 
Y0 

1 with a high enough Froude number (0.583) for the flow to be essentially gravity free. 
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We calculate the angles a0 and aI using 

an =tan-' 
Yn+l -Yn 

xn+l - xn 

then fording 

e(sn t) =ayta, +i 
2 

then using the centred difference theorem to calculate 

e! 
O(s,,, t+1)-O(s,,, t) 

2t 

This can then be applied to the equation 

-s 
r= -A, 

The r-function values are plotted against time for all Lagrangian markers. 
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0.0 
0. c 
0. " 
0. 

Time0. 

0 

Graph D. 1 r -function plotted against time for all Lagrangian markers (COLOUR) 

  0.008-0.009 

  o. 007-0.008 
00.005.0.007 
  0.005-0.006 
®0.004-0.005 
130.003-0.004 

r-function 00.002-0.003 
130-001-0.002 
130-0.001 

i0-0.001-0 

To simplify obtaining values from the r-function graph a selection of results are presented below in a 

two-dimensional format. 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0.000 
00 0.1 0.1 0.2 0.2 

-0.001 
Time 

-+- s02 
803 

t305 
tr-814 

-o- s38 

Graph D. 2 r -function against time for a selection of Lagrangian markers. 
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0.009 

0.008 

0.007 

0.005 

0.005 
j0.004 

0.003 

0.002 

0.001 

0.000 

-0.001 
Legmnglan m rlw, s 

Graph D. 3 r -function against Lagrangian marker for a range of times. 

9 

-o-t=o. 1 t 

-ýt=o. 2z 
-a-t=o. 33 
-O -t=o. 45 

It is interesting to compare the results of Graph D. 3 with those shown in Greenhow (1983) for a 

breaking wave. We again see here that as a particle passes the point of verticality ( called the node of 

the loop region by Greenhow) the r-function reaches a maximum, and again we observe the need for the 

r-function to contain some s-dependence to model the fact that particles do not enter the overturning 

region all at the same time. The similarity between breaking waves and the present case was also 

commented on by Greenhow & Lin (1983); a substantial portion of both loop regions can be fitted very 

accurately by the NE -ellipse of New (1983). However, the reason for these intriguing similarities 

remains obscure. 
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Appendix E Program Documentation 

An explanation of the input and output data files used. 

Abstract 

Input and output files are broken down into their constituent parts and explained, the objective 
being to simplify future use of the system. 

Introduction 

We present each of the files used by the system. Input variables are explained. The dimensions 
and physical interpretation of output data is described. 

Input 
The input file format is in the form 

nstep, dt, dp, iprint, iwrite, istart, 
isway, iheave, iroll, divout, divin, 
zg, vzg, teta, tetad, zcg, 
cvlgth, hwat, nf, 
rlambd, etaa, swl, 
smass, smint, 
fwl, rwl, r, 
ratio, 
nbody, 
ratbod, vertex, hwedge, angwed, angver, 
ratbod, vertex, hbox, wbox, angwed, 
ratbod , vertex, hbox, wpen, angwed, angver 

ilcng, ncng, acctype, jump, 

if r=0 
if r=-1 
if r=-2 

Each variable is now described, included are indications of reasonable values and interpretation. 

nstep The number of integration steps to perform 

dt Time step size 

dp Size of height step (used in point spacing) 

iprint Define the amount of output sent to file. Defined 

values are: 

19 Print Gamma functions 

18 Print calculation matrices A&B 

17 Print Gaussian elimination steps 
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16 Print solution vectors 

14 Print results of main steps 

iwrite Print predicted Hamming values if set to 1 

istart Start up method: 

0 Restart from present file 

11 Perform standard run 

ilcng Allow jet to leave body : 

0 No jet may leave body 

x>0 First jet may leave body after x steps 

ncng Number of steps till subsequent jets may leave 

body 

acctype Type of accelerated motion: 

0 constant velocity 

-100 Transient motion 

x Constant acceleration at x m/s2 

jump Print every nt' step 

isway Allow sway motion if 1 

iheave Allow heave motion if 1 

iroll Allow roll motion if 1 

divout Ratio of surface to body elements required before 

a surface point is removed 

divin Ratio of surface to body elements required before 

a surface point is added 

zg Co-ordinates of body's centre of rotation 

vzg Velocity of centre of gravity 

teta Angle of the body motion to vertical 

tetad Angular velocity about centre of gravity 

zcg Co-ordinates of centre of gravity 
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cvlgth Length of control volume 

hwat Depth of control volume. Should be six to ten 
times the body submergence to prevent 
interference with control volume bottom. 

of Number of control points on the free-surface 

rlambd Wave length. Used for waves at 1=0, should be a 

multiple of cvlgth. 

etaa Wave amplitude 

swl Still water length 

smass Mass density ratio (effectively volume of body 

below free-surface at equilibrium). Has no effect 
in forced motion. 

smint 

fwl 

Moment of inertia density ratio 

Forward water line 

rwl Rear water line 

r Radius of body: 

0 wedge body 

-1 box body 

-2 knuckled body 

x>O circular body 

ratio Ratio of points on free-surface: 

<1 clusters points near body 

1 even distribution 

>1 clusters points away from body 

nbody Number of control points of body 

ratbod Ratio of points on body: 

<1 clusters points near vertex 

in the case of a box/knuckle points are clustered 
near corners 
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vertex Distance of vertex/bottom from centre of gravity 

hwedge (wedge only) Height of body 

angwed Angle of body to vertical. 

Wedge : angle of right hand side wedge face to 

vertical (for vertical motion use half-angle) 

Other : tilt of body about centre of gravity 

angver (wedge only) Total angle of wedge vertex 

hbox (box and knuckle only) Height of box 

wbox (box only) Width of box 

wpen (knuckle only) Width of knuckled body 

Output 

Surface data 
Data is output in the format 

point co-ordinate Complex potential Time derivative of Point identifier Step number 

ix. Y) ý9t, ) complex potential 
Ni indicates 

(9q, 3) intersection point 

Depth data 
Data is output in the format 

Step Time Centre of gravity Acceleration of c. o. g. Velocity of c. o. g. Draw-down 

number (XI Y) (x. Y) (XI Y) 

Pressure data 
Data is output in the format 

Body point co-ordinates Pressure Step number 

(x, Y) 
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Force data 
Data is output in the format 

Step number Force number Force Hydrodynamic force 

(x, Y) 

Plot data 
Data is output in the format 

Comments 
Step number INTEGRATION STEP NO: 0 

TIME : T= 0.00000SECS 

ACCELERATION; AZG= 
VELOCITY ; VZG= 
COORDINATES ; ZG= 

Point number N1= 40 
i. e. point Ni is N2= 70 
the 40th point. N3=109 
See Figure E. 1 N4=116 

for marker N5=127 
references. N =133 
Number of NF= 80 

surface points. 
Point insertion/ INSERTED AN EXTRA POINT ON RHS 
removal notes. INSERTED EXTRA POINT ON LHS 

N3 

0 -1.962 (M/SECS**2) 
00 (M/SECS) 
0 0.2 (M) 

I 

ýN 

Figure E. I Marker definition 
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