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ABSTRACT 

Predictions of the environmental loading and induced motional and structural responses are 
among the most important aspects in the overall design process of offshore structures and ships. 
In this thesis, attention is focused on the wave loads and excited bodily motion responses of large 
offshore structures and special vessels. 

With the aim of improving the existing theoretical methods to provide techniques of 
theoretical effectiveness, computational efficiency, and engineering practicality in marine and 
offshore applications, the thesis concentrates upon describing fundamental and essential aspects in 
the physical phenomenon associated with wave-structure interactions and deriving new methods 
and techniques to analyse offshore structures and unconventional ships of practical interest. 

The total wave force arising from such a wave-structural interaction is assumed to be a sim- 
pie superposition of the potential and the viscous flow force components. The linear potential 
forces are solved by the Green function intend equation whilst the viscous forces are estimated 
based on the Morison's damping formula. 

Forms of the Green function integral equation and the associated Green function are given 
systematically for various practical cases. The relevant two-dimensional versions are then derived 
by a transformation procedure. Techniques are developed to solve the integral equation numeri- 
cally including the interior integral formulation and, in particular, to tackle the mathematical 
difficulties at irregular frequencies. 

In applying the integral equations to solve problems with various offshore structures and 
special vessels, some modified, improved or simplified methods are proposed. At first, simplified 
method is derived for predictions of the surge, sway and yaw motions of elongated bodies of full 
sectional geometry or structures with shallow draft. Then, a new shallow draft theory is described 
for both three- and two-dimensional cases with inclusion of the finite draft effect. Furthermore, a 
three-dimensional strip method is formulated where the end effects of the body are fully taken 
into account. Finally, an approximation to the horizontal mean drift forces of multi-column 
offshore structures are presented. 

Some new findings are also discussed including the multiple resonances occurring in the 
motions of multi-hulled marine structures due to the wave-body interaction, the mutual cancella- 
tion effect of the diffraction and the radiation forces arising from a full shaped slender body, and 
so on. 

Further to those verification studies for individual methods developed, more comprehensive 
example investigations are given related to two industrial applications. One is a derrick barge 
semi-submersible with zero forward speed; and the other, a SWATH ship with considerable 
speed. 

By correlation of all the proposed approaches with available analytical, numerical and 
experimental data, the thesis tries to demonstrate a principle that as long as principal physical 
aspects in the wave-structure interaction problem are properly treated, an appropriately modified 
or simplified method works, performs well and, sometimes, even better. 
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1. INTRODUCTION 

With the development of offshore operation and ocean exploration, the invention, design 

and construction of new ranges of unconventional shaped marine structures for both high worka- 

bility and cost economy are largely demanded. The design of a new marine structure depends 

mainly on knowledge and experience gained from some complementary practice, i. e. model tests, 

theoretical analysis, field measurements and former design. construction and operation processes. 

To ensure safety, operability, economy and designed life duration of a marine structure to with- 

stand specific ocean environmental effects (i. e. waves, winds, currents, seabed, beach, ice, neigh- 

bouring offshore structures or service vessels, etc. ), theoretical estimates on motion responses and 

wave loads (which is called seakeeping analysis in naval architecture) play an increasingly impor- 

tant role in the overall design process. This trend is continuing as computer facilities and 

software packages with their increased capability become relatively less expensive to run 

whilst experimental facilities, model tests and labour costs appear more and more expensive and 

difficult to maintain. 

In general, the body motion and wave loading analysis of large marine structures deals with 

the predictions of operational performance of such structures at a site in a seaway or undergoing 

sea transportation. This involves, for instance, rigid body motions, detailed fluid pressure distri- 

butions, resultant local shearing forces and global bending moments, extreme sea loads and 

motions, slamming and deck wetness associated with relative motions and velocities, accelera- 

tions and subjective motions with respect to crew and machinery performance, resultant forces on 

attached structures (e. g. pipeline stress, taut tension and mooring forces), etc. All of these indivi- 

dual aspects require a method to estimate the wave-structure interaction. Therefore, development, 

improvement and application of numerical techniques for analysing such an interaction becomes 

one of the daily activities of naval and offshore hydrodynamicists and other related researchers or 
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engineers. 

There exist various marine and offshore structures designated for different tasks. In this 

thesis, however, attention is focused on interaction problems between waves and large offshore 

structures of complicated but realistic configurations possessing massive and full shaped floater(s) 

and/or multiple sub-members, e. g. a large mobile or fixed platform and a twin-hull vessel. The 

structures are either stationary, moving slowly or subject to current of low speed. Neither fast 

slender monohull ships and fixed framed platforms nor idealised geometries and topics of only 

pure mathematical interest will be cited. The waves and motions in this study are restricted, as is 

usually assumed in ordinary seakeeping analysis, to a range of low and intermediate frequencies. 

That is, it excludes high frequency problems, for example, those already covered by flexible 

mode oscillations in hydroelasticity (Bishop and Price 1979), earthquake induced responses (see 

OMAE 1986) and shock wave effects due to underwater explosions (Keil 1961). The sea is 

assumed of an infinite or intermediate depth to exclude the necessity of using a shallow water 

approximation. 

Ll. General Review 

LL1. Separation of force components 

Generally speaking, in the interaction phenomenon between water waves and a large body 

of complicated configuration, the wave slope may be steep, the body motion excursion can be 

large and there may unavoidably exist flow separation, vorticity or breaking waves. Therefore, 

from a pure theoretical point of view the Navier-Stokes equation (Stokes 1951) for an incompres- 

sible fluid with constant viscosity seems most appropriate. Just like a rough sea obstructing the 

voyage of a ship the mathematical free-surface condition constantly produces an obstacle to the 



development of a more sophisticated theory. The Navier-Stokes equation together with the com 

plicated free-surface and body boundary conditions (Wehaulen and Laitone 1960) are too diffiicull 

to solve at present, and to my knowledge there is no published work so far implementing a full 

application of this approach to an interaction problem of waves and a real offshore structure. By 

using supercomputers and a tremendous amount of computing time, the Navier-Stokes equation 

was very recently investigated by Miyata and Nishimura (1985). This work, however, adopts an 

inconsistent treatment by ignoring the viscosity in the boundary conditions on the free-surface 

and the body surface and the approach may have a long way to go before it becomes readily avail- 

able for engineering applications. 

In the past to advance technology engineers and scientists set up principles of simplification 

which are widely used even today. One of these, the principle of linear superposition remains a 

key element in present advancements. According to Lighthill (1979,1986), Kelvin was the first 

who provided the principle of motion separation, which enables an analysis of the flow around a 

body into a linear superposition of 

(a) the potential flow satisfying the boundary conditions; and 

(b) a residual vortex motion satisfying zero boundary conditions in infinity and the normal 

velocity on the body surface. 

Equivalent to an assumption of ignoring the cross-coupling terms between the potential flow 

and the vortex motion components, this principle provides one of the most basic foundations used 

in contemporary naval and offshore hydrodynamics, whether one realises it or not. Thus to obtain 

the total fluid loading FTI relating to the jth motion mode or direction, one needs only a careful 

evaluation of Fi, the potential flow force of (a) and a rough estimate of Fj, the drag force of (b), 

i. e. 
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FTi = Fl + Fj (1.1) 

The component potential flow (a) representing a full nonlinear potential flow problem (Longuet- 

Higgins and Cokelet 1976) is of great complexity and numerical techniques of practical use are 

still under development. To avoid such a direct solution, a perturbation procedure with respect to 

a small parameter E (chosen as the wave slope) is used to derive systematically equations in vari- 

ous orders of a (Peter and Stoker 1957, John 1949, Wehausen and Laitone 1960). The resultant 

first-order equations, involving a linearised free-surface condition, form the linear (or the first- 

order) diffraction theory formulation, whilst those in respect to order two construct the second- 

order diffraction problem (Ogilvie 1983) and so on. Consequently, the potential force in Equation 

(1.1) can be rewritten as a linear combination of potential force components in various order, that 

is, 

Fj=Fjl) +Fj2) + ... +Fj")+O(E"+! ) (1.2) 

Empirical formula for the drag force of (b) is available, known as the drag terms in the 

Morison equation due to the landmark contribution made by Morison, O'Brien, Johnson and 

Schaaf (1950). Alternatively, a more refined vortex method may be applied (see Stansby and 

Isaacson 1986). Thus, correct to the second-order, the total wave loading now takes the form 

FTJ = Fý1) +Fý2ý +F,, j (1.3) 

L1.2. Wave model 

It is common practice to derive a water wave model from a potential theory governed by the 

Laplace equation and relevantboundary conditions. Various wave theories have been established 

including the sinusoidal (or infinitesimal, or small amplitude) wave theory, the Stokes finite 

amplitude wave theory, nonlinear shallow water wave theories of cnoidal, hyperbolic and solitary 

waves, and so on (see the review by Sarpakaya and Isaacson 1981). Among these, the sinusoidal 

wave (Airy 1845) is most relevant to this context due to its suitability in linear analysis and for 
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linear superposition in a modem spectral analysis. 

Applying the statistical theory of noise in electronics by Rice (1944,1945), Longuet- 

Higgens (1952) first introduced a spectral representation of an irregular sea by the sum of a large 

number of regular, sinusoidal waves. Moreover, a three-dimensional or multi-directional wave 

spectrum can also be modelled (St. Denis and Pierson 1953, Price and Bishop 1974). In 

engineering practice the phenomenon of wave-current interaction has been poorly understood 

except for the resultant frequency of encounter (see §4.9.3 in Sarpakaya and Isaacson 1981) and 

recent research activities are beginning to account for the current effect on a wave spectrum. 

Related works have been reported by Tung and Huang (1976), Mathiesen (1984), Sakai, Hirosue 

and Iwagaki (1981), etc., and a thorough review is given by Peregrine and Jonsson (1983). 

Based on the spectral technique St. Denis and Pierson (1953) pioneered the probabilistic 

theory of ship motions which enables predictions of motions and wave loads on a marine struc- 

ture in a real seaway to be derived from data relating to individual regular waves (also see Price 

and Bishop 1974). Therefore, concentration can now be focused on analysing solutions in regular 

waves only. 

1.13. Force regime and validity of method 

The real flow-body interaction is a rather complicated phenomenon changeable from condi- 

tion to condition and any existing theoretical model may only be valid in a certain range of appli- 

cation. The validation of wave loading prediction methods have been discussed comprehensively 

by researchers with scientific backgrounds akin to ocean engineering, for example, Dean (1970), 

Hogben, Miller, Searle and Ward (1977) and Garrison (1978). 

For the problem of a fixed circular cylinder in waves let us denote 8 to represent the fluid 

particle orbit diameter, H the wave height, X the wave length and D the typical member diameter. 
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A rough guideline describing the force regime is given by Standing, Dacunha and Matten (1981) 

and this is summarised as follows: 

(i) First-order forces 

(1a) drag dominant when 8 /D > 1.0, using estimation method for inertia and drag forces, 

(lb) diffraction dominant when D/ X>0.2, using diffraction theory, 

(1c) inertia dominant when 8 /D < 1.0 and D/. % < 0.2, using either of the two methods as 

stated in (la) and (lb). 

(ii) Mean second-order forces 

(2a) drag dominant when (HID)3 > 60 (H/, %)2 , 

(2b) diffraction dominant when (D/X)3 > (1/60) (H/X), 

(2c) less clear when the first-order forces are inertia dominant as defined in (1c). 

These rough conclusions, shedding some light on the fluid-structure fundamental problem, are 

shown diagrammatically in Figure 1.1 where the limit of occurrence of breaking waves is also 

indicated. 

L1.4. First-order forces and motions 

Again, the principle of linear superposition enables the total wave potential solution to be 

determined by the linear summation of the incident wave, the diffraction wave due to the interfer- 

ence of the fixed body with the incident wave, the radiation wave with respect to each indepen- 

dent mode of the body oscillatory motions and a steady wave field if forward speed or current 

exists. 

6 



1.1.4a. Force and motion predictions 

(i) Methods for slender ships 

In the literature the Froude-Krylov theory was the first available linear theory to predict 

wave forces and the excited motions of a slender ship. This was developed by Froude, W. (1861), 

Froude, R. E. (1896) and Krylov (1896a, b). Their hypothesis assumed that the existence of the 

body does not change the incident wave field if the beam and draft of the body are both small 

compared with the wave length and this resulted in the so-called Froude-Krylov force due to the 

incident wave only. Today this simplified approach receives little research attention except its 

application by practical naval architects and offshore engineers for simple structures. It was very 

recently that Wu and Price (1986a, 1989) applied, and then proved, a similar idea to predict all 

the three horizontal modes of motion of either a long but full-shaped body or a shallow draft 

structure, other than the more restrictive slender ship forms (see W. 

The first strip theory pioneered by Korvin-Kroukovsky (1955), treating a whole ship as a 

number of two-dimensional strips and taking account of the diffraction effect by an artificial rela- 

tive velocity concept, is one of the milestones in the development of modem seakeeping analysis 

though, nowadays, it has almost been replaced by more rigorous and more powerful new strip 

theories. Of these new strip methods, the STF method of Salvesen, Tuck and Faltinsen (1970) for 

slender ships, includes predictions of five rigid body motions with the exception of the surge; 

deals with the forward speed effect by the formulae of Ogilvie and Tuck (1969); satisfies the sym- 

metric relations of the cross-coupling hydrodynamic coefficients proved by Timman and Newman 

(1962) and obtains the diffraction forces by the Haskind relationship (Newman 1965) in terms of 

radiation potential solutions from the close-fit method of Frank (1967). In spite of its critical high 

frequency assumption, theoretical predictions are generally in good agreement with model test 

data for slender ships. This technique has been extended by Beck and Troesch (1980) to exclude 
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the use of the Haskind relationship, by Lee (1976) to study SWATH ships (small waterplane area 

twin hull ships), by Wu and Price (1986b) for possible application to a drydock with zero forward 

speed in a semi-submerged condition, and so on. The lack of surge motion prediction in the 

method may be complemented by the Froude-Krylov hypothesis as used by Grim (1963) and 

proved by Wu and Price (1989). 

In developing a strip theory it also necessitates the adoption of two geometric assumptions, 

i. e. the infinite length and negligible ends effect, but as pointed out by Ogilvie (1974) the ship 

ends cause many difficulties and this situation has not been thoroughly studied. It is particularly 

the case when offshore structures are considered, since, in most cases these have blunt ends. 

Furthermore, Ursell (1968) concluded that an infinitely long cylinder is not a satisfactory approxi- 

mation to a ship of finite length in head seas. In a motion analysis, the strip theory may provide 

acceptable predictions for ships with low length/beam ratios down to I. JB - 2.5 (p. 404,1TTC 

1987). However, as far as the shearing forces and bending moments are concerned the STF strip 

method overestimates these loads for bodies with full-shaped ends because of the cumulative 

error contribution of sectional forces by the Haskind relationship (Ogilvie 1974). From a design 

point of view perhaps this does not matter since the predicted data are on the safe side, i. e. an 

over-estimate. 

In addition, the STF strip method also assumes high frequencies and ignores, in the formu- 

lation, the free-surface integral due to the forward speed These may lead to errors in the motion 

predictions for high speed vessels (e. g. the reported erroneous resonant have response for a con- 

tainer ship by O'Dea and Jones, 1983). Nevertheless, new methods for ship motion analysis 

based on more sophisticated mathematical formulations do not usually seem to give much better 

results than the strip theory (Seakeeping Committee report, ITTC 1987) and the STF strip method 

remains the most popular used in the seakeeping analysis of ships. 
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A competitor to the STF approach is the unified slender body theory (Newman and Scla- 

vounos 1980, Sclavounos 1984), which is exclusive of the high frequency limitation and devoid 

of the head sea singularity inherent in the diffraction problem of a strip theory (Ogilvie 1974). It 

seems that the unified slender body theory gives more accurate force estimates but no better 

motion predictions. Borresen and Faltinsen (1984) extended this approach to shallow water and 

found little improvement over the strip method. Another interesting extension of this slender 

body theory was made by Breit and Sclavounos (1986) to a twin-hull body. 

(ii) Methods for vertically-walled bodies 

Large circular cylinders are extensively used in offshore engineering, for example, offshore 

piles and columns of a platform. An analytic close form solution of first-order forces and 

moments for a free-surface piercing circular cylinder has been derived by Havelock (1940a) for 

deep water, by Omer and Hull (1949) for shallow water and by MacCamy and Fuchs (1954) in 

general cases. If a large spacing assumption (Milne-Thomson 1968, Okusu 1974) is further 

applied, wave forces for an array of multiple circular cylinders can be approximately formulated 

(McIver and Evans 1984) and exact expressions for these forces on such an array may be found 

by the method of Kagemoto and Yue (1986). 

For a vertical body of arbitrary waterplane geometry, Hwang and Tuck (1970) presented a 

two-dimensional method to solve the diffraction force in the horizontal plane, which may be 

referred to as the two-dimensional horizontal plane method analogous to the two-dimensional 

vertical plane method in a strip theory. Furthermore, this approach is also applicable to a numeri- 

cal solution of multiple vertical bodies of arbitrary waterline geometry (Isaacson 1978). 

(iii) Shallow draft theories 
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Shallow draft bodies are very popular in offshore operations, for instance, barges (p. 433- 

435, MC 1987), ocean production units, crane barges, and platforms. The shallow draft feature 

makes it possible to derive an effective and efficient shallow draft theory. Unfortunately, theoreti- 

cal developments have lagged behind practical needs. The original shallow draft theory presented 

by MacCamy (1961) is a two-dimensional version and Kim (1963) extended it to three- 

dimensional cases. The body is idealised by a simple plate and this greatly reduces the comput- 

ing time requirement. This original version, however, is unable to predict the horizontal motions 

of surge, sway and yaw and has no draft correction to take care of the effect of finite draft of a real 

shallow draft structure. Therefore, according to Odabasi and Hearn (1978), the application of this 

method is extremely limited and it has not been used for seakeeping analysis of displacement type 

vessels. 

Very recently, a new shallow draft theory was proposed by Wu and Price (19860), which 

includes a draft correction and is able to predict all the six rigid body motions. Full details of the 

method are given in §6. 

(iv) Three-dimensional approaches 

Three-dimensional diffraction analysis of motions and wave loads of realistic marine struc- 

tures became available only when modern computers glowed full solutions of the three- 

dimensional hydrodynamic coefficients and wave exciting forces to be derived. In the field of 

numerical hydrodynamics, the panel collocation technique of Hess and Smith (1964) provided a 

major breakthrough by approximating the continuous body surface with a finite number of discre- 

tised flat panel element and replacing the governing equation by a set of simultaneous linear equa- 

tions for each discrete panel which are readily solvable by matrix manipulation. Further to the 

constant panel technique, high order panel methods were subsequently developed (Henn 1973, 

1980). 

10 



Various three-dimensional diffraction computer codes have been developed in the 1970s for 

structures with zero forward speed, see Garrison, Rao and Snider (1970), Faltinsen and Michelsen 

(1974), Hogben and Standing (1974), Ootmerssen (1976,1979), Garrison (1978), Inglis and Price 

(1979,1980). Alongside these singularity approaches, the finite element technique based 

methods (Zienkiewicz, Bettess and Kelly 1978) offer an alternative, especially in shallow water of 

varying seabed topography. Furthermore, hybrid approaches combining a close domain finite ele- 

ment representation and an outer region boundary integral idealisation have been developed (Yue, 

Chen and Mei 1978, Euvrard, Jami, Lenoir and Martin 1981, Eatock Taylor and Zietsman 1982). 

In this thesis, however, focus is limited to the singularity based methods only. 

In the case of slender ships with forward speed, a three-dimensional motion theory is 

described by Chang (1977) whose numerical data, however, showed no remarkable improvement 

over the simple strip theory. The most comprehensive numerical investigation so far is found in 

the work of Inglis and Price (1982a, b) who also suggest the application of simplified formulae to 

tackle the forward speed effect similar to those in the strip theories. Such a simplification is 

further extended by Beukelman, Huijsmans and Keuning (1984) for a ship in shallow water. 

Closely related to the prediction of the second-order wave drift forces in a current, recently, two 

low speed approximations describing the behaviour of a full body in a current are proposed 

respectively by Huijsmans and Hermans (1985) and Zhao and Faltinsen (1988). Despite the 

existence of a large number of three-dimensional computational packages, so far, no theoretical 

complete numerical procedure for a full-shaped body with forward speed or/and under current is 

available. 

1.1.4b. Wave potential solutions 

To supply sufficient information to the motion and wave loads analysis methods as stated in 

1.1.4x., the first-order boundary value problem governing the wave-structure interaction needs to 
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be solved. Analytical solutions can be derived for some simple geometries and these were of 

great interest in early years when modem computer facilities were not available. Nowadays, these 

solutions are of limited application when analysing realistic structures other than to provide use- 

ful guidelines to check updated numerical procedures or programs. However, numerical compu- 

tation experience indicates that most of the existing computational packages produce satisfactory 

data for these simple and idealised bodies, but give results showing large discrepancies for realis- 

tic structures of complicated configuration (Eatock Taylor and Jefferys 1986). 

Numerical solution methods fall mainly into three categories. Namely, the singularity 

approach (or the Green function integral equation method), the finite element technique and a 

combination method as mentioned in 1.1.4a. The first singularity technique developed is the 

two-dimensional multipole expansion method of Ursell (1949a, b) originally used to analyse the 

hydrodynamic behaviour of a circular cylinder in deep water. This was extended by Tasai (1959) 

and Porter (1960) incorporating a conformal mapping process to deal with more realistic ship sec- 

tions and further extended by Wang and Wahab (1971) for the heave motion of twin circular 

cylinders. Such a solution technique is still adopted in the strip method program SCORES (Raff 

1972). Accuracy of this approach largely relies upon the precision of mapping of a given cross- 

section into a perfect circle and difficulties arise when tackling complicated sectional forms (Tak- 

agi, Furukawa and Takagi 1983). 

The current singularity distribution method can be expressed in three alternative forms, i. e. 

the source, the dipole and a mixed distribution (Yeung 1982). The dipole technique if in a double 

derivative form may be difficult to evaluate unless proper approximations are introduced (Colton 

and Kress 1983). The boundary integral equation are expressible in an exterior, surface or interior 

integral formulation correspondingly to the chosen field point located outside , on or inside the 

body surface. The surface and exterior integral equations are commonly used and a recent investi- 
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gation carried out by Wu (1987) suggests the applicability of the interior formulation. 

It was Frank (1967) who provided the first source method program for the potential solution 

of arbitrary two-dimensional sections and known subsequently as the Frank's close-fit method. 

This was incorporated into the STF strip theory program (Salvesen, Tuck and Faltinsen 1970) for 

general motion and wave loading analysis of ships. In marine hydrodynamics the singularity dis- 

tribution technique seems to be the most favourable solution method adopted. Since the 1970s, 

after the pioneering work of Hess and Smith (1964), research has focused on finding an efficient 

numerical formula for the three-dimensional Green function in order to reduce computational 

efforts. Various contributions have been made to the zero forward speed case by Kim (1965, 

1966), Monacella (1966), Hogben and Standing (1974), Faltinsen and Michelsen (1974), Hearn 

(1977), Noblesse (1982), Endo (1983), Pidcock (1985), Newman (1985), Telste and Noblesse 

(1986). In the cases of an oscillating body with forward speed or in current, the Green function 

representing a pulsating, translating source (Wehausen and Laitone 1961, Chang 1977) is very 

complicated. Several alternative forms of numerical evaluation have been investigated, e. g. by 

Inglis and Price (1980) and Guevel and Bougis (1982). An urgent task remains to innovate a fast 

algorithm to evaluate this Green function. 

For a generalisation to a full-shaped body but with a limitation of lower speeds, a fast algo- 

rithm was proposed by Huijsmans and Hermans (1985) and Huijsmans (1986). Their method is 

based on a non-rigorous expansion form of the forward speed Green function and the integral 

equation with respect to a small parameter, speed U, and the theory is correct to the order of 

O(U). In the solution the effect from the steady wave field (Eggers 1981, Brandsma and Hermans 

1985) has been taken care of. Under a similar restriction, Zhao and Faltinsen (1988) use a more 

consistent model, remaining correct to order O(U), by matching a near field simple source distri- 

bution and far field multipoles of a simplified pulsating, translating source (Grekas 1981). 
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The development of a complete motion and wave loading analysis method, however, solely 

depends upon the availability of a complete solution technique for a full three-dimensional body 

with speed, i. e. neither the limitation of a slender body nor the restriction to low speeds. Such a 

theory and solution can be optimistically expected to emerge in the very near future. 

More comprehensive reviews of the recent development of the first-order diffraction 

theories can be found by Ogilvie and Beck (1973), Odabasi and Hearn (1978), Newman (1983), 

the Seakeeping Committee Report of ITTC (1987) for the general motion and sea loading prob- 

lems; Mei (1978) and Yeung (1982) for the numerical techniques available; and Sarpkaya and 

Isaacson (1981), Hogben, Miller, Searle and Ward (1977), Standing (1981) and the Ocean 

Engineering Committee Report of ITTC (1987) for more offshore related structures. 

U. S. Second-order forces and motions 

The second-order solution leads to the mean drift forces, forces due to frequency sum and 

forces due to frequency difference (Pinkster 1979, Standing and Dacunha 1982, Ogilvie 1983). 

As defined by the perturbation process corresponding to the incident wave amplitude (Wehausen 

and Laitone 1960) these second-order wave forces are an order smaller than the first-order ones 

and serve to complement them. However, these forces play very important roles in offshore prac- 

tice, for example, the slowly varying drift forces due to frequency difference of waves cause low 

frequency resonances of a moored or guyed offshore structure in surge, sway and yaw or a small 

waterplane area vessel in heave, roll and pitch, whilst the rapidly varying forces due to frequency 

sum may excite high frequency resonances of a TLP in heave, roll and pitch. 

The second-order forces are attributed to two kinds of contributions, namely, 

(i) products of first-order quantities from the first-order potential and motion solutions 

(*1.1.4), and 
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(ii) the second-order potential solutions. 

1.1.5a. Mean drift forces 

In a time average, components (i) give rise to the mean drift forces whilst component (ii) 

gives simple set-down forces in the vertical plane but no contribution in the horizontal plane. To 

this problem Maruo (1960) and Newman (1967) have made important contributions. The mean 

wave drift forces and moment can be estimated by either a near field approach (Finkster 1979) or 

a far field one as described by Newman (1967) for the deep water case and by Faltinsen and 

Michelsen (1974) for shallow water. As far as large offshore platforms are concerned both of the 

these approaches are computing time consuming. Since these forces are closely related to the 

design of the mooring or dynamic positioning systems applied to offshore structures, an engineer- 

ing estimation method rather than complicated mathematical proof is urgently required. This pro- 

moted a joint project undertaken by several Dutch offshore companies and research organisations 

to develop a practical prediction technique for the calculation of the mean drift forces on semi- 

submersibles and some preliminary results were reported by Angwin (1986). 

1.1.5b. Sum frequency forces 

Superharmonic resonances of TLPs at frequencies double or triple the frequency of the 

incident wave have been confirmed in model tests (Yoneya and Yoshita 1983, Pinkster and Boom 

1983). In regular waves, the two-dimensional double frequency problem has been studies by Lee 

(1968), Potash (1971), Papanikolau (1984) for radiation problems, and by Soding (1976), Kyo- 

zuka (1982), Miao and Liu (1986) for diffraction problems. In solving the second-order 

diffraction potential, besides the treatment of the inhomogeneous flee-surface condition, 

difficulties exist to find a proper radiation condition. For the three-dimensional second-order 

diffraction potential solution, Molin (1979,1986) presented a more complete analysis and 
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proposed a likely form of the radiation condition. For a free-surface piercing circular cylinder, 

recent studies are reported by Qiu and Wang (1986), Eatock Taylor and Hung (1987) and Liu 

(1988). In regular waves, sum frequency wave forces have been investigated by Loken (1986) 

and Hertjard and Nielsen (1986). 

1.1.5c. Difference frequency forces 

In irregular waves, both components (i) and (ii) (p. 1 1) contribute to the slowly varying drift 

forces (also to the sum frequency forces) inducing slow drift motions of a moored structure. This 

is of major concern in offshore operations and a large number of studies have been reported, e. g. 

by Hau and Blenkarn (1970), Remery and Hermans (1971), Newman (1974), Ootmerssen (1976), 

Faltinsen and Loken (1978,1979) and Standing and Dacunha (1982). Pinkster (1979) conducted 

a comprehensive investigation on slow drift forces and motions of three-dimensional bodies and 

presented related formulations as well as experimental verifications. A thorough review can be 

found in Standing, Dacunha and Matten (1981). 

A full evaluation of the slow drift force is a troublesome task because it requires the 

second-order potential solution of which general solution methods are still under development, as 

discussed in 1.1.5b. To overcome this difficulty, Lighthill (1979) derived a very useful formula 

expressing the total second-order force in terms of first-order quantities by making use of Green's 

theorem and Haskind reciprocal relations. Lighthill's formula involves an integral over the entire 

free-surface and usually some approximation is required for its evaluation. An exact application 

of this approach was achieved by Matsui (1986) who also proposed an approximation to ignore 

the free-surface integral. A comparison of his results with various approximate methods of 

Bowers (1976), Newman (1974) and Pinkster (1979) seems encouraging, at least for the example 

of an articulated cylinder. 
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It is particularly worthwhile mentioning Newman's approximation (1974). This much 

simplified approach needs only the calculation of the mean drift forces in regular waves, requires 

much less computing time and results in predictions of slow drift force and motion of acceptable 

accuracy (Nass 1986) in practical problems. Therefore, this simplified method is widely used in 

offshore engineering, especially, when today's numerical techniques and experimental measure- 

ments for the slow drift forces show some degree of uncertainty. 

When slow drift resonant motion occurs, fluid damping (including the contributions of wave 

damping, frictional damping and viscous damping due to drag) plays a significant role. But at 

low frequencies the first-order wave damping is nearly zero, the frictional term is small and the 

drag force proportional to the square of the frequency is small, too. Thus, a damping term 

significant to the slow drift motion was identified as the second-order low frequency wave damp- 

ing (Wickers and Sluij 1979, Wickers 1982). This damping value was formulated by Wickers and 

Huijsmans (1984) exclusive of current and by Wickers (1986) inclusive of current as the deriva- 

tive of the mean horizontal drift force with respect to the moving speed. This formula was also 

applied by Hearn, Tong and Lau (1978), but confusingly they showed that a much more sophisti- 

cated three-dimensional forward speed approach produced much poorer results. 

The conventional slow drift motion theories as described above contain theoretical 

weaknesses. First of all, the theory is inconsistent since the large excursion of the slow motion is 

contradictory to the small motion amplitudes assumption necessary in the perturbation procedure 

in order to decompose the first- and the second-order quantities. Secondly, the additionally intro- 

duced low frequency damping contribution may be an indication of the incompleteness of the 

current slow drift motion analysis. A possible consistent theory has been studied by Triantafyl- 

lou (1982) who suggests that the slow motion potential is of first-order and satisfies linear boun- 

dary conditions. 
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1.1.6. Full nonlinear potential analysis 

The powerful small amplitude perturbation method may be invalid when dealing with steep 

waves, in particular, when breaking waves appear. These may necessitate a full nonlinear poten- 

tial flow analysis. A finite difference time stepping procedure coupled with the boundary element 

method solution is currently under development for time domain analysis of a steep wave-large 

body interaction. This technique was first adopted by Longuet-Higgins and Cokelet (1976), fol- 

lowed by Faltinsen (1977) in two-dimensional cases and by Isaacson (1982) in three-dimensional 

problems. Lin, Newman and Yue (1984) paid particular emphasis on handling two principal 

difficulties. One is the singular flow at the intersection of the body and the free-surface and the 

other, to find an appropriate radiation condition at infinity. Although it seems to be a much 

simpler approach compared to Miyata and Nishimura's nonlinear viscous flow model (1985) the 

technique is still so complicated that there is no reported engineering application in offshore 

structures other than to a simple circular cylinder. 

1.1.7. Drag forces 

The separated flow component (b) (§1.1.1) of a residual vortex motion around an arbitrary 

body should satisfy the free-surface and the oscillatory body boundary condition (or transformed 

to a reverse problem of a fixed body in an oscillatory flow). Solution of this problem is very 

difficult to obtain and considerable efforts have been made to develop a numerical model of vor- 

tex flow and drag due to eddy making. Good progress has been achieved mainly in simple two- 

dimensional cases particularly in the vortex flow around circular cylinders (Leonard 1980, Sar- 

pakaya and Isaacson 1981, the Ocean Engineering Committee Report of ITTC 1987). For two- 

dimensional ship sections Ikeda and Tanaka (1983) proposed a discrete vortex method which is 

also applied by Muller (1985) for cross-sections with bilge keel and by Downie, Bearman and 
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Graham (1984) for rectangular barge sections. Alternatively Aarsenes, Faltinsen and Pettersen 

(1985) present a vortex tracking method for ship sections. 

Where the drag force due to viscosity is concerned, little else can be offered to practical 

engineers and designers beyond the routine estimation tools obtained from Morison equation. 

Morison, O'Brien, Johnson and Schaafs formula (1950) is based on experimental measurements 

of a circular cylinder in an oscillatory flow and separates the total force into two independent 

components, i. e. an inertia and a drag force. The inertia coefficient CM and drag coefficient CD are 

dependent on both the Reynolds number (Re) and the Keulegan-Carpenter number (Kc = U,,, T /D 

with U,,, denoting the amplitude of the velocity, T, the flow period and D, the diameter) but are 

always set down as constant values in design applications as suggested by classification societies 

for simple geometries (e. g. Bureau Veritas 1975). 

Since the members of most semi-submersibles fall into the inertia or drag force dominant 

regime, the Morison equation method is theoretically reasonable to predict motion responses and 

wave loads of semi-submersibles (Hooft 1971) and the taut tension and motions of TLPs (Yoneya 

and Yoshita 1983). The accuracy of this simple technique is further confirmed in an international 

investigation by Takagi et al (1985). For large offshore structures and unconventional vessels 

with massive underwater floaters, the wave diffraction effect is of significance taking care of the 

interaction between multiple large sub-members but the Morison drag forces are also of certain 

importance, especially, when resonant motions occur (Lee 1976, Wu and Price 1986c). 

In conclusion, the linear combination of more accurately described potential forces derived 

from a sophisticated diffraction analysis (*1.1.4-5) and rough estimates of drag forces from 

Morison equation (§1.1.7) with appropriate CD values corresponding to structural geometry may 

be appropriate practically when describing the dynamic behaviour of large offshore structures and 

unconventional vessels, especially in our present stage of technological development, as 



discussed by Lighthill (1979,1986), see §1.1.1. 

L2. Eidsting Problems 

As can be seen from the brief review describing the motion and wave loading analysis in 

§1.1, in the last forty years, great efforts have been spent and good progress achieved in deriving 

numerical solutions of problems mathematically formulated in the 1940s or so (e. g. Kochin 1939, 

Havelock 1940b, John 1950, etc) and also in the practical implementation of these numerical tech- 

niques to solve problems arising in naval and offshore practice. However, much work remains to 

be done. 

1.2.1. Uncertainty in numerical investigations 

It is not uncommon to find in the naval literature descriptions of numerical methods relating 

to the evaluation of hydrodynamic coefficients, wave loads and motion responses supplemented 

by mathematical derivations displaying the rigour of the methods as well as examples illustrating 

the validity and advantage of the approach proposed. It is quite often that bodies of simple or 

analytically defined geometries are selected for example calculations in order to verify a theory 

and very few presentations include comments on the troubles of implementation, practicality of 

the method to more complicated structures, deviation of solutions, limitations and even failure of 

the methods. In recent years such problems have attracted great attention and both individual and 

organised investigations have been reported. 

In computing hydrodynamic coefficients Berhault (1978) found big differences among 

different numerical techniques used. From the 1TTC organised investigation into a semi- 

submersible, Takagi et al (1985) reported that results provided by individual investigators show 
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(i) similar results for surge and sway motions and these are in good agreement with experimental 

data (reasoning may be found in §5), 

(ii) great scatter around the heave resonant frequency; in particular, data derived from a three- 

dimensional diffraction theory are not necessarily better than the simplest Morison equation, 

(iii) poor agreement of roll and pitch response in long wave periods, especially, around the natural 

periods. 

Moreover, Eatock Taylor and Jefferys (1986) summarised the ISSC organised studies on a 

TLP and revealed severe discrepancies in the data generated by various methods and programs. It 

is also interesting to observe that the predicted surge, sway and yaw responses are again in rea- 

sonable correlation despite serious variations in relative added mass data, e. g. the ratio of the larg- 

est and the smallest values of the surge added mass surprisingly exceeds 1.7. 

Besides the objective complexity of the flow phenomenon, avoidable human error and una- 

voidable factors in numerical treatment and in computational programming, all these comparative 

studies bear evidence of uncertainties in our theoretical approaches and imply that our so-called 

exact solutions or sophisticated theories are merely approximations to the real physical 

phenomenon, similar to simplified techniques, though at different levels of sophistication. Large 

offshore structures and unconventional vessels are physical objects of great complexity and the 

flow regime associated with the body-structure interaction of interest seems partially or totally 

beyond the diffraction dominated regime. Therefore, the argument of Paulling (1981) stands that 

it is unlikely that a single unified computational procedure can be developed to satisfac- 

torily treat all aspects of the response. In stead, a menu of programmes must be assembled to 

treat the various members and types of forces. 
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11.2. Uncertainties over theoretical approach 

The following discussions give prominence to some areas which appear to hide weaknesses 

in our theories. The list is not complete but the topics discussed are of special concern and 

interest. 

1.2.2a. Fluid damping 

To determine the resonant motion response a more precise theoretical prediction or estima- 

tion of the fluid damping is essential. This consists of various contributions (see p. 492-495, 

1TTC Report 1987) of which the wave damping due to radiation waves and the drag damping due 

to vorticity may usually be two major components. For a lightly damped mode like the roll 

motion of a ship and motion resonances at low frequency in offshore structures, fluid damping 

due to drag (*1.1.7) is considerably important but more accurate techniques remain under 

development. Furthermore, the resonant motion amplitude is large and the force arising through 

the coupling between the potential flow (a) and vortex motion (b) (§1.1.1) is likely to have 

significant effect, too. There is no available theoretical method to evaluate this contribution 

except to solve directly the extremely complicated Navier-Stokes equation. 

Because of theoretical difficulties, sometimes, measured damping coefficients are used to 

gain the required accuracy in the resonant motion predictions, for example, the roll damping of 

ships (Mathiesen 1988), a fast container ship (O'Dea and Jones 1983) and a small waterplane area 

vessel (Smith 1983). 

1.2.2b. Theory of uniqueness 

Before commencing the application of the wave-body interaction theories (*1.1), a primary 

pre requisite is the establishment of a uniqueness proof. For a linearised three-dimensional 

wave-body interaction problem in a finite water depth John (1950) proved uniqueness when 
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applying the Green function integral equation to any floating body embodied by a vertical bound 

through its waterline. In the two-dimensional deep water case Ursell (1950) proved uniqueness 

for a submerged circular cylinder. Recently, Simon and Ursell (1984) tried to find the uniqueness 

for a two-dimensional floating body in deep water confined by a conical bound through its water- 

line points up to an angle 45° away from the vertical. Regrettably, no generalisation of the 

uniqueness proof has so far been derived. Of course, the geometries of large offshore structures 

and unconventional vessels are outside the bounds of these existing uniqueness proofs and there- 

fore, we are in fact applying linear diffraction theories by Green function integral methods with 

the presumed existence of uniqueness proof. 

1.1.2c. Mathematical problem in singularity methods 

(i) Irregular frequency problem 

The singularity methods are the most popular in use to solve linear wave-body interaction 

problems but these techniques suffer from mathematical failure at discrete irregular frequencies 

(John 1950). These irregular frequencies distributed in the high frequency range cause errone- 

ous results for predicted data at frequencies, especially in a second-order analysis and in a hydroe- 

lastic modelling. 

Great attention has been paid to eliminate this difficulty and various solutions are proposed 

(see §4). Of these Ursell's two-dimensional multipole potential solution is of significance (1981). 

In principle, Ursell's solution is applicable to three-dimensional cases and an alternative form is 

proposed in §4 . Wu and Price (19864 1987) proposed an alternative Green function form which 

was shown capable of removing the irregular frequencies from arbitrary mono-, twin- and multi- 

hulled sections. 
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(ii) Intersecting angle problem 

The second problem arises at the points of intersection when a concaved body intersects the 

free-surface at a small angle since there exist a logarithmic singularity (Haraguchi and Ohmatsu 

1983). This singularity may be eliminated by suitable practical modifications. For this Haragu- 

chi and Ohmatsu (1983) adopted additional elements on the free-surface connected with the inter- 

secting points and found the treatment effective for a circular section at various draft values. 

From the physical point of view, it is inappropriate to apply a linear wave theory to a very 

shallow layer of flow above the body wall slope because the problem appears to be highly non- 

linear and thus verification may rely on comparisons with experimental data only. After a com- 

parative study with model tests Takagi, Kurukawa and Takagi (1983) revealed that Haraguchi's 

computational results considerably differ from the experimental measurements, and a modified 

Green function technique incorporating a slightly changed geometry by substituting the intersect- 

ing part with a small arc may give more satisfactory answers. 

(iii) Ill-conditioning problem 

In solving the Green function integral equation additional ill-conditioning frequencies have 

been found apart from the two identified groups, i. e. the resonant frequencies due to the exterior 

water waves and the irregular frequencies related to the interior problem. The reasoning is not 

clear so far and it is most likely that there exists a third kind of ill-conditioning frequency of 

theoretical and numerical interest. 

1.2.3. Numerkal convergence and error estimate 

In the application of a singularity method in a discretised integral equation form, the global 

solution errors may come from the following major sources: 
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(i) error due to panel discretisation, 

(ii) error due to evaluation of the kernel function integrals, and 

(iii) error due to solution of the matrix equation, 

besides the human errors arising from numerical manipulation and computer programming. 

In numerical mathematics, convergence problems and asymptotic error estimates for the 

Fredholm integral equation of the second kind have been developed, for instance, by Wendland 

(1983), Arnold and Wendland (1983) and Delves and Walsh (1974). Although numerous contri- 

butions applying the singularity techniques are published every year, parallel approaches have not 

been established in the naval field. Perhaps this is of secondary importance since there is no 

uniqueness proof as well. 

For a smoothly-shaped body with no sharp angle at the intersection with the free-surface or 

a body in deep submergence a uniqueness proof is available and coincidently, rapid numerical 

convergence can readily be achieved and good agreement is always shown by the various 

equivalent computer codes. On the contrary, no uniqueness theory exists to cover complicated 

geometries, such as a TLP and a semi-submersible, and correspondingly no good correlation can 

be observed in the data resulting from the different computer programs. 

Apart from a smoothly shaped body or a ship form it looks unlikely that there exists a gen- 

eral formula to guide panel discretisation in order to achieve rapid convergence and to ensure 

small error in the solution. It should be emphasised that a body may possess multiple geometric 

singularities, e. g. at corners and sharp joints, where the potential solutions tend to infinity. Panel 

arrangement around these region may have significant influences and solutions by very fine 

meshes do not necessarily create improvements. Contrarily, distribution of larger panels neigh- 

bouring these singular lines or a simple replacement of these by small arcs are likely to result in 



reasonable answers. 

U. Research Activities and Design Needs 

In naval and offshore hydrodynamics research, theoretical developments maybe fall into 

three categories: 

(i) sophisticated and complicated theories of more academic interest but with less practical 

applications, 

(ii) simple engineering methods seemingly less scientific but readily accessible to practical 

engineers and designers, and 

(iii) various degrees of simplified approaches having not only a theoretical basis but also of 

practical merit; this is achieved either by modifying complicated theories and/or from initia- 

tive development or experimental observation. 

All these complementary approaches play their respective roles in promoting marine tech- 

nology. 

Investigations into rigorous theoretical models usually aim to gain better understanding of a 

phenomenon, to find new problems of interest, to check the relative influence or range of impor- 

tance of factors neglected in a simpler method and to serve practical engineers with theoretical 

back-up. But a complicated approach is not necessarily more accurate than a simplified one 

because of the impossibility to perfectly match the realistic physical phenomenon, unimportance 

of ignored factors or the mutual error cancellation occurring in a simplified technique. As can be 

seen from the state of the art of the existing technology (§1.1), the contributions likely to be 

regarded as milestones or breakthroughs are unexceptionally simple, practical but creative. Even- 

tually, for practical applications, the complexity of the theory, the accuracy of results and the cost 

26 



of use should be appropriate to its degree of importance or rating in a total design process. In 

other words, the ultimate version of our theoretical development must suit practical needs. To 

bridge the more sophisticated and academic theories and the more practicable and affordable tech- 

niques much demanded by industries, the key is simplification. 

An ingenious concept of simplification may greatly reduce the time and effort from a 

research development to engineering applications as shown in Figure 1.2. If theoreticians would 

pay greater attention to tackle the problems of primary importance and with more physical sense, 

and engineering researchers could devote more efforts to creative work towards mathematical 

simplicity, numerical accuracy and high practicality, the difficulties existing in our field may be 

solved much faster. 

1.4. Outline of the Thesis 

In Chapter 2, the general potential solution problem for a marine structure advancing in 

waves is described and general formulations of the first-order motions and wave forces resulting 

from the linearised unsteady potential solutions are described. 

In Chapter 3, a general form of the Green function representing a pulsating, translating 

source relating to the linearised general problem is given and reduced versions for various special 

cases are deduced systematically. By a transformation formula relevant two-dimensional forms 

can readily be derived. 

In Chapter 4, a brief description of the integral equations corresponding to a singularity dis- 

tribution is presented and a detailed discussion is focused on the Green function integral equation 

representing a mixed source-dipole distribution method. The difficulties due to irregular frequen- 

cies in applying the integral equations are discussed and two remedy techniques proposed. One is 

to predict the irregular frequencies more accurately and then to avoid numerical computations 
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around these frequency values. The other, to use modified Green functions free of irregular fre- 

quencies. Although a Green function integral equation has three forms depending whether the 

field point lies exterior to, on or interior to the body's wetted surface, the interior formulation has 

never been used to produce velocity potential solution for marine structures. In the final part of 

this Chapter, a numerical method and its theoretical basis are described, applying the interior 

integral equation effectively. 

In Chapter 5, new results describing the mutual cancellation effect between the diffraction 

and radiation forces are reported. By an order analysis it is proved that all the three horizontal 

motions of a structure can be reasonably predicted by simply ignoring both the diffraction and 

radiation forces and leaving only the Froude-Krylov force as long as the body is elongated but 

with full sectional shape, and/or is of shallow draft feature. 

Shallow draft structures are further investigated in Chapter 6. In terms of a perturbation pro- 

cedure, new shallow draft theory formulations are derived. For the three horizontal motion 

modes, this analysis confirms the conclusion drawn in Chapter 5. As to the heave, roll and pitch 

modes, the new formulae retain the simplicity of the flat plate theory but enable a finite draft 

correction to be included. 

With the aim of reducing the matrix size involved in the numerical solution of a three- 

dimensional hydrodynamic analysis, in Chapter 7a hybrid three-dimensional strip method is pro- 

posed. Its feasibility in practical applications is further investigated by a series of studies involv- 

ing three rectangular cylinders of different length to beam ratio. 

In Chapter 8, the predictions of second-order mean drift forces are studied. At first, a 

numerical procedure based on the near field formulations of the mean drift forces and the horizon- 

tal plane method for the diffraction potential solution is described to determine exact theoretical 

values of the horizontal mean drift forces on multiple vertical cylinders. Then, it is further applied 
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to approximate those acting on offshore structures comprising of large multi-columns or -struts. 

Finally, examples are given for a semi-submersible and a tension leg platform. 

Chapter 9 includes descriptions of two computer codes based on comprehensive application 

of the motion theories developed. The first method combines the three-dimensional diffraction 

theory and an estimation of the drag force, which is appropriate to analyse large offshore struc- 

tures of more complicated configuration. The other, the two-dimensional strip formulation 

together with an estimation of the drag and lift forces, which is suitable to predict the seakeeping 

performance of multi-hulled vessels, such as SWATH ships. Example studies of a semi- 

submersible and a tension leg platform demonstrate how theoretical development can be success- 

fully applied to the process of research and development or design of more complicated large 

offshore structures and special vessels. 
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2. GENERAL PROBLEM 

As discussed in §1.1.1, to avoid any unnecessary complexity in solving the Navier-Stokes 

equation with the imposed rather complicated boundary conditions, Kelvin's principle of linear 

superposition of a potential flow and a vortex motion component can be used (Lighthill 1979, 

1986). It requires only two independent analyses, i. e. a more sophisticated potential flow solution 

and a crude drag force estimate. Therefore, the major focus is now concentrated on the potential 

theory analysis of wave-body interaction problems. 

2.1. The General Potential Solution Problem 

The water flow is assumed incompressible, invicid and irrotational and the marine structure 

is of arbitrary geometry, floating in the free-surface. An uniqueness solution of the flow motion is 

also assumed since there exist no general uniqueness theorem as reviewed briefly in §1.2.2. 

In the analysis four coordinate systems are chosen such that 

ö= (xo, y., zo ), fixed in space ; 

r= (x, y', z), fixed in the body; 

r= (x, y, z) = (xo-Ur, yo-Vt, zo) 

steadily translating with velocity 

W0 = (U, V. 0) = (Wocosa, W0sin«, 0) 
with x coincident with the body axis; 

T= (x, y, z) = (x. -W, t, yo, Zo) _ (x cos«+y $IIIaC, X 81IIOw7y cOÖa, Z) 

similar to r but with x axis coincident with the composite velocity W, . 

The axes z� z, z and z' (when no angular motion) are upwards and origins O, 0 and O' are 

at the same location on the undisturbed free-surface, see Figure 2.1. 
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The flow velocity potential 0 satisfies the Laplace equation in the steadily moving reference 

frame Oxyz: 

V2 CD (x, y, z; t) =0 in the fluid domain D (2.1.1) 

The fluid pressure derived from the Bernoulli equation is 

p= -p [DOIDt +gz +2 (Vý"V(D)] (2.1.2) 

with D/Dt = alat + vcDw . 
On the free-surface p=0 and the wave elevation ý(x, y; t) is given by 

z= ý(x, y; r) =-8 [DOIDt +2 (VýD"Vý)lZý (2.1.3) 

On the boundary interfaces the kinematic conditions are given by 

( V, 
-V(D)"n =0 on S,, (x, y, z; t), the body wetted surface 

Dt(ý-z)=0 
on z=ý(x, y; t) 

where V, is the local velocity on St., and n is the unit normal pointing into the fluid. 

(2.1.4) 

(2.1.5) 

In terms of the conditions represented by Equations (2.1.3) and (2.1.5) the free-surface con- 

dition is derived as 

D 2OlDt2 + 2VO"Ddf/Dt +ZV d}"V(V("V(D) + g/az =0 on z= ý(x, y; t) (2.1.6) 

By rearranging Equation (2.1.4), the body surface condition can be rewritten as 

d -Wan =n (VO - Wo) on SW(x, y, z; t) (2.1.7) 

For simplicity, the seabed topography is taken as level and flat, i. e. the water is assumed of 

uniform depth, d, or deep (d =»). Thus, the seabed condition is now written as 

/az=0 onz=d (2.1.8) 

In addition, a radiation condition is required to guarantee an unique solution of this boun- 

dary value problem but its correct form is not known. In practice, as an approximation, use is 
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made of the Sommerfeld condition adopted in linear potential problems. 

Application of such a nonlinear set of equations is rather difficult and may be limited to zero 

forward speed cases (e. g. Isaacson 1982), but more success has been achieved when a linearised 

set of equations is considered. 

2.2. Linearisation of the Unsteady Wave Potential 

At first the total wave potential is assumed to be the sum of the steady wave potential com- 

ponent'Iand the unsteady one dy,,, i. e. 

(D_ 0s + 0u (2.2.1) 

To make the problem more tractable, a perturbation procedure can always be used under the 

assumption that the steady wave elevation and the body oscillatory motion are both small. There- 

fore, relative physical and geometrical quantities can be expressed in a series of expansion form 

with respect to a small parameter £, chosen as the wave steepness say, e. g. 

YM 

oM =E ow 
, ý5u -E V), etc. 

ný R=0 
(see Wehausen and Laitone 1960). Hence, correct to order E3, the total potential is given by 

o=0, + (D( U+ O(2) +0 (£3 ) (2.2.2) 

The first order unsteady potential can be derived by the following conditions (Newman 

1978): 

(A) Laplace equation 

V20(1) =0 in the fluid domain Dý1) (2.2.3) 

(B) the free-surface condition 

-(OP, + w"vOM)[ 2ý (w"vw2) + go=]ics + w" -Z-w] + «0 
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+2W-VO(t1) + 
WVW"VOý1ý)+ 2 

V(D(1)"V(W2)+gýDZ1)=0 on z =, (2.2.4) 

(C) the body surface condition 

ýý1ý/an =[ 
z+( W"Vyr 

-. ( 
z w]"n on Sw1) (2.2.5) 

(D) the seabed condition 

aD(')/az =0 on z= -d (2.2.6) 

and a radiation condition. 

The total free-surface elevation is now of the form 

ý=-8[ID(l) + 2(W2-wo)+w"výý'>l: ý (2.2.7) 

Here x is the body replacement vector in the form 

x= (x 1, x2, x3) + (x4, x5, x6)X(r G) (2.2.8) 

where (x 1, x2, x 3) and (X4, x s, x 6) denote the unsteady translation and rotation components of 

the body. The relative velocity vector is given by 

w=vOs=%s-wox) (2.2.9) 

Here the steady wave potential includes the first-order unsteady wave effect and it satisfies the 

following equations: 

(a) the Laplace equation 

D*, =0 in the fluid domain (2.2.10) 

(b) the free-surface condition 

I w"v(w2)+gý, 
a +ýä'ý +2w"vOý') +w"v(w"vý'ý) 

+2Vý(1)"V(W2)+gýDzl)=0 onz=ý (2.2.11a) 

or 

2 
W0(Wz)+g*A 

=0 on z =; (2.2.1 ib) 
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(c) the body surface condition 

Wn 
=0 or a4, Ian = Wont on S, the body steady-state position 

and the seabed condition and a radiation condition. 

The steady free-surface elevation component is 

(2.2.1 2) 

2g 
(W2-Wö)z=ý, (2.2.13) 

The combination of Equations (2.2.7) and (2.2.13) results in the total wave elevation as 

given by 

[(ýý" + w"vý('))i(g + w"awlaz)]Z_ 
c (2.2.14) 

This linearisation validates a further linear decomposition of the total first-order unsteady 

wave potential as 

6 
0(1) _$ exp (-i (uýt) _ ($a + $7 + Y. Xja$j) exP (-i 0,1) (2.2.15) 

1=l 

where 00 is the incident wave potential expressible in 

4o =- 
i Z(z) exp [ik(x cosß +y sinß)] 

Here . o, denotes the wave frequency, C, the wave amplitude, ß the wave incident angle 

(ß =180° indicating head seas), and 

exP (koz) d= oo Z(Z) = cosh k (z+d )lcosh kd d< cm 

The wave number k is determined by 

tpo kd= co 
V-9= 1ktahhh1kd d<ý 

and the wave encounter frequency is defined as 

(2.2.16) 

(2.2.17) 

(2.2.18) 

ro, _ (0o - kWo cosß (2.2.19) 
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The diffraction potential $7 satisfies the body surface condition 

an (ý0+ýi)=0 on Swý) (2.2.20) 

The radiation potentials $j (j = 1,2,..., 6) are due to bodily oscillatory motion of unit ampli- 

tude in the six degrees of freedom of the rigid body motions, i. e. surge, sway, heave, roll, pitch 

and yaw respectively. Each component satisfies the body surface condition 

aO1/an = -i coýn1 + W. m1 on S�, l) (2.2.21) 

where 

(n1, n2, n3)=n (2.2.22) 

(na, ns, n6)=(r G)xn (2.2.23) 

(ºni, m2, M3)=-(n V)W (2.2.24) 

(ma, ms, m6) _-(n V)[(r -'IG) x 
W] (2.2.25) 

and Xja is the complex amplitude of the jth oscillatory mode as defined by 

Xj= X ja exp (-i (Oet) j=1,29..., 6 (2.2.26) 

Each of these linear potential components Oj (j = 0,1,..., 7) also satisfies the Laplace equa- 

tion (2.2.3), the free-surface condition (2.2.4), the seabed condition (2.2.6) and a proper radiation 

condition. 

Although a great step of simplification has been made to obtain the linearised unsteady 

wave potential problems as described, when coupled with a steady wave potential, these are still 

too difficult to be of practical solution and application. In practice, further simplifications are 

made to solve two special cases of great interest, i. e. a full three-dimensional body moving in low 

speed or undergoing current and a slender body advancing with considerable forward speed. 
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2.3. Low Speed Approach 

The low speed assumption introduces an additional small parameter with respect to the 

speed either when the body is advancing or when there exist ocean current. By retaining terms up 

to O(W0) and ignoring all the terms containing O(Wo), n22, the low speed boundary value 

problem can be expressed in the form 

V2ýj = 0, j=0,1,..., 8 in the fluid domain (2.3.1) 

(_. (0.2 ; +ga$ /az) -2i(j)e V$sVýj +itiue a203/az2 0j =0j =1,2,..., 8 on z= (2.3.2) 

4j/an =-iWe nj +Wo mj j=1,2,..., 6 
on the body surface 

a$8/an =äc +) =o 
(2.3.3) 

a 1/az =0j=0,1,..., 8 on the seabed (2.3.4) 

and a radiation condition. 

Here the approximate steady potential 

$s = 0, -0 (WO) 

is governed by the following conditions 

V2k =0 in the fluid domain (2.3.5) 

8 a$s/az + (-0,2ý+ g ý/az - 2i (u. Vo: 'VO) exP (-i u)s t) =0 on z=ý (2.3.6a) 

Or 

ass/az =0 on z==0 (2.3.6b) 

a4 /an = W. ni on the body surface (2.3.7) 

ass/az =0 on the seabed (2.3.8) 

and a radiation condition. 

Noting that the steady wave elevation from Equation (2.2.13) is 

c=o+o(w; ) 
the total wave elevation in Equation (2.2.14) takes the form 

(2.3.9) 
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[ýp<<> +WVýýýý ls=o +O(Wö) ý_- 1 

In terms of condition (2.3.2), condition (2.3.6a) can be rewritten as 

(2.3.10) 

g4 , /aZ - iO)a24, IaZ2 ý exp(-koet) =o on Z=ý (2.3.6c) 
The steady wave potential can be easily solved for the rigid free-surface condition (2.3.6b) 

and for simple geometries analytical solutions are available (see Appendix 1). However, numeri- 

cal solution of the radiation and diffraction potentials governed by Equations (2.3.1)-(2.3.4) are 

still very difficult because of the complexity of the free-surface and the radiation condition at 

infinity. Numerical and experimental investigations into a hemi-sphere have been conducted by 

Zhao and Faltinsen (1988) but further development of a numerical technique of reasonable accu- 

racy and computational economy is required for applications of general body configurations. 

2.4. Linearisation of Both the Steady and Unsteady Potentials 

In order to decouple the steady wave potential effect on the unsteady wave potential solu- 

tions, further linearisation is necessary. Here, it is assumed that the geometry of a body is such 

that the steady wave potential 4s and its derivatives are small and therefore, higher order terms 

and their cross products with the linearised unsteady potential components $j (j = 0,1,..., 7) can 

be ignored. Thus the coupled conditions involving unsteady wave potentials in §2.2 reduce to 

fully linearised equations as are now described 

V2* /=0 in the fluid domain (2.4.1) 

[(a/at - W, Nx )2 +g a/az )] */ =0 on z=0 (2.4.2) 

f-Jý nj +Wo mj 
aýjjan =_ aýjan 

j=1,2,..., 6 

J=7 

a f/az =0 on the seabed 

and the radiation condition 

on S. (2.4.3) 

(2.4.4) 
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lim 'FR (aý j/aR - iký) =0 R--"- 

where the total unsteady wave potential is written as 

(2.4.5) 

6 
$= 4'o + $7 + EXi0 i (2.4.6) 

i=' 

see Chang (1977) and Inglis and Price (1980). But here more general expressions are used to 

describe the composite velocity W resultant from both the forward speed and a current or a steady 

drift velocity (Figure 2.1). 

It can be shown that the first-order steady wave potential satisfies the equations 

V245 =0 in the fluid domain (2.4.7) 

(Wöa2/ax2+ga/az)ý, =0 on z =0 (2.4.8) 

0,13n = W. n on S. (2.4.9) 

4,1az =0 on the seabed (2.4.10) 

O(1/R) x>0 
ýs = O(1) for 

x< 0 as R-+oo (2.4.11) 

This linear steady wave potential problem is outside the scope of the present study and 

therefore no further discussion will be given. 

Conditions (2.4.1)-(2.4.5) form the basic linear wave-structure interaction problem and 

further simplification can be introduced depending upon the problem under investigation. For 

example, if W. -0, i. e. ta, = co. , these equation represent a linear interaction problem between 

waves and a stationary structure. 

2.5. First-Order Motions and Wave Forces 

By means of an appropriate numerical technique to solve the linear boundary value prob- 

lem, Equations (2.4.1)-(2.4.5), the resultant velocity potential values are then used to calculate the 

wave elevation; , wave pressure p, wave force components F, (r - 1,2,..., 6), and hydrodynamic 
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coefficients (i. e. added mass A, j and damping B, j ). It can be shown that these quantities are 

derived by the following formulae: 

771 
ý= Eý; =E [- -(alat - wo c-/ax ) ý; exp(-icost)]:. o (2.5.1) l=o l=o 9 

p; =-Pcalat -wo alax»; expc-i(ß<<) (2.5.2) 
Fp,. _ -iuup 

f 
ýo n, dS 

S. 
(2.5.3) 

F7, _ -i W1 (-i we - W. a/ax )07 n, ds (2.5.4) 
S. 

FN = -i cop Xj, f (-i cu` - W. a/ax A/ n, ds (2.5.5) 
S. 

A, / _ -p- 
j Im [( -i co, - W. a/ax )ýj ] n, ds (2.5.6) 
ý 

B1 1= -p 1 Re [(-im, - W. a/ax »j ] n, ds (2.5.7) 
S. 

where r, j =1,2,..., 6. The total wave exciting forces are the sum of the Froude-Krylov force Fp, 

and the diffraction force F7, , that is, 

Fr = For + F7r (2.5.8) 

The equation of motion describing the behaviour of the body in a regular sinusoidal wave 

may be expressed as 

6 
[(M, j+Arj)X1+(B, j+B, j)Xj+CrjX1]=(Fo, +F7, +F,, )&p(-im1t) (2.5.9) 

j=I 

where M, j is the generalised mass, C, j is the hydrostatic restoring coefficients and -B,, j Xj and 

F,,, are respectively the drag damping force and the viscous exciting force due to viscosity, vorti- 

city and eddy making, etc. A description of these two terms is given in 19. From all the informa- 

tion calculated, shearing forces and bending moments can also be determined (Salversen, Tuck 
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and Faltinsen 1970). 

With all these regular wave loading and motion information on hand the irregular sea 

characteristics are readily estimated for a required wave spectrum and sea state (St. Denis and 

Pierson 1953, Price and Bishop 1974). Detailed applications are discussed in §9 for SWATH 

ships. 

2.6. Second-Order Wave Forces 

The second-order wave forces arise from the products of first-order quantities and the 

second-order wave potential cb(2 (see Equation (2.2.2) ). According to Pinkster (1979) and Stand- 

ing and Dacunha (1982) these may be expressed by the sum of six terms, namely, 

(2.6.1) F(2) = F/ + F11 + F111 + F/v + Fv + Fß7 

These force components are known as the force term associated with the surface elevation, the 

quadratic pressure term arising from the Bernoulli's equation, the structure displacement term due 

to the effect of first-order motions, the contribution due to the rotation of the force vector, the 

second-order motions of the structural centre of buoyancy and waterplane area and the contribu- 

tion from the second-order potential, respectively. The time average measures of these second- 

order forces have steady components known as the wave drift forces. Details of the approach are 

described in §8. 

41 



Figure 2.1. The coordinate systems. 
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3. FUNDAMENTAL SOLUTIONS 

The disturbance created by a body in a flow field can be represented by singularity distribu- 

tions on the body surface, including source, dipole,. their mixture (Yeung 1982) or multipoles 

(Ursell 1949a, b). The Green function representing a pulsating, translating source related to the 

general problem of an oscillatory body moving in waves, i. e. Equations (2.4.1)-(2.4.5), can be 

derived from the following Poisson equation and associated boundary conditions: 

V 2G (x, y, z; 4,11, ý) = S(x - 4) S(y - 11) S(z - ý) in the fluid domain D (3.0.1) 

(-i(O, -Wo a/ax)2G +g aG/az =0 on z =0 (3.0.2a) 

Or 

Haue -U a/dr -V a/ay)2G +g aG/az =0 on z=0 (3.0.2b) 

aG/az =0 on z= -d (3.0.3) 

lim NrR (aG/aR - ikG) =0 (3.0.4) 

where S is the Dirac delta function. To distinguish the Green function expression for various 

cases, it is now denoted by G(P, Q; Wo , k, d) with two point P(x, y, z) and Q( 4, 'n, ý) , speed 

Wo, 
wave number k and water depth d. 

3.1. Three-Dimensional Source Potential (Finite Depth) 

3.1.1. General solution 

In the most general case governed by Equations (3.0.1)-(3.0.4), the source potential can be 

derived as: 

-+ 

Ys 

G(P, Q; W., k, d)- r+ 
r2 

+a1 dµ1 d9txP(-Nd)ýµ(z+d)ýN(ý+d)H(I=, 9) 
0 -fg 



(3.1.1) 

with r2=R2+ (z - ý)2, r2 =R2+ (z + ý+ 2d)2, R2= (x - g)2 + (y - 11)2 

x4, e>= 
[gµ + (uo, + Wo µ cos8)2] exp fit [(x - 4)cosA + (y - 11)sinA] 

Cosµd [gµ tank µh - (We +W0 µ cosO)2] 

or alternatively with Wo = (U, V, 0) in the 0 xyz frame 

H (µ, 9) = 

[gµ + (a0 g+ Uµ cosA + Vµ sinA)`] exp iµ [(x - ý)cosA +6- 1-1)sin9] 

cosµd [gµ tanh pd -(t, o, + Uµ cosO + Vµ sinO)2] 

3.11. Zero speed case 

If there exists neither a body forward speed nor wave current influence, i. e. W. =0, the 

Green function reduces to (John 1950) 

with 

00 

G(P, Q; O, k, d) =1/r + 1/r2 +l ld +i l2t (3.1.2a) 

I Id =2 PV j dµ v+ u exp (-µd ) coshµ(z + d) coshµ(ý+d) Jo(}IR ) 
0µ sinhµh -v coshpd 

1 2d = 2n k2 - v2 coshk (z + d) coshk (ý + d) J, (kR ) 
(k2 - v2) d +v 

or in a series form 

G(P, Q; 0, k, d)= 2n(v2-k2) 
coshk(z+d)coshk(ý+d)IYo(kR)-i!, (kR)] 

(k2-v2)d+v 

.w2 
+4 1 

µ'" 2 y2 
cosµ, (z + d) cos p, d) Ko (µmR) (3.1.2b) ý, (ý 

, "=t W. +v )d-v 

with µm being the mth positive root of equation 
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µ, � tanµd+V=0 

where J. is the Bessel function of the first kind of mth order, 

Y. is the Bessel function of the second kind of mth order, 

Km is the modified Bessel function of the second kind of mth order. 

Practical numerical procedures to evaluate G(P, Q; 0, k, d) can be found in Hogben and 

Standing (1974) and Faltinsen and Michelsen (1974). Pidcock (1985) presented an alternative 

form of expression (3.1.2b) useful for small R/d values whilst Endo (1987) proposed a Gauss- 

Laguerre quadrature method based on expression (3.1.2a). 

An algorithm developed by Newman (1985) re-writes expression (3.1.2a) into 

1142 Re[G(P, Q; 0, k, d)]=-+-+(I I, m+Elon) (3.1.3) r r2 m=t n=I 

with 

00 

2d- Iz-ýI m=1 
2d+ iz -ýI m=2 
Iz+; I m=3 
4d-izf; I m=4 

Ion =P Vf dg [1_2 exp (-ud )1 (9 + v) coshµUn exP (--pd) Jo(µR )dM 
0µ sinhµd -v coshµd g- v 

n=1 
U"- 2d-Iz-ýI n=2 

Here terms denoted by I1. can be more efficiently evaluated by the methods developed for the 

deep water Green function, which are to be described in §3.2. The integrand in I,. decays like 

exp (-2µd) for large µ values and a numerical approximation can be implemented for its estima- 

don. 

Iým PVJ µ±v 
ýP(ýVný)�o(NR)dNý Vm= 

0 

Y 
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3.13. Asymptotic forms (k -+ » or 0) 

At high frequencies, i. e. k -+ oo , the asymptotic form of the Green function can be readily 

derived as 
M 

G(P, Q; 0, -, d) =1/r + 1/r 1+ Y, [(-1)" (1/r2" + 1/r4") +(71 r+l(llr I, + 1/r3")] (3.1.4) 
"=1 

with 

rt =4R z+ r)2 and r.. =R2+ (-2nd - V. , )2 

As the frequency tends to zero, i. e. k-0, it can be shown that 

m4 
G(P, Q; O, O, d) =1/r + 1/r l+Y, E 1/r,,,,, 

nut mm1 

Expressions (3.1.4) and (3.1.5) can also be found in Garrison (1978). 

(3.1.5) 

3.1.4. Shallow draft structure (z =ý =0) 

If the draft of the body is small enough, say h 0, expression (3.1.2) can be rewritten as 

(Wu and Price 1986a) : 

G (x, y, 0; 4, YI, 0,0, k, d) = 2ý(v z k2) 
cosh2 kd [ Yo (kR )-t Jo (kR )] 

(k -v )d+v 

+42z 
y2 

cos2µd Ko(µmR) (3.1.6) 
fi al (µ, � +v )d -v 

An alternative integral form can be deduced from Newman's expression (3.1.3) when set- 

tingz -ý =0. 

3.1.5. Steady source potential (k = 0, W. * 0) 

For a steady moving source, i. e. k-0 but A0o # 0, the general Green function expression 

(3.1.1) takes a form given by Kostyukov (1959): 
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-ý 4 .. ~A ýv2 C 
(3.1.7) G(P, Q; Wo, 0, d)=1/r+1/r2+-fd9PVf -dµ+4vo 

f 
-dO 

ao 0Be. D 

where 

A= exp (-µd ) coshµ(z + d) coshµ(ý + d) cos [µ(x - 4)cosA] cos [µ(y - ll)sinA] (µcos2A + v, ) - vo 

B= coshµd (µ cos28 -V0 tanhpd) 

C= cosh [ko(z + d)] cosh [ko(ý + d)] sin [ko(x - 4)cos9] cos [ko(y - ll)sinA] 

D= cos2A cosh2kod - kod 

cos Nrv, d vod <1 
eO- 0 vod21 

for n/22 Ao 20 

where v, = g/Wö and k0 is the real positive root of 

ko - vo sec 26 tank kod =0 

3.2. Three-Dimensional Source Potential (Infinite Depth) 

Let the water depth in the finite depth Green function expression in 3.1 tend to infinity, i. e. 

d -+ oo, then formulae applicable to relative deep water can be readily derived. 

3.2.1. General solution in deep water 

In expression (3.1.1), let d -' oo and this results in the general deep water Green function in 

the following form (Havelock 1958, Wehausen and Laitone 1960): 

Z 

G (P, Q; W� k, c») = Ur - Ur 1+-Y2j dµ jP (g, 8) dA (3.2.1a) 
it 00 

P Gý" 6) _14 exp fu(a + r) +i u(x -Z) cosAl cos fu(y - n) sinAl 
[µ - (m, + W0 µ COS() )Z/g 1 

or alternatively, in the Oxyz frame as 
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u exp u(z + Z) +i u(x -e) cosAl cos fuCY - 11) sin8] 
µ-(c0, +Uµ cos9 +Vµ sino)2/g ] 

where the integral is defined as 

ldµlde=cJ ! 
+! +! 0000Ya! 2 

and 

(3.2.1b) 

1_ ) dµ d9 (3.2.1c) 

0ý< 1/4 
y 

cos ,(1) Tz 114 ('r ='O Wo/g) 

4ti 

The contours L1 and L2 are illustrated in Figure 3.1 with singularities at 

Igk Nrgk3=o) [i -41 -4Tcose ]i (zticose) 
gk 9 -ý = co [1 +l- 4r cose ]/ (2 T cose) 

k, kZ k3 k4 

0"k0k 
Ll LZ 

Figure 3.1. The contours L and L2 in Equation (3.2.1c). 

(3.2.1d) 

(3.2.1e) 

Applications of this Green function form have been conducted by Chang (1977), Inglis and 

Price (1980) and Guevel and Bougis (1982). Its evaluation, however, is very computer time con- 

suming. Therefore, it necessitates further development of more efficient algorithms. Moreover, 

the predictions derived by this most sophisticated theoretical approach so far available do not 

appear to provide much improvement over simple strip method results. Because of this, Inglis 

and Price (1979) suggested the use of a simplified forward speed correction, similar to that 

adopted in strip theories. 
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3.2.2. Zero speed case (Wo = 0) 

In the absence of the speed, i. e. 
Wo 

= 
0, Equation (3.2.1a) reduces to a much simpler ver- 

sion: 

G (P, Q; Ö, 
v, oo) =1/r + 1/r 1+ 11 +i 2n v exp [v(z + ý)] 1o(vR ) (3.2.2) 

11=2v PV Jdµexp[µ(z+ý)]Jo (NR)/(µ-v) (3.2.2a) 
0 

Kim (1963) re-wrote 1I in a very useful finite integral form: 

-V(z +C) es ds 
11 = -v exp [v(z + ý)] n [Yo(vR )+ Ho (vR )] +2J 

0 (vR)2 +s2 
(3.2.2b) 

Numerical evaluations of this finite integral form have been reported by Hearn (1977), 

Newman (1985) and Teiste and Noblesse (1986). An efficient numerical approximation is also 

derived in the present work. 

3.23. Asymptotic forms (k --> » or 0) 

At high frequencies, i. e. k both the non-zero and zero speed Green function expres- 

sions (3.2.1) and (3.2.2) reduce to the same simple form 

G(P, Q; 0, », oo)=1/r-1/rt (3.2.3) 

In the low frequency limit k -+ 0, the zero speed expression (3.2.2) becomes the double 

body formula: 

G (P, Q; 0,0, co) =1 /r +l 1r I (3.2.4) 

whilst the non-zero speed form (3.2.1) becomes the Kelvin source expression 

W2 Y N2 

G(P, Q; Wo, 0, ý)=1/r-1/r, -4ý° 1 dOPVjA(µ, 0)dµ-4vo! C(0)d0 (3.2.5) 
000 
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A (µ, A) = 
exp fli(Z + C)l cos [µ(x - k) cos9l cos [p. (y - n) sinAl 

(µ cos29 - v) 

C (g) = exp [v(z + ý) sec2g] sin [v, (x - 4) secO] cos [v, (y -11) sing sec2g] sec2g 

with v, =g/Wö=g/ U2+V2. 

3.2.4. Shallow draft structure (z =ý =0) 

For a marine structure of small draft, say z -* 0, -* 0, a zero forward speed and zero draft 

Green function formulation (Kim 1963, Wu and Price 1986 it) can be derived as 

G (x, y, 0; 4, ri, 0; 0, v, (w) = 2/R -av[ Yo (vR) + Ho (vR) ]+i2nv Jo (vR) (3.2.6) 

and aG /az =vG, which is an important result, providing much simplification in the theoretical 

model. 

3.3. Two-Dimensional Source Potential 

In engineering practices, two-dimensional methods and solutions are much more popular 

than the three-dimensional ones. It can be shown that there exists a two-dimensional form 

corresponding to each Green function expression described in 3.1 and 3.2. These two-dimensional 

formulations can be derived either from a two-dimensional boundary value problem (Wehausen 

and Laitone 1960) or from the Fourier transformation of a three-dimensional Green function (Wu 

and Price 198äb). As suggested by Wu and Price (19864 a two-dimensional Green function may 

be expressible by a transformation of the relative three-dimensional one as: 

-+ 1+"" -+ G2d(p+ q+ wo. k+ d) =--Z1G (0, Y. Z; 4+ T1t r2; wo. k. d) exp [- 14 (-k C03ß)] d4 (3.3.1) 
A. 

-00 

where p(y, z) - P(0, y, z), q(T, ;)s Q(4, T, C), and 0 is the wave heading as defined previously. 
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3.3.1. General solution (finite water depth) 

The insertion of the general three-dimensional Green function expression (3.1.1) into Equa- 

tion (3.3.1) allows the general two-dimensional finite water depth Green function to be derived. It 

represents the behaviour of a two-dimensional translating, pulsating source in a incident wave of 

heading angle P. After completing the Fourier transformation, the two-dimensional Green func- 

tion is given by 

G2d(p, q; Wo, k, d)=-Ko(k IcosßlR)-Ko(k IcosßIR2) 

+"" 2 
+PV f dµ F1 ()x, -k cosß) +in1: F2(µm, -k cosß) (3.3.2) 

m=1 

with R2= (y? 02 + (z +; +2d)2 , and 

Fi (a, b)= exp (-cd) cosh [c (z + d)] cosh [c (ý + d)] [cg + (au, +bU+aV)2 ] exp [i a (y = tý)] 

c cosh cd [cg tanh cd - ((u, + bU + aV)2] 

F, (a. b) = 
ag [sinh cd + cd sech cd -2V (co, + bU + aV) cosh cd ] 

where c= a2 +b2, jt (m = 1,2) are the two roots of the following equation: 

µ2 + (k cosß)2 tanh µ2 + (k cosß)2 d] - (co, - Uk cosß + µV )2 =0 (3.3.3) 

From this two-dimensional general formulation, various two-dimensional Green function formulae 

can directly be deduced for individual special cases. 

3.31. Zero speed case (W0 = 0) 

At a zero composite velocity, i. e. 
00 

= 0, the following Green function form is obtainable, 

either reduced from Expression (3.3.2) or derived from a combination of Equation (3.3.1) and 

expression (3.1.2a) as 

G2d(p, q; 0, k, d)= K, (k IcosßIR) Ko(k IcosßlR2) 

exp (-cd) cosh [c (z + d)] cosh [c (ý + d)] [cg + (coe+bU+aV )2] exp [1 a (y - il)] 
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-2PV ! dµ F3(µ, -k cosß) -i2n F4(v, -k cosß) (3.3.4a) 
(kcosß)' 

w+ u) exy (-ud) cosh fu(z+d)1 cosh fu(C+d)1 cos f(y-, n) u2-(k cosß)21 F 
µsinhµd-kcosh µd 9 2-(kcosß)2 

cos ((y-n) k2-(k cosß)21 

_ 
(k2 v2)cosh [k(z+d)1 cosh fk(Z+d)1 k2- (k cosß)2 I cosß I#1 

F4- 
(k 2v2)t +v0 Icosßl =1 

The combination of Equations (3.3.1) and (3.3.2b) results in an alternative expression given 

by 

22II 
Gý(p, q; 0, k, d) = 

42(v 

vzk) 
cosh [k(z+d)] cosh [k(ý+d)] 

y- i1 

(k )d+v i exp (i I y=rt I v2-(k Cosa)2 ) 
k2 - (k cosß)2 

2+ v2 aexp (- I y-ýi I µ, 2�+(k cosß)2 I cosß I =1 
- 2ý, 2 +v2kt -V 

cos [µ, �(z+d)] cos [g. (4+d)] 22 Icosß I* 1 
1 (µ� pm + (k cosß) 

(3.3.4b) 

3.33. The case of zero speed and beam seas 

For the case of zero speed and in beam sea waves (i. e. ß= a/2), the relative Green function 

form can be readily derived from expressions (3.3.4a) or (3.3.4b). Its series expansion form 

reduced from expression (3.3.4b) is given by 

G2d1 
4a(y2 k2) 

cosh [k (z 4d)] cosh [k (ý+d)] [sin (k i Yý1 I )- i cos (k i Yý1 I (p, q; 0, k, d) =k (k2-v2)d+v 
)] 

+4ý2 
µfi 2 v2 

cos [µ, ý (z +d )] cos [µ, n (4+d)] xýP (-1ý 1Y- ý11) (3.3.5) 
, ý=i (µm +v kl -vµ, N 

It should be noted that this form also represents a two-dimensional pulsating source in an 

otherwise calm water (Wehausen and Laitone 1960). 
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3.4. Two-Dimensional Source Potential in Deep Water 

For two-dimensional deep water cases, not all the inclusive forms are described but those in 

practical use. 

When allowing d -4 cc, expression (3.3.4a) reduces to 

G2d(p, q; 0, k, -)=-Ko(k IcosßIR)-Ko(k IcosßIR2)+1l +i 12 

ý .... . , 
ýý 

.. ý. ý ..,. 
-2 PV f dµ exp (- Iz -4-(, l '44` + (k cosp)- ) cos lu(y - 11) 

o2 µ+ (k cosß) -k 
-2 it k exn(-k I z+ý I) cos fu(y-'n) k2 - (k cosß)21 

1.7 - 
A2- (k cosß)2 

(3.4.1) 

Icosßl ý1 (3.4.1a) 

IcosßI ý1 
0 IcosßI =1 

This Green function form has been derived by Haskind (1953) and Wehausen and Laitone 

(1960) and an alternative series expression by Ursell (1975). 

To gain high numerical efficiency, an alternative expression for I,, expression (3.4.1a), can 

be derived from Equations (3.3.1) and (3.2.2b) in the form: 

11 =2kexp(-klz+ýI) -n sin [I v-i1 
A k2-(k cosß)" ]_2 

k2-(k cosß)2 
+_I ýI ds exp(-ks)Ko(k Icosßl Ns 2+(y T) 

(3.4.1b) 

This alternative remains valid even as I cos 31 -+ 1, because 

sin (I y-11 I k2-(k cosß)2 ) 
um =1y-11I iCo: pi-41 qk 2 -(k cosß)2 
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3.4.1. Deep water pulsating source 

In expression (3.4.1) let ß -+ 7J2, the Green function representing a two-dimensional pulsat- 

ing source in deep water is readily deduced as 

G2d(p, q; 0, k, oo) =1 'al 
(y -ý1)2 +(z - C)2 

+li+il (3.4.2) 
(y2 - ý)2+(z - 02 

Z 

N 

!i PV jdg 
exp(-µlz+ýl)cos[µ(y-il)l/(µ-k) 

0 

12 =-it exp(-kl z+cI) cos[k(y -tj)] 

This expression can be easily evaluated by the numerical procedure proposed by Frank 

(1967) and it seems to be the most popular one used in solving the two-dimensional wave- 

structure interaction problems. 

3.4.2. Shallow draft source in deep water 

When both the source and the field points reach the free-surface, i. e. z, -> 0, expression 

(3.4.2) further reduces to the two-dimensional shallow draft, deep water Green function given by 

G 2d (p0, q0; 0, k, oo) = [n+2 Si (k ly -il 1)] sin(k Iy --11I ) 

+2cos(kly--9I)Ci(k Iy-j91)-i 2ncos(kIy-11I) (3.4.3) 

This expression has been derived by MacCamy(1961) and used by Wu and price(1986d)in 

developing a new two-dimensional shallow draft theory. 
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4. INTEGRAL EQUATIONS 

The singularity distribution is the technique most widely adopted to analyse wave-body 

interaction problems. In such an analysis, an integral equation representing a certain kind of 

singularity distribution is formulated to solve the unknown wave potentials induced by a marine 

structure. Accordingly, the hydrodynamic coefficients, wave forces and motion responses, 

together with generated wave patterns, can be predicted. 

In this Chapter, a brief description of the integral equations is given. Further discussions 

are focused on their mathematical failure at irregular frequencies associated with floating body 

analyses. Then, modified formulations and methods are proposed to eliminate or remedy this 

theoretical difficulty. Finally, an interior integral equation approach is presented. 

4.1. The Three-Dimensional Integral Equation 

According to Brard (1972), the Green function integral equation associated with a mixed 

source-dipole distribution is given in the form: 

14 
2 x$(P)=ý [$(Q) 

a 
G(P, Q)-ýZG(p, Q)]dS+1ý 

fi20 
W0$(Q) G (P, Q) 

1oJ ,. 
anQ anQ 9. 

D 
+Wö 

*G', 
Q)_ 

ýý ) G(P, Q)] dý forQ e S, Pe S�, 

D C 

where D and D refer to the two fluid domains outside and inside the body surface S�� respec- 

tively. L. is the mean waterline of the body. The Green function G(P, Q) is given by G(P, Q; Oo, 

k, d) in expression (3.1.1) for finite water depth or by G(P, Q; k, ») in expression (3.2.1) for 

deep water. 
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This formulation can be rearranged into a more compact source distribution form with a 

source strength a (Chang 1977): 

2 it ý(P ) ß(Q) G (P, Q) dS +W °O 1Q(Q )G (P, Q) nid il forP, Q e S�, (4.1.2) 
O 9 

For a marine vehicle travelling at high speed or an intermediate speed vessel with a blunt 

bow, the additional line integral in the two equations above provides a significant contribution to 

the final solution. However, for a marine structure travelling at a low speed, i. e. Wo =0 (e), or 

with a slenderness feature, i. e. nt=0 (e), this line integral is a higher order small quantity and 

therefore, it may be ignored in some cases of practical application. 

For stationary or fixed offshore structures and service vessels, a zero speed approach is often 

appropriate. As derived by John (1950), the zero speed Green function integral takes the form: 

4 
2 
0 

n 4(P) =ý [$(Q) an G (P, Q) -aG (P, Q)] dS forQ e S, Pe 
wnn 

Da 
S�, (4.1.3b) 

Dý 

where the Green function is given by the three-dimensional zero speed Green function 

G(P, Q; 0, k, d) in expression (3.1.2) for finite water depth, or by G(P, Q; 0, k, oo) in expression 

(3.2.2) for deep water. 

Correspondingly, the source distribution form (4.1.2) reduces to 

2 Jt d(P) = 
[r Q(Q) G (P, Q) dS for P, QE SW (4.1.4) 

4.2. The Two-Dimensional Integral Equation 

Two-dimensional versions of the integral equation can be derived directly by applying the 

Green's theorem in the same manner as the three-dimensional ones, or indirectly by a transforma- 

tion procedure (Wu and Price 1986b). The equation equivalent to Equation (4.1.1) is 
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2 
1 
0 

n$(p) [--O(q) G(p" g) + amcg) G(p, q)] dl - v2 1[O(g) 
aG iD, 0-G 

(p, q) aý., 
Z 

ang ang 9 0' 1 V' ý 

+ (i 2uu, 
WVo 

-i 2k UV 
cosß )O(4) G(P, 4) l5ý 

whilst the one equivalent to Equation (4.1.2) is 

M 

In the cases of zero speed, the equation equivalent to Equation (4.1.3) is 

12 
Da 

1n")=fw [-, O(q) an9 G(p, q) +an G (p, g)l dl for geC,,,, peC, r (4.2.36) 

i°J eDc 

and that equivalent to Equation (4.1.4) takes the form: 

2x O(p )=1. a(g) G (p, q) dl for p, qeC. (4.2.4) 

where G(p, q) is a two-dimensional zero speed Green function given by G(p, q; 0, k, d) in expres- 

sions (3.3.4) and (3.4.5) for finite water depth, or expressions (3.4.1) and (3.4.2) for deep water. 

4.3. Mathematical Failure at Irregular Frequencies 

The Green function integral equations in §4.1-2 take the form of the Fredholm integral 

equation of the second kind which has no unique solution at an infinite number of discrete fre- 

quencies. It shows that the related set of discretised linear equation describing the problem is ill- 

conditioned over a finite frequency bandwidth (Newman 1983). 

In his classical paper, John (1950) showed that, for a free-surface piercing body, the Green 

function integral equation admits non-trivial solution at the eigenfrequencies of the related inte- 

I! Da 
for ge Cw, P6 Cw (4.2.1b) 

D C 

V2 m 
2n ý(P) =, 

ý_ a(q) G(p, q) dl -2F, [a(q) G(p, q) n 2(g)]; =O for p, qe Cw (4.2.2) 
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rior fluid oscillation problem. These solutions satisfy the free-surface condition inside the body 

and are of zero value on the interior body boundary. In his two-dimensional computation, Frank 

(1967) identified that at an irregular frequency the matrix formulation becomes ill-conditioned. 

Yeung (1982) further pointed out that both the source and mixed source-dipole distribution 

methods have irregular frequencies at the same values since the kernel of one is the "transpose" of 

the other. 

It may be concluded from reported investigations that whichever distribution method is 

adopted with a classical Green function expression in any numerical calculation associated with 

floating marine structures, it is difficult to hit the irregular frequencies precisely unless some 

proper remedy techniques are introduced. 

For a marine structure piercing the free-surface in deep water, there exists, as always 

assumed, an exterior velocity potential solution 4(x, y, z) which satisfies the following condi- 

tions: 

ýý 
V2= ,+ý+ a- 

ý=0 
[ax- 

ay" a, 
2 

vä =0 on Sf 

and a radiation condition 

ä=0, 
on seabed 

ý' = V., on S,, an 

in D (4.3.1a) 

(4.3.1b) 

(4.3.1c) 

(4.3.1d) 

R 4R_( 
-i ký)=0 (4.3.1e) 

To describe the corresponding interior problem, an interior velocity potential $ may be con- 

structed, which satisfies the equations: 
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02 ý=0 in D 

Ve-e =o az onS f 

(4.3.2a) 

(4.3.2b) 

and an imposed interior body boundary condition. Here Sf and Sf denote the exterior and the 

interior free-surface. 

As previously discussed by John (1950), the determination of a solution to the exterior 

irregular frequency problem may be replaced by a solution to the equivalent interior eigenvalue 

problem derived from the following set of equations describing the interior boundary value prob- 

lem, namely 

V2 0=0 in D (4.3.3a) 

vý-ä =0 on Sf (4.3.3b) 

"=o on S, y (4.3.3c) 

At an irregular frequency related to the solution of Equation (4.3.3), the Fredholm integral 

determinant of Equation (4.1.3b) or (4.1.4) (or, (4.2.3b) or (4.2.4) in two-dimensional cases) 

equals zero. According to the Fredholm integral equation theorem, Equation (4.1.3b) (or (4.2.3b)) 

is solvable but has no unique solution; whilst Equation (4.1.4) (or (4.2.4)) has no solution at all. 

In numerical computation practice, however, the determinant tends to a small value over a narrow 

band of frequency and the numerical formulation becomes ill-conditioned. Therefore, for both 

the mixed source-dipole and the source integral equations, only erroneous solutions can be 

obtained. 

There may be two alternatives to solve the irregular frequency problem: 

(1) To predict the irregular frequencies precisely and then simply ignore computations around 

these frequency values. 
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(2) To develop modified mathematical formulations free of irregular frequency effects. 

4.4. Prediction of Irregular Frequencies 

4.4.1. Analytical formulations 

For some simple and regular body geometries, analytical expressions of and the irregular 

frequencies corresponding to Equation (4.3.3) can be derived. 

A rectangular section 

For a two-dimensional rectangular section of beam B and draft h, a suitable form of Q satis- 

fying Equation (4.3.3) is given by 

M79 B B/22! y2t-B/2 
ý, � = sin[ B (y -2 )] sinh[k (z +h )] form=1,2,3, --- 02: z2 -h 

(4.4.1a) 

provided that 

k= mrr/B (4.4.1b) 

and there exists an irregular frequency with value 

w, � =gk coth (kh ) (4.4. ic) 

A triangular section 

For a triangular section of beam B and draft h= B/2 the solution satisfies Equation (4.3.3) 

can be obtained as 

sink (ky) sin (kz) - sin (ky) sinh (kz) (antisymmetric) 
- cosh (ky) cos (kz) - cos (ky) cosh (kz') (symmetric) 

where z' Zya -z' and h2 z' k0 with z'= z+h. 

(4.4.2a) 
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Irregular frequencies occur at 

( gk cotan (kh) (antisymmetric) 
au = jgk 

tý (kh ) (symmetric) 

This formula can be further simplified to (Wu and Price 19864): 

(4.4.2b) 

144g (m + 1/4) tt/h (antisymmetric) 
ý'" 'g (ý m- 1/4) ýt/h (symmetric) for m=1,2,... (4.4.2c) 

Three-dimensional bodies 

In three-dimensional cases, analytical solutions of irregular frequencies are available for a 

rectangular box (Inglis and Price 1981), a circular tank (Nojiri 1981), a sector of a circular tank 

and a horizontal triangular prism (Appendix 4.1). In addition, analytical expression can also be 

derived for an elliptical dock. 

An elliptical dock 

For a dock of elliptical waterplane area with the major and minor axes a and b 

(c =a-+b2) and draft h, ý of Equation (4.3.3) is expressible by 

iCep(, 
qpm) Cep(il, qpm) sinh[kpm(z +h)] (p=0,1,... ) 

OP- jSep(4, 
q-p. ) Sep(li, qpm) S111t1Ikpm(z f h)] (p = 1,2,... ) (4.4.3a) 

for42 , 2nztz0and O; -> z 2-h. 

Here Cep( ) and Sep() are modified Mathieu function of the first kind (McLachlan 1951). 

(, 11) are the elliptical coordinates defined by 

x=c cosh4 cosh 
y=c sinh4 sinn 

The elliptical sectional contour is represented by ss1 In a +b 
. and 2 a-b 
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kpm 2 `2 
C` - 

pm CZ 
Qpm =4. gpm =4 

Irregular frequencies occur as qpm and qpm are positive roots satisfying 

Cep(ý� Qpm) =0 (p = o, j,... ) 

Sep(Eo, Cjpm) =0 
(p = 1,2,... ) (4.4.3b) 

To find values of qp, � and qp, � necessitates solving a linear equation. For example, by solving 

22 cosh4ý 1 [1- 
2cosh2ý+q 

( 
32 16)-... 

]=0 Ceo(ý, gom)= 
, F2 

to obtain 

19oi 
,ýý cosh4ý I 

402 _ (cos2Eo tv _2 )/( 16 -8) 

4.4.2. Approidmate formulations 

As derived and described in §4.4.1, analytical predictions for the irregular frequency are 

quoted only for very simple geometries and not available for realistic marine structures of more 

complicated or of more irregular configuration. By using the known expressions of irregular fre- 

quencies for a rectangle or a rectangular box, Wu and Price (1986e) introduced an equivalent rec- 

tangle or rectangular box method to approximate the irregular frequencies occurring in the 

analysis of an arbitrary two- or three-dimensional body. 

4.4.2a. The equivalent rectangle formulation 

a 



The equivalent rectangle formulation is based on an assumption that 

the irregular frequencies in an arbitrary two-dimensional section are equal to those of an 

equivalent rectangle of an equal sectional area (A,, ) with an equivalent beam (Be) and draft (he). 

The equivalent rectangle formula is given by 

(0, � = gk coth(kh, ) 

k= Ble for m =1,2,... 

where «Im is the mth irregular frequency and 

__ 
As 

Bý - (Cs)a B, h, 
B , 

(4.4.4) 

Here C, = As/Bh is the cross-sectional coefficient, B is the beam on the waterline and h is the draft 

measured from the midpoint of the beam. a is an empirical correction coefficient and the recom- 

mended value is a= (1 + In m)18. 

Apparently, when a section tends to a rectangle, the above equivalent rectangle formula 

becomes the exact solution of a rectangle as given in Equation (4.4.1). It can also be found that 

the approximate predictions correlate the analytical results for a triangle from Equation (4.4.2). 

That is, the first three irregular frequencies ((ON/B- 12g) are 1.53,1,94 and 2.38 by approximation 

against 1.54,1.98 and 2.34 by analytical solution. 

The equivalent rectangle method has been incorporated in the developed two-dimensional 

hydrodynamic analysis computer package and experience gained through various practical appli- 

cations to ships and offshore structures. To demonstrate this, Station 16 of a ship is taken as an 

example computation. The predicted approximate values of the first two irregular frequencies are 

1.43 and 1.86. These precisely coincide with the irregular phenomena observed in numerical cal- 

culation of added mass and damping coefficients of the section appearing around frequencies 1.43 

and 1.89, see Figure 4.4.1. 
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4.4.2b. The equivalent box formulation 

Similar to the equivalent rectangle formulation for two-dimensional bodies (§4.4.2a), an 

equivalent box technique is also devised to approximate the irregular frequency values associated 

with the three-dimensional body analysis. It is dependent upon an equivalent box assumption: 

in order to evaluate irregular frequencies, an arbitrary three-dimensional body may be 

represented by a rectangular box of 'equivalent' length, beam and draft with the same displace- 

ment volume as the original structure. 

Based on the above assumption, the irregular frequencies of an arbitrarily shaped body may 

be expressed by an equivalent box formula: 

wp, � = gk coth(kh, ) 

k=n (-1-)2 + (Bt )2 for p =1,2,..., m=1,2,... 

where L, Be and h, are the equivalent length, beam and draft. 

(4.4.2) 

Detailed formulation, validation and application of the equivalent box technique are given 

in Appendix 4.1. 

4.5. Modified Green Function Method 

Great efforts have been made to eliminate the irregular frequencies. Though various 

remedies are proposed (for details, see INTRODUCTION, Appendix 4.2), few have been widely 

accepted and efficiently applied in practical computation. Amongst all these proposed techniques, 

the modified Green function approach seems rather promising and is more relevant to the present 

work. 

Theoretical approaches using the modified Green function originate in the solution of high 

frequency problems derived by Ursell (1953). And recently, Ursell (1981) further provided the 
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method with a rigorous theoretical basis, and proved that a modified Green function integral equa- 

tion is free of irregular frequencies when a proper combination of the basic Green function and a 

sufficient large number of multipoles is used. 

In a more practical way, Ogilvie and Shin (1978) proposed an efficient two-dimensional 

Green function form and showed that the method was capable of eliminating the first irregular 

frequency. 

Because of practical importance in analysing SWATH ships, catamarans and offshore struc- 

tures, this method is further extended in the present work to eliminate irregular frequencies asso- 

ciated not only with mono-hulls but also with twin- and multi-hulled bodies. 

4.5.1. Outline of Ursell's theory 

Ursell (1981) defined a modified two-dimensional Green function as 

G*(P, 4)=Go(P"4)+ am 0m(P)0m(4)+ bm`Ym(p)`Ym(Q) 
M-0 m=o 

(4.5.1a) 

where G0(p, q) is the ordinary Green function, Equation (3.4.2). The multipoles b,,, and ̀ Y, � are 

given by 

Yeý cosuy (p)= j dµ -ia exp(vz + ivz) 
0 µ-v 

Y ý 

`Yo(p)=- ý° =jý µ sýdµ-mºexp(vz+ivz) 
o -v 

cos2rne v cos(2m-1)e (M =1,2,... ) (p) = 
r2m 

+ 2m-1 r2m-1 
0 'Dm sin(2m+1)8 v sin2mO `ý'ý(P) ý, = 

r2+e+l 
+ 

2m r2m 
(M =1,2,... ) 

(4.5. lb) 

with a. and b, � chosen such that the imaginary parts of a. and b. are positive. If M and N are 

sufficiently large, Ursell proved that the two-dimensional Green function integral equations 
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(4.2.3b) and (4.2.4) are free of irregular frequency. A modified Green function form for finite 

water depth is also derived by Ursell (1981). 

4.5.2. Modified three-dimensional Green function 

Analogous to Ursell's two-dimensional theory outlined in §4.5.1, a possible modified three- 

dimensional Green function may be written as 

MNL 
Gt(P, Q)=Go(P, Q)+ý, am Mm(P)4m(Q)+Fbm IFm(P)'Pm(Q)+Y. cm Q (P)Qm(Q)(4.5.2a) 

M=0 m=0 m=0 

where G0(P, Q) is the ordinary three-dimensional Green function given by Equation (3.2.2). 

The multipoles c, �, IPm and Om may have the forms: 

(1) Wave source: 'P0(P) = Go (P, Q ); 

(2) X-direction dipole: ̀ Yo (P) =- ax (DO' 

(3) Y-direction dipole: 00(P) =- 0o; 

(4) Symmetrical multipoles: 

0. (P) 
P2m(11) 

_v 
P2m-l(µ) 

r2m+t 2m r2,,, 
(M =1,2,... ); 

(5) Anti-symmetrical multipoles: 

'Fm (P )x-a 
-1 

®m(p) ° y-b r2ni+2 2m 
V C(ý)Pý-i(Ft)+ rP 

2m2m+1 p2, �() 
zc P'2, ý(ý) r` 

where Q (a, b, c) =Q (a, b, 0)E D is a point on the interior free-surface. P. is the Legendre 

function. M. N and L are chosen sufficiently large and the imaginary parts of a., bm and c. 

are positive. r= 
I(x-, 

a )2 + (y -b )2 + (z -c)2 and µ= (z - c)lr. 
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An equivalent expression for finite water depth is possible if the multipoles take the forms 

given by Thorne (1953). 

4.53. A multiple Green function 

Two-dimensional hydrodynamic computation programs are the routine tools used in sea- 

keeping (or further, structural) analysis of ships and a wide range of offshore structures such as 

semi-submersibles. In particular, a recent development in both naval research and commercial use 

is focused on SWATH ships and catamarans (§9.3). Development of a more sophisticated two- 

dimensional method free of mathematical failures for twin- and multi-hulled marine structures 

becomes an urgent task. 

4.5.3a. Formulation 

By extending Ogilvie and Shin's asymmetric Green function form (1978), a procedure has 

been proposed to derive a multiple Green function expression (Appendix 4.2). The new formula is 

given by 

N- 
G*(p, g, pl, P2, ..., PN)=Go(P, g)+ , 

G(P, q, pj) 
i=l 

(4.5.3a) 

where G0(p, q) is again the basic two-dimensional Green function, whilst G(p, q, pj) is the addi- 

tional Green function written as 

aG 'r1-ý'i aG l1 ý'i 6(p, 
q, Pi)=exp(v4-i vl'n-YiI) Cil s8n(y1-Yi) ýI +Ci2 0I (4.5.3b) 

oin ýý aý 4=0 

The integer N relates to the multi-hull body with N separate free-surface piercing hulls. pj(yj. 0) 

is located on the interior free-surface of the jth sub-hull. That is, for a mono-hull, N=1; for a 

twin-hull (or two mono-hull system), N-2; and for a four-hulled body (or four monohuU sys- 
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tem), N=4; and so on. 

Details of the theory, derivation and reasoning are given in Appendix 4.2. 

4.5.3b Examples 

Around an irregular frequency, the mathematical formulation of the Green function integral 

equation becomes ill-conditioned and erroneous solutions are obtained. In particular, abrupt 

changes with unrealistic values are found in the resultant added mass, damping coefficients and 

wave exciting forces (Appendix 4.1). 

In addition to the application of the multiple Green function in effectively eliminating irreg- 

ular frequency effects in the analysis of a rectangular section shown in Appendix 4.2, another 

three examples, i. e. a circular, a triangular and a caisson section, are presented in Figures 4.5.1-3 

respectively. In these mono-hull examples, again, abrupt variations associated with irregular fre- 

quencies in sway, heave and roll added mass and damping coefficients are removed by the present 

method. These confirm the validity of the present technique in solving the irregular frequency 

problem associated with mono-hull sections. 

Moreover, the present formula is also capable of removing irregular frequency effects from 

the analysis of twin-hulls (or two body systems). Two examples are already displyed in Appendix 

4.2 for a twin rectangular section, and a two-hull section consisting of a rectangle and a triangle. 

Here, a set of computational data is shown in Figures 4.5.4a, b, for a twin rectangular hull at 15° 

of heel angle. It can be seen from Figure 4.5.4a that, by an ordinary Green function method, 

abrupt changes appear in the resultant added mass and damping coefficients with unrealistic nega- 

five damping values. When the multiple Green function formulation is used, however, the abrupt 

variations with negative damping values disappear, whilst the rapid changes due to resonant 

waves between the two sub-hulls remain. According to Wu and Price's formulae (1986f) of 
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resonant waves for various marine structures, the first wave resonance occur at around 

08 /2g = 7r/2 = 1.57, exactly matching the remaining rapid changes in the calculated added mass 

and damping coefficients in Figure 4.5.4b. 

The final examination involves the floating four circular structure shown in Figures 4.5.5a, b 

and c. This consists of four circular cylinders of radius a=1.0m, with a central line distance 

between adjacent cylinders of 3.0m. The results derived using the basic Green function are 

shown in Figure 4.5.5a, whilst those produced by the present multiple Green function technique 

are given in Figure 4.5.5b. In Figure 4.5.5a, a mathematical failure occurs in the ordinary method 

analysis at frequency w2B 12g = 1.87, but this is eliminated by the present modified mathematical 

model. In Figure 4.5.5c, the results of both methods are presented together. This shows that the 

predictions derived by the two theories agree very well except in the vicinity of the irregular fre- 

quency. 

From these studies and several more practical applications carried out though not described 

here, it may be concluded that: 

(1) The present method calculation coincides with the original integral equation method results 

at the frequencies below the first irregular frequency. 

(2) The multiple Green function method removes irregular frequencies from the calculations 

associated with mono-, twin-, and multi-hulled ship or offshore structure sections. 

In short, the proposed multiple Green function method is efficient and effective. 

t6. The Interior Integral Equation Solution 

In analysing hydrodynamic characteristics of ships and offshore strictures by a singularity 
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distribution technique, without exception, the surface integral equation, i. e. Equation (4.1.3b) or 

(4.2.3b) (or the related source distribution form, Equation (4.1.4) or (4.2.4)) is used to obtain the 

wave velocity potential (or source strength) solution. Subsequently, the velocity potential at any 

exterior location can be determined by the exterior integral equation, e. g. Equation (4.1.3a) or 

(4.2.3a), from the solution obtained over the body surface. 

In the present work, the feasibility of applying the interior integral equation, i. e. (4.1.3c) or 

(4.2.3c), to solve the boundary value problem representing the wave-structure interaction is exam- 

ined. The theoretical explanation and numerical techniques for the interior integral equation are 

given in Appendix 4.3. 

In Appendix 4.3, two major conclusions are drawn: 

(1) The resultant matrix equation of the interior integral equation retains the diagonal dominant 

feature to the same level as the surface integral one, if all the interior field points are 

arranged close to the body's wetted surface. 

(2) If all the interior field points are located on an artificial interior surface nearly parallel and 

sufficiently close to the body surface, the interior integral equation method results in hydro- 

dynamic data correlating well with those derived from the surface integral approach. 

Two examples are illustrated in Appendix 4.3 including a ship section and a rectangular sec- 

tion. The first example indicates that the interior formulation works and possesses the same irreg- 

ular frequency problem as the surface integral equation. And the second shows that the modified 

Green function proposed in §4.5.3 eliminates the irregular frequency effects associated with an 

interior method as it does in the surface integral technique. 

A range of numerical experiments have been conducted to examine the applicability of the 

proposed method. Of these, three more examples are discussed here. 

70 



A triangular section 

A triangular section of beam B and draft h= B/2 is taken in a series of computational study. 

The interior field points are chosen such that they form an interior triangle of scale reduction fac- 

tor C,. These interior geometric data are produced automatically in the calculation. When 

C, = 1.0, these field points are on the true body surface and the interior integral equation becomes 

identical with the surface integral one. 

Numerical studies range from C, = 0.5 to 1.0 and the calculated data are shown in Figures 

4.6.1 a-d with each compared with the surface integral equation results denoted by C, =1.0. 

Figures 4.6.1a-c show computed sway, heave and roll added mass and damping coefficients 

by the interior integral technique for C, = 0.99,0.9 and 0.8 respectively in comparison with the 

surface integral method data, i. e. C, = 1.0. These demonstrate that except for the abrupt variations 

due to the irregular frequencies, good agreements are observed. 

In Figure 4.6.1d, the interior integral method data for C, = 0.65,0.60,0.55 and 0.5 are 

presented against the surface data indicated by C, = 1.0. The comparison clearly shows that when 

the interior surface is chosen too small, the interior integral formulation produces hydrodynamic 

data greatly deviating from those derived by the surface integral method. 

Similar observations can be found from investigations into various sectional geometries. 

Therefore, it is suggested that the interior surface, where the interior points are located, be chosen 

sufficiently close to the real body surface. 

A rectangular box 

For a rectangular box of length B, beam B and draft h= B/2, computations are carried out 

using both the interior and the surface integral equation methods with C. - 0.965 and 1.0, respec- 

tively. As can be seen from Figure 4.6.2, the calculated sway and heave added mass coefficients 

are again in reasonable agreement. 
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Figure 4.6.2. Comparison of the sway and heave added mass and 
damping coefficients calculated by the surface 
and the interior integral equation. 
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S. SOLUTION APPROXIMATION TO HORIZONTAL PLANE MOTIONS 

5.1. Introduction 

Due to the sophisticated theories developed by theoreticians and with the help of modem 

computers, more and more complicated mathematical formulations and related computer pack- 

ages are used nowadays for the predictions of wave loads and motion responses of offshore struc- 

tures and unconventional vessels. Such rapid advances bring great advantages but they may also 

conceal dangers, since some researchers and analysts rely too much on mathematics and forget, 

partly or wholely, the physical 'feel' of the problem under investigation. With a little insight into 

the physical nature of the phenomenon, some confused theoretical predictions puzzling theoretical 

researchers might be clearly explained and some so-called rigorous approaches appear superfluous 

and can therefore be substituted by much simpler ones. 

As discussed in § 1.2, two important organised international investigations into the numeri- 

cal evaluation of motions and wave forces of a semi-submersible (Takagi et al 1985) and a TLP 

(Eatock Taylor and Jefferys 1986) showed that although significant discrepancies were observed 

in the predictions of vertical plane modes, i. e. heave, roll and pitch, numerical results for the hor- 

izontal plane modes including surge, sway and yaw displayed good mutual agreement. 

The reported discrepancies in the vertical plane modes indicate a large scattering of the 

predicted data of radiation and diffraction wave forces. This should occur not only in the vertical 

plane but also in the horizontal plane since both are solved by an identical mathematical process. 

Hence, the achieved reasonable correlation in the horizontal plane motions can only arise because 

of the negligible contributions from the total of the radiation and diffraction forces compared with 

the Froude-Krylov forces. Previously, Wu and Price(1986a) realised this possibility and intui- 

tively set up an assumption that both the radiation and diffraction forces in the horizontal plane 
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modes can be ignored for certain types of marine structures. Based on this hypothesis, very rea- 

sonable approximations for the horizontal plane motions of shallow draft structures are obtained 

though originally no full theoretical proof was given. 

This Chapter provides a theoretical basis and physical reasoning of the phenomenon occur- 

ring in the horizontal modes of motion of long bodies of full sectional shape or shallow draft 

structures. This is of significance since the main floaters of many large offshore structures and 

service vessels likely fall into these two groups of geometries. On the basis of order estimates, 

approximate solutions to the horizontal plane motions of these structures can be derived and are 

further verified by comparison with experimental data or more sophisticated theoretical results. 

These solutions are applicable in the preliminary design stages of vessels. Details of this theoreti- 

cal study are described in Appendix 5 and here only the major points and conclusions are out- 

lined. 

5.2. Brief Description of the Work 

The marine structures under consideration are restricted to full shaped bodies of slender 

and/or shallow draft geometric feature. A full shaped body is one having a full midsection form 

and a large vertical prismatic coefficient. Namely, C, � =Aml(Bh) is nearly unity and 

Cr,, =V /(A,, h) tends to 1.0. Here A. and A,, are the midship section and the waterplane area. B 

is the beam. h is the draft. V represents the body displacement volume. 

Within Appendix 5, §3 deals with floating slender bodies, §4 treats submerged slender 

structures, §5 includes a discussion of two-dimensional shallow draft bodies and §6 involves full 

three-dimensional shallow draft structures. 

87 



5.2.1. Slender bodies (§3.4, Appendix 5) 

A slender body is characterised by a slenderness parameter e=B IL, 

h IL =0 (c) and n0 (c) as listed in Table 1 of Appendix 5. Corresponding to wave length 

LA=0 (1), estimated orders of various force components are listed in Tables 2 and 3 (Appendix 

5). From the order analysis, the following conclusion can be drawn: 

(1) In the surge motion, the radiation and diffraction forces (FN andF 7) are higher order small 

quantities compared to the Froude-Krylov force (F° ), which therefore dominates the surge 

response. 

(2) In the sway and yaw modes, the radiation and diffraction forces (FN and F j7 for j=2,6) are 

of the same order in magnitude to the Froude-Krylov forces (F°, j=2,6) but their combina- 

tions, i. e. FB =Fj+ F7, j=2,6, are of 0 (e) smaller than the latter. Therefore, in the sway 

and yaw response predictions, by ignoring the former two contributions (i. e. FB) leads to an 

error of 0 (c) only. 

5.2.2. Three-Dimensional Shallow Draft Bodies (*6, Appendix 5) 

The shallow draft feature of a body is denoted by the small parameter e=h /B and also 

h /L =O (8). Orders of geometric dimensions are displayed in Table 7 (Appendix 5). Based on 

wave length L /). =O (1), the derived orders of individual force components are given in Table 8 

of the Appendix. Resultant order estimates show clearly that for all the three horizontal motions 

the radiation and diffraction forces are of order E2 and are respectively O (e) higher than the rela- 

tive Froude-Krylov forces of O (e). Hence, to the first order approximation, the surge, sway and 

yaw responses can be rationally predicted by inclusion merely of the Froude-Krylov force contri- 

butions. 

88 



5.2.3. Two-Dimensional Shallow Draft Bodies (§5, Appendix 5) 

A combination of the slenderness and shallow draft features of the vessel makes the main 

body dimensions of orders h /B =O (e), B IL = E and h IL =O (c2), see Tables 4,5 of Appendix 5. 

With assumed wave length LA=O (1), the orders of magnitudes of various forces on such a 

body can be estimated as displayed in Table 6 of the Appendix. Now the sum of the radiation and 

diffraction forces for each horizontal plane mode is aO (c22) higher small quantity than the 

Froude-Krylov force. Thus more accurate horizontal motion predictions can be expected, correct 

to O (e22), by neglecting both the radiation and diffraction force contributions in the case of a 

slender shallow draft body. 

These discussions lead to a conclusion that as a marine structure possesses slenderness and 

shallow draft, the surge, sway and yaw motions can be reasonably approximated by considering 

only the Froude-Krylov forces, and the error in the motion predictions are generally O (c) or 

0(62). 

According to this approximation theory, analytical formulae describing the surge, sway and 

yaw responses are derived for marine structures of simple geometry i. e. rectangular barges, circu- 

lar or elliptical docks and triangular jack-up rig platform, etc. 

Besides the theoretical proof, numerical data provided by the present theory for horizontal 

motions of rectangular barges, a circular dock and a triangular platform are illustrated together 

with other available data. These show satisfactory correlation with existing experimental results 

and data derived from full three-dimensional analyses not only in long wave lengths as initially 

imposed in the theory but also in shorter waves (§7, Appendix 5). 
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5.3. Practical Importance 

The following points of practical importance may be deduced from this investigation: 

(1) This work validates the negligibility of the radiation and diffraction forces in surge motion 

predictions of slender and/or shallow draft bodies. 

(2) This analysis reveals the mutual cancellation phenomenon between the radiation and 

diffraction force components in sway and yaw modes of a long marine structure of full 

shaped sectional geometry. 

(3) The above two findings provide an explanation to the observed good agreement of horizon- 

tal motion data from the different sources included in the international investigations as dis- 

cussed in §5.1, despite the severe deviations existing in the vertical plane motions. 

(4) An approximation theory for the horizontal motions is established similar to the Froude- 

Krylov hypothesis (§ 1.1.4) and is proved correct to 0 (c) for slender or shallow draft bodies, 

or to 0 (e2) for slender shallow draft structures. 

(5) High computational economy and prediction accuracy comparable to much more compli- 

cated approaches may make this approximation theory of more practical use in preliminary 

design stages. 
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6. A NEW SHALLOW DRAFT THEORY 

6.1. Introduction 

Because a large group of offshore structures and service vessels can be classified as shallow 

draft bodies, theories to tackle this type of marine structure have been proposed. As discussed in 

the introductory part and illustrated in Figure 1 of Appendix 6, the original development work 

was done by MacCamy (1961) and Kim (1963), and extended by Maeda (1981), to deal with flat 

plates only. The weakness of the idealised model in application is obvious, since the real shallow 

draft structures are of finite draft rather than of zero value, and they experience six modes of 

motion (as far as rigid body is concerned) rather than only the three vertical plane motions. 

To achieve further improvement on the shallow draft theory, Wu and Price (1986a, d) sug- 

gested a self-consistent shallow draft method capable of predicting the six degrees of motion as 

well as including the effect of finite draft. Their assumptions can be summarised as follows: 

(1) In determining the surge, sway and yaw motions, both the radiation and diffraction forces 

can be ignored. 

(2) The finite draft effect on the wave exciting forces in heave, roll and pitch is taken into 

account by a factor of exp (-kh), where k denotes the wave number and h draft of the body. 

This more or less heuristic theory in both the two- and three-dimensional versions has been 

successfully applied to various realistic marine structures, including barges, docks, offshore plat- 

forms and a semi-submersible in transit (Appendix 6). This effective approach, however, has not 

been fully theoretically justified. 

In the discussion of §5 and Appendix 5, it was concluded that for a shallow draft body the 

errors introduced in surge, sway and yaw motion predictions are of higher order small quantities 

due to the neglect of both the radiation and diffraction forces. This goes the same way to justify 
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the first assumption as stated above. 

To complement the work presented in Appendix 6, a perturbation procedure is adopted, 

which enables the present theory to be formulated more rigorously. To avoid tedious mathemati- 

cal derivation, which is of less interest to naval architects and offshore engineers, mathematical 

descriptions are given only where thought necessary. 

6.2. Special Case: a Flat Plate 

Consider an idealised flat plate, i. e. a structure of zero draft (h = 0) and of flat surface S, r 

coincident with its waterplane area or projective area on the free surface, So. There exist the 

results that 

DG 
___ 

aG 
_kG (P, Q) onS° (z=0) an az 

lirnýtt an -j aa ( r+ 
)asý = an 

ý4 Q, ý-40 

Hence, the integral equation (4.1.3b) reduces to 

4, t ýj(Po)+k f ýj(Qo)G(Po, Qo)dS=-JVnj(Qo)G(Po, Qo)dS Po, QoE So 
S. S. 

- j(unj j =1,2,..., 6 
V�j akjan j=7 

(6.2.1) 

Here the Green function G(Po, QO) is given by the shallow draft Green function (3.2.6) for 

deep water or (3.1.6) for finite water depth. Apparently, over the fiat surface, nj =0 for j =1,2,6 

and therefore potential solutions for these three horizontal modes are all zero. 

The integral equation (6.2.1) with the Green function expression (3.2.6) forms the deep 

water flat plate theory of Kim (1963), whilst with expression (3.1.6) represents the flat plate 

theory of Maeda (1981) for finite water depth. The following discussion shows how the finite 
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draft can be included in the mathematical model and approximations given for the three horizon- 

tal motions. 

6.3. Shallow Draft Perturbation 

For a three-dimensional shallow draft body of length L, beam B and draft h, the shallow 

draft characteristic is given by a parameter e= kh aI, and 

h /L =0 (E), h /B =0 (E), h IA, =0 (E), 

nl =0(E), n2 =0(E), n3 =0(1). 

The mean wetted surface S�, is assumed expressible by 

=ES(x, y)so (6.3.1) 
and its projected area on the mean free-surface is denoted by So. 

The velocity potential solution satisfying the boundary value problem (4.3.1) is assumed 

expandable with respect to order E, i. e. the same as the other physical and geometrical quantities. 

That is 

r 
0; ̂)(x, y, z)E" forP(x, y, z)E D 

n=O 
On the body surface S, ,a Taylor series expansion gives 

m-1 
am4 ; "'(x, y, o) e; (x, y, z)=eý(x, y, £s(x, y))= EE [s(x, y)lm £n+m ý 

nýmm0111! 
azm 

(6.3.2a) 

(6.3.2b) 

ýf eo(x, Y, 0) 
8° =i 

k»" [S (x, y)]" B (x, Y) ý" (6.3.2C) an 
n=o 

an 
nao n! A° 

r 

ni = Y, n, (») (x, y, 0) e' 
ea0 

and so on. Here A=1 
4+ 

e2 [( )2 +( )21, and for deep water ax ay 

(6.3.2d) 
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B0(z, y) _- 
lgý 

exp[ik(x cosß +y sing)] [- 1+ iE(ý cosß + 
äy 

sing)]. 

The resultant perturbation potential 4, ý"0(x, y, z) (n = 0,1,... ) satisfies the equations 

V2 O"I(x, y, z) =0 in D 

(a- k) ýý"ý(x, y, z) =0 on z=0 (off the body) 
VL 

ý Oýn)(X, y, Z) =U on the seabed 

a -it, un(") A 
- 

z0(x, 
y, 0)=(x, y, 0)+ 

1 
a$o(x, y, 0)](n)A 

an 

a 
(6.3.3b) 

c 

on z=0 (on the body) (6.3.3d) 

Rimitý [ä oý")(x, y, z) -ik 0ý")(x, y, z)] =0 (6.3.3e) 

with 

v; °)(X, y, 0) =o 
výi)(x, y, 0) =- (S a+ as a)e; o>(x, y, 0) +s (x, y) 

azý; °'(x, y. 0) äxax ayay az 
V (">(x, y, 0) _-[ 

e' an ' 0) 
]cn> _ý eý">(x, y, 0) 

(ni°), nT>, nT>)= (0,0, -1)/A 

(-LS, ,, ' 0)/A 

0 for ik2 

(nV), ný), n? )) (-(y Yc), x xc, 0)/A 

(nV ), nV), nW)) (ZG Y, 
-ZG c, 

(Xxc) 
as 

- (Y Yc) 
as )/A 

SK, S 
LS 

, 0)/A 

(n), nV), n9))=(0,0,0) fori Z3 

Equations (6.3.3) define a set of perturbed linear potential problems and therefore, each 

individual order of the velocity potential (n = 0,1,... ) may be solved by the integral equation 

below: 
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41týj)(Po)+kJOj")(Qo)G(Po, Qo)dS=-j- 
*Q(Qo)G(PoiQo)dS 

Po, QoESo 
S. S. 

(6.3.4) 

6.4. First approximation 

To a first approximation, only 0, °) needs to be solved. That is, 

4J[Oj0)(Po)+kJ$j0)(Q0)G(Po, Qo)dS =-f - 
ý$j°)(Qo)G(Po, 

Qo)dS Po, QoESo 

(6.4.1) 
This is identical with the flat plate theory of §6.2. 

From the perturbed normal components of the body given by Equation (6.3.3), it shows that 

ä` 
Oý°)(x, y, 0) m0 for j=1,2,6 

resulting in 

ý, (°V, y, 0) _- 0 for j =1,2,6 

Consequently, the zero order radiation forces are equal to zero for the surge, sway and yaw 

modes. According to the Haskind relationship, the zero order for the diffraction forces for these 

three horizontal modes should also have zero values. Since the zero order component of the 

incident potential 4o is non-zero, the relevant Froude-Krylov forces, as well as the inertia forces, 

become dominant in the predictions of the surge, sway and yaw motion responses. The resultant 

orders of magnitudes of the various forces are exactly the same as those listed in Table 8 of 

Appendix 5. 

Therefore, from the perturbation procedure based on the shallow draft of a three- 

dimensional body, it can also be concluded: 

In surge, sway and yaw motion predictions, when both the radiation and diffraction forces 

are ignored, errors of order e are introduced into the mathematical model. 
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This proves assumption one adopted by Wu and Price (§6.1). 

6.5. Solutions of Order e 

In addition to the first approximation formulation given by Equation (6.4.1) the integral 

equation with respect to 0 (E) may be written as follows: 

41[ O, l)(Po) +k f0, ')(Qo) G(Po, Qo) dS =- 
f I�j G(Po, Qo) dS Pv, Qo E So 

S. S. 

with 

111j = 

icoas forj=1 

-iuuas for j=2 

-iw[(x xGý - (Y Yc)ax] for j=6 

Vil1 ) (x, y, 0) for j=3 

Vi'1ý(x, y, 0)-i0 (zG) aC)yS forj=4 

Vj'1)(x, y, 0) -i au (-z c) 
S for) =5 

l� 
4o(x, y, 0) "v v, (x, y, 0) -[ an 

]A for j= 7 

(6.5.1) 

Adding these order £ solutions to the zero order ones of Equation (6.4.1), all the radiation 

and diffraction potentials can be derived with error of 0 (e2), i. e. 

"; = 4j(°) (x, y, O) +eQ; '»(x, y, O) +O (e2) for j =1,2, ..., 7 (6.5.2) 
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6.6. Finite Draft Correction 

It can be seen that, for a three-dimensional shallow draft structure, Equation (6.5.2) together 

with integral equations (6.4.1) and (6.5.1) can be used to achieve motion and force predictions up 

to error 0 (E2). 

From a practical point of view, however, it is not convenient to solve Equation (6.5.1) 

related to order E. Instead, a rational finite draft correction can be derived at least for a shallow 

draft body of a large flat bottom area. At first, only the diffraction potential is treated. In Equa- 

tion (6.5.1) for j=7, a simplification can be introduced by ignoring the first term V(. t) on the right 

hand of 1�j (j = 7), i. e. assuming 

In 7= -I 
a 

ýv(x, y, 0)](')A. 

Under this assumption, the combined diffraction potential of Equation (6.5.2) is now depen- 

dent upon a combined body boundary condition given as: 

v�, -(1 - kh>[ 
aoo(x, 

y, 0)](0) =-e. Yp (-kh)[ 
a 

ýo(X, y, 0)](0) an an an (6.6.1) 

The combined potential is now solvable by the combination of integral equations (6.4.1) 

and (6.5.1). That is, 

41c$7(Po) + kjOi(Qo) G(Pv, Qo) dS =- J Vn7 G(Po, Qo) dS Po, Qo E So (6.6.2) S. S. 

This confirms the second assumption by Wu and Price as stated in §6.1 and used in 

Appendix 6. 

The rationality of the proposed draft correction can also be verified by the form of the inner 

region solution which is explained as follows. 

In the inner region close to the body surface, there exist: 
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ax 
=0 (E), 

*=°' 
and aZ =0 (1) 

and therefore, the Laplace equation governing the diffraction potential in the inner region may be 

approximated by 

aZ2 

ý..... 
ý7(x, y, s) =U (6.6.3) 

This sheds light on the possible solution in the near field. An approximation solution satis- 

fying Equation (6.6.3) and the free surface condition (6.3.3) in the inner region may be written in 

the form: 

p (x, Y, z) _ (1 + kz) ýii°'(x, Y, 0) (6.6.4) 

where 4$°)(x, y, 0) is the first approximation solution from the integral equation (6.4.1). 

For a shallow draft structure of large flat bottom surface (other than curved one) of draft h, 

the diffraction solution on the flat bottom surface may be constructed as 

07(x, y, z) = exp (-kh) 4T)(x, y, 0) +O (e`) (6.6.5) 

This derived formula is identical to expression (6.6.1). Therefore, from the point of view of 

the inner region solution, integral equation (6.6.2) together with the body boundary condition 

(6.6.1) represents a suitable approximation to the diffraction problem of a three-dimensional shal- 

low draft structure. 

V. Practical Procedure 

In §6.6, a simple small draft correction is derived for the diffraction potential solution. 

However, the draft correction factor becomes more complicated as far as radiation potentials are 

concerned. Instead of finding directly a correction term, use can be made of the energy relation- 

ship between the wave exciting force and the related damping coefficient. From the energy rela- 
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tionship (see Newman 1978), there exists 

2a 
B11 

8n 
k 

vg 
f IF, (ß)I2 d9 (6.7.1) 

Pg o 

where Vg = co/2k in deep water and ß is the heading angle of the incident wave as defined previ- 

ously. 

From §6.6 it can be seen that 

07 = exp (-kh) $i°)(x, Y, 0) (6.7.2) 

and the resultant wave exciting force 

Fj = exp (-kh) F°) for j=3,4,5 (6.7.3) 

Substitute Equation (6.7.3) into Equation (6.7.1) it is resulted that 

B1 = exp(-2kh) B, ý°) for) = 3,4,5 (6.7.4) 

That is, the finite draft correction to the damping coefficients of heave, roll and pitch take the 

form of exp(-2kh). In other words, when the shallow draft correction is considered, the heave, 

roll and pitch damping values equal those from the zero draft solution (6.4.1) (or (6.2.1)) multi- 

plied by a factor exp(-2kh). 

When the damping coefficient becomes known, the relative added mass can be calculated 

from the Kramer-Kronig relation: 

A "k - Aýk"(ý) -? PV 
f Bik(µ) - Bik(°°) 

dE= ý- J 
JC 092- WZ 

(6.7.5) 

The above derivations complete the shallow draft solution with draft correction. But the last 

formula is not applicable because it needs the damping data over a very wide range of frequency. 

Therefore, it introduces excessive demands on computational effort and this offsets the major gain 

due to the shallow draft approximation. In the computer code of the present shallow draft theory, 

the added mass coefficients are simply set equal to those from the zero draft formulation. This is 
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accurate for the heave motion and may be acceptable for roll and pitch modes. Further reasoning 

will be presented in §6.8. 

6.8. Two-Dimensional Shallow Draft Body 

For an elongated shallow draft body, as discussed in §5 of Appendix 5, its main dimensions 

can be characterised in orders of magnitude by (Table 4, Appendix 5) 

kh =E =E2, kB =O(E), kL =O(1), 

nI =0(E2), n2 =0(e), n3 =0(1), and Sw =0(e). 

The mean wetted surface S�, is assumed of the form 

z= E2 S (x, y) 

The perturbation procedure is rather similar to those described in §6.2-7. Similar conclu- 

sions and the same finite draft correction factors are derived. Therefore, no theoretical derivations 

will be performed or included here for the two-dimensional shallow draft structure. 

6.8.1. Major conclusions 

(1) Surge, sway and yaw motions: Based on the perturbation analysis, order estimates given 

in Table 6, Appendix 5, are confirmed. Hence, in surge, sway and yaw motion predictions, 

ignoring both the radiation and diffraction forces leads to a small error of order E2. 

(2) Shallow draft correction: In deep water, with the finite draft correction the diffraction 

forces in heave, roll and pitch are those for the related zero draft line times a factor exp(-kh), 

but multiplied by exp(-2kh) when wave damping coefficients are concerned. Similarly, a 

draft correction factor of 
sinh 

cosh 
[k(d - 

(kd) 
h )l 

may be appropriate when the sea is of finite water 
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depth of order kd =0 (1). 

(3) Zero draft formula: The integral equation for a zero draft line (MacCamy 1961) can be 

written as 

2xoj(po)-kj$j(4o)G(po, 4o)dl =J vnj G(po, 4o)dl forpo, Qo e Co on z=U (6.8.1) 
C. C. 

v^1 = 

I 

-iwnj j=3,4 
aoocgo) j=7 

an 

where the two-dimensional shallow draft Green function is given by Equation (3.4.3) in 

deep water or Equation (31) (Wu 1986) in finite water depth. Calculated radiation and 

diffraction forces, based on the radiation and diffraction potential solutions from the above 

zero draft integral equation, are corrected by draft factors as stated in (2). 

(4) The principle of similarity: Since any two flat lines lying on the free-surface are geometri- 

cally similar, stored non-dimensional hydrodynamic data for a unit straight line on the free- 

surface can be used for any flat line of arbitrary length. By multiplying with the draft 

correction factor, the standard data set is capable of producing hydrodynamic coefficients 

for any two-dimensional section of a shallow draft feature. This finding may be called the 

principle of similarity of a two-dimensional shallow draft section. In graphic presentation, 

such a set of standard non-dimensional data for a flat line is given in Figure 6.8.1. 

6.8.2. Comparison of three rectangular sections 

Numerical formulation and treatment have been described in Appendix 6 for the three- 

dimensional shallow draft body and these are much simpler for two-dimensional cases. In the 

present study, using both the ordinary and shallow draft methods, three rectangular sections are 

investigated, involving three different draft values, i. e. h/B = 0,1/20, and 1/10. 

101 



For the zero draft case, the two-dimensional shallow draft program based on Equation 

(6.8.1) is used, whilst for the two non-zero draft cases, calculations are based on the two- 

dimensional formulation (4.2.3b). Resultant heave and roll exciting forces and phases, added 

mass and damping coefficients are given in Figures 6.8.2-3. 

In Figure 6.8.2, the wave exciting forces for heave and roll modes are also estimated by the 

values for the zero draft line times the shallow draft correction factor exp(-kh), as suggested by 

the present shallow draft theory. Such estimates appear in reasonable agreement with the force 

data derived from the ordinary two-dimensional approach. 

For the heave and roll damping coefficients, as shown in Figure 6.8.3, the resultant data 

from the zero draft values multiplied by the draft correction factor exp(-2kh) seem to give reason- 

able approximations. As far as heave added mass is concerned, the change in the small draft 

value has very little impact on their predictions and therefore no draft correction may be needed 

for the prediction of the heave added mass coefficients by the shallow draft theory. But devia- 

tions are observed for the roll added mass coefficients among these three small draft structures. 

This is because the side wall, which is ignored in the shallow draft theory, has an influence on the 

roll added mass (but obviously much less influence on the heave). Nevertheless, example compu- 

tätions for various shallow draft structures have shown that even for the roll motion, predictions 

by the present shallow draft method correlate well with experimental data and results from more 

complicated theories. 

6.9. Example Studies 

Various numerical applications of the present shallow draft theory to realistic offshore struc- 

Lures and service vessels have been conducted and very promising results have been achieved so 
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far. These include: 

(1) A rectangular jack-up rig in transit (Figures 4 and 5, Appendix 6); 

(2) A triangular platform (Figures 10-12, Appendix 6); 

(3) Rectangular barge models (2.4x0.8x0.105m and 3. Ox0.75x0.015m respectively) (Figures 6- 

8, Appendix 6); 

(4) A circular dock (Figure 9, Appendix 6); and 

(5) A semi-submersible in transit (Figures 13-14, Appendix 6). 

Detailed discussions can be found in §7 of Appendix 6 and will not be repeated here. 

In addition to these three-dimensional example calculations, applications of the present 

two-dimensional shallow draft version are now described. These involve a long drydock and a 

rectangular barge. 

A drydock 

The configuration of a drydock in marine operation is shown in Figure 6.9.1a and its under- 

water portion is illustrated in Figure 6.9.1b. The major dimensions of the dock are such that: 

L/B=4.8, B/h=20, L/Bi=1.9, L/B2=1.4andL/1=7.6. 

The centre of gravity is at G(-3.3h, 0,0.8h) and the radii of gyration are K=0.43B and 

Kyy = 0.33L. 

By means of the two-dimensional shallow draft theory, calculations for this drydock were 

performed at wave heading angles 0,45,90,135 and 180 degrees for wave lengths within the 

range 0.35 S AlL : 5.3.0. 

Predicted heave, roll and pitch motion amplitudes are given in Figures 6.9. lc-e. These again 

were found to have the same degree of correlation with measured model testing data. 
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A rectangular barge 

A rectangular barge model of length L=3.0m, beam B=0.75m and draft h=0.0159m has 

been used by Nojiri (1981) and both the experimental and theoretical data are available. Since 

L/B = 4.0, the two-dimensional shallow draft theory of §6.8 can be applied to derive the motion 

response data. 

According to conclusion (1) of §6.8.1, the surge, sway and yaw motions can be reasonably 

approximated when both the radiation and diffraction forces are neglected. Moreover, the barge is 

of rectangular shape and the analytical formulae, i. e. Equations (36) and (37), derived in Appen- 

dix 5 are applicable. The predicted surge, sway and yaw responses are presented in Figures 

6.9.2a, b and f. As can be clearly seen, good agreement exists between the present predictions and 

those reported by Nojiri. 

In the computation of the heave, roll and pitch motions, the zero draft formulation is used 

together with the finite draft correction factor exp(-kh). The integral equation is solved over a 

straight line of length B=0.75m. The very simple and well defined shape of the integral domain 

enables a much smaller number of discrete elements to be used to describe the contour. In fact, 

only half of the line contour is required in the calculation, which is further subdivided into 5 line 

elements of equal length. Figures 6.9.2c-e includes illustrations of the computed heave responses 

in beam and head seas, the roll response in beam and bow seas and the pitch response in head 

seas. 

All the information displayed in Figure 6.9.2 further confirms the validity and acceptance of 

the present shallow draft approach, providing results with an accuracy similar to those derived 

from more elaborate ordinary three-dimensional theories, but at a fraction of the computing effort. 
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Figure 6.8.1. Non-dimensional heave and roll added mass and damping 
coefficients of a straight line contour on z-0 with beam B. 
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Figure 6.9.1a. 
Configuration of a drydock. 

Figure 6.9.1b. 
Underwater portion of the drydock. 

a/L 

0.3 0.4 0.5 1.0 1.5 2.0 2.5 
aiL 

a. o 

Figure 6.9.1c. Heave amplitude operator of the drydock in head, bow, beam, 
quartering and following seas predicted by the present 
shallow draft method. 
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Figure 6.9.1d. Roll amplitude operator of the drydock in bow, beam and 
quartering seas by the present shallow draft method. 
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Figure 6.9.1e. Pitch amplitude operator of the drydock in head, bow, beam, 

quartering and following seas predicted by the present 
shallow draft method. 
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7. A HYBRID THREE-DIMENSIONAL STRIP METHOD 

7.1. Introduction 

The development of three-dimensional wave-structure interaction analyses commenced 

forty years ago or more. Namely, the theoretical establishment of the method in the late 1940s 

and early 50s (e. g. John 1950); the early stage applications to simple geometries (e. g. Kim 1963, 

1965); the development of basic numerical concepts in the 1960s (Hess and Smith 1964); detailed 

numerical procedures and applications to arbitrary body geometries in the 1970s (Garrison et al 

1970, Garrison 1978). The 1980s saw great improvements in the numerical evaluation of the 

Green function (e. g. Telsle and Noblesse 1986). 

Before a three-dimensional model can be used in a design process, the remaining major 

problem to be overcome is the difficulty in deriving solutions since this can require an enormous 

amount of CPU time to solve the matrix equations involving large matrices. In particular, when 

the structural configuration of the body is complicated, for example, with shape variations around 

the bow and the stem or possessing joints at an angle, the time factor appears to be a real big obs- 

tacle to its applications to design analysis and synthesis. 

The computing effort required in the analysis depends mainly on the size of the matrix to 

solve the unknown wave potentials. Suppose N panels are necessary to describe the whole wetted 

surface of the body. If the ratio of the time needed to generate a matrix coefficient to that required 

in an inversion process is "a", the total computing efforts may be roughly estimated by (Yeung 

1981) 

T3D =N2 (N+3 a) 

In a simplified two-dimensional strip method, if a structure is divided into n, sections and 
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the average number of elements at each section is denoted by n, the computing efforts needed for 

this approach is 

T2D=n, sn2(n+3a) 

In terms of these estimate formulae, relative computational efficiency can be examined. For 

instance, a mono-hull marine structure analysed by a two-dimensional strip method with 20 

discretised sections and an average of 18 elements on each section, requires a total computational 

effort of T 2D = 20x182 (18 + 3a). Whilst in a three-dimensional computation of 280 (20x14) 

panels, it needs T3D = 2802 (280 + 3a). These estimates result in 
T 3D 

= 188 provided that the 
2D 

ratio "a" is relatively small owing to the development of more efficient techniques in evaluation of 

the Green function. Although by use of symmetry properties the size of matrix can be reduced, 

the comparative order holds. 

This comparison gives a simple explanation why two-dimensional strip theories are still the 

routine tools used by practical engineers when three-dimensional techniques are so well esta- 

blished. 

The strip method has, however, its own theoretical and practical weaknesses. For example: 

(1) The infinitely long length assumption may lead to accumulative error of longitudinal wave 

loading such as bending moments and shearing forces; 

(2) Ignoring ends effect results in no information for the surge mode and also difficulties in the 

head sea diffraction problem when suitable modified formulations may be required. 

(3) It is not applicable to marine structures of small length to beam ratio. 

To update the routine two-dimensional strip method and to popularise the application of the 

more sophisticated three-dimensional theory, new concept based approaches should be developed 

to gain both the accuracy of the three-dimensional model and the efficiency of the two- 
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dimensional simplification. 

It is most desirable if a theoretical approach possesses the accuracy of a three-dimensional 

theory and the efficiency of a two-dimensional strip method. To reach this target, the geometric 

property of the structure under consideration is of most significance. Many large ships, offshore 

service vessels and the main floaters of offshore platforms have a long parallel midbody portion, 

and their cross-sectional geometries change slowly over the whole length of the body except at 

the bow and the stem, where large curvature or abrupt changes occur in bodily shape. The slowly 

varying sectional geometry implies less variation of the wave potentials over the main body por- 

tion, whilst the sharply shaped bow and stem indicate rapid changes of these quantities. 

Logically, a rational new approach should utilise the midbody portion geometric feature and 

account for the three-dimensional details of the bow and stem regions. To realise this, the con- 

cept of a three-dimensional strip method has been proposed by Wu (1985) to analyse surge forces 

and motions of three-dimensional barges. This idea was further extended by Wu and Price (1986c) 

to include other motion modes. In this chapter, details of the three-dimensional strip technique is 

described. 

7.2. Mathematical Model 

7.2.1. Geometric parameters 

Figure 7.2.1 illustrates the form of a typical structure under discussion. It has a long paral- 

lel midbody S,,,, between coordinates x, 5xS xb, a bow and a stern area Sb and S, respectively, 

each of large curvature. These three portions make up the whole wetted surface of the body 

Sw(--Sin + Sb + S, ). 
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It is assumed that 

£«1 On Sm 

nl 0 (1) On Sb, S, nj =0 (1) on Sm for j=2,3 (7.2.1) 

In addition, all the major dimensions of the body, i. e. the length, beam and draft, are assumed of 

0(1), too. 

7.21. The potential distribution 

Over the slowly varying midbody portion, the velocity potential distribution is assumed 

separable in the form: 

4j(x, y, z)=W1(y, z)Xj(x) for; Sx 5x6 

with X(x) expressible in a polynomial expansion form: 

M 
xjW CJm Xm-I ýE Cim Xm-1 

m=l m=1 

(7.2.2a) 

(7.2.2b) 

where cj. (m =1,2,.. M) denote unknown coefficients dependent on the midbody geometry and 

the form of the hull's extremities. M is an integer number. 

7.23. The integral equation 

Substituting Equation (7.2.2a) into the integral equation (4.1.3b) yields the following three- 

dimensional strip formulation (correct to order e): 

2n Oj(P) -1 Oj(Q) 
a G(P, Q) dS -1 Vºj(g) 

a 
G32(P, q) dl 

s, +s, anQ C. any 

! vhl(Q) G (P, Q) dS -! v, y(g) 44 G3*2 (P, q) dl 
s, +s, C. 

with 
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G32(P, q) xi, 1M srr 1m 

G32(P. Q) "2 
fJ 

x(ý)G(P, Q) gi dg =ý cIm JG(P, Q) 4m+i dg 
, =O x, 

where i=0 for j =1-4, and i=1 for j=5,6. C. is a characteristic sectional contour of Sm. 

7.3. Numerical Formulation 

To solve the three-dimensional strip method equation (7.2.3), numerical techniques are 

required to deal with its discretised version and to evaluate the transformed Green function. 

Suppose M coefficients are needed in expression (7.2.2b), M sections in the midbody S,, are 

necessary to solve all the unknowns. Provided that these chosen sections are located at x=x, � (m 

= 1,2,... , M), there exists the relationship 

Cu (i ý; (X 1"Y, 
Ci2 ýi(xz'y'Z) 

I... I W(Y, z) =T 
Cjm 

and this indicates 

lVXnt, y, z> 

with T= [tmk]mm = 

1xlxi """ xM 

1x2x2 """ xM 

I xM xM ... xmm 

ej(x, Y, z) =Ecim xm-1 iY(Y, z) _SE tmk ej(xk, Y, z) xm-t 
m=1 m=I k=1 

-t 

(7.3.1) 

(7.3.2) 

Therefore, the discretised version of the three-dimensional strip integral equation takes the 

form: 

MM 
2n ýj(P) -fJ,: F, tk Oj(4k, ý) "ý) 

a G, �(P, g) dl 
- jOj(Q) aG (P, Q) dS 

C. k=l m=1 ang S, +s, ang 
(7.3.3) 

=-1 Y, I tkvnj(tk+1j+ý)VGm. W(P, q)dl -! vnj(Q)G(P, Q)dS 
C. k=1 m=l Sb+S. 

wherei=Oforj. 1-4andi=lforj=5,6, and 
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X&, 

Gm(P, 4)= 
rJ ý' G(P, Q)d4 (7.3.3a) 

Here the Green function G(P, OJ is defined by Equation (3.2.2) and efficient approximations, 

in partly or fully polynomial expansion forms, are available (e. g. Newman 1985). Therefore, no 

numerical problems exist in the evaluation of G. of expression (7.3.3a). The following formula- 

tions are given to show how the singularity is treated in the numerical calculation of Gm. 

Integration of 1/r 

z3 

jý= 

Inx+R2 R #O 
1-ý 1 

-x[ +4 
In 

x2 -ý 
+2ay1C R=0, x1 <9<x2 

-In 4-x, R 0,9 > x2, x1 

In 
x2-ý 

R=O, 4<x,, x2 
x, -ý 

xI r 

x= 

! dx 
X 

f xdx =R2-R1+ý 
r xt 

(7.3.4a) 

(7.3.4b) 

Here Rk =r xk .a=0.9945 and the term of 2a`ric is derived by integration of 1/r over a square 

panel. 

Integration of derivatives of 1/r 

jdxxR ý'-xR ý') 
R*0 (7.3.5a) 

xT3 

R21 

jxý` +R 
I X2 

+4 jý 
x, r21, r 

(7.3.5b) 
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X2 

7a(1/r) 
Xý 

an 

n2+(z-ý)n31 
fý R* 0 
X, r 

-2ff1äl R=O, x, <ý<x2 
0 R=O, 4 <x1 or4 >x2 

X2 Ir 
s1 

JaXd =- [(y 1) n2 +(z-ý) n3] J 
r3 

x, 
N 

and so on. Here Al is the elemental length on the contour C.. 

(7.3.5c) 

(7.3.5d) 

Provided that M=3 or 4 is appropriate, the above formulation is rather simple and involves 

unknown wave potentials on the bow, the stern and 3 or 4 selected representative cross-sections. 

7.4. Numerical Examples 

7.4.1. A submerged pontoon 

For a submerged pontoon of length L= 117m, beam B= 45m, draft h= 15m and submer- 

gence H= 15m, two discretisations are used. In the three-dimensional calculation (i. e. Equation 

(4.1.3b)), the pontoon surface in divided into 88 panels in total, whilst in the hybrid three- 

dimensional strip approach (Equation (7.3.3)), only 16 panels are used for the flat bow and stem 

and three representative sections in the midbody portion. The calculated heave and roll hydro- 

dynamic coefficients are illustrated in Figure 7.4.1. It can be seen that the latter calculation corre- 

late well with the experimental evidence of Ohkawa (1980) and are also in good agreement with 

the conventional three-dimensional calculation data. 
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7.4.2. Three rectangular cylinders 

The second example study involves a series of floating rectangular cylinders of beam B= 

40m, draft h= 20m and varying length L= 120,80 and 40m. Three theoretical methods are used, 

including the ordinary two- and three-dimensional methods, based on Equation (4.2.3b) and 

(4.1.3b), and the present hybrid formulation (7.3.3). 

In the three-dimensional computation, the mean wetted surface area is discretised into 136, 

80 and 48 panels, respectively for the three cylinders of different length. When the two- 

dimensional theory is adopted, each cross-sectional contour is divided into 16 elements. For the 

present method calculation, the bow and the stem are each represented by 8 panels only, and the 

midbody by three selected sections. 

Figures 7.4.2 illustrates the computed surge added mass and damping coefficients. 

Apparently, the two-dimensional method fails to produce the surge data. However, the present 

hybrid method results demonstrate its capability and accuracy in the prediction of the surge 

related information. 

For sway, heave and roll motions (Figures 7.4.3-5), deviation exists between the data from 

the two- and the three-dimensional computations, and becomes wider when the body's length to 

beam ratio decreases. Again, the present method results are shown in reasonable agreement with 

those from the three-dimensional calculation. 

This series of study clearly demonstrate that the proposed three-dimensional strip method 

can achieve a similar degree of accuracy to the ordinary three-dimensional technique. 
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7.5. Concluding Remarks 

(1) The slowly varying longitudinal geometry of the midbody of a marine structure implies a 

slow variation of the wave potentials along the midbody length. This geometric property 

can be used to simplify the solution formulation. 

(2) A three-dimensional strip method is derived based on an assumption that the wave potential 

on the parallel midbody has a separable longitudinal distribution function, i. e. Equation 

(7.2.2). 

(3) Consequently, the body wetted surface is represented by three-dimensional panels over the 

bow and the stem areas but by a number of sections over the parallel midbody, which are 

further divided into two-dimensional elements. This reduces the large matrix size as 

required in the three-dimensional calculation into a hybrid three-dimensional strip formula 

of much smaller size. 

(4) Because of the inclusion of the details of the bow and stem regions in the computation, the 

present method is capable of generating surge motion related data, which, however, cannot 

be produced by a two-dimensional strip theory. 

(5) Example studies correlate well with experimental data and the full three-dimensional results 

and show that the hybrid method works even when the length to beam ratio is equal to 

unity. This can be a major merit over the conventional two-dimensional strip theories. 

(6) From computational practice, it is found that three or four sections (i. e. M=3 or 4 in Equa- 

tion(7.3.3)) are sufficient to produce data of reasonable accuracy. When the wave length 

becomes much shorter than the body length, it is necessary to increase the section number. 

(7) Numerical studies covered only structures of long parallel midbody without any sectional 

geometric change. Further investigation should be directed to deal with a body with a small 

midbody variation. 
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Figure 7.2.1. 
A 

. 
marine structure with a long 

parallel midbody S. and a bow 
and a stern area (Sb and Ss) 
with large curvature. 
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Figure 7.4.1. Heave and roll added mass and damping coefficients for a submerged 
pontoon (117x45x15m). 
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& WAVE DRIFT FORCES ON OFFSHORE STRUCTURES 

8.1. Introduction 

In recent years, the calculations of the second-order wave drift forces have attracted much 

attention. This is because of their importance in estimating the performance of moored ships and 

offshore structures in offshore operation. A general review of the second-order wave forces and 

motions has been given in § 1.1.5. 

The evaluation of the second-order wave drift forces is associated with the practical require- 

ments of offshore operations. As far as large and complicated offshore structures are concerned, 

the conventional methods based on a three-dimensional diffraction solution may be too time con- 

suming to be of practical use in a preliminary design. Therefore, an engineering estimating tech- 

nique rather than a complicated rigorous mathematical proof is sometimes required. 

In particular, according to organised international investigations into a semi-submersible 

and a TLP, hydrodynamic prediction data from various sources displayed vast scattering even for 

the first-order radiation and diffraction forces. Since the second-order calculation is dependent on 

the first-order solutions, logically, one can not expect good correlations among the second-order 

predictions by these different methods, programs or organisations. If a general good agreement is 

found in calculated second-order force data, this lucky success can only be attributed to either 

(1) some first-order terms are of no significance; or 

(2) the mutual error cancellation effect. 

These two are quite often the reasons why, in the field of naval architecture and offshore engineer- 

ing, a much simplified method works or performs even better than a much more sophisticated 

theory. 
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It is not an illogical consideration to ignore these terms of much less significance and/or of 

mutual cancellation effect in order to concentrate on contributions of greater importance and to 

develop simpler techniques of higher efficiency and with acceptable accuracy. 

In this chapter, the "horizontal plane method" of Hwang and Tuck (1970) is used to evaluate 

the first order wave potentials on vertical cylinders of arbitrary geometry. Together with the near 

field approach of Pinkster (1979) the second-order mean drift forces are calculated. Then, this 

exact theoretical solution method is extended to approximate the horizontal mean drift forces on 

offshore structures composed of multiple vertical columns and submerged horizontal pontoons. 

Finally, this approximate method is used for predictions of the horizontal mean drift forces and 

moments on a semi-submersible and a TLP. 

8.2. General Formulation 

It has been shown by Pinkster (1979) and Standing et al (1981,1982) that the second-order 

mean drift forces can be expressed in the form: 

vi - 
F(2) _(F-(2) F32), F3`) )_1: Fm 

m=/ 

where the bar indicates the time average, i. e. the mean value. The six components are: 

(8.2.1) 
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Fi }1P8jý; n'dl 
2 L. - 

Fiý=2Pf IoeI2ndS 
. 

F'in=-P j [Dor'T11ndS 
S. -- 

- -4 Fn. =RF 
Fy =Wl 

Fvj =-Pj 0ý2) n dS 
S�- 

(8.2.2) 

These are respectively (I) the force term associated with the surface elevation, (II) the quadratic 

pressure term arising from Bernoulli's equation, (III) the structure displacement term due to the 

effects of first order motions, (IV) the contribution due to the rotation of the force vector, (V) the 

effect of the second-order motions of the structure's centre of buoyancy and waterplane area 

(Standing et al 1981, Ogilvie 1983), and (VI) the contribution from the second-order potential 

0 2) . 
Here Lo is the mean water line, A�, is the mean waterplane area and 

n'=n/ nie+n22 
--> if = (X 1, X2 9X 3) + ((Xa, X5, X6) X (r c) 

i R=I X6 0 -X4 

I 
0 X6 Xs 

X6 0 X4 
XS X4 0 {=x54O 

The relative wave surface elevation is given by 

b, =b-X3 -x4 (Y -YG)fX5 (x -XG) 

with the first-order wave elevation 

Here $ is the first-order wave potential. In the above equations, the underlying subscript - denotes 

Xs Xa 0 
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a real number. 

Since the complex values are much more convenient to manipulate in the diffraction solu- 

tion, the real values in the above equations can be re-expressed as a complex number using the 

identities: 

Re(A)Re(B)= 2 Re(AB)+ 2Re(ABý) 

[Re(A)]2 =2 1A 12 + ZRe(A2) 

Re(A)Re(B)= 2 Re(AB 

[Re(A)]2 =2 IA 12 

where A, B are complex numbers and A* and B* are their conjugates. 

In complex variable notation the above mean drift force components may be written as 

Fr 4P8J2 n' dl 
L. 

Fn=4Pf I0eI2ndS 
S� 

Fr»=P f ['ý'Derl ndS 
2 S. 

1 . -> Fry=2R F 

Fv =- 
4 

p8zcAW (I X412 + IX5 12)(0,0,1) 

Fw =P Aw (0,0,1) 

(8.2.3) 

where P is the mean set-down pressure in the undisturbed incident wave as given by Standing et 

al (1981). 
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U. Mean Drift Forces on Vertical Rigid Cylinders 

For a system of multiple vertical cylinders of arbitrary cross-sectional contour C�� extend- 

ing from the seabed of depth d and piercing the free-surface, as illustrated in Figure 8.3.1, the hor- 

izontal mean drift forces have only two components, i. e. 

(2) F =Ff+FIf (8.3.1) 

and the total first-order potential ' is the sum of the incident wave potential and the diffraction 

potential, i. e. 

0_ eo + e7 (8.3.2) 

8.3.1. First-order diffraction solution 

A horizontal plane method can be used to evaluate the diffraction (also the radiation) wave 

potentials associated with the vertical cylinders excited by regular waves. This method was first 

developed by Hwang and Tuck (1970) in the study of harbour resonances and it has also been 

applied by Isaacson (1978) for the determination of the wave loads on offshore cylinders. In their 

formulation the source distribution technique was applied whilst here a mixed source-dipole dis- 

tribution is used, but the general procedure is rather similar. 

In the case of finite water depth, the incident wave potential expression (2.2.16) may be 

rewritten as 

eo =Z (Z) yro with TO =- 
lgý 

exp [ik (x cosß +y sinß)] (8.3.3) 

71,1- ý\ý! - 10... 1lL.. \ A. 
cosh k(z+d)/cosh kd d< oo 
exp(kz) d= oo GAP `IK j ff -w 

The relative diffraction potential amplitude is expressible by 

4Z (z) i7 (8.3.4) 
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From expression (8.3.4), the Laplace equation valid over the whole fluid domain transforms 

into the Helmholtz equation over any horizontal plane, i. e. 

a2 1V, a21ýl, 

+ +k2yy=0 
axe ay' 

and the corresponding Green function, satisfy the radiation condition, is given by 

(8.3.5) 

GH(p, q) =i it M, ')(kR) =- it [Y0(kR) -i Jo(kR)] (8.3.6) 

with p(x, y) being the field point and q (4, rl) on the contour C. 

The integral equation in a mixed source-dipole distribution form can be written in the form: 

2n yh(p) -f V7(q) 
a 

Gtt(p. g) dl =J GN(p. g) 
a 

Výo(g) dl p, qeC, r (8.3.7) 
C. 

ang 
C. 

anq 

This provides a means of solving for yrs. Subsequently from Equation (8.3.4), the first order wave 

diffraction amplitude can be determined. 

In solving the relevant discretised linear equations of Equation (8.3.7), the elemental 

integrals over each discrete line element Al are estimated by following approximations: 

I= JG dl 2J In(kR)+[i nH, »(kR)+2In (kR)] Al 
nt et 

(8.3.8) 
In 

j an dI =-2 J än 
In (M) dl + 

än 
[i n HO» (AR) +2 In (kR )] Al 

where the remaining integrals on the right hand are calculated analytically for R22 Al and other- 

wise approximately. The Bessel functions involved can be efficiently evaluated by polynomial 

approximations (Abramowitz and Stegun 1972) 

8.3.2. Mean drift forces 

When the diffraction potential is known, the wave elevation and wave particle velocity on 

the body surface can be readily determined from the relationships: 
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b, 
1. 

=O =b1s=O =L No+VA=0 (8.3.9) 

0ý 12 =I a 
($o + ý7) 12 +I 

az 
(ýo + 01) 12 on S,,, (8.3.10) 

where r is the local tangent coordinate to the cross-sectional contour C,. 

From expressions (8.3.9) and (8.3.10), the horizontal mean drift forces on vertical cylinders 

(single pile or multiple columns) of arbitrary sectional geometry can be evaluated by Equations 

(8.2.3) and (8.3.1). 

8.33. An example 

To verify the described numerical procedures developed, a vertical cylinder is used in an 

example study. It has radius a=1.5m, extends from the seabed (at depth d= 5m) and pierces the 

free-surface. 

To apply the horizontal plane method described above, the circular cross-sectional contour 

of the cylinder is discretised separately by 16,24 and 36 segments in order to test for numerical 

convergence. It is found that only small deviations occur between these three sets of data. There- 

fore, the mean drift force displayed in Figure 8.3.2 is calculated from a 16 segment model. The 

present numerical results agree well with other quoted sources (e. g. Standing et al 1981). 

8.4. Approximation for Offshore Structures 

To develop a simplified method to estimate the horizontal mean drift forces for offshore 

structures consisting of multiple vertical columns and horizontal pontoons, the following assump- 

tions (based on physical reasoning and intuition) are made: 
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(1) The first order motion responses are comparatively small and their contribution to the 

second-order mean drift forces can be ignored. 

(2) The interactions between the vertical columns and the horizontal pontoons are negligible. 

(3) The contribution to the horizontal mean drift forces from horizontal members can be 

ignored. 

The first assumption is true at frequencies of high or intermediate values because of the 

small waterplane area of the structure under consideration. Although at low frequencies the first 

order motion responses may have large values, the mean drift forces become rather small and may 

have little importance. 

As far as this column-pontoon type of offshore structures is concerned, the first-order fluid 

forces, as discussed in §1.1.3, aremost likely out of the diffraction dominant regime and possibly 

fall into the inertia dominant one. In this case, either estimate method based on empirical inertia 

and drag coefficients or a diffraction theory can be used for prediction of the first-order forces, and 

the latter is not necessarily superior to the former. Moreover, the regime of the mean second-order 

forces is less clear. Therefore, the second assumption may be somewhat of a compromise 

between the two alternative methods mentioned. 

The third assumption is based on existing theoretical proof and numerical evidence. In fact, 

it has been shown by Ogilvie (1963) that for a deeply (actually it is not necessarily very deep) 

submerged horizontal circular cylinder the mean horizontal drift force is zero. 

In accordance with assumption (1), the mean horizontal drift forces are independent of the 

first-order motions, in other words, just like a fixed body as described in §8.3, they rely on only 

two force components, i. e. F, and FR as given by Equation (8.3.1). 

Furthermore, by assumptions (2) and (3), these forces are solely dependent on the first-order 

potential solution for the multiple columns only. That is, 
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F(2)=- 
4 pgf Iý, I2nd1+4 Pj Io. I2ndS 

c, s. 

where S, denotes the mean wetted surface area of the columns of the offshore structure. 

(8.4.1) 

When the cross-sectional geometry of the column is circular, exact or approximate analyti- 

cal solutions for diffraction potentials are available, for example, by Masumoto (1982). The 

analytical formulation, however, is not applicable to columns of cross-sectional geometry other 

than circular ones. 

To further simplify the problem solution, the approximation proposed by MacCamy and 

Fuchs (1954) for a single circular cylinder may be used, which suggests that horizontal wave 

forces on a circular cylinder of draft, h, less than the water depth, d, is the same as if the cylinder 

extended to the bottom. Based on this assumption, all the quantities required for evaluating 

expression (8.4.1) take the values from a system of multiple cylinders of the same cross- 

sectional geometry as the multi-columns of an offshore structure. Therefore, the exact theoretical 

and numerical procedures for solving the wave potential problem around multiple vertical 

cylinders of arbitrary sectional geometry, as described in §8.3, are exploitable. 

On this basis, the horizontal mean drift force on an offshore structure of multiple columns is 

given by 

F (2) 0 
=- 

4pgfI cr 12 n dl +4pf dz fIV, 12n dl (8.4.2) 
vM 

where C and $ are solved from Equation (8.3.7) for multiple cylinders extending to the seabed. 

8. S. Numerical Examples 

To verify the proposed approximation technique for multi-column offshore structures, and 

to provide a measure of the strength or weakness of the approximation adopted, the horizontal 
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mean drift forces associated with a semi-submersible and a TLP are determined and the results are 

compared with experimental and theoretical data where available. 

8.5.1. A semi-submersible 

A six-column semi-submersible platform is used for an example study since experimental 

and theoretical data have been presented by Pinkster (1979). 

The lay-out of the semi-submersible and its main particulars are displayed in Figure 8.5.1. 

The length, width and draft are 100m, 76m and 20m respectively and its displacement volume is 

35925 m3. The diameter of the vertical columns is 12.6m. The pontoons are of rectangular shape 

of dimensions 100x16x8m and at submergence of 12m. 

With the present approximation, the diffraction potential is obtained by solving Equation 

(8.3.7), in which the water line Lo is chosen for the sectional contour C, , and the mean horizontal 

drift forces are determined by Equation (8.4.2). In the numerical calculation, the cross-sectional 

contour of each column is divided into 16 elements and this makes a total number of 96 seg- 

ments. Because of its two planes of symmetry, the actual panel number involved in the numerical 

computation is rather small. The computations cover 3 wave headings, including the head, bow 

quartering and beam seas; 32 wave frequencies ranging from w Ova/g = 0.35 to 2.60; the mean 

longitudinal and transverse (i. e. surge and sway) drift forces and mean yaw drift moment. 

The resultant mean drift force predictions are given in Figures 8.5.2-6. In these figures, the 

solid circular points indicate the present approximation method data whilst the hollow circular 

points are the experimental data of Pinkster (1979). Pinkster's computational predictions are also 

shown by solid lines, which were calculated by a three-dimensional near field method over the 

whole wetted surface of the semi-submersible. A comparison amongst these data shows that for 

the semi-submersible under investigation, the present approximation method results are in 
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reasonable agreement with the model test measurements, and at least of the same degree of accu- 

racy as the data derived from the much more complicated three-dimensional analysis. 

&S. 2. A tension leg platform 

The TLP illustrated in Figure 8.5.7a has been used in an experimental investigation by Tan 

and Boom (1981). It is constructed with four vertical columns of diameter 16.87m and length 

24.5m. The four horizontal rectangular pontoons are of cross-section 7.5x10.5m and the structure 

is of total draft 35m floating in deep water. 

In terms of the present method (§8.4), the evaluation of the horizontal mean drift force is 

determined from only a horizontal cross-sectional contour consisting of four circles as shown in 

Figure 8.5.7b. 

In the numerical calculation each circular contour is discretised into 16 segments, such that 

the contour of the four circles is described by a total of 64 equal elements. However, only 16 seg- 

ments on the same column is necessary in the computation owing to its geometric symmetry 

about two planes. After solving $7 by the numerical procedure presented in §8.3, the horizontal 

mean wave drift forces are further calculated from Equation (8.4.2) with draft h= 24.5m. 

Computations are carried out for wave periods from 5 to 24 seconds and for wave headings 

0,22.5,45 degrees. The resultant mean surge drift forces are given in Figures 8.5.8-10, 

respectively for wave heading 0,22.5 and 45 degrees. Those for sway at a wave heading of 22.5 

degrees are displayed in Figure 8.5.11. The calculated mean yaw drift moments are shown in 

Figure 8.5.12. In Figures 8.5.8-12, all the alphabetic points denote the numerical data from 

different sources following the notation adopted by Eatock Taylor and Jeffreys (1986), and the 

circular, triangular and square points indicate the experimental data by Tan and Boom (1981). It 

can be seen that, in general, the results derived from the present simplified approach display the 
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characteristics of the other data. It can be noted in Figure 8.5.12 that the model testing data for 

the mean yaw drift moment display significant scattering at the same wave period most likely due 

to other non-linear effects such as viscosity. 

U. Concluding Remarks 

A horizontal plane method was used to evaluate the mean drift forces on vertical cylinders 

(single or multiple) of arbitrary sectional geometry and extending to the seabed. 

The proposed method was further extended to approximate the horizontal mean drift forces 

on multi-column offshore structures. Although assumptions are introduced into the mathematical 

model to simplify the numerical procedures, example studies of a semi-submersible and a TLP 

appear to show promise. 

Although only offshore structures of circular column sections are presented in the example 

studies, the present method is capable of predicting mean wave drift forces on a multi-column 

offshore structure of column section other than a circle. 

One of the advantages of adopting this approximation is the great saving in computing time 

and this may enable the proposed technique to be of more practical use at the preliminary design 

stages. 
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Figure 8.3.1. Vertical cylinders of arbitrary geometry. 
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Figure 8.3.2. Mean surge drift force on a vertical circular cylinder of 
radius a-1.5m in shallow water of depth d- 5m. 
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9. SEAKEEPING ANALYSIS WITH VISCOUS EFFECT 

9.1. Introduction 

With the continuous development of maritime and offshore activities, there now exists a 

wide variety of floating structures with configurations of far greater complexity than is found in 

ordinary mono-hull ships. Among those designed and built, many novel structural features have 

been introduced, such as various semi-submersible and tension leg platforms (TLPs) in offshore 

operation and the small waterplane area twin-hull (SWATH) vessels for both civil and naval 

applications. 

Being different from framed structures such as fixed jackets and conventional ships of one 

large floating hull, these large offshore structures and special vessels under discussion are com- 

posed of, in general, multiple submerged floaters (e. g. pontoons or lower hulls) as well as multi- 

ple vertical members (e. g. columns or struts) piercing the free-surface. Their relative smaller 

waterplane area results in much longer resonant motion periods such that better seakeeping per- 

formances can be achieved. 

Due to the interaction between the surrounding fluid and the multiple sub-members of such 

a structure, multiple natural frequencies (Wu and Price 1986c) may occur in the vessel's motion, 

apart from the conventional resonant frequency designated at a small frequency value. It has been 

found that for these large marine structures viscosity plays an important role in determining 

motion responses at the vicinity of these natural frequencies but has little significance beyond 

these resonant frequency bands (Lee 1976, Wu and Price 1986c). 

Corresponding to Kelvin's principle of fluid motion separation (§1.1.1) a rough estimate of 

the viscous drag forces can be added, as a correction, into the potential forces predicted by either 
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two- or three-dimensional diffraction theory analyses. A brief review of the drag forces has been 

given in § 1.1.7. 

As examples of comprehensive application of the hydrodynamic formulations, motion 

theories and numerical techniques described in the previous chapters, the seakeeping perfor 

mances of two groups of structures are investigated. One is a multi-column or -strut stabilised 

large offshore structure without forward speed; and the other, a multi-hulled special vessel with 

forward speed. 

9.2. Large Offshore Structures 

In this study, focus is concentrated on large offshore structures of submerged massive 

floater(s) and multiple large columns or large struts. For motion predictions of this group of 

offshore structures, a method combining the three-dimensional diffraction theory and a drag force 

estimation is described. As an example, the motion characteristics of a derrick barge semi- 

submersible are investigated using the combination method developed. 

9.2.1. Viscous effect 

In order to estimate the viscous damping and the viscous exciting forces resulted from the 

drag forces on the structure, the method devised requires the structure wetted surface to be sub- 

divided into three typical sets of strips along the Ox, Oy and Oz axes. Suitable representative 

points on the strip contour are selected for the viscous force estimation. The elemental com- 

ponents of the viscous force due to drag acting on an elemental wetted surface area AS may be 

expressed by the approximate expressions (Sarpkaya and Isaacson 1981, Wu and Price 1986c): 
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(EFD1+AFD2, FD3)= 
2 

PCD I VrI (XrAS 19Yr1S2, ZrAS 3) (9.2.1) 

and when summed up over the total wetted surface result in the total drag forces in the form: 

FDj IFDj j=1,2,3 (9.2.2a) 

The corresponding components of the moments of the drag forces may be simply given as 

FD4 =-1: (z -ZG)1FD2 +J: (Y-YG)EFD3 
FD 5=-1: (X - XG) A FD 3+Y, (Z - zG) EF'D I (9.2.2b) 

FD6=-J: (Y-YG)A'DI+Y, (x-XG)IFD2 

where CD is the drag coefficient which is dependent on the Keulegan-Carpenter number (Kc) and 

the Reynolds number (Rn). These may be chosen from experimental data or the recommended 

values tabulated for typical geometries (Sarpkaya and Isaacson 1981). E Sj is the projected area of 

a strip element in the jth direction. E denotes a summation over the whole wetted surface of the 

body. and i, are relative velocity components (along the Ox, Oy and Oz axes) of the 

overall relative velocity V, between the water particle and the body motions. These are defined by 

Xr=W1 
-Xi -(Z-ZG)XS+(v-YG)X6 

Yr =W2-X2-(x-xG)X6+(z-zG)X4 (9.2.3) 

4=W3-X3-(Y-Yc)X4+(x-xc)X5 

where Wj =W ol exp (-i cot) with (Wo 1, Wo 2" Wo 3) _(ý, ay .ý) ýo" and Xj = XjQ exp (-i m) 

denotes the jth mode of motion. 

After applying an equivalent linearisation procedure, it follows that 

AFD1 
3n PCDAS 1Vro 

[X1+(Z-ZG)XS-ý-YG)X6-W1ý 

AFD2 
3>t 

PCD 1t52 V0 [X2+(x-xG)X6-(z-ZG)X4-W21 

AFD3-- 3 PCDDS3Vro [X3+(Y-yG)X4-(X-XG)X3-W31 

where V�o is written as 

(9.2.4) 
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3 
Vro = G) , 

(Xmj)2 (91.4a) 
j=1 

and X, �j is defined by 

Xml = IX laf(Z-zG)Xsa-(y-yG)X6a fWolli(AI 

Xm2= IX2a+(X-zG)X6a-(Z-ZG)X4a+Wo21i(0I 
43 -2 

IX3a+(Y-YG)X4a-(X-XG)X5a+Wo311WI 
(9.2.4b) 

From such expressions, the viscous force may be separated into contributions associated 

with viscous damping and viscous exciting force terms. That is 

6 
Fp; E Bi jX j+ Fi 2,..., 6 

j=1 

where the components of the viscous exciting forces are given by 

Fvi =T, Qi V 
ro 

Wi i= 1,2,3 

Fv4=J: (Y-YG)a3VroW3-I(Z-ZG)a2Vro W2 
Fvs=J: (Z-ZG)a I Vro Wl- J(X - XG)a3 Vro W3 

Fv6=2: (x-xG)a2Vro W2-2: (Y-YG)al Vro WI 

with (a1, a2, a3)=- 3[ PCD (AS 1, 
ý) 

, 
ý3)" 

(9.2.5) 

(9.2.6) 

The determination of these viscous terms requires information on the motion response 

amplitudes (i. e. Xja) and therefore the viscous effect can only be estimated simultaneously with 

the motion solution of Equation (2.5.9) by an iterative procedure. 

9.2.2. General configuration 

The semi-submersible consists of a huge barge-like submerged floater and six large struts as 

shown in Figure 9.2.1. The floater is of dimensions 144x43.5x10.5m and at 12m beneath the 

calm water surface, making a total draft of 23.5m. The major sizes for the mid-struts are 

45x 16.2m and for the end-struts, 15x 16.2m. The displacement volume is 91,196 m3 and the 
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coordinates of the centre of gravity are G(0.3,0.0, -8.36). The gyradii for roll, pitch and yaw 

motions are 23.6,41.0 and 40.35m, respectively. These main dimensions indicate that a three- 

dimensional diffraction theory is necessary for the hydrodynamic analysis. In particular, since a 

layer of partially truncated water region is surrounded by the structural members, resonant waves 

excited by the body motion make the wave-structure interaction problem much more complicated. 

9.23. Numerical computation 

Taking advantage of the port and starboard symmetry, only a half of the body's wetted sur- 

face is needed. This is discretised into 193 panels for the three-dimensional analysis. A quarter of 

the body surface is illustrated in Figure 9.2.2. 

By the three-dimensional Green function method analysis based on Equations (4.1.3b) and 

(3.2.2), the three-dimensional hydrodynamic coefficients, including surge, sway, heave, roll, pitch 

and yaw added mass and damping, are calculated and illustrated in Figure 9.2.3. 

In Figure 9.2.3, superposed on the heave and pitch added mass curves are the condition 

lines defined by 

Ajj = Cjjlco 2- Mü (9.2.7) 

As used in naval architecture, the intersecting points of the condition line and the added 

mass curve represent the resonant frequencies. It can be seen that there exist three heave resonant 

frequencies at (o = 0.222,0.393 and 0.52 rad/sec, two possible pitch natural frequencies at 0) = 

0.246 and 0.54 rad/sec but only one roll natural frequency at co = 0.221 rad/sec. The first resonant 

frequencies predicted precisely coincide with the measured data, i. e. 0.224 rad/sec for the heave, 

0.247 rad/sec for the pitch and 0.227 for the roll mode (de Boom 1978). Besides these designed 

first natural frequencies of small values, extra resonances in the heave and pitch motions can 
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therefore be expected. 

Using these computed three-dimensional hydrodynamic coefficients and wave exciting 

forces together with viscous effects, the predicted surge, sway, heave, roll and yaw responses are 

displayed in Figure 9.2.4. These theoretical predictions are shown in good correlation with exist- 

ing experimental results (de Boom 1978) but generally these model testing data are not available 

for illustration. Fortunately, a set of data for the pitch motions in quartering seas have been 

released by MSC (1985), which provide some measure of the accuracy of the present theoretical 

predictions. As shown in Figure 9.2.5, the present calculation results are in very good agreement 

with the measured data of the pitch motion. Particularly, an additional pitch peak response occur 

around Co = 0.57 rad/sec, which confirms the finding of the multiple resonances. A small fre- 

quency shift from the predicted second pitch natural frequency at 0.54 rad/sec is most likely due 

to the existence of damping. 

For heave motions (Figure 9.2.4), besides the first heave natural frequency predicted at 

0.222 rad/sec, peak heave responses appear around the third natural frequency but there is no indi- 

cation of the second one. The reason for this is clearly evident from these figures since at the 

predicted second heave natural frequency (0.393 rad/sec) the damping coefficient is nearly a max- 

imum value and this influence suppresses the appearance in the second peak response of the heave 

motion. 

In Figure 9.2.4, two-dimensional calculation results are also presented. However, these are 

shown to be unsatisfactory; in particular, they fail to predict the multiple resonances occurring 

and associated with the wave-structure interaction. As can be seen from Figure 9.2.6, from the 

added mass curve derived by a two-dimensional analysis no additional heave natural frequencies 

can be found apart from the first one round about 0.222 rad/sec. 
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To understand the influence of the viscous effect, a comparison was made between heave 

motion data predicted with and without viscosity. These results are given in Figure 9.2.7 for the 

heave motions at wave heading angles 180,225 and 270 degrees. It shows that the viscous effects 

have an important contributory influence in the vicinity of the natural frequencies of the body 

motion even for offshore structures with sizable sub-members. 

9.2.4. Concluding Remarks 

From this example study, the following conclusions are drawn: 

(1) For a structure with multiple large sub-members, there can exist multiple natural frequen- 

cies in a motion mode and these can induce extra peak motion responses. 

(2) For this kind of large marine structure, viscosity is of importance when determining the 

magnitudes of the body responses near natural frequencies. 

(3) A combination of the three-dimensional hydrodynamic analysis and an estimation of the 

drag forces provides a useful tool for motion predictions of large offshore structures with 

more complicated configuration. 

(4) For this particular example, the two-dimensional analysis seems inadequate to provide rea- 

sonable information for design purposes. 

9.3. Multi-Hulled Special Vessels 

This group of ships include SWATH ships, catamarans, tri-hull crafts and so on. In the 

present study, however, attention is focused on SWATH ships only. 
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9.3.1. SWATH ships 

The revival of active research and development on SWATH ships started in the later 1980s 

associated with the design and construction of SWATH T-AGOS (Covich 1986), though initial 

theoretical and experimental studies were carried out in the mid 1970s (Lee 1976). Recently, the 

development of fast commercial SWATH prototypes of considerable displacement has caused 

much excitement worldwide. 

From the geometric configuration, a SWATH ship is characterised by its twin-hulls of small 

waterplane area and a top deck of large operation area. The small waterplane area results in long 

natural periods of heave, pitch and, in particular, roll motions. These natural motion frequencies 

are designed to be far away from the energy concentration frequencies of the sea wave spectrum 

such that serious resonant motions can be effectively avoided. In addition, the added viscous 

damping due to the submerged lower hulls can reduce, to a great extent, the peak motion 

responses if resonances occur in these motion modes. Therefore, SWATH ships possess higher 

seakeeping qualities, especially, small vertical motion and acceleration amplitudes. The increased 

operability together with the large open deck area makes the SWATH ship very attractive for lei- 

sure, transportation, engineering and naval purposes. 

9.3.2. Theoretical bases 

To analyse the seakeeping performance of a SWATH ship advancing in water waves, great 

efforts have been made to improve the prediction theories (Lee 1976, McCreight 1987). In the 

present work, a computer program has been developed based on a comprehensive application of 

existing theories and new achievements: 

(1) A two-dimensional strip theory is applied which is based on a forward speed correction 

(Salvesen, Tuck and Faltinsen 1970). 
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(2) A mixed source-dipole distribution method is used to obtain two-dimensional wave poten- 

tial solutions, which is based on Equations (4.2.3b) and (3.4.2). 

(3) At higher frequencies, the modified Green function form as described in §4.5.3 can be used. 

(4) The estimation formulae for the viscous forces (Lee 1976, McCreight 1987) and calculation 

procedure over the body surface are similar to those described in §9.2.1 with minor 

modifications: 

i) the relative velocity component i, includes the forward speed U, 

ii) the encounter frequency of expression (2.2.19) is used; and 

iii) the drag coefficient Co is treated as Kc number dependent; 

(5) The lift force in the heave mode and the lift moment in the pitch mode due to the control 

fins are estimated by the following formulations: 

EF3L =2P Ap CLa U2 as 

F 3L =E AF 3L (9.3.1) 

F s[. _ -, (x - xG) AF 3L 

where aa =W3 /U -X5 with W3 defined by Equation (9.2.3). Formulations for the lift 

coefficient CLa with corrections can be found in Dallinga, Graham and Huijsmans (1988). 

Ap is the fin area. The summation is carried out for all the four fins involved. 

(6) All the rigid body motion modes, except surge, are predicted. The surge motion responses, 

however, may be predicted by an approximation based on the Froude-Krylov hypothesis 

(§5.2.1) but this requires further experimental verifications. 

9.3.3. Example studies 
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The general arrangement of the SWATH model is illustrated in Figure 9.3.1. The hydro- 

dynamic behaviour of this vessel has been thoroughly studied by model tests and theoretical ana- 

lyses by ARE (Haslar) (Blackman 1989). The picture of the model under test in the towing tank 

of Haslar is shown in Figure 9.3.2 (by courtesy of Blackman 1989). 

The SWATH ship is composed of two parallel lower hulls, mainly of elliptical cross- 

sections, and two long struts, extending from the bow to the stern area and supporting the upper 

deck structure. 

According to the scaling factor of 1: 20.55, the main particulars of the relative SWATH ship 

are given in Table 9.3.1. That is, the two lower hulls are of overall length 61.75m and maximum 

sectional dimensions 6.72x4.45m (elliptical), with a separation distance 18.37m between their 

central lines. The two long struts are 50.459m long and 2.44m wide. The total displacement 

volume is 2167 m 3. 

The present theoretical computations cover 4 speed conditions (i. e. U=0,5,10 and 14 

knots), 5 wave headings (ß = 0,60,90,120 and 180 degrees) and wave lengths ranging from a/L 

0.407 to 5.086. The matrix of the computational analysis is given in Table 9.3.2. 

The heave, roll and pitch motion, relative motion and vertical acceleration amplitudes are 

predicted by the method described in §9.3.2. These are compared with experimental data released 

by ARE (Haslar 1989) after the calculations were performed. 

Figures 9.3.3-6 display the heave, pitch and relative bow motion amplitudes in head seas at 

forward speed 0,5,10 and 14 knots respectively. Good agreement between the experimental data 

(circular points) and the present theoretical predictions (solid lines) can be observed within this 

speed range. In particular, the predicted relative bow motion with respect to the wave surface 

appears rather promising and this parameter is of primary importance when determining slam- 

wing on the under deck of the SWATH ship. 
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In Figures 9.3.7a-c, calculated roll responses at heading angles 60,90 and 120 degrees are 

presented. These correlate well with the model test data. The heave and pitch response predic- 

tions in beam seas are shown in Figure 9.3.8 and those related to stem seas given in Figure 9.3.9. 

Again, these computational results agree favourably with experimental results. This limited data 

set gives some indication of the validation of the present method over the conditions examined. 

The acceleration parameter is the most important measure to define the suitability of the 

vessel for human activity and equipment operation. Figure 9.3.10a shows the predicted bow vert- 

ical acceleration amplitudes at speed of 10 knots in head seas, whilst Figure 9.3.10b displays the 

stem vertical acceleration amplitudes at the same speed but in stem seas. The present prediction 

method seems to provide reasonable data for this important parameter. 

To complement the above study, some theoretical predictions for two other SWATH ships 

under design consideration are presented here. Figure 9.3.11 shows the surge motion amplitudes 

of a 1000 ton SWATH ship predicted by the simple method based on the Froude-Krylov 

hypothesis. Regrettably, no model tests are available to verify this simplification. 

Corresponding to irregular waves of sea state 6 defined by the ITTC wave spectrum (Figure 

9.3.12), the calculated significant heave, pitch, vertical acceleration amplitudes and the subjective 

motion magnitude (Price and Bishop 1974, Lloyd and Andrew 1977) are given in Figure 9.3.13 

for two similar SWATH vessels of different displacements, i. e. 1000 and 2000 tons respectively. 

As expected and comfirmed by these findings, the larger vessels exhibited the better seakeeping 

performance. 

93.4. Concluding remarks 

From the comparative studies of the present method predictions and model test data, it may 

be concluded that the proposed method to analyse the seakeeping of a SWATH vessel can pro- 
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duce reliable theoretical predictions in the speed range up to Fn = 0.294 (equivalent to the speed 

of 14 knots in the example study). Further verification is necessary for forward speed far beyond 

this limit. 

Because of the efficient two-dimensional formulations adopted, the present computer code is 

applicable in the design process of SWATH ships. 

Since the recent worldwide interest is in developing fast SWATH prototypes travelling with 

forward speed greater than Fn = 1.0, significant modifications to the present method may be 

required to meet this new challenge. 
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Figure 9.2.1. General arrangements of the derrick barge 
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Figure 9.2.2. Surface panel arrangement of a quarter of the 
wetted surface of the semi-submersible. 
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Figure 9.3.1. General configuration of the SWATH model (ARE, Haslar). 

Figure 9.3.2. The SWATH model under test in the towing tank (by courtesy 
of Blackman, ARE Haslar, 1989). 
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Table 9.3.1. 

MAIN PARTICULARS OF THE SWATH SHIP (HASLAR) 

IN FULL SCALE 

DESCRIPTION SYMBOL ' UNIT 

Cubic M. 2167 
Displacement Tons 2221.65 
Volume 

. 
Centre of gravity xG " M. 

yG- M. 

ZG M. 

Radius of gyration 1(44 M. 

K55 M. 

K66 M. 
LOWER HULLS : 

Beam between Bh M. 

central lines 

Length 

Max. diameter 
(elliptical) 

Lh M. 

Draft 

STRUTS: 
Length Ls 
Strut beam b 
Water plane area As 
Strut spacing B$ 

h M. 
h M. 

C 

VALUE 

28.667(from forward tip) 
0.0 

0.789* 
1.673** 

11.138* 

9.576** 

16.461* 
14.138** 

17.500 (assumed) 

18.370 

61.750 

4.449(height) 
6.720(width) 

6.649(from the keel) 
4.425(from hull axis) 

M. 50.459(x--26.042 to x-24.417) 
M. 2.440 
Square M. 196.940(two struts in total) 
M. 18.370(between central lines) 

FORWARD FINS: 
Distance from nose M. 
to CL stock 
Dihedral angle Degree 
Chord M. 

Span M. 

AFT FINS: 
Distance from nose M. 
to CL stock 
Dihedral angle Degree 
Chord M. 

Span M. 

8.647 

0.0 
3.699(root chord) 
1.670(tip chord) 
3.479 

50.477 

20.0 
4.899(root) 
2.359(tip chord) 
5.351 

NOTE: * for beam and oblique seas (90,60 and 1200). 
** for head and following seas (180 and 00). 

*** the fin section is given by the standard NACA 0015 basic form. 
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Table 9.3.2. 

MATRIX OF COMPUTATIONAL ANALYSIS OF 

THE SWATH SHIP (HASLAR) 

WAVE HEADING degrees 0,60,90,120,180 

SHIP SPEED knots 0 (for all the wave headings) 

5,10 and 14 (for headings 0° and 180°) 

WAVE HEIGHT metres 1.234 (for headings 60°, 90° and 120°) 

75 wave length (for headings O° and 180°) 

WAVE LENGTH/C. L. BEAM 1.118 - 13.427 

WAVE LENGTH/STRUT LENGTH 0.407 - 4.888 (U - 0) 

0.815 - 5.086 (U # 0) 

INFORMATION REQUIRED HEAVE RESPONSE 

ROLL RESPONSE 

PITCH RESPONSE 

RELATIVE BOW MOTION 

RELATIVE STERN MOTION 

BOW VERTICAL ACCELERATION 

STERN VERTICAL ACCELERATION 
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10. CONCLUSIONS AND FURTHER DISCUSSIONS 

From these investigations the following conclusion can be drawn: 

(1) As far as large offshore structures and special vessels are concerned, the simple treatment to 

decompose the total fluid force into two separate components due to the potential flow and 

the viscous flow effect respectively is proven adequate. 

The fluid viscosity seems to have significant effects on the peak motion amplitudes around 

the resonant frequencies of these large marine structures, but may be negligible outside 

these frequency regions. 

As demonstrated by two industrial applications to a semi-submersible and a SWATH ship, a 

combination method of the diffraction theory for the wave potential solution and the 

Morrison damping formulation for the viscous force component can provide predictions of 

reasonable accuracy. 

(2) Within the diffraction force dominant regime the linear wave-structure interaction problem 

can be solved by the Green function integral equation. In addition to its conventional sur- 

face integral form, an interior integral equation technique is developed and in terms of the 

numerical procedures proposed the same degree of numerical accuracy can be achieved. 

(3) To avoid the mathematical failure of the integral equation at irregular frequencies, approxi- 

mation formulae are proposed to predict the irregular frequency values for arbitrary three- 

and two-dimensional floating bodies. The formulations satisfy the exact solution of a rec- 

tangular box in three-dimensional cases and a rectangle section for two-dimensional bodies. 

Furthermore, these provide accurate predictions of irregular frequencies for well defined 

body geometries (analytical formulae can be derived) as well as realistic body shapes for 

offshore structures and ships. These proposed formulae have been accepted by marine 
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industries (e. g. Dawkins 1989). 

(4) A modified Green function in a multiple Green function form is derived, which effectively 

eliminates irregular frequencies for mono-, twin- and multi-hulled sections. 

(5) A new shallow draft theory is presented based on improvements over the existing flat ship 

approaches. It improves previous zero-draft theories by inclusion of all the six degrees of 

motion (rather than the vertical plane motions) and by introduction of a finite draft correc- 

tion. Hence, the present theory is applicable to realistic shallow draft structures of small but 

finite draft and capable of more accurate predictions of motion responses. This conclusion is 

supported by vast example applications to various shallow draft structures. 

In particular, according to the similarity principle revealed in the study, hydrodynamic pro- 

perties of any two-dimensional shallow draft section is exclusively determined by the same 

data for a line section of unit length. Therefore, no further computations are required. 

Since a large group of offshore service vessels and transportation barges, etc., are of shallow 

draft feature, the present shallow draft theory can be of more practical use. 

(6) To significantly reduce the computing time involved in the solution of a large size matrix 

associated with a complicated three-dimensional wave-structure interaction and meanwhile 

to retain end effects of the body, the three-dimensional strip formulation derived reduces 

the large size matrix associated with the solution of a complicated three-dimensional wave- 

structure interaction and therefore can greatly reduce the computer time required. 

Meanwhile, because it retains the details of the body ends the proposed method can provide 

hydrodynamic information of three-dimensional feature. The method works well even for 

relative small length to width ratio. 

This study does confirm that the wave potentials vary t slowly around the length of a body 

of small sectional variation. This property should be exploited in further efforts to reduce 
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the computer time with the diffraction theory analyses. 

Further work should be done to prove its applicability in practical analysis of marine struc- 

tures. 

(7) The three horizontal motion modes (i. e. surge, sway and yaw) of an elongated body of full 

cross-sectional shape or a structure with a shallow draft feature can be determined by con- 

sidering only the Froude-Krylov forces. A mutual cancellation effect is found between the 

radiation and diffraction force components in the modes of sway and yaw. Therefore, this 

work provides a further extension of the conventional Froude-Krylov hypothesis. 

(8) The exact solution based on the horizontal plane method for vertical cylinders of arbitrary 

sectional geometry may be used to approximate the horizontal mean drift forces on a multi- 

column offshore structure, such as a TLP or a semi-submersible. 

(9) Although the outlined improvements, modifications and developments are restricted in the 

thesis to forces and motions for rigid bodies, in principle, these are also applicable to flexi- 

ble structures. To achieve this one needs only replacing the rigid body boundary conditions 

imposed in the solution problem by flexible body boundary conditions for each flexible 

mode shape under consideration. Some work has been done and will be reported elsewhere. 

(10) Because of the complicated flow phenomenon associated with the interaction between water 

waves and marine structures of peculiar configuration, a more sophisticated theory is not 

necessarily more accurate practically. As long as principal aspects in a physical 

phenomenon are properly treated, a simplified method works. 

(11) As far as the hydrodynamic theories in motional and structural analysis are concerned, the 

gap between the academic theoretical development and the daily tools in industrial design is 

rather wide and deep. To meet the challenge in future marine and offshore activities, 

creative approaches are needed to produce more practicable and affordable techniques with 
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strong theoretical back-up. 
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APPENDIX 4.1 

An equivalent box approximation to predict irregular 
frequencies in arbitrarily-shaped three-dimensional 
marine structures 
XIONG-JIAN WU 

Ship Hydrodynamics Laboratory, Shanghai Jiao-Tong University, Shanghai, China, presently at 
Brunel University, Uxbridge, Middlesex UB8 3PH, England 

W. G. PRICE 

Department of Mechanical Engineering, Brunel University, Uxbridge, Middlesex UB8 3PH, England 

An `equivalent box technique' is developed to derive an analytical solution for the approximate 
predictions of the irregular frequencies associated with a source or a mixed source-dipole distribution 
method analysis of an arbitrarily-shaped three-dimensional (3D) marine structure which is free 
surface piercing. Both analytical and numerical examples are given to confirm the validity and 
accuracy of the present formulation. By means of this approximation irregular frequencies are known 
d priori to the numerical computation and therefore it becomes possible to avoid 3D calculations 
around these discrete irregular frequencies. 

INTRODUCTION 

The singularity distribution method' based on a boundary 
integral equation with a Green's function expression 2 is one 
of the most powerful theoretical tools in the field of marine 
hydrodynamics, but unfortunately is partially defective 
due to the existence of irregular frequencies. That is, when 
the method is applied to a free surface piercing structure 
oscillating in calm water or excited by an incident wave, 
such a method fails to give correct solutions at discrete 
`irregular frequencies' due to mathematical failure because 
the resulting integral equation takes the form of the Fred- 
holm integral equation of the second kind and this has no 
unique solutions at these irregular frequencies. This has 
been previously pointed out by John who showed that the 
irregular frequencies are the eigen-frequencies of an interior 
eigenvalue problem 3 Two possible approaches may be 
conceived to tackle this irregular frequency problem. That is 

(i) 

(ii) 

to adopt an alternative technique or some pre- 
scription which erases the irregular frequencies, or 
to predict the irregular frequencies precisely and 
then simply avoid the 3D computation around 
these discrete frequencies and so greatly reduce 
computing time. 

Efforts have been focused mainly on 2D cases to develop 
remedies' to eliminate the irregular frequency. An effective 
method, amongst the many proposals is a 2D non-analytical 
deep water Green's function given by Ogilvie and Shin. This 
method was confirmed numerically by Takagi! However, 
at present there is no parallel procedure for twin or multi- 
hull sections when both serious resonant wave effects 
(physical) and an irregular frequency influence (computa- 
tional) can arise together, as well as no general treatment 
applicable to 3D structures. 
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As to the second approach, analytical solutions to 
predict the occurrence of irregular frequencies are only 
available for limited simple geometries, 3 such as a rectang- 
ular section, ' a rectangular box' and a vertical circular 
cylinder .8 Regrettably, for a more realistic marine structure 
of arbitrary geometry irregular frequencies are not known 
before a numerical computation commences and this may 
produce difficulties in the subsequent numerical procedures 
if such a frequency is encountered. 

The present paper adopts the second approach to solve 
the irregular frequency problem in which the arbitrary 3D 
marine structure geometry is represented by a box of 
equivalent dimensions to the original, i. e. the 'equivalent 
box assumption'. By this means an empirical approximation 
is deduced to predict the occurrence of irregular frequencies. 

BASIC THEORY 

Within the bounds of linear theory, the wave-structure 
interaction problem is governed by the following set of 
equations? Namely, 

v a0 =0 in the fluid domain Y 

am 
öz -=0 on z=0, the still free surface F 

a0 
- -0 on the seabed az 

30 
an on the body mean wetted surface S,,, 

and the radiation condition 

lim f (aRaý 
ivo) =0 

R .0.. 

(1) 
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where 0 is the time-independent complex amplitude of the 
velocity potential oe iwt; v= w2/g and w denotes the wave 
frequency, n is a unit outward normal on the body surface 
and v, is the normal component of the velocity on the 
body surface. In a Cartesian coordinate system with x -y 
axes lying in the still water surface plane and the z axis 
positive upwards, the horizontal distance R between a 
field point P(x, y, z) and a point on the body surface 
Q(t, rl, i')isgiven by{(x-t)2 +(y-rl)2}'/2. 

By means of the Green's theorem the wave-structure 
interaction problem results in an integral equation' in the 
mixed source-dipole distribution form 

21rO(P) -P P(Q) 
a a(P, Q) dS 

S, 

=-J G(P, Q)vn(Q)dS 

SN, 

(2) 

or in the source distribution form 

Q) , r 
anp - 21rv(P) +f o(Q) 

3G(P 
dS = vn(P), (3) 

SW 

where both the points P and Q are on the body surface, 
a is the source strength, G( ) is the Green's function and 
f denotes the principal value surface integral. 

The integral equations (2) and (3) are representative of 
the Fredholm integral equation of the second kind which 
breaks down at an infinite number of discrete ̀ irregular 
frequencies' when applied to a free-surface-piercing marine 
structure. It was John2 who pointed out that these irregular 
frequencies are the eigenfrequencies of an image interior 
eigenvalue problem defined by the equations 

V 2ý =0 in the interior domain V 

aL Pm =0 on the interior free surface F 
az 

and 
ý=0 on the body mean wetted surface S,, 

where ß denotes an image interior velocity potential. 

(4) 

In addition to these conditions Wu and Price3 derived a 
supplementary condition to determine the influence of 
irregular frequencies in a particular mode of body motion, 
i. e. surge, sway, heave, roll, pitch or yaw in addition to 
flexible modes of oscillation. For practical applications 
this supplementary condition can be simply described in 
the following manner. That is ̀ at an irregular frequency a 
singular behaviour may not occur in a mode of body 
motion which is of opposite symmetry to the interior 
potential solution 0'. Since this statement is confirmed and 
illustrated elsewhere3 a repetition of the discussion in the 
present analysis is omitted. 

INTERIOR EIGEN SOLUTION FOR A RECTANGULAR 
BOX 

For a rectangular box of length L, beam B and draft h, the 

exact eigen solution7 of the interior problem given in 

equation (4), may be written as 

Wu 

Opm = Sin[ý (X 
- L/2) 

]sml 
Bý- 

B/2)J 

sieh [k(z +h)] (s) 

for Ix I< L/2, IY I< B/2, -hG z< 0; p= 1,2, ... , q, 
... and m=1,2, ... , n, .... The irregular frequencies are 
given by 

wpm = [gk coth (kh)] 1/2 

with 
1/2 

k-7rL\L/2+ 
\B/x 

I 

(6) 

Corresponding to the supplementary condition as stated in 
the foregoing section the possible bodily oscillatory modes 
influenced by the irregular frequencies are listed in Table 1. 
The predictions in Table 1 are confirmed by the numerical 
calculation presented by Inglis and Price. 

Furthermore, Wu and Price3 found that amongst the 
infinite set of irregular frequencies, a dominant influence in 
the calculated hydrodynamic coefficients arises from the 
frequencies w., (p=1,2, ... ) and w1,,, (m = 1,2, ... ) and 
therefore these may be referred to as the ̀ principal irregular 
frequencies'. 

In addition to the rectangular box, analytical solutions 
of equation (4) may be obtained for a circular tank, 8 a 
sector of a circular tank and a horizontal triangular prism3 
and these solutions are summarised in the Appendix. 

AN 'EQUIVALENT BOX TECHNIQUE' 

The derivation of a closed general analytical expression to 
predict the occurrence of the irregular frequencies for an 
arbitrarily-shaped 3D body is most likely impossible. To 
overcome this theoretical difficulty an equivalent box 
assumption is now introduced taking advantage of the 
previous solution for a rectangular box. That is, 'in order 
to evaluate irregular frequencies, an arbitrarily 3D body 
may be represented by a rectangular box of "equivalent" 
length, beam and draft with the same displacement volume 
as the original structure'. 

Based on this assumption the irregular frequencies (i. e. 
the eigenfrequencies of equation (4)) of an arbitrary body 
geometry may be expressed by an equivalent box formula 

[gk coth (khe)]112, 

with k= ir 
[I 

LQ)z 
+(Me)2]1/2 

(7) 

for p=1,2, ... and 

m=1,2, ..., where Le, Be and he are the equivalent 
length, beam and draft. 

In naval architecture and offshore engineering, it is well- 
known that the properties of a marine structure heavily 
rely on the ratios of its main dimensions and some in. 

Table 1. Modes affected by bieaular frequencks for a rectan- 
aulsr box 

m 2q-1 
P 

2q 

Mode Mode 

2n- 1 Heave Surge, pitch 
2n Sway, rou Yaw 

L/ \B 
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dependent form coefficients. 9 Since the irregular frequency 
is a singular phenomenon associated with a peculiar interior 
standing wave2 defined by equation (4), it must depend on 
some typical geometric coefficients as well. By choosing 
the aspect ratio of length to beam L/B and three independ- 
ent form coefficients, namely, the waterplane coefficient 
C,,, = A,,, /LB, the midsection coefficient C,,, = A,,, /Bh 

and the central longitudinal section coefficient CC = AC/Lh 
(where A, A,,, and A, are the areas of the waterplane, the 
midsection and the central longitudinal section of the 
marine structure respectively, and the characteristic length 
L, beam B and draft h may be defined by the relevant 
intersecting lines of the three characteristic planes), the 
equivalent dimensions may be expressed in the following 
forms 

with 

Le = ßi(ßo)«1L 

Be = 02(ßo) 0'3B 

he = 0/(LeBe) 

a1= L2/(L2 + B2) 

a2 = B2/(L2 + B2) 
Po = (C, ) C, 

ßl = (CC)C1 

02 = (CM)C2 

where V is the displacement volume whilst the empirical 
`correction coefficients' co, cl and c2 are assumed expressed 
as 

co = 3/4, 
LL-+BBI 

(9) 

c2 1+61LBIIn(m)]/8 

It is obvious that as the geometry of a structure tends to a 
rectangular box, the coefficients C, -º1, Cc -1 and 
Cm -)- 1, and the equivalent box formulation of equation 
(7), reduces to the same as the exact solution for a rectang- 
ular box of equation (6). This indicates that in the limiting 
case the present formula is consistent with the exact solu- 
tion for a real box. 

Since such expressions are constructed based on the 
equivalent box assumption and the main parameters of the 
marine structure, there is no strict theoretical justification 
for their forms. However, no previous alternative approxim- 
ation exists and from a practical viewpoint the present 
approximation is found to work. 

RESULTS 

To assess the accuracy of the values and distribution of the 
irregular frequency predicted by the equivalent box 
formula, a comparative study was conducted on a variety of 
3D body geometries for which the characteristics of the 
irregular frequencies are determined either analytically 
from available exact solutions or numerically by 3D 
computations. 

Analytical examples 
Tables 2-4 illustrate the predicted non-dimensional 

values of the irregular frequencies for a circular tank, a 

Table 2. Irregular frequencies for a circular tank of radius ro and draft h 

h/2ra Z;, analytical solution from eq. (A2) 

1.0 1.551 1.958 2.266 2.350 
0.5 1.564 1.958 2.266 2.350 
0.25 1.698 1.990 2.280 2.359 

h/2rc Co, approximate solution from eq. (7) 

1.0 1.560 1.962 2.206 2.333 
0.5 1.576 1.963 2.206 2.333 
0.25 1.726 2.016 2.230 2.350 

Table 3. Irregular frequencies for a sector of a circular tank of 
radius ro =10 m, angle 2« = it/3 and draft h=0.5 m (B = 5.774) 

Method Cl) 

Exact 2.44 2.50 2.57 
Approximate 2.47 2.50 2.55 

Table 4. Irregular frequencies and affected modes for a hori- 
zontal triangular prism of length L, beam B= L/2 and draft 
h =B12 
(a) Analytical solution derived from equation (A9) 

(8) 

12p34 

y-symmetric 

y$ntisymmetric 

CO CO ww 

1.58 1.67 1.77 1.93 

heave surge, pitch heave surge, pitch 
1.99 2.05 

sway, roll yaw 

(b) Approximate solution derived from equation (7) 

P 
m1234 

1 

2 

WWWW 

1.56 1.65 1.78 1.93 

heave surge, pitch heave surge, pitch 
2.00 2.05 

sway, roll yaw 

sector of a circular tank and a horizontal triangular 
prism, respectively. These results are obtained from analy- 
tical solutions3 and from the equivalent box approximation 
given in equation (7). In all the Tables the non-dimensional 
frequency Co = ws/B/2g, where B denotes the beam of the 
original structure. 

For the circular tank of radius ro (i. e. L=B= 2ro), 
three drafts are considered, i. e. h/2ro = 1.0,0.5 and 0.25, 
and Table 2 displays the first four irregular frequencies 
determined from equation (A2) (see analytical solution in 
the Appendix) and equation (7). The generally good agree- 
ment between the two acts of results implies the validity 
of the equivalent box formulation over a wide range of 
body drafts. 

Table 3 shows the predicted irregular frequencies for a 
sector of a circular tank of radius ro = 10 in, angle 2a = 'r/3 
and draft h=0.5 m. The exact solutions are obtained 
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Figure 2. Non-dimensional hydrodynamic coefficients for the sway, heave and roll motions of a hernispheroid with 
ro = 10 m and the gravity centre located at (0,0, - 2.5 m) (A = added mass or moment, B= damping). 

from equation (A4) whereas the equivalent box results 
derived from equation (7) assume a characteristic length 
L= 10 m and beam B=5.774 m. Again from a comparison 
of these findings the error present is small and this suggests 
that the equivalent box formula is valid for structures of 
rapid varying cross-sectional area along the longitudinal 
axis. 

For the horizontal triangular prism of length L= 40 m, 
beam B= 20 m and draft h= 10 m, analytical (equation 
(A9)) and approximate solutions (equation (7)) are given 
in Table 4 together with the rigid body oscillatory modes 
affected by an irregular frequency. These latter predictions 
are derived from an assessment of the supplementary 
condition described in the previous section. 3 Again very 
good agreement occurs between the two sets of results. To 
further support these findings, Fig. 1 illustrates the 
tiumerical results for the triangular prism's hydrodynamic 
coefficients determined from a mixed source-dipole dis- 
tribution computer program based on the Green's function 
integral equation (i. e. equation (2)). The predicted irregular 
frequencies and influenced modes as listed in Table 4 can 
be found precisely in Fig. 1. For example, Table 4 gives the 
first irregular frequency at w=1.58, having an effect on 
heave motion only. At this frequency singular changes 
occur in the heave added mass A33 and damping B33 illu- 
strated in Fig. I. This case study provides additional 
evidence of the accuracy of the predicted values of the 
irregular frequency by the equivalent box approximation 
and the validity of the predicted occurrence rule of 
the irregular frequency defined by the supplementary 
condition. 

Numerical examples 
Three additional body geometries were chosen for the 

numerical verification of the equivalent box approach. The 
mixed source-dipole distribution program is used in these 
numerical computations. 

Firstly a hemispheroid of radius ro = 10 in (i. e. L=B= 
2ro and h= ro) is adopted. Figure 2 shows the calculated 
hydrodynamic coefficients for sway, heave and roll modes 
of this hemispheroid. The non-dimensional values of the 
irregular frequencies resulted from the equivalent box 
formula are listed in Table 5. 

According to the supplementary condition, 3 irregular 
frequencies Coll = 1.656 and w31 = 2.384 have influence 
on heave coefficients whilst frequencies w12 = 2.015 and 
w14 = 2.721 affect the calculated coefficients of sway and 
roll motions. These predicted irregular frequencies together 
with the affected modes coincide with the singular be- 
haviour appearing in the calculated hydrodynamic coef- 
ficients as shown in Fig. 2. 

Table 5. Irregular frequencies for a hemispheroid predicted by 
equation (7) 

P 
m1234 

wwww 

1 1.656 2.015 2.384 2.721 
2 2.015 2.257 2.545 2.834 
3 2.384 2.545 2.760 2.996 
4 2.721 2.834 2.996 3.187 
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Secondly a horizontal circular cylinder of length 
L= 20 m, beam B= 2ro = 20 m and draft h= ro = 10m 
is chosen for numerical investigation. The computational 
added mass and damping coefficients are given in Fig. 3. 
The predictions of the non-dimensional values of the 
irregular frequency by the equivalent box approximation 
are presented in Table 6. 

The rigid body modes of motion affected by the irregular 
frequencies are. 

heave influenced at W11 = 1.546 and W31 = 2.233, 
sway and roll at w12 = 1.906, 
surge and pitch by CJ21 = 1.888, 
yaw by w22 = 2.127. 

Except for the yaw coefficients, in which there is no 
singular change in the frequency range computed, all the 
other irregular frequencies and influenced modes predicted 

Table 7 Irregular frequencies for a half ellipsoid predicted by 
equation (7) 

P 
m12345 

WWWWW 

1 1.487 1.512 1.591 1.707 1.843 
2 1.943 1.967 2.016 2.084 2.169 
3 2.435 2.450 2.476 2.515 2.566 

by the present method are confirmed by the observed 
singular phenomena in the calculated hydrodynamic coef- 
ficients as shown in Fig. 3. 

Thirdly a half-ellipsoid of length L= 100 in, beam 
B= 25 m and draft h= 12.5 is chosen for numerical 
study. The computational results for added mass and 
damping coefficients of surge, heave and pitch for the 
half-ellipsoid are shown in Fig. 4. Non-dimensional values 
of the irregular frequencies predicted by the present 
method are listed in Table 7. 

The modes influenced by the irregular frequencies which 
are determined by the supplementary condition are: 

Table 6. Irregular frequencies for a horizontal circular cylinder 
predicted by equation (7) 

m1 
P 

2 34 

Cl) W Cl) W 

1 1.546 1.888 2.233 2.548 
2 1906 . 2.127 2.393 2.660 
3 2.263 2.408 2.604 2.820 
4 2.585 2.686 2.833 3.006 

heave by C ill = 1.487,0081 = 1.591 and w51 = 1.843 
surge and pitch by W21 

= 1.512 and w41 = 1.707 

The predicted values and the occurrence of the irregular 
frequencies again coincide with the abrupt variations 
emerging in the hydrodynamic coefficients presented in 
Fig. 4. 

ýýýiPv 1 Heave 

m. B/2g 

0.0 o. s 1.0 1.5 2 .0 

+ -n. 1 0. s 

x'igure 4. Non-dimensional hydrodynamic coefficients for the surge, heave and pitch motions of a half-ellipsoid with 
L =100 m, B= 25 m and h= 12.5 m (A = added mass or moment, B= damping). 
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FURTHER DISCUSSION AND CONCLUSIONS 

An `equivalent box formula is presented to predict the 
irregular frequencies associated with a source or mixed 
source-dipole distribution method analysis of a 3D mono- 
hull marine structure. The calculated hydrodynamic coef- 
ficients of oscillatory modes of the body motion influenced 
by an irregular frequency are further determined by the 
proposed supplementary condition. 3 Both analytical and 
numerical examples appear to confirm the validity and 
accuracy of the equivalent box approach for the examples 
considered. 

For a twin or multi-hull offshore structure irregular 
frequencies encountered in numerical computations are the 
sum of those of each individual sub-hull. Hence the equiva- 
lent box formulation is still valid. 

Since the principal irregular frequencies wpl (p = 1,2, 
) and wl,,, (m = 1,2, 

... 
) have a significant influence 

on the hydrodynamic coefficients, the density of the 
occurrence of the irregular frequency may be easily deter- 
mined from equation (7). Apparently, this density dis- 
tribution will be high when the aspect ratio of the length 
to the beam of the body (i. e. LIB), is large. This may imply 
serious irregular frequency problems for a slender ship or 
offshore structure at high frequencies commencing from 
the first irregular frequency w1j. Therefore, the hydro- 
dynamic coefficients at high frequencies produced by a 
singularity distribution method may be somewhat 
questionable. 

However, the longest irregular wave length must be the 
same order of the body beam and therefore the 2D strip 
approximation may be used instead of the 3D computation. 
In the 2D case, irregular frequencies can be removed by 
Ogilvie and Shin's method for a mono-hull and by a new 
proposed formulation derived recently by the authors for a 
twin or multi-hull. 

By using the equivalent box formulation, the values of 
the irregular frequencies become known a priori to the 

numerical computation and one can either avoid calcula- 
tions around these discrete frequencies or distinguish 

whether or not a peculiar variation in the calculated 
hydrodynamic coefficients is caused by mathematical 
failure (irregular frequency) or by physical reasons such as 
resonant waves. 
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APPENDIX 

Analytical solution of the interior eigenvalue problem 
(i. e. equation (4)) are available for a circular tank, 8 a 
sector of a circular tank and a horizontal triangular 
prism. 3 

A circular tank 
For a circular tank of radius ro, i. e. L=B= 2ro, and 

draft h the interior eigen solutions of equation (4) is given 
by 

(p6) 
sinh [k(z + h)] (Al) ýpm = Jp (kr) cos 

sin (PO) 

I 

C 
for r<ro, 0<0<2a, -h<z<0; p= 0,1, ... and 
m=1,2, ... The irregular frequencies occur at 

wpm = [gk coth(kh)] lie 

with k= xm, 
ro 

(A2) 

where x,,, is the mth zero of Jp (x) (p = 0,1, ... ), the 
Bessel function of the fast kind of order p. 

A sector of a circular tank 
For a sector of a circular tank with radius ro, angle 2a 

and draft h, the solution of the interior velocity potential 
satisfying equation (4) can be derived as3 

Ccos (p8) l 
Opm = Jp (kt) 

Sin (pe) sinh [k (z + h)], 

for p= (mir - 7r/2)/a 
pJ = m7r/a J 

r<ra, -a<B<a, -h<z<Oandm= 1,2,... 
The irregular frequencies occur at 

wpm = {gk coth (kh)} 112 

x 
-" withk=, 

(A3) 

(A4) 

ro 

where xm is the mth zero of Jp (x) with p= (mir - a/2)l 
a or p= m7r/a. 

A horizontal triangular prism 
Analytical solutions of the interior eigenvalue problem, 

equation (4), for a horizontal triangular prism of length 
L, beam B and draft h= B/2 (see Fig. 1) may be expressed 
as3 

cosh (ay) cos (&') - cos (ßy) cosh (az 

sinn (ay) sin (Qz') - sin (ßy) s (z') J 

sin [k(x - L/2)), y-symmetric 

y-antisymmetric 

(AS) 

for- L/2 <x< L/2, - z' <y< z' and 0< z' <h with 
z' =z+h, where y-symmetric (anitsymmetric) means that 
¢ is symmetric (antisymmetric) about the x-axis, i. e. 
J(x, - y, z) = cj(x, y, z) with c=1 (-1). 

To satisfy the boundary conditions in equation (4) the 
solution requires 
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p7r 
k= L for P= 1,2,..., 

a2-$2=k2 , 

(A6) 

(A7) 

a coth (ah) -ß cotan (ßh) = 0, y-antisymmetric. (A8) 

The irregular frequencies appear at 
[-gß tan (ßh)] 1/2, 

y-symmetric, (A9) 
[gß cotan (ßhh)] 1/2, y-antisymmetric, 

where ß is obtained by solving equations (A6)-(A8). 
and 

a tanh (ah) +ß tan (ßh) = 0, y-symmetric, 
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A modified Green's function expression in a multiple function form is developed to evaluate the 
hydrodynamic coefficients of two-dimensional multi-hull structures floating or fixed in a seaway. 
Regrettably in conventional singularity methods applied to mono-hulls, twin-hulls, etc., irregular 
frequencies arise in the numerical analysis. It is shown that when the modified Green's function is 
used, the numerical analysis is free of irregular frequencies, the numerical accuracy of the results 
below the lowest irregular frequency is the same as derived from the conventional approach and the 
physical phenomenon of resonant surface wave interaction is retained in the theory. Results are 
presented for symmetric and asymmetric twin hull configurations as well as a rectangular mono-hull 
section heeled to an angle of 15°. A comparison between results evaluated from conventional and 
modified singularity approaches is also included. 

INTRODUCTION 

During these recent years interest has been sustained 
in multi-hull surface piercing floating structures (i. e. 
catamarans and SWATHs, trimarans, multi-hull semi- 
submersibles, side wall hovercraft, etc). This has culminated 
in the building of a large 3500 ton displacement SWATH 
vessel' though several smaller prototypes have been con- 
structed worldwide. ' Such developments have encouraged 
extensive research activities, seeking a better understanding 
and prediction of the behaviour of these multi-hull vessels 
travelling in a seaway. To do this many hydrodynamic, 
structural and hydroelastic theories have been proposed, ' 
involving both two and three dimensional (2D and 3D) 
idealisations of the body. This paper however, focusses 
attention on a method to evaluate fluid-structure inter- 
actions arising in multi-hull structures, especially of a 
twin-hull configuration. 

Many different hydrodynamic theories have been 
developed (for example, the multipole expansions, 2 singu- 
larity distributions, ''s and null field equations, ' etc. ) 
to determine the fluid loading on marine structures. 
Mathematically many of these methods appear effective 
when discussing simple idealised structures. Recently, a 
comprehensive numerical investigation was conducted by 
Takagi et al. ' into the applicability of these theories to 
more complicated geometric contours associated with 
realistically shaped marine structures. This study revealed 
that some approaches produce very poor numerical results. 
This suggests that some elegantly derived mathematical 
models may be 

Accepted January 1986. Discussion closes June 1987. 

(i) accurate mathematically but not necessarily accurate 
numerically ; 

(ii) limited in application to well defined idealised 
shapes (i. e. circular or near circular geometries) 
rather than general geometric bodies; or 

(iii) theoretically incorrect. 

it is not the intention of this paper to reiterate such an 
investigation but to develop a mathematical model which 
has a practical application. 

The multipole expansion approach first developed for 
mono-hulls by Ursell2 has been applied by Wang and Wahab9 
to a twin circular cylinder structure oscillating vertically 
in calm water. Ohkusu10 developed a large distance approxi- 
mation applicable to more general twin hull structures even 
if the distance between the two sub-hulls is small, whereas 
Lee" and Pien and Lee'2 concentrated their efforts on the 
theoretical predictions and experimental verification of the 
fluid actions arising in SWATH type hulls. In fact, using a 
source distribution method, 6"12 they observed two types of 
singular solutions occurring at certain frequencies. That is 

(i) irregular frequencies 13-is due to an inherent mathe- 
matical failure in the formulation arising in the 
singularity distribution procedure, and 

(ii) resonant wave frequencies16, " due to standing 
waves existing between the two hulls. 

Both these two kinds of singular solutions cause abrupt 
variations in the calculated hydrodynamic coefficients 
and when the two singular phenomena occur at closely 
spaced frequencies, immediate difficulties are experienced 
in attempting to distinguish between a real physical 
phenomenon (ii) and a mathematical abstraction (i). 
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To remove the troublesome irregular frequency, Pien 
and Lee12 imposed an `artificial lid boundary condition' on 
the interior free surface of the two hull forms. Their 

example calculations showed success in eliminating the 
irregular frequency effect in a mono-hull but the intro- 
duction of the lid produced deviations from the results 
obtained by the original approach in the frequency range 
below the first irregular frequency value (see Fig. 3d, 

ref. 12). 
For mono-hulls, other methods have been proposed 

to remove the irregular frequency phenomenon, such as the 
combined integral equation methods, 18"19 but the approach 
of Ogilvie and Shin20 to 2D single hull bodies is of particu- 
lar relevance to this paper. They overcome this problem by 

adopting two modified Green's functions, i. e. a symmetric 
form and an asymmetric form. The symmetric expression 
only removes difficulties occurring at the irregular frequen- 

cies found in the calculation of the hydrodynamic coeffi- 
cients of symmetric modes of motion of a 2D body with 
port-starboard symmetry. Their asymmetric expression has 
been founds, 15 numerically to be a more effective approach 
to eliminate irregular frequencies in an arbitrarily-shaped 
2D mono-hull body. 

Ogilvie and Shin's symmetric Green's function was ex- 
tended by Sayer21 to the case of finite water depth, and 
then by Ursell22 who derived a modified Green's function in 
a multipole expansion form. By means of this expression 
Martin7 introduced the null field equation method from 
acoustics and this was further extended to a twin-hull prob- 
lem. In example calculations of simple ellipses, however, 
Martin found that the null field equation method does not 
converge for ellipses of beam (B) to draft (h) ratio of 
orders B/h < 0.8 and B/h > 6.0. Furthermore, when calcu- 
lating more realistic geometries Takagi et al. 8 reported very 
poor numerical data by using this approach. Although the 
null field equation method has the advantage of eliminating 
the problem of irregular frequency it unfortunately intro- 
duces a serious disadvantage of producing non-convergent 
or incorrect solutions. For realistic marine structures, it is 
most likely that B/h may be beyond the range 0.8 to 6.0. 
For example, B/h < 0.8 usually holds in a SWATH (cata- 

maran) ship, s, ii, is, 16 in general in the bow and stern regions 
of a vessel, etc. whereas a sea-going barge, 24 a jack-up 

rig, 2S' 17 and a dry dock26 etc., may have B/h > 6.0. There- 
fore, at present, the practical application of the null field 

equation method may be open to question but this will be 
discussed elsewhere 2 

In parallel to these developments, by directly extending 
Ogilvie and Shin's asymmetric expression, a multiple 
Green's function expression is proposed for the hydro- 
dynamic analysis of a marine structure with a mono-hull, 
twin-lull, multi-hull, or to adjacent bodies of differing 
geometric contours. The method developed and discussed 
in this paper is shown to eliminate irregular frequencies 

and to retain numerical accuracy of the calculated hydro- 
dynamic coefficients of multi-hull floating bodies, especially 
in the frequency range below the first irregular frequency. 

THE GREEN'S FUNCTION INTEGRAL EQUATION 

When a 2D free-surface piercing marine structure oscillates 
with frequency w in calm water or is excited by incident 

waves of similar frequency, the relationships" governing 
the fluid-structure problem may be expressed as 

V20=0 in the fluid domain V 

30 
- PO =0 on the calm water surface z=0 az 

ao 
-=0 on the seabed az 

ao 
-= vn on the mean body sectional contour 
an 

(1) 

cw I together with the radiation condition 
lao 

lim T 
aIn 

these equations, 0 denotes the time independent ampli- 
tude of the velocity potential ¢e t"t, v� is the normal 
velocity component on the sectional contour, n is a unit 
normal pointing into the fluid and v= w2/g is the wave 
number. Figure 1 illustrates the chosen Cartesian co- 
ordinates Oyz with axis Oy fixed in the calm water surface 
and axis Oz is positive upwards. 

From an application of Green's theorem, it can be 
shown that the integral equation in a source-dipole distri- 
bution approach may be cast into the form28 

nO(P) +f O(q) 
a 

Go(P, q) dl 
ant, 

CW 

= 
JG0(pi 

q) vn(9) dl (2) 

CN, 

for 2D modelling of the wetted body sectional contour 
C,,, in which the two points p (y, a) and q (n, ý) are sited, 
i. e. p, qEC. The complementary problem for point 
P interior to CW, i. e. in V, is described by the integral 
equation 

J ß(q) 
ön 

Go(p, q) dl =J Go(p, q) vn(q) dl (3) 

Cw q Cw 

for qEC, and PEP. In these expressions Go( ) denotes 
the classical Green's function" satisfying Laplace's equa- 
tion, the free surface condition, the seabed condition and 
the radiation condition. 

In equations (2) and (3) the operator a/anq signifies an 
operation on the variable q with parameters p and p treated 
as constants. Therefore If Lp t} denotes an operator acting 
only on the variable p and F(p, p) is a suitable but as yet 
unspecified function, it follows from equation (3) that 

(a) (b) 

Figure 1. Cartesian co-ordinate system and symbol def ini- 
tions: (a) a mono-hull section; (b) a twin hul section 
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J o(g) an 
[F'(P, P) L"p {Go(P, q) }] dl 

v CN, 

= 
JWFPP) 

L{Go(P, 4) } U(4) dl 

or defining an additional Green's function 

G(p, a, P)=F(p, P)Lp{G0(p, 4)} (4) 

then 

JO(9) an q 
d1= 

föPqP)vn(q)dl 

cw 
9 

cw 

(s) 

Multiplying equation (5) by a chosen constant C and 
adding it to equation (2) gives 

nß(P) +J O(4) 
än 

G*(p, q, P) dl 
a cw 

=f G*(p, q, P) v,, (q) dl 

where the modified Green's function G*( ) is defined as 

G*(p, q, P) = G0(p, q) + CC(p, q, p) (6) 

Now equation (3) is valid for any point pEV. In particular, 
for a structure of M free-surface piercing sub-hulls with 
individual interior regions V1, V2, 

... , 
PM, each of the 

M points pi E Vi EV (i = 1,2, ... , 
M) satisfies the equation 

f 
o(q) öa 0(p, q, pi) dl =J C(p, q, pi) vn(q) dl 

4 C,,, 

for i=1,2, ... , M, and the continuation of these M inte- 
gral equations may be written as 

ra 
J o(q) an 

d(p, q, p,, ps,... , ply) ar 
4 cw 

=J 0(P, 4, PioP21 " , PM)vn(4)dl 

Cw 

where the multiple additional function is given by 

M 
G(P, 9, p 1, P2, ... PM) CtC(p, Q, Pt) 

t=1 

It now follows that the previous result in equation (6) may 
be generalised into the form 

G'(p, 4, P1, Ps,..., PM) 
M 

= G0(p, q) + Cgg(p, q, Pr) 
1=1 

M 
= Go(P, q) + 1: Ct F(p, pt) Lp {Go(Ar, 4)} (7) 

t=l 

where again this modified Green's function satisfies the 

equation 

a 
iro(P) +J O(4) 

an 
G*(P, 4, PI, Pz) ..., PM) dl 

9 Cw 

G*(p g, Pt , P2) ... , PM) vn(4) dl 
f 

(8) 
CW 

The modified Green's function in equation (7) is the 
summation of a classical Green's function and multiple 
operated Green's functions and therefore it may be termed 
as a multiple Green's function expression. 

The multiple Green's function integral equation, equa- 
tion (8), represents an ordinary source-dipole distribution 
on the mean body sectional contour C,, together with M 
additional singularities located inside the M free-surface 

piercing sub-hulls. By suitably choosing the form of singu- 
larity, the role of these additional singularity terms is to 
absorb or cancel the interior resonant wave modes due to 
irregular frequencies. This has been proved by Ogilvie and 
Shin20 in the special case of a mono-hull. 

MULTIPLE GREEN'S FUNCTION EXPRESSION 

For a body floating in deep water, the classical Green's 
function G0(p, q) relating to the potential at point p= 
(y, z) to a source at q= (r?, ý) on the body contour is 
given by13 

1 (Y-n)2+(z-ý)2 
Go(P>4)=2ý1(Y-n)Z+(z+0Z}+Il+iI2 (9) 

where the principal value integral 

I1=2 cos µ(Y-'7)dµ 
f 

v-µ 
0 

and 
I2 =- 2a a°(+0 cos v(y - 17) 
To each hull is allocated an interior point pr = (ye, 0), 

i. e. Pi E Ft with Ft being the interior free surface of 
the ith hull, so that for a mono-hull structure (M = 1) 
the modified Green's function in equation (7) becomes 

G* (p, q, p l) = G*(y, z; n, ý; Yi, 0) 

= Go(p, q) + C1G(p, q, pi) (10) 

whereas for a twin-hull vessel (M = 2) with interior point 
pl = (yl, 0) in one hull and P2 = 02,0) in the other it 
follows that 

G" (p, 4, Pi, P2) = Go (p, 4) + C1 G(p, q, PI) 

+ C20(p, q, Ps) (11) 

and so on for a multi-hull marine structure with M indi- 
vidual hulls. 

The asymmetric modified Green's function expression 
proposed by Ogilvie and Shin" is effective in removing 
difficulties associated with irregular frequencies in general 
mono-hull cases as has been successfully used by Takagi 
et al. ° and Wu and Price's in the evaluation of the hydro- 
dynamic coefficients of a variety of single body marine 
structures with realistic 2D contours. A possible form of 
the additional Green's function for the present multi- 
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hull cases may be obtained straightforwardly by modifying 
and extending Ogilvie and Shin's asymmetric form. That is 

a d(p, a, p, ) = F(p, p, ) {c11 Sý(v -9, )[ayGo(p, 4)) y_o, 

+ cd2[aa 
z 

Go(P, 9) y =fir, 
} 

z =o 
(12) 

for i=1,2,... 
, 
M. For generality, C11, C, 2 include the 

constant Ci and are treated as complex constants and sgn( ) 
denotes the sign function defined as 

1 fora>O 

sgn(a) =0 fora=0 

-1 fora<O 

and the function F(p, pi) can be chosen as 

F(p, Pt) = Go(p, pt) or exp(va - iv ly -yt I) 

Strictly speaking, the sign function, sgn(y -yi), in equation 
(12) should be regarded as part of the function F(p, pi). 

The present multiple Green's function expression, equa- 
tions (7) and (12), represents a further generalisation of 
Ogilvie and Shin's20 asymmetric modified Green's func- 
tion relating to mono-hulls. That is, for i=1 and the point 
p1 = 0(0,0) positioned at the origin, equation (12) reduces 
to 

G(p, q, 0) 

= exp(vz-ivlY I) 
{Cu 

s8n(Y)[ 
a 

-Go(Y, z; '7, 
dy=0 

l ay Z =o 
j'a l + c12 Laz Go (Y, Z; 'n, ý) 

y= oJ 
==o 

(13) 

When exchanging the positions of p(y, z) and q(n, ý) equa- 
tion (13) is the same as that proposed by Ogilvie and Shinto 
in a source distribution integral equation. 

In the case of a twin-hull vessel the multiple Green's 
function is given in equation (11), whereas the individual 
terms are of the form 

G(y, z; n, 3; 9i , 0) 

a 
=exp(vz-ivIY 911)1C11 sgn(Y Ji) LGo(Y, z; n, ý') y=i Y z=o 

a + Cie öz Co(y, z; n, 0 y=y, 
} 

Z=O 
for position $i = (y,, 0) in hull I and 
G(y, z; n, i; Y2 , 0) 

(14) 

a 
= exp(vz-ivly92l){Czi ýn(y9z) Co(y, z; r1,01 r=ß, y Z=O 

a 
+ c22Läz Go (Y, z; il, 3')]y=ýT, 

} 

=o 
for position t32 = (92,0) in hull II. 

(15) 

By a similar procedure for M interior points Pr(p,, 0) 
(i = 1,2, ... , 

M) the expressions can be easily obtained to 
account for any number of hulls. 

In numerical computations, however, all these individual 
constants involved in the multiple Green's function expres- 
sion may simply take an equal complex value, for example, 
C=-(1 -0/v. 

As pointed out by the authors, 14 irregular frequencies 
encountered in numerical calculations of a twin or multi- 
hull structure are the sum of those of each individual 
sub-hull. Since Ogilvie and Shin demonstrated that a 
similar additional Green's function can suppress irregular 
frequencies in a mono-hull structure, the present multiple 
Green's function with M additional Green's functions 
related to the M free-surface piercing sub-hulls may sup- 
press all the irregular frequencies. 

NUMERICAL TECHNIQUES 

Although the problem is theoretically formulated, to 
determine the fluid actions on realistic marine structure 
geometries emphasis must be placed on computational 
techniques and detailed numerical treatment to provide 
a reasonable solution. Some of the numerical procedures 
introduced to evaluate the 2D Green's function integral 
equation together with the present multiple Green's 
function expression in the solution of the fluid-structure 
interaction problem in multi-hull structures are now 
discussed. 

Analogous to the discretisation procedure developed 
by Hess and Smith, 29 the sectional contour Cw is dis- 
cretised into N elemental lengths, Al, and correspondingly, 
the integral equation (8) transforms into a set of N linear 
equations taking the form 

N 

Z a{j0j = Vi 
j=i 

for i=1,2, ... , N. The terms appearing in this set of 
equations are given by 

r aXrý a ati = aSii + (1 -S ri) J an, 
dl + 

anl(Gý} -Xti) 01i 

Ay II 
N 

Vi= v�l[J Xrfdl+(G? 1-Xil)O1j1 J 
Al, 

where 

xii = In {Rif} = ln{(yi-vi)Z+(zi-zj)z }1, S 

ý1 fori=j 
Si1 

0 for iOf 

(16) 

(17) 

and v/ is the normal velocity on the /th line element. 
In the present study the two elemental integrals in 

equation (17) are analytically computed for neigh- 
bouring elements satisfying the imposed geometric con- 
dition R if < 2011, otherwise (i. e. R, 1> 2x11) these inte- 
grals may be approximated simply by the terms (äXll 
an f)A// and Xi fell. 

The remaining integrals involved in the evaluation 
of Gjl and 8G#/an, may be expressed as 

M 

f 
emisf+s)(COSuµ(Y/-Y)1ý 

sin (Y/ -Y) J 
0 

a 
1 {-(z/ + z) 

(Y/ -Y)2 + (zý + z)s t(Y/ -Y) 

1 
(18) 
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and 
ý 

eµ(zi+z) I-sinp(yj-y)l cos µ(Yi -Y) fRe(I)v 

-µ 
dµ 

Im(I) 
0 

(19) 

where Re( ) and Im( ) denote the real and imaginary 

components respectively of the principal value integral' 

I= t dµ 
v-µ 

0 

=e -tv(ai-&) {iir -E1 [-iv(ai -di)] 1 (20) 

where ai = yi + iz;, ä=y- iz. El () is the exponential 
integral which can be written in a series form. 6 In fact, 
in equations (18){20) the coordinate (y, z) can repre- 
sent the ith point (yr, z, ) or the M interior positions (Pi, 0) 
(i= 1,2,..., M). 

There now exists sufficient information for all and V; 
in equation (16) or (17) to be defined and the determina- 
tion of O1(j = 1,2, 

... , 
N) may be completed. This 

allows the hydrodynamic added mass coefficients A, * 
and damping coefficients B, k due to radiation waves and 
wave exciting forces F, due to the combination of inci- 
dent and diffracted waves to be determined for a 2D 

multi-hull body from the relationships 

A, * =w Im(ok) n, dl 

Cw 

B, * _ -p J Re(0 k) n, dl 
Cw 

p, =-iwp 
f 

(0°+07 )n, dl 

CW 

(21) 

for r=2-4, k=2-4. In this equation, r=2 denotes a 
sway motion, r=3a heave motion, and r=4a roll motion; 
0° is the incident wave potential, 0' is the corresponding 
diffraction wave potential and /k (k =2- 4) are the radia- 
tion potentials of sway, heave and roll modes respectively. 

TWIN-HULL COMPUTATIONS 

The applicability of any theory relies heavily on its 
accuracy and practical usage. Takagi et al8 assessed a 
variety of mathematical approaches and the evidence 
presented shows that some theoretical methods produce 
very poor numerical results when applied to some realisti- 
cally shaped marine structures. In this paper the proposed 
mathematical model and the accuracy of the numerical 
method are judged on two self imposed conditions, namely, 

(i) irregular frequencies are eliminated in the frequency 
range of interest, 

(ii) the same numerical accuracy of prediction is achieved 
as derived from a conventional singularity method 
(for example, a combination of equations (2) and 
(9)), especially in the frequency range below the 
first irregular frequency value since the original 
method provides accurate solutions in the lower 
frequency range. 

If these two conditions are satisfied, then the proposed 
method and analysis has a wide range of application. 

Twin rectangular cylinders (symmetric) 
A sketch of this twin rectangular hull configuration is 

shown in Figure 2 and represents an idealisation of a drilling 
platform in transit 17 

Also illustrated are the sway, heave and roll coefficients 
calculated by a conventional source-dipole method. " Rapid 
and abrupt variations occur in all the curves describing the 
coefficients at a number of frequencies and the conclusions 
deduced in previous studiesia, is, 3° are again proved valid. 
That is, the irregular frequencies occurring in a twin hull 

structure are the sum of those of each individual hull 
section. In theýpresent example, the first irregular frequency 
is predicted15 at w2B/2g = 1.715, confirming the exis- 
tence of an irregular frequency and not a wave resonance 
at this frequency. Such a phenomenon is clearly seen in the 
sway and heave curves but barely visible in the roll curves. 
However, by the approximation proposed by Wu and 
Price, 16 the first resonant wave frequency is predicted at 
w2B/2g = 1.57 (i. e. the wave length X- 2B), at which 
large changes in the sway and roll fluid actions are clearly 
visible. It is interesting to note that at this frequency, no 
resonant wave effect in heave motion is evident but this 
result should be compared with those found in the next 
example. An additional condition governing the appearance 
of the resonant wave influence has been formulated by the 
authors and interested readers should refer to Ref. 16 for 
details. 

Figure 3 illustrates the same set of hydrodynamic coeffi- 
cients but now the results are computed from the modified 
source-dipole integral equation with a multiple Green's 
function as described previously. On comparing these 
results with those in Figure 2, the singular phenomenon 
at the irregular frequency w2B/2g = 1.715 has been removed 
but the resonant wave phenomenon remains although there 
is a slight shift in frequency to w2B/2g = 1.59. Apart from 
the vicinities of these two frequency values, the computa- 
tional results in all coefficients are exactly the same as 
those determined by the conventional source-dipole 
method and can be compared with the predictions pre- 
sented in Figures 2 and 3. 

This example proves to show that for symmetric twin 
hull cross-sections the present method is successful, satisfy- 
ing the two imposed conditions introduced prior to the 
commencement of the computations. 

Two different hull sections (asymmetric) 
Figure 4 illustrates a two dimensional cross-section con- 

sisting of triangular and rectangular hulls. For this con- 
figuration, irregular frequencies are predicted15,30 to occur 
at w2B/2g = 1.715 and 2.34, corresponding respectively to 
the irregular frequencies occurring in a mono-hull rectangu- 
lar section and a triangular section. 

The sway, heave and roll hydrodynamic coefficients 
determined from a conventional source-dipole method are 
shown in Figure 4. Variations in the curves are observed 
at frequencies w2B/2g = 1.66,1.785 and 2.34 indicating 
one resonant wave frequency and two irregular frequencies. 
The last frequency value coincides exactly with the second 
predicted irregular frequency value but the first two are 
slightly different from the first predicted irregular fre- 
quency value. It is believed that this is due to overlap in 
these two ill-conditioning bandwidths occurring in the 
numerical computations and therefore an interaction effect 
may cause the deviation. 

When the modified approach is used, the irregular fre- 
quency phenomenon disappears as shown by the results 
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Figure 2. Hydrodynamic coefficients of a twin rectangular hull structure calculated by the conventional method, i. e. 
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given in Figure 5. The resonant wave frequency phenome- 
non remains, i. e. at w2B/2g = 1.66, and all the conditions 
defining "numerical accuracy" of the method are again 
satisfied. 

MONO-HULL COMPUTATION 
The modified approach described in this paper has been 
shown numerically applicable to both symmetric and 
asymmetric twin hull sections. In the case of a mono-hull, 
the expressions derived in the present source-dipole method 
have corresponding forms in the source distribution method 
of Ogilvie and Shin. 20 

Figure 6 illustrates the results derived for a rectangular 
section at a heel angle of 15° representing a damaged 

caisson. Again the numerical trends and findings observed 
in the computations of the twin-hull sections remain valid 
for this 2D mono-hull section. 

CONCLUDING REMARKS 

A multiple Green's function expression is represented by 
a combination of a classical Green's function (i. e. equation 
(9)) and M additional terms (i. e. equation (12)) derived 
by a succession of linear operations (that is, derivatives, 
multiplications, etc. ) on the classical Green's function. 
In the latter, it can be seen that these M additional func- 
tions correspond to the M interior free-surface points 
located in each of the M free-surface piercing individual 
hulls of the multi-hull structure. If an individual hull is 
totally submerged no additional term is required for this 
hull. For example, if a multi-hull body consists of M 

2. W 

Conventional method 

9.51 1.01 1.51 2. IF 

. I-B29 

B22 /2q/OV 

Sway 

1.9 

individual hulls of which two are completely submerged 
then only (M- 2) additional functions are necessarily 
included in the multiple Green's function expression. 

In this paper this formulation is applied in conjunc- 
tion with a modified Green's function integral equation 
based on a source-dipole distribution, i. e. equation (8). 
However, it can also be used with a source distribution 
integral equation. 

The multiple Green's function technique clearly elimi- 
nates the problem of irregular frequencies associated with 
conventional singularity methods but retains the physical 
phenomenon of surface wave resonance caused by fluid- 
structure interaction between sub-hulls of the multi-hull 
structure. This approach possesses the same numerical 
accuracy as conventional methods especially at frequen- 
cies below the first irregular frequency. 

The computing time increase due to the inclusion of the 
multiple Green's function in the present method is rather 
small. It is approximately equal to M/2N of that required 
for a computation using a conventional singularity method 
involving N discretised line elements to describe the wetted 
sectional contour of the multi-hull with M free-surface 
piercing sub-hulls. 

The present formulation is readily implemented in any 
existing computational program adopting a 2D singularity 
distribution method by simply substituting the conven- 
tional Green's function calculation subroutine with the 
present multiple Green's function method subroutine. 

In the present paper a program including the proposed 
approach and numerical procedures is used successfully 
to study symmetric and asymmetric twin-hull structures 

Figure 6. Comparisons between the results by the conventional method (the solid lines) and the present multiple Green's 
function method (the circular points) fora rectangular hull in 15° of heel 
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as well as an asymmetric mono-hull body. This technique 
is easily applied to a multi-hull structure of arbitrarily- 
shaped 2D cross section and to a problem involving multiple 
2D bodies. Detailed results for these two cases will be 

published elsewhere. 
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1. INTRODUCTION 

The Green function integral equation governing the water wave-structure 

interaction problem can be expressed in an exterior, surface or interior 

integral equation form. Conventionally, in the field of marine hydrodynamics 

the surface integral equation is always employed in numerical computation 

because of the diagonally dominant property of the resultant matrix equation 

and sufficient experiences gained in practical applications. When an interior 

integral equation is adopted, the kernal function is never singular. 

However, according to Mei(l) the interior integral equation has not 

been used in water wave problems perhaps due to the following reasons: 

(i) the resultant matrix equation would no longer be diagonally dominant, 

(ii) the choice of the interior field points could be too arbitrary. 

An effort to apply the interior integral equation has been made by 

Martin 
(2) 

who introduced from acoustics a null field equation method based on 

the original interior integral equation. Unfortunately, divergent solutions 

were found for both thin and. wide elliptical sections. It seems that the 

derived null field equation may be valid only for circular sections and 

slightly perturbed geometries based on a semi-circle or some other simple 

geometries corresponding to the chosen basis of series functions. These 

limitations of the null field equation approach have been well discussed 

in electromagnetics, optics and acoustics (for example, by Bates et al, 

Phil. Trans. Royal Soc., 1977; van den Berg et al, J. Opt. Soc. Am., 1979; 

etc. ) . 

In the present paper theoretical basis and numerical techniques to apply the 

interior integral equation to general geometric forms of ships and offshore 

structures are described. 

1. 



2. INTEGRAL EQUATION AND DIAGONAL DOMINANT PROPERTY 

The Green function integral equation governing the radiation or diffraction 

wave potential 4e-iwt can be expressed as 

4D öG(P, Q)dS 
=v (Q) G(P, Q)dS for P(x, y, 2)e Sw (1) 2 ný (P) 

f 

wý 
(Q) onQ Sw nýD 0 

These three forms in eq. (1) may be referred to as the exterior, the surface 

and the interior integral equations corresponding to the locations of the 

field point P outside the body mean wetted surface Sw (i. e. in the exterior 

fluid domain D), on Sw and inside Sw (i. e. in the interior domain D). The 

Green function has the form (Wehausen & Laitone, 1960): 

G(P, Q) = 1/r 
PQ 

+ H(P, Q; k) = 1/{(x-E)2+(y-n)2+(z-C)2}' 2+ H(P, Q; k) (2) 

As far as the surface integral equation is concerned the Green function 

possesses a 1/r singularity for the case (x, y, z) = 

Rewrite eq. (1) approximately in a discretised 
NI 

aý(Qi) - jEl 
ý(Q3) 

CS 3n (G(P 
QJ Q7 

form (for i=1,2,... N)as 

- lj/rP 
iQ 

with öi] _ 
1 for ij io 

j 

and define the SELF-INDUCED CONTRIBUTION FACTOR 

a= 
47r a 

0ý 

fs 

Q 
anQ (1/rp1Ql ) dS 

ii 

A. 

ll li 
for Pi Eý_ 

- lD (any positions) 

D 

D 

w 
(4) 

For r- O`, that is, P. tends to Q; from the exterior or the interior 
1 

domain, a becomes 27 which is identical with the second form of eq. (1). 

For simplicity, a circular flat panel ASQi is chosen together with a field 

point P. of local coordinats (O, O, z) as illustrated in Fig. 1. It can be 

readily derived that 
D (neighbourhood of S) 47r w 

a 27r - 27r sign (z) (1 -IZI) for Pir sw (5) 

0 aZ+ z (any positions) 

Values of a versus the non-dimensional distance z/a are shown in Fig. 2. It 

is apparent that the self-induced contribution factor a varies continously 

and smoothly from 0-27r+y < 47r as the field point P. moves from a far interior 

location, via the body surface Sw, to the exterior region neighbouring to the 

body surface. This conclusion holds for any arbitrary polygonal panels. 

This discussion implies that if all the interior field points are chosen 

such that III is small the resultant matrix equation of the interior integral 

equation retains a similar diagonally dominant property to the surface 

integral equation approach. 

t For Pi located in the exterior region not close to the body surface S, the 
first term in eq. (3) should be written as aý(Qi) + 41r{Q(Pi) - s(Qi)}" 

N 
dS = -j? ý1 vn(4j) S 

G(Pi, Q)dS (3) 

Qj J 

D (neighbourhood of. S, ) 

2. 



3. CHOICE OF THE INTERIOR FIELD POINTS 

As long as all the interior field points are located close to the body 

mean wetted surface Sw the resultant matrix equation of the interior 

integral formulation has the numerical advantage of diagonal domination. 

In practical numerical computation, all chosen interior control points 

make up an interior surface 9 which is parallel to the body surface SW and 

with a scale reduction factor Cs slightly less than 1.0 (i. e. Cs = 1.0 -E 
for e being a small positive value). In the two-dimensional case, a scale 

reduction factor value Cs = 0.95 implies that the area enclosed by the 

interior contour is about 90% of the cross-sectional area. 

In such a manner all these interior points can be automatically produced 
by a computational programme suite ("HYDROINT") in terms of the same input 

data file for the computer package based on the surface integral equation 

technique. 

4. NUMERIC'r. i, EXA: IPrES 

Extensive numerical applications of the present interior integral equation 

method to various ship forms and complicated offshore structures have been 

conducted to verify the proposed approach. Two examples are displyed in 

the present paper. Fig. 3 shows the calculated sway, heave and roll added 

mass and damping coefficients for a ship section. The two sets of data 

obtained from the surface and the interior integral equation techniques 

coincide very well. Since the ordinary Green function is used irregular 

frequencies occur when these computed hydrodynamic coefficients exhibit 

abrupt variations due to mathematical failures (cf Wu and Price, First 

Workshop, 1986 and J. Applied Ocean Res., Oct. 1986). The irregular 

frequencies appearing in the interior integral equation calculation are 

higher than those related to the surface integral equation formulation 

because of a reduced area of the interior free-surface bounded by the chosen 

artificial interior surface. However, when a modified Green function 
(3) 

is 

adopted there exist'no irregular frequency effects. This may be confirmed 

by data given in Fig. 4. In Fig. 4 hydrodynamic coefficients for a rectangu- 

lar section derived from the surface and the interior integral equations 

by means of the modified Green function are presented. Excellent agreement 

between the two formulation calculations can be observed and there is no 

mathematical failure due to irregular frequency problem. In addition to 

the similar numerical solution stability and accuracy the computing time 

required for the surface and the interior integreal equations is nearly the 

same. 

3. 



5. CONCLUSIONS 

(i) The resultant matrix equation of the interior integral equation can 

retain diagonal dominant feature if all the interior field pointsare 

arranged close to the body wetted surface. 

(ii) It is proposed to locate these interior control points on an 

artificial interior surface which is close and parallel-to the body 

surface. 

(iii) In contrast with the null field equation method which seems free of 

irregular frequency effect but may have divergent solutions for 

more complicated geometries in practical applications, the interior 

integral equation itself can not eliminate difficulties associated 

with irregular frequency problem in a higher frequency range but 

it may be applicable to arbitrary ship forms and offshore structure 

geometries. 

(iv) 

(v) 

In combination with the modified Green function the present interior 

integral equation approach can remove irregular frequency influence 

and thus may be applied to a wider range of wave frequencies as well 

as body geometries. 

Numerical example studies confirm that the present method can be 

performed in a totally same manner as the conventional surface integral 

equation with the same input data, similar numerical stability 

indicated by associated values of a condition number, a similar degree of 

numerical accuracy achieved in nearly the same computer time. 
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Fig. 1A circular flat panel on the body wetted surface S together 

with a field point P. (O, O, z) exterior (i. e. i> O)wor interior 
(i. e. z< 0) to the body 

surface. a is cne radius of the panel. 
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Fig. 2 Values of the self-induced contribution factor versus the 
distance between the field point Pi and a circular panel 4s of 
radius a calculated from eq. (5). 
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SOLUTION APPROXIMATIONS TO THE HORIZONTAL PLANE 
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On the basis of an order estimate analysis [1,21 approximate solu- 
tions to the horizontal plane motions (i. e. surge, sway, yaw) are 
derived for full-bodied slender and/or shallow draft floating marine 
structures excited by sinusoidal waves of long wavelength. These solu- 
tions are intended for use in the early stages of design and are 
obtained from analytical expressions (when the body is of a simple 
geometric form) or by computing simple expressions requiring only 
modest computing resources. 

For the structures and wave conditions investigated it is shown that 

the contributions of the radiation forces and diffraction forces asso- 
ciated with the surge motion are higher order smaller quantities than 
the Froude-Krylov force and for sway and yaw motions these forces 

partially cancel one another leaving a residue of order smaller than 

the now dominant Froude-Krylov force component. The resulting 

approximate solutions of the motion predictions of a wide range of 
typical offshore structures are compared with experimental data and 

more traditional theoretical approaches incorporating contributions 
from radiation and diffraction force components. Satisfactory agree- 

ment is found not only at long wavelengths but also in shorter waves, 
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confirming the practical applicability of the approximations to describe 

the responses of full-shaped slender bodies, submerged slender bodies, 

shallow draft slender bodies and three-dimensional shallow draft 

structures such as a triangular deck of a jack-up rig. 

1. Introduction 

Many structures and vessels used in offshore operations, marine trans- 
port and in the servicing of offshore platforms, etc., possess forms 
described as 

(a) slender, defined by the ratios of length L and beam B (i. e. 
L/B » 1) and length to draft h, (L/h » 1); 

(b) shallow draft (B/h » 1). 

An additional feature to (a) and/or (b) is the fullness of the cross- 
sectional shape of the body. That is the structure has a relatively long 
parallel midbody with a midsection coefficient of order 1.0. The block 
coefficient Cb (_ V/L Bh, V represents the volume displacement) is 
large and the hull is referred to as "full-bodied". 

On the basis of the slenderness of the body, slender body theory [1,2] 
and strip method techniques [3] have been developed to evaluate the 
fluid actions (i. e. hydrodynamic coefficients, wave loads, etc. ) associated 
with ship-like bodies travelling in waves. For barges, which are a 
typical group of "full-bodied slender structure", several practical, 
theoretical and experimental investigations into the hydrodynamic 

characteristics, motion behaviour and structural responses have been 

reported [4-9]. In particular, Wu and Price [8,9] find that it is sur- 
prisingly effective to derive approximate solutions of the horizontal 

plane motions (i. e. surge, sway and yaw) of the structures by including 

only the Froude-Krylov force contributions in the analysis, ignoring 

the radiation and wave exciting diffraction forces. It was shown that 
this approach greatly reduces computational effort without significantly 
decreasing the accuracy of the solution. Furthermore, this type of 
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approximation appears valid for a variety of three-dimensional shallow 
draft offshore structures of various waterplane geometries such as a cir- 
cular dock [ 10], a triangular jack-up rig [9] and a square platform [ 10], 

etc. In these cases, comparisons between predictions and experimental data 

show good agreement confirming the intuitive approach, but a theoretical 
basis for the proposed approximate solutions has not been fully justified. 

In a study of the surge motion of slender ships, Grim [ 11 ] introduced 

a similar simplification to the surge exciting force, representing it by a 
Froude-Krylov contribution only. However, in the present study, based 

on the slenderness parameter [1,2] or shallow draft parameter [9], a 
method is developed providing rational approximations to the solutions 
of all the horizontal plane motions for a full-bodied slender vessel or 
shallow draft structure excited by sinusoidal waves of long wavelength. 
If further the vessel is both slender and of shallow draft, the proposed 
approximate solutions may be of a higher degree of accuracy. 

It is shown that for long wavelengths, the diffraction force due to the 
incident sinusoidal wave acting on a restrained full-bodied slender 
vessel and the radiation force arising from the body oscillatory sway or 
yaw motion are of the same order of magnitude as the Froude-Krylov 
force. The first two components are of a form which nearly cancel one 
another out, contributing a combined influence of much smaller magni- 
tude than the now dominant Froude-Krylov component to the wave 
forces exciting the sway and yaw motions (as well as surge motion). 

Comparisons of predictions from the proposed approach, two- and 
three-dimensional methods and experimental data illustrate the validity 
of the-approximate solutions. The latter are demonstrated to be appli- 
cable and accurate in waves of long wavelength and retain considerable 
accuracy even when applied to waves of shorter length. 

2. General mathematical formulation 

For an arbitrary shaped three-dimensional rigid structure excited by 

sinusoidal waves of amplitude ca, frequency w, wave number k and 
heading angle 9 (= 1800, head waves), the total linear velocity potential 
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(D describing the structure-wave interaction may be represented by a 
summation of all the potential components 4J. These are associated with 
the bodily motions of surge, sway, heave, roll, pitch, yaw (i. e. 
Xj = Xja e-iwt, j=1,2,..., 6 respectively), the diffraction potential ¢7, 

and the incident wave potential 00. That is 

6 
ý(x, y, z; t) =¢ e-iwt = 

(O 
+ 07 +E Xja Oj) a-iwt (1) 

j=1 

with 

0g ýa 
W(z) eik(xcosß+ysin, 

B) 
w 

where 

W(7l- - \r.. / -i..,... L 1. /... . i\ 

kz 
e 

I 
cost I cc 
cwn nkctuj for finite water depth, d 

and k satisfies the relationship 

k tanh kd 

k 

cosh kd 

=v= 

for infinite water depth, d= 

2 d#oo, 
w for 
gd= 

oo. 

00 

(2) 

The unknown velocity potentials iJ (j = 1,2,..., 7) can be solved using 
the Green's function integral equation (cf. [ 12]). 

27r O(P) -J Sw 
O(Q) aG(P 

an Q 
dS =- 

fS 

w 
vn(Q) G(P, Q) dS (3) 

where G(P, Q) denotes the appropriate Green's function, P(x, y, z) and 
Q(£, r7, ý) are two points on the wetted body surface Sw, and the normal 
velocity 
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1-i w n. for j=1,2,..., 6 

n 
-8¢o/an for j=7. 

Here the unit normal vector 

n= (nl, n2, n3) 
n x(x - xG, Y- YG, z- zG) _ (n4, ns, n6) 

and coordinates (xG, yG, zG) denote the centre of gravity G defined in a 
suitable right-hand axis system with origin placed at amidships. 

Let us assume that the velocity potential solutions 4J exist and can be 
determined. This allows the added mass coefficient Arj (j, r = 1,2,..., 6) 
damping coefficient Brj and diffraction wave force Fr7 to be evaluated 
from the expressions [2] 

w2Ar. l+iwBrj =- 
fS iwpoj nrdS 

W 

or 

I 
Arl 

wJS 
Im (0j) nr dS 

W 

Brj -p S 
Re(¢i) n 

.L 

and 

fs Re(¢i) nr dS 
W 

Fr7=-iwPJS 0 7nrdS 

w 

fs 

W The Froude-Krylov force is given by 

Br. 
l = -p 

Or 8 dS. 

(4) 

(5) 

(6) 

Fr0 --iwPJS 0 OnrdS. (7) 

w 
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In these equations, p denotes the fluid density and the real and imagi- 

nary parts of the complex potential amplitude OJ are denoted by Re(. ), 
Im(") respectively. 

The equation of motion describing the behaviour of the vessel in the 
sinusoidal seaway may be expressed in the form (cf. [9]) 

6 ... 

E[(Mrj + Arj) X +(Brj + Bvrj) xi +C Xj] = j=1 

=(F0+F7)e-iwt rr (8) 

for r=1,2,..., 6. In this expression Mrj is the generalised mass, Crj is 
the hydrostatic coefficient and Bvrj is a term introduced to describe the 
damping contribution due to viscosity, eddy making etc. The latter 

plays a significant role in depressing the magnitudes of the motions at 
the resonance frequencies. 

Equation (8) may be rewritten in the form 

E (-w2 Mrj Xja) (FrH + Frs) _ (Frý + Frý) 
j=1 

where the term 

FrH [w2 Arý +i w(Brý +B ýrý)]X. a j=1 

represents the radiation force amplitude and the term 

6 
Frs =-> Crj Xja 

j=1 

(9) 

(io) 

(11) 

describes the hydrostatic restoring force amplitude. As a simplification 
to the subsequent analysis for the horizontal plane motions, but with no 
loss of generality, it is assumed that the viscous damping term Bvr. j =0 
in Equations (8) and (10). 
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For simplicity, let us assume that a single mode of motion Xr(t) can 
exist, uncoupled from the remaining five motions. Thus from Equation 
(9) the motion amplitude can be expressed in the simplified form 

Xra = (Fr0 +Fr7+ FrH + Frs)/(-w2 Mrr) = 

= (Fr° + Frs)/(-w2 Mrr) + FrB/(-w2 Mrr) (12) 

with the body induced force FrB = FrH + Fr7, for each r=1,2,..., 6. 
Here the absolute value of the real motion amplitude is denoted by 

. 

I Xra I 

Xa for r=1, surge amplitude 

Ya for r=2, sway amplitude 

Za for r=3, heave amplitude 

Oa for r=4, roll amplitude 

Ba for r=5, pitch amplitude 
Oa for r=6, yaw amplitude 

and if the study is restricted to surge, sway and yaw motions, the 
hydrostatic restoring forces Fjs =0 (j = 1,2,6). 

For the typical full-bodied slender structures under investigation, a 
two-dimensional strip theory formulation provides a more practical 
approach to evaluate the potentials than the three-dimensional version 
represented by Equation (3). That is, Equation (3) can be replaced by 

the equation [ 12] 

7r O(P) + 
Sc 

O(9) aG(p 
an dl -JC vn(A) G(p, A) dE (13) 

q 
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where G(p, q) is the appropriate two-dimensional Green's function, 

p(y, z) and q(, , c) are two points on the sectional contour Cw(x) located 

at the longitudinal coordinate x. Thus the surface integral over the 
wetted surface Ste, in Equations (4-7) can be substituted by integration 

of the sectional quantities over the longitudinal length, i. e. 

fr L/2 Nf 
OXn 

J SW 
(-) dS =J 

_L/2 
dx 

f 
CW(X) 

(") di ne 
n 

[J 
CW(Xn) 

(ý) dt] 

where N denotes the number of longitudinal divisions of the body. 

3. Solution approximation based on slenderness 

3.1. The slenderness parameter 

(14) 

The theory developed to describe the hydrodynamic analysis and the 
motions of slender, rigid, ship-like bodies in waves is well established 
[1,2,13,14). The body has port and starboard symmetry and the theory 
is based on a small parameter e= B/L « 1, denoting the slenderness of 
the body. The draft h is of the same order of magnitude as the beam 
such that h/B = 0(1) or h/L = O(e). In general the non-dimensional 
coordinates of the centre of gravity and centre of buoyancy, i. e. 
(xG/L, yG/L, zG/L) and (xb/L, yb/L, zb/L) respectively are of order C. 
The generalised normal components n1 and n4 are of similar order, i. e. 
O(e), whilst the remaining normal components are treated as of order 
O(1). 

For wavelengths A comparable to the body length L, i. e. L/A = 0(1) 

or kL = 0(1), the orders of magnitudes of the geometric quantities used 
to describe a slender marine structure are summarised in Table 1. 

In the present paper, the water depth is assumed to be of order 
d/. ) = 0(1) and this implies a "deep water" case, i. e. d= oo and k=v. 
However, the body draft related dimensions always remain an order e 
or smaller such that kh = 2x(h/L)/(a/L) ^- O(e) or smaller and the free 

surface condition 
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TABLE 1. Orders of main dimensions of a slender body 

Sur- L/) B/A h/a Area nl n2 n3 n4 n5 n6 (zb-zG)/L 
face 

SW 1EEEE, 1*)1 1 ¬1 1E 

*) Applicable to the body with flat or blunt ends. 

ä- VO =0= 8( - (kh) 0. (1 s) 

In the inner region this result can be replaced by a first approximation 
with respect to a and Equation (15) is replaced by the rigid boundary 

condition 

110 ä= 
(16) 

Thus, orders of magnitude of various potential components in Equation 
(1) and force components given by expressions (6,7,10,11) can be esti- 
mated based on Newman's analysis for a slender body in waves [ 1,2]. 

Table 2 provides estimates of the orders of magnitudes of each force 

component; that is, the inertia or body mass force FPM, the hydrostatic 

restoring force FMS, the Froude-Krylov force FAO, the radiation force 
FAH and the diffraction force Fj7 acting on the structure. In the last 

column the total body induced force FHB = FAH + Fj7 is listed and this 
information is deduced from the data given in the table as will be subse- 
quently explained. Thus, under the specified conditions L/A = 0(1), 

B/) = O(e) and h/A = O(e) it is observed that 

(i) In an analysis of surge motion, the hydrostatic restoring force FIS 
is zero; the radiation and diffraction forces are both of order 

e4 In a (or e3 if the slender body has flat or blunt ends), whilst the 
inertia force FIM and the Froude-Krylov force F1° are of order 

E2. The latter two components provide the dominant contributions to 

the total surge force. 
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TABLE 2. Orders of various forces on a slender body at wave 
length L/a = 0(1) 

Mode Mass Rest. F-K Radiation Diffraction FAH+Fj7= FGB 

J FIM FAS Fj0 FAH Fj7 ***ý 

Surge 1 E2 0 E2 E41nE, E3*> E41nE, E3*) E41IIE, E3*) 

Sway 2 E2 0 c2 E2 E2 E3 
Heave 3 E2 EE c2lnc c2lnc c2lnc 

Roll 4 E4 E3 E3 E4 E4 E4 
Pitch 5 E2 EE c2lnc c2lnc c2lnc 

Yaw 6 E2 0 E2 E2 E2 E3 

*) See the note in Table 1. 
***) Results in this column are derived in Section 3. 

(ii) For sway and yaw motions, all the forces are of order e2 except 
the hydrostatic forces when F2s =0= F6s. 

(iii) In the heave (j = 3), roll (j = 4) and pitch (j = 5) modes the con- 
tributions from Fj0 and Fjs dominate all other force components. 
However, due to the resonance behaviour inherent in these 
motions, at or near a resonance frequency the contributions from 
FjM, FjH and Fj7 can play an important role. 

On the basis of Table 2 we shall assess the influence and the contri- 
butions of the various loading components in the determination of the 
surge, sway and yaw responses described by the simple, uncoupled 
expressions assumed in Equation (12). 
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3.2. Surge motion 

From Equation (12) and Table 2, the surge motion amplitude (r = 1) is 

given by 

X1 
a= 

F10 /(-w2 m) + F2B/(-w2 m) t2 F 10 /(-w2 m) +O (E 
2 Inc ) 

where m= M11 = M22 = M33 is the mass of the body. Since 
Fl 0/(-w2 

m) is of order 1 and the remaining term is of order a or 
smaller, the first approximation of the surge motion of a slender marine 
structure can be expressed as 

Xla = F1ý(-w2 m) ne 0(1). (17) 

Thus it can be concluded that to the first approximation in e, the 

surge motion of a slender body is solely determined by the inertia and 
the Froude-Krylov forces as given in Equation (17). 

It may be further shown that the coupling effect due to the pitch 
motion on the surge motion is of order a provided that the pitch motion 
amplitude is of 0(1). Therefore, to a first approximation this may be 

neglected and the previous conclusion resulting from Equation (17) 

remains valid for these coupled motions. 

3.3. Sway motion 

From Equation (12), the sway motion amplitude may be written as 

X2a = F2U/(-w2 m) + F2B/(-w2 M) 

= X2a + F2B/(-w2 m) = 

= 

= 0(1) + (0(l) or smaller). (18) 

To simplify the analysis, it is assumed that the full-bodied structure 
has a uniform cross-sectional shape of area A along its length and a 
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volume displacement V. Thus it follows from Equations (2) and (7) that 

X2a = F20 /(-w2 m) ={-i wpJS00 n2 ds)/(-w2 p 0) = 
w 

sin (ky sin ß) n2 dt/kA = =i ýa sin (L)/L 
Jc, 

ek 

=i ýa sin 6 sin (L)/L [I + O(E)] = 

= 0(1) (19) 

since ky, kz, nj are of order e, n2 is 0(1) and L= (kL cos ß)/2. 
From Equations (6), (2) and (4) the diffraction force 

F27 - _P 
fS 02 äo as = 

w 

=1 ca P ýa IS 02 (n3 

w 
+isin6n2+icos ßn) ekz eikzcosp x 1 

x eikysinß dS = 

-L/2 L/2 _L/2 
eikxcosß dx fC 

(x) 
(w pi02 n2) dt [1+ O(e)] _ =i Sa sin p 

W 

L/2 
Sa sin ß [-w2 a22(x) -iw b22(x)] eikxcosß dx 

-L/2 
2 

-i Sa sin ß sin (L)/L (w A22 +iw B22) [I + O(E)] 

=- (w2 A22 + iwB22)X2a[1 +O(E)]= 

- (F2H/X2a) X2a [1+ O(E)] = 

= O(E2) 0(1 )[1+ O(E)] = 

[1 + O(E)] = 

= O(e2) 
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and the radiation force 

F2H -(w2 A22 +iw B22) X2a = 

= (w2 A22 +iw B22) {X2a + F2B/(-w2 m)) = 

= O(E2). 

The combination of the radiation and the diffraction forces yields 

F2B=F2H+F27=-(w2A22+iwB22)X2aO(e)+ 

+ F2B (w2 A22 +iw B22)/(-w2 m) 

or 

F2B =- (w2 A22 +iw B22) X2a O(e)/(1 + (w2 A22 +iw B22)/(w2 m)) = 

= O(E3) (20) 

and 

F2BA-w2 m) = O(E3)/O(E2) = O(E), 

since X2a = 0(1) and both (w2 A22 +iw B22) and (w2 m) are of order 
e2. 
Consequently, the sway motion amplitude given in Equation (18), can 
be rewritten as 

X2a X2a + F2B/(-w 
2 

m) = X2a + O(E) (21) 

and the results from this analysis imply that: 
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(i) Although the individual radiation and diffraction force compo- 
nents are each of order E2 (see Table 2), these largely cancel one 
another and their combination is of a higher order, i. e. e3, as 
given in Equation (20). 

(ii) To the first approximation in e, the sway motion of a full-bodied 

slender vessel given in Equation (21) can be expressed by 

X2a =F20 /(-w2 m) (22) 

provided that the coupling effect due to the roll motion can be 
ignored. 

(iii) It can be shown that the coupling effect due to the roll motion on 
the sway motion amplitude is a higher order small quantity 
provided that the roll motion amplitude is of order 1 and there- 
fore its influence may be neglected. Thus, the first approximation 
given in Equation (22) is valid for the roll-coupled sway motion 
of a full-shaped slender structure in long wavelengths. 

3.4. Yaw motion 

Before extending the previous arguments to a discussion of the evalua- 
tion of the yaw motion, it is worthwhile to estimate the likely magni- 
tude of the moment of inertia coefficient required in such a calculation. 
For simplicity, the moment of inertia about an axis perpendicular to the 
longitudinal axis of a uniform slender cylindrical body of length L and 
cross-sectional area A is given by 

_ra 
(L )2 

-m2 M66 12 - 2ý 
ýKzzý 

where the yaw radius of gyration is 

KZZ = L/2vr3-. 

(23) 

(24) 
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For a more realistic full-bodied slender marine structure, the value of 
the yaw radius of gyration KZZ is probably of a similar magnitude such 
that 

`Kzz 2vfý 
ýL= O(e) (25) 

and the longitudinal coordinate of the centre of gravity measured from 

amidships satisfies the condition 

xG/L = O(e). (26) 

In fact, for a cylindrical body of uniform cross-section with no trim 
the centre of gravity is at amidships so that xG = 0. 

The Froude-Krylov force associated with the yaw motion is 

F60=-iwpJS 00 n6dS 
w 

=-iwPJs 00 {(x-xG)n2-ynl)dS= 
w 

=-iw2ýamisinß{1 +O(E))= 

= 0(1) (27) 

where 

L/2 (x -xG) ikxcosß 
I 

-L/2 
LeX. (28) 

f 

Following the previous arguments together with a strip method approx- 
imation it may be shown that 
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X6a = F60/(-w2 M66) _ 

= F60 /(-w2 m KZZ2) = 

=iý asinp 
12 

[1 +O(e)]=0(1) 
K 

ZZ 

F67=-iwpJS 0 7n6dS= 

w 

= -P 
EL/2 2 80 
J -L/2 

(x - xG) dx JCw (x) 
ý di [1+ O(E)] = 

w 

=-iýa Isinß(w2A22+iwB22)[1 +O(e)]= 

-(w2A22+iwB22)X6aKzz2[I +O(e)]= 

= O(E2) 

and 

F6H -(w2 A66 +iw B66) X6a = 

= (w A22 +i 

= (w2 A22 +i 

= p(E2) 

w B22) I1 X6a [1+ O(E)] = 

w B22) Kzz2 (X6a + F6B/(-w2 m KZZ2)) x 

x [l + O(E)] = 

since from Equations (25) and (26) 

(29) 

(30) 

(31) 

KZZ2/I1 =1+ O(e) 
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where 

f L/2 (x - xG)2 
I1 

J -L/2 
L dx = 

_L2 l 12 +(L )2}. (32) 

A combination of Equations (30) and (31) results in the following 

expressions: 

F6B = F6H + F67 = 

-- (w2 A22 +iw B22) {KZZ2 X6a O(e) + F6B [1+ O(E)l/(-w2 m)) 

or 

F6B =- (w2 A22 +iw B22) KZZ2 X6a 0(e)/(1 + (w2 A22 +iw B22)/ 

/(w2 m)) = 

= O(E3) (33) 

since KZZ and X6a are 0(1) whilst (w2 A22 +iw B22) and (w2 m) are 
O(62). 

Thus for the yaw motion, Equation (12) can be rewritten as 

X6a = X6a + O(e) = 

= F60 /(-w2 M66) + O(E) = 

= O(1). (34) 

Therefore, in line with the conclusions for the sway motion, the yaw 
motion of a slender structure of a full-bodied form or of nearly uni- 
form cross-section can be predicted by the following first approximation 
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X6a =F60 /(-w2 m KZZ2) 

with contributions of ordere neglected. 

3.5. Analytical formulations 

(35) 

On the basis of the approximation derived for the surge, sway and yaw 
motions of a full-bodied slender structure, analytical expressions 
describing these motions may be deduced for vessels of simple geo- 
metries. 

3.5.1. Rectangular barge 

For this case, the amplitude of surge (r = 1), sway (r = 2) and yaw 
(r = 6) motions are respectively described by the expressions 

Xla/ýa 

_ 

C06 fl 
i sin L sin Br 1- e-kh 1 (36) 

X2a/ýa sin fl LBl kh 

k 
ýa khkhý [(cos L- sin Lý L+ 
a (k KzZ 2)L 

- 1); sin L] 
sin B-( B) 

sin L (cos B- sin Bl /B I 

LLBJ 

xG 
`" L 

where B= (kB sin ß)/2. 
(37) 

Although the previous results are derived from the condition 
L/) = 0(1) and the data given in Table 2, nevertheless, it is interesting 

to speculate on the asymptotic behaviour of these analytical expressions. 
This is not strictly valid, but from the results presented it may be 
deduced that 
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(i) At very long wavelengths, the magnitudes of the amplitude of 
surge and sway responses tend to cos ß and sin ß respectively since 

both the limits of sin L 
and sin B 

are 1.0. These amplitudes 
LB 

decrease as the wavelength decreases, reaching zero values when 

k2 
cosß= 

L 
ircosß=ir(i. e. 

L 
cos ß=1.0) 

or 

kB 
sinB ýsinß=ý(i. e. 

Bcosß= 1.0). 

For smaller wavelengths, the amplitudes of the motion exhibit 
fluctuations of reducing magnitude. 

(ii) The phases of these motions remain nearly constant, although 
changes of sign occur at short wavelengths. 

3.5.2. Circular cylinder 

For a long circular cylinder of uniform semi-cylinder underwater 
cross-section of radius Rp and length L, the amplitudes of surge and 
sway motions are given by 

xIa/ca =1 cos ß sin L {4 sin (kR0 sin ß)/[ir(kR0)2 sin ß] - CI) (38) 
L 

X2a/ca =i sin LC 

with 

L 2 (39) 

C1 

_4 
, a/2 cos 9 cos -kROcosO 

ýrkR 
(kR0 sin ß sin 0) e dB 

C2 00 sin 0 sin 
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and the amplitude of yaw motion is 

X 6a I 
c2 (40) ksa kK 2 

zz 

with I given in Equation (28). 

4. Submerged full-bodied slender structure 

As an extension of the analysis described in the previous section, a 
study of the motions of submerged slender structures excited by waves 
is now considered. The body of length L, width B, height h is at an 
intermediate average submergence T= (H1 + H2)/2 where H1 is the 
depth of the uppermost surface and H2 = H1 + h. This submergence 
depth is chosen such that the effects of wave resonance occurring in the 

water region above the body are negligible. The orders of magnitude of 
the main geometric features are the same as those given in Table 1 and 
the order of kT is assumed to be of O(e) but this is not strictly defined 

and has some degree of arbitrariness. 

4.1. The orders of various forces 

Based on the reasoning given in Section 3.1, orders of magnitudes of the 
force components can be estimated for a typical submerged slender body. 
These are displayed in Table 3 and are defined with respect to the 

slenderness parameter e= B/L. 
For the three horizontal motions of surge, sway and yaw, the estimates 

of these force components are the same as those for the free surface 
piercing slender body shown in Table 2. Therefore, the derived formu- 

lae, approximation solutions and conclusions deduced in Section 3 are 
valid for the submerged slender body. Moreover, by employing a simi- 
lar agreement to the one used in the derivation for the sway modes in 
Section 3.3, it can be shown that a large cancellation effect also takes 

place in the evaluation of the heave motion for the submerged slender 
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TABLE 3. Orders of various forces on a submerged slender body of 
submergence T at wavelength L/A = O(1) 

Mode Mass Rest. F-K 

j FjM FjS Fj0 

Radiation Diffraction FjH+Fj7= 

FjH Fj7 = FjB***) 

Surge 1 E2 0 E2 
Sway 2 E2 0 E2 
Heave 3 E2 0 E2 
Roll 4 E4 E3, E4**) E3, E4**) 
Pitch 5 E2 (3, E4**) E2 
Yaw 6 E2 0 E2 

E41nE, E3*) E41nE, E3*) E41nE, E3*) 

E2 E2 E3 
E21nE E21nE E3 
E4 E4 E4 
E21nE E21nE E3 

E2 E2 E3 

*) See the note in Table 1. 
**) Applicable when (zb - zG)/L = O(¬2). 

***) Results in this column are derived in Section 4. 

body. This reduces the combined contribution of the radiation and dif- 
fraction forces (each of order E2 In c) to order E3 and the dominant 
forces in the heave motion are the inertia and the Froude-Krylov 
components, both of order c2. This implies that to a first approximation 
in a the heave motions may be expressed as: 

X3a =F30 /(-W 2 M33) + O(e) = 

m o(1). (41) 

In the determination of the heave an pitch motions of a slender body 

using strip theory, the pitch related hydrodynamic quantities are pre- 
dicted from information associated with the heave motion. For the sub- 
merged body case, the pitch restoring force is given by 
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S_ 
_ F5 -C55 X5a 

= -P gV (zb - zG) X5a - 

= O(E2+n) 

for (zb - zG)/L = O(en). Assuming (zb - zG)/L = O(E) or smaller it fol- 
lows that, F5S is of order E3 or smaller and is a higher order small 
quantity than the other force components. Again, because of the large 

cancellation between the radiation and the diffraction forces, their 

combination is of order e3. Thus, the inertia and the Froude-Krylov 
force components of order e2 dominate the other components permitting 
a first approximation for the pitch motion to be expressed as 

X5a =F50 /(-w2 m Kyy2) + O(E) _ 

= O(1). 

Finally, in the roll mode, the hydrostatic restoring force 

s_ F4 = C44 X4a 

_ -P 9V (zb -zG) X4a 

= O(e2+n) 

(42) 

for (zb - zG)/L = O(en). Adopting the previous assumption for 
(zb - zG)/L = O(c) and F4 S= O(e3) it follows that F4S and F40 domi- 
nate the other force components, all of order e3. 

If (zb - zG)/L is assumed of 0(e2), F4S = 0(e4) and it can be shown 
that F40 becomes of O(c4) as well. Thus all the force components for 
the roll modes are of the same order, e4, and therefore no simplified 
solution to the roll motion can be deduced. 

The theoretical proof for the heave and pitch modes is similar to those 

presented in Sections 3.3 and 3.4 for the sway and yaw motions of a 
free surface piercing slender body and therefore are not repeated. As 

an example of a typical submerged structure used in offshore engineer- 
ing, a long rectangular cylinder is considered and the heave and pitch 
motions solution approximations are now discussed. 
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4.2. Heave motion 

Starting from Equation (7), it can be shown that for a long, submerged 
rectangular cylinder the Froude-Krylov force is defined by 

F0_ -ý gk (p L Bh) e-kT 
sinh (kh/2) sin L sin B= O(e2) (43) 

3a (kh/2) LB 

and the heave amplitude, given by Equation (12), may be expressed in 
the form 

X3a = X3a + F3B/(-w2 M) = 0(1) 

where 

X3a = F30/(-w2 m) = 

AT sinh (kh/2) sin L sin B_ 
ae (kh/2) 

LD 

_Sae-kT 
sin L 

[1 +O(e)]= 

= oýl>. 
L 

(44) 

(45) 

From Equations (6), (2) and (4), the diffraction force can be written as 

r 
F3ý -p JS 03 äo dS = 

_ýa e-kT sin LJCwp io3 n3 dl [1+ O(e)1 = 
Lw 

=- (W2 A33 +i wB33) X3a [l + O(e)] = 

= O(e2 In e) (46) 

whilst the radiation force is given by 
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F3H - (w2 A33 +iw B33) X3a = 

= (w2 A33 +iw B33) [X3a + F3BA-w2 m)] 

= O(e2 In e). (47) 

A combination of Equations (46) and (47) yields 

F3B=- (w2A33+iwB33)X3a0(()/[1 +(w2A33+iwB33)/(w2m)] = 

= O(E3) (48) 

since 

X3a = 0(1), (w2 m) = O(e2) and (w2 A33 +iw B33) = O(e2 In e). 

From Equation (44) the heave amplitude is expressible in the form 

X3a =X X 
*3a 

+ O(e) 

or to the first approximation in a as 

X3a = F30/(-w2 m) 

giving 

AT sinh (kh/2) sin L sin B 
X3a/S'a =e (kh/2) LB 

4.3. Pitch motion 

(49) 

(50) 

In pitch motion, the submerged rectangular cylinder is excited by a 
Froude-Krylov force component given from Equation (7) in the form 
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F50=-iwP 
fs 

00 n5dS 
w 

_-i g 5a (P L Bh) e-kT sin B sin L+ ikI sinh 
khk2/2) r 
(kh/2) 

ý 

R`i 

=w2amI[1 +O(e)]= 
Yy 

= O(E") (51) 

where 

V= {ekh/2 [k (-H1 - zG) - 1] + e-kh/2 [k (H2 

and I is given in Equation (28). 
The hydrodynamic restoring force is given by 

s_ _ F5 -C55 X5a 

_ -P SV (zb - ZG) X5a 

= O(E3) (52) 

and corresponding to Equation (12), we may define a modification 
pitch amplitude 

Xsa = (F50 + FSS)/(-W2 M55) = 

= F5ý [1+ O(e)l/(-m2 m Kyy2) _ 

=i e-kT sin BIV cos sin La 

BkL 

_-ta e-kT 
I2 [1+ O(E)] _ 

K 
yy 

iI sinh (kh/2) 
(kh/2) [1 t O(E)] - 

= O(1). (53) 

+zG)+1 ]}/(kh) 

The adoption of a similar reasoning to the one discussed in Section 3.4, 
i. e. Equations (23-26) assumes the radius of gyration for pitch Kyy to 
satisfy the relationship 
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(KYY 
2v"--3) 

/L = O(E) (54) 

giving 

Kyy2/I1 =1+ 0(c) 

where II is defined in Equation (32) with xG = 0. 
In terms of a strip method, Equation (6) for the pitch diffraction 

force can be rewritten as 

F57=-iWPJS ¢7 n6dS 
w 

=p 
L/2 

-L/2 
(x - xG) dx dE [I + O(E)] = CW(x) 

0 ao 
an 

_ -ýa e-kT ILJCwpi 03 n3 dt [I + O(e)] _ 
w 

=(W2A33+iWB33)ý ae-kTI[1 +O(E)] 

whilst the radiation force is 

F5H_(w2A55+i 

=(w2A33+i 

=(W2A33+i 

(55) 

w B55) X5a = 

w B33) I1 X5a [1 + O(E)] _ 

w B33) K 2(XSa 
+ F6B/(-w2 mK 

2)) 
x yy yy 

x [l + O(E)]. (56) 

The addition of Equations (55) and (56) gives 

F5B=F5H+F57= 

= (w23 33 +iw B33) Kyy2 XSaO(E)/( l+ (w2 A33 +iw B33)/(w2 m) A 

=O(E) 
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since XSa and Kyy are of order 1 and (w2 A33 +iw B33) and (w2 m) 
are of order e2. 
Thus, the pitch motion is given by 

X5a = Xsa + O(e) _ 

= 0(1). (57) 

Therefore, it follows that to the first approximation a long, submerged 
rectangular cylinder excited in pitch motion by sinusoidal waves of 
long wavelength is described by the expression 

X5a/k ýa = F5U/(-w2 m Kyy2 K ýa) _ 

_ -1 -kT sin B sinh (kh/2) cos fl sin Ll (58) 
(k K 

yy 
)2 

eBf l1 (kh/2) -iVKLJ 

5. Shallow draft slender body 

A shallow draft slender marine structure [9] is categorised by its 
dimensions of length L, maximum lateral beam B and draft h. Again 
the slenderness of the body is denoted by the parameter c= B/L whilst 
the shallow draft feature is expressed by the relationship h/B = O(E). 
That is, the magnitude of the draft is an order c smaller than the beam 

and an order E2 smaller than the length. 

Figure la illustrates a general shallow draft structure of wetted sur- 
face Sw,. The orders of magnitude of the dimensions and generalised 
normal components nr (r = 1,2,..., 6) are given in Table 4. Figure lb 

shows a more specific shallow draft structure (e. g. a barge) which is 
dominated by a large flat or nearly flat bottom surface Sb and has 

vertical or nearly vertical end surfaces Se and side walls Ss. The orders 
of magnitude of its dimensions and generalised normal components are 
listed in Table 5. For these shallow draft structures in waves of wave- 
length comparable to their body length L, i. e. L/A = 0(1), it follows 

that B/A = O(E) and h/A = 0(62). 
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(a) (b) 

Figure 1. Schematic illustration of a shallow draft slender body: 
(a) with a smooth wetted surface Sw; 
(b) with a nearly flat bottom surface Sb and nearly 

vertical end surfaces Se and side walls Ss. 

TABLE 4. Orders of main dimensions of a shallow draft slender body 
of smooth wetted surface 

Sur- L/a B/A h/a Area n, n, n, nA n, n,, 
face 1L1910 

SIE E2 E E2 EIE1E 
W 

TABLE 5. Orders of main dimensions of a shallow draft slender body 
of a flat bottom Sb, nearly vertical end surfaces Se and side 
walls Ss 

Sur- L/a B/A h/A Area n, n, n, nA n, n,, 
face 

LJYJp 1 

SIE E2 E3 1E E2 E2 EE 
e 

SIE E2 E2 E1EEE1 

SS b1E 
E2 E E2 E1E1E 
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TABLE 6. Orders of magnitudes of various forces on a shallow draft 

slender body 

Mode Mass Rest. F-K Radiation Diffraction FjH+Fj7= 

j FjM FjS Fj0 FjH Fj7 = FjB***) 

Surge 1 E3 0 E3 E61nE, E9/2t) E6lnE, E9/2t) E61nE, E9/2t) 
Sway 2 E3 0 E3 E4 E4 E5 
Heave 3 E3 EE E2lnE E2lnE c2Inc 
Roll 4 E5 E3 E3 E4 E4 E4 
Pitch 5 E3 EE E21nE E21nE E2Inc 

Yaw 6 E3 0 E3 E4 E4 E5 

t) Applicable to bodies of geometric properties listed in Table 5. 
***) Results in this column are derived in Section 5. 

By analogy to the order analysis described in Section 3, Table 6 
illustrates the estimated orders of magnitudes of the individual force 

components associated with the six rigid body motions of a slender, 
shallow draft structure. In comparison with the data presented in Table 
2 for a slender body it is seen that 

(i) for a slender, shallow draft body the inertia force components are 
an order smaller; 

(ii) the additional restriction of shallow draft does not alter the orders 
of the fluid force components for heave, pitch and roll motions 
since these are strongly dependent on the bottom surface area or 
the waterplane area; 

(iii) changes in the fluid force components for surge, sway and yaw 
motions arise because these horizontal modes depend on the 
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projected area of the wetted body surface onto the vertical plane. 
(For the types of bodies under consideration this is dominated by 
the contributions from the side walls and ends). 

For the surge mode, both the inertia and the Froude-Krylov force 

components are of order E3 and the radiation and diffraction components 
are much smaller, of order e6 In e. Hence, the latter two force compo- 
nents are an order E3 In a (or ¬3/2 for a body with flat vertical ends) 
smaller than the former two components and, to the first approximation, 
the surge motion expression given in Equation (17) remains valid, i. e. 

E3 Xla = F10/(-w2 m) +0 (E3/2 El 
., 

= 0(1). (59) 

For the sway or yaw mode, both the radiation and diffraction forces 

are of order e4 and these are an order a smaller than the inertia and 
Froude-Krylov components. Moreover, since the shallow draft body is 

assumed slender, the cancellation process described in Section 3 between 
the radiation and the diffraction forces remains and the combination of 
these two components produces an overall contribution of 0(e5) which is 

of O(e2) smaller than the Froude-Krylov force. Hence, the neglect of 
these contributions to the wave forces leads to errors of order e2 in the 
predictions of the sway or yaw motions of a shallow draft slender body, 

namely, 

Xja = Fj0/(-w2 Mjj) + O(e2) _ 

= 0(l) for j= 2 or 6. (60) 

Thus, it may be concluded that when a slender body is of shallow draft, 

the motion approximations for the surge, sway and yaw motions using 
only the Froude-Krylov force components will provide satisfactory 
estimates. 
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6. Three-dimensional shallow draft body 

In addition to the three kinds of slender marine structures, discussed in 
Sections 3-5, a three-dimensional shallow draft body is now investigated. 
For this structure the length and beam (maximum width) are of the 

same order, i. e. L/ A= O(1) = B/. ) and the draft h to length ratio is 
defined by the small parameter e= h/L. Orders of magnitude of the 
main geometric particulars of these structures are displayed in Table 7. 

TABLE 7. Orders of main dimensions of a three-dimensional shallow 
draft body 

Sur- L/a B/a h/a Area n1 n2 n3 n4 n5 n6 
face 

S 1 1 E 1 E E 1 1 1 E 
W 

6.1. Motion approximation 

Because the draft of the structure is small, in long waves the replace- 
ment of the free surface condition (Equation (I5)) by the rigid bound- 

ary condition (Equation (16)) in the inner region is valid. The applica- 
tion of the three-dimensional formulae in Equations (2-12) allows esti- 
mates of the orders of magnitudes of the various force components acting 
on the three-dimensional body to be determined. These are listed in 
Table 8. It can be seen that for the six rigid body modes the inertia 
forces are of order a and the hydrostatic restoring forces are either zero 
(surge, sway, yaw) or 0(1) (heave, roll, pitch). For surge, sway and 
yaw modes the Froude-Krylov forces are of order a and these together 

with the inertia forces dominate the radiation and diffraction forces 

which are estimated to be of order e2. 
Thus, the uncoupled motion Equation (12) may be written in the form 



268 

TABLE 8. Orders of magnitudes of various forces on a three- 
dimensional shallow draft body 

Mode Mass Restoring F-K Radiation Diffraction FjH+Fjl= 

j FjM FjS FjO FjH Fj7 = FjB***) 

Surge IE0E E2 E2 E2 
Sway 2E0E E2 E2 E2 
Heave 3E11111 

Roll 4E1I1I1 

Pitch 5E11111 

Yaw 6E0E E2 E2 E2 

***) Results in this column are derived in Section 6. 

Xja = Fj0 /(-w2 Mjj)+0(£) for j=1,2,6 (61) 

and to first approximation in e reduces to 

Xja = Fj0/(-w2 Mj. ) for j=1,2,6. (62) 

6.2. Analytical formulation 

On the basis of the simple, uncoupled approximation given in Equation 
(62), analytic formulae are available for three-dimensional shallow 
draft structures of simple waterplane geometry. Some of these have been 
derived and applied by the authors based on previous intuitive findings 

rather than on the theoretical evidence given in the present paper. 
Here, only results are quoted for the following four simple geometries. 
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6.2.1. A circular dock 

The surge (or sway) motion of a shallow draft dock of radius RO and 
draft h can be formulated from Equation (62) in the form [101 

_(1- 
e-khl 

2 J1 (kR0) 
X1 

a/ýa 1 kh J kR0 

where J1(") is the Bessel function of the first kind of order 1. 

6.2.2. An elliptic dock 

(63) 

The surge and sway motions of an elliptic dock of major and minor axes 
a and b respectively, i. e. L= 2a and B= 2b, and a shallow draft h, can 
be expressed as [15] 

X. F. 0 
-kh co 

i- L 
- -1)n x a2- 1(1 -kh 

kab 
7( 

ýa 
-w m n=0 

b A1(2n+1) Ce2n+1(ß'q) Mo2n+1 (C 0'g) 
x'= 

aB 
(2n+1) Se Ms 

(1) 
j {2 (64) 

1 2n+1(ß'q) 2n+1 (ý0'g) 
for 

22 
withq=k 4c , c2=a2 - b2andý0= 21naa+ 

b. 

Here Cem(") and Sem(-) are the even and odd Mathieu functions of the 
first kind of integral order of period x (for m= 2n) or 2x (for 

m= 2n+ 1) whilst Mcm(J)(") and Msm(j)(") are the even and odd modified 
Mathieu functions of the j-th kind of integral order of period xi (for 

m= 2n) of 2xi (for m= 2n+1). The terms A1(2n+1)(q) and B1(2n+1)(q) 

are the coefficients of the first term in the expansion forms of 
Ce2n+1(v, q) and Se2n+1(v, q) relating to the characteristic numbers 

a2n+1 and b2n+1 (see for example Abramowitz and Stegun [16]). 
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6.2.3. A triangular platform 

A floating jack-up rig may be idealised as a shallow draft equilateral 
triangular platform [9,17]. For this body with side length B, the first 

order approximations describing the surge and sway motions deduced 
from Equation (62) are given by [9] 

XI 
a/ýa 

X2a/ýa 

where 

1/2 
41- e-kh 

3 kB kh /"-3/ 2 

sina 1- 
i(1 - cosa 1) 
a 

sin a2 -i (1 - cos a2) 
+ 10 

11/2 
lvI 

I + 

a2 
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6.2.4. A rectangular platform 

a4 
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+ 

(65) 

For a three-dimensional shallow draft rectangular platform [10] the 
analytical formulations for the surge, sway and yaw motions are the 
same as those for a slender rectangular cylinder given in Equations (36) 
and (37). 

V-312 

0 
a4 
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7. Numerical studies 

To verify the previous theoretical findings several numerical studies on 
full-bodied slender structures and shallow draft structures were per- 
formed. Where appropriate the derived analytic formulae for the surge, 

sway and yaw motions were compared with results derived from more 
sophisticated two-dimensional and three-dimensional numerical 
approaches as well as experimental data. 

7.1. Full-bodied slender structures 

A rectangular cylinder of length L= 100 m, beam B= 20 m and draft 
h= 10 m was adopted in this study. These dimensions denote a structure 
of block coefficient Cb = 1.0, L/B = 5.0 and h/B = 0.5, satisfying the 

assumptions adopted in the theory described in Section 3. 

A comparison of predictions was performed based on the following 

three numerical approaches (Figures 2-4): 

(i) A two-dimensional Green's function method using a modified 
Green's function which is free of irregular frequencies when 
applied to mono, twin and multi-hulled bodies [18,19]. In the 

computation the cross-sectional contour of the body (see Figure 2) 

is subdivided into 16 segments. Calculated results are denoted by 
hollow circular points. 

(ii) A fully three-dimensional Green's function method [9,19] is used 
and the mesh arrangement in these computations involves 96 panels 

as shown in Figure 3. These predictions are represented by solid 
circular points. 

(iii) The present approximate solutions given in Equations (36) and 
(37) are denoted by solid lines. 

The calculated sway motion responses excited by unit amplitude 

regular waves approaching from the direction of beam seas (ß = 900) to 
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Figure 2. Sway responses of a rectangular cylinder of dimensions 
h= B/2 and L= 5B for comparison between the 2D and 
3D Green's function integral equation method calculations 
and the present analytical arproximation. 
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Figure 3. Surge responses of a rectangular cylinder of dimensions 
h= B/2 and L= 5B for comparison between the 3D Green's 

function integral equation method calculations and the 

present analytical approximation. 
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Figure 4. Yaw responses of a rectangular cylinder of dimensions 
h= B/2 and L= 5B for comparison between the 2D and 
3D Green's function integral equation method calculations 

and the present analytical approximation. 
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bow seas (/j = 1200,135° and 1500) are shown in Figure 2. The data 
derived from the three approaches show good correlation at each head- 
ing. In Figure 3, the surge responses are displayed together with the 

results from the three-dimensional calculation. Good correlation can be 

observed for wave lengths A/L <2 and \/L > 5. At wavelengths around 
a/L ^- 3.0, a deviation of approximately 10% exists. 

Figure 4 illustrates the yaw motion responses in bow seas. Excellent 

agreement exists between the three numerical methods for wavelengths 
less than 2L whilst at longer wavelengths a small but constant deviation 

exists between approaches (i), (ii) and (iii). 
To further verify the present method and to illustrate its range of 

applicability, a second example involving a barge model of dimensions 

L= 24.8 m, B=5m and h=2m was considered. The predictions of 

the sway motion in beam seas by the analytical expression of Equation 

(36) are displayed in Figure 5 together with the experimental and 

theoretical data accumulated by Yamashita [6]. This comparison illus- 

trates the practically acceptable agreement existing between the results 
derived from the present approximate solutions and the experimental 
data measured over a wide range of (shorter) wavelengths, i. e. 
1 <A/B< 10, or 0.2<A/L<2. 

1.0 

0.5 

i 
0.0 246B 6IB 

10 

Figure 5. Sway response of a rectangular barge 24.8 x5x2m in 
beam seas. 
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Figure 6. Surge and sway responses of a barge model of length 
L=2.4 m, width B=0.8 m and draft h=0.105 m. 

7.2. Shallow draft slender bodies 

For a barge model of length L=2.4 m, beam B=0.8 m and draft 
h=0.105 m (i. e. B/L = 0.33, h/B = 0.125, see Section 4), Brown et al. 
[7] present wave tank experimental data and theoretical results derived 
from a three-dimensional source method involving a large number of 
panel elements to discretise the wetted surface area of the barge. Figure 
6a shows the data for the surge response in head waves as well as the 
present analytical solution predictions. As can be seen the agreement 
between the theoretical results is very satisfactory and this conclusion is 

extended to the sway motion comparison illustrated in Figure 6b. 
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Figure 7. Yaw response at wave heading 1500 of a shallow draft 
barge with dimensions 3.0 x 0.75 x 0.015 m for comparison 
between the present analytical approximation and the 
theoretical and experimental data given by Nojiri. 

To complement this comparative study, the amplitude of yaw motion 
for a shallow draft barge is shown in Figure 7. The barge of dimensions 
L=3.0 m, B=0.75 m and h=0.015 m is excited by regular sinusoidal 

waves at a heading ß= 1500. Figure 7 includes results from the analyt- 
ical expressions and those presented by Nojiri [20]. Good agreement is 

again seen between the present predictions, experimental data and 
theoretical predictions [20]. 

7.3. Three-dimensional shallow draft bodies 

A triangular rig of length L= 108 m, maximum width B= 124 m and 
draft h=3.05 m may be categorised as a three-dimensional shallow 
draft body, i. e. B/L -r 0(1) and h/L or h/B - O(E). The behaviour of 
this rig in transit in waves has been studied previously [17] and from 

the comparison shown in Figure 8, the present analytical predictions of 
the surge motion derived from Equation (65) correlate very well with 
Chakrabarti's three-dimensional diffraction theory calculations and 

experimental data [17] in the range of wavelengths 0.70 < A/L < 6.4. 

This agreement provides preliminary confirmation of the accuracy of 
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Figure 8. Surge response of a triangular platform of length 
L= 108 m, width B= 124.6 m and draft h=3.05 m. 
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Figure 9. Surge response of a circular dock. 

the proposed approximations to determine the horizontal motions of this 
type of structure. 

Another interesting example of a three-dimensional body is a circular 
dock of radius RO and draft h= RO [10,20]. The analytical predictions 
for the surge (or sway) motion obtained from Equation (63) are dis- 
played in Figure 9. The data extend over the frequency range 
0.3 <w V-(Rolg) < 3.0, i. e. 0.09 < kR0 < 9.0 and agree favourably 

with the experimental data but show no abrupt variation in the vicinity 
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w(=0.64 as occurs in Nojiri's three-dimensional source method 
calculation [20]. 

8. Conclusions and discussion 

For full-shaped slender bodies, submerged slender bodies, shallow 
draft slender bodies and three-dimensional full-shaped shallow draft 

structures, practically acceptable predictions of the horizontal plane 
motions excited by long wavelength, sinusoidal waves can be determined 
from simplified approximate solutions. These are derived from an 
analysis based on an extension of existing order estimate theory [1,2]. 
The study shows that 

1. To a first order approximation only the Froude-Krylov forces need 
be considered when determining the surge, sway and yaw motions 
of the structures considered because 

(a) each of the radiation and diffraction force components is of a 
higher order small quantity than the Froude-Krylov force 

component and/or 
(b) the combination of the radiation and diffraction force compo- 

nents partially cancel one another leaving a higher order small 
quantity force component. 

2. The previous statements are found valid 

(i) for full-shaped slender bodies in surge motion because of (a) 
and in sway and yaw motions because of (b); 

(ii) for slender bodies in surge motion because of (a); 
(iii) for full-shaped submerged slender bodies in heave and pitch 

because of (b) - but these motions are not the main focus of 
this study; 

(iv) for full-shaped shallow draft slender bodies in surge motion 
because of (a) and in sway and yaw motions because of (a) and 
(b); 
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(v) for three-dimensional full-bodied shallow draft structures in 

surge, sway and yaw motions because of (a). 

3. The restriction to structures described as "full-bodied" or "full- 

shaped" is imposed to ensure the exemption of strong coupling 
effects from resonant heave, roll and pitch motions. This restriction 
may not be as severe as assumed in the paper. 

4. For some full-bodied structures of simple geometry, analytical 
formulae are presented to describe the horizontal motions. 

5. The applicability and accuracy of the proposed analytical formula- 

tions are confirmed by comparisons with experimental data and 
results derived from sophisticated two- and three-dimensional 

mathematical models. The latter require fine descriptions of the 
wetted surface area of the structure and involve a significant 
amount of computer usage. From the limited evidence presented, 
the approximate solutions are shown to produce results in good 
agreement with the other sources of comparable data, but at a 
greatly reduced cost and effort. 

6. Some of the conclusions reached in this study confirm those deduced 
by the authors when investigating the predictions of the horizontal 

motions of two- and three-dimensional shallow draft marine struc- 
tures [9,10]. The assumptions adopted previously appear very 
reasonable and valid in the light of the findings of this study. 

7. Although the analysis is based on the assumption of long wave- 
lengths, from the evidence of the numerical examples its application 
may possibly extend over a wider range of frequencies than 

considered, allowing more probable wave conditions to be assessed. 

8. The four types of full-bodied structures investigated are idealisa- 

tions of typical marine structures used in offshore operations and 
services. Therefore, the findings of this paper should be of practical 

use especially in the early stages of design. 
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A NEW SHALLOW DRAFT APPROACH: 

I. THE THREE DIMENSIONAL THEORY AND ITS COMPUTATIONAL APPLICATIONS 
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SUMMARY This paper summarises a new shallow draft theory incorporated 
with an efficient computer algorithm for the hydrodynamic analysis and 
motioA and loads predictions of mono-, twin- and multi-hulled shallow draft 
offshore structures excited by sea waves. This method provides a consider- 
able saveing in computing time but still remains a high degree of numerical 
accuracy. 

The applicability of this approach to structures of finite volume of 
displacement is illustrated by studies on both mono-hull structures and 
a semi-submersible in transit. These complement previous investigations 
on mono-hull structuresl'2. From these extensive investigations, the 
advantacfes arising from the approach are clearly shown and the predicted 
responses agree favourably with the available experimental data, thus 
providing a measure of validity of the proposed shallow draft theory. 

1. INTRODUCTION 

A jack-up rig in transit, an ocean plant or floating port, an OTEC barge, 
crane and transportation barges, dredger vessels, semi submersible and 
TLP platform in transit, etc., all have the common geometric features of 
shallow draft. That is, 

(i) the aspect ratio of beam B to draft h is large, i. e. B/h » 1, 

(ii) the bottom surface of the vessel is nearly flat and provides the 
dominant contribution to the total wetted body surface area, 

(iii) in addition, a large number of these structures may have small or 
intermediate aspect ratio of length L to beam B. 

Because of these characteristics, in general, the hydrodynamic analysis 
and evaluations of motions and wave loadings necessitate the use of 
large computer programs based on three dimensional (3D) mathematical 
models and a large number of panel discritisation to obtain convergent 
or accurate numerical solutions. These require much computing effort 
and time. Alternatively, 2D mathematical models may be adopted incorporat- 
ing suitable 3D corrections3. Furthermore, for both 2D3and 3D4 cases an 
empirical viscous damping term is usually introduced into the analysis 
so that reasonable predictions of roll response at resonance may be 
achieved but this is not the focus of the present study. 

1. 



For a shallow draft structure the draft value may be the same order of the 
wave height. Therefore, the linear wave theory calculation over an idealised 
mean wetted body surface is not strictly applicable and the nonlinearity is 
obviously of certain importance, especially for the oscillatory modes in the 
horizontal plane, i. e. surge, sway and yaw motions. Moreover, considerable 
discrepencies of predicted hydrodynamic coefficients have been reported 
by Berhault5 for a shallow draft rectangular barge of dimensions 12Ox4ox2.43m 
when applying various theoretical models or different programs based on the 
same theoretical method. Since more complicated or sophisticated theoretical 
approaches are not necessarily more accurate, why not devise a simplified 
practical model of less complexity, similar accuracy, higher efficiency and 
better applicability with which individually developed software packages can 
be more identical and errors of resultant solutions may be readily estimated. 

From the point of view of structural strength, wave loads 
of a shallow draft vessel in the vertical plane, i. e. those related to the 
heave, roll and pitch motions and vertical distortion modes, are of ultimate 
importance. 

These require that an applicable new approach is able to describe necessary 
details of the vertical motion modes in a high degree of accuracy and provide 
general information of the'horizontal motion modes with an acceptable accuracy. 
Some twenty years ago MacCamy6 proposed a shallow draft method appropriate 
to analyse the heave motion of a 2D flat plate. This zero-draft or flat ship 
theory was extended by Kim? to an elliptical plate heaving and pitching in 
calm water of infinite depth, whilst Maedaa analysed the behaviour of 
square and circular plates heaving and pitching in finite water depth. 
Unfortunately, due to the inbuilt assumptions in thses methods, relative 
analyses were not strictly applicable to realistic floating shallow draft 
marine structures of finite displacement volume and were unable to predict 
motion responses of surge, sway and yaw. To overcome 
these disadvantages a new shallow draft approach has been proposed 
by Wu and Price1'2 based on a simple modified assumption drawn from 
considerations of the realistic physical phenomena. It is capable of 
predicting six rigid body modes of a mono-hull shallow draft structure or 
more if flexible modes analysis is required. These progressive developments 
are shown in Figure 1. 

This paper summarises the brief theoretical approach of the proposed 3D 
shallow draft theory and describes the related numerical procedure adopted, 
the efficient computer algorithm and program suite developed to takle 
problems associated with various shallow draft structures and contains 
further extended applications to a semi-submersible in transit. 

2. 



2. GENERAL 3D LINEAR WAVE THEORY FORMULATION 

Based on linear wave theory, the radiation velocity potential ýj 
associated with a marine structure performing oscillatory motion 
in the modes j=1 (surge), j=2 (sway), j=3 (heave), j=4 
(roll), j=5 (pitch), j=6 (yaw) and the diffracted wave poten- 
tial 07, related to the incident sinusoidal wave potential q0, 
may be shown1'2 to satisfy the Green's function integral equation 

aG0(P, Q) 
j 

27rOj (P)- 
s 

0j (Q) an dS =- 
Js 

vn(Q) G0(P, Q) dS (1) 
wQw 

for j=1,2,..., 7. In this expression P(x, y, z), Q(E, r1, C) repre- 

. sent two points on the mean wetted body surface s, n =(nl, n2'n3) 
denotes the outward unit normal to the wetted surface and 
(r -r )xn =(n4, n , n6) where r =(x, y, z) and the subscript G 
indicates the cenre of gravity. The normal velocity 

vi = 
iwnj for j=1,2,..., 6 

(2) 
n= an `-aO°/an for j=7 

where w denotes the frequency of oscillation and the Green's 
function may be expressed in the form 

G= Io+Il+iI2 

with 
Io = 1/r + 1/r1 

-V ( z+C) s 
I1 = -VeV(z+0 {Tr [Ho(VR)+Yo(VR)J+2 

2e 
ds 

1/2} o (s+VR) 

1= 27NeV(z+ý)Jo(VR) (3) 
2 

for infinite water depth9 and 

Io =C Yo(ke) 
2 

CO u +V 

it 4mE1 m2 
2 

cos p (z+d) cos p (ý+d) K0 (um R) 
(um+V ) d-V 

I2 = -C J0(kR) 

21r(v2-k2) 
C= cosh k(z+d) cosh k(C+d) (4) 

(k2-v2)d+v 
for finite water depth 9, d, as R#0. 

In these expressions Yo, J, K denote the appropriate Bessel. func- 
tions, H denotes thQg Struve function of order zero, 
R ={(x -g)2+(Y -n)2}1/2, r= {R2+(Z-4)2}1/2, r1= {R2+(Z+ý)2}1/2, 

k satisfies the equation 

k tanh(kd) =V- W2/g (5) 

and um is the mth positive root of the equation 

um tan(pd) + V- 0 (6) 

3. 



3.3D SHALLOW DRAFT THEORY 

To deal with realistic shallow draft marine structures with finite 
volume of displacement as shown in Figure 2, the present shallow draft 
approach1r2 represents an extended and modified version of the previous 
flat ship theories6 8 capable of analysing real shallow draft bodies 
rather than flat plates and predicting horizontal motions as well as 
vertical oscillatory modes. To achieve thses improvements, the present 
new shallow draft method adopts a simple but self-consistent assumption 
that: 

The radiation and diffraction wave potentials are evaluated on a flat 
surface So with realistic values of the normal velocity components in 
the vertical direction. The resultant radiation and diffraction wave 
forces are cooperated with the Froude-Krylov forces exerted by an 
incident wave upon the mean wetted body surface Sw. 

The surface So located on the still water surface z=0 is an approximation 
to the total mean wetted body surface Sw of the shallow draft structure. 
In other words, the vertical side wall area is ignored when calculating 
radiation and diffraction wave potentials but the effect of a small finite 
value of draft is taken into account. 

On the surface so (z = 0, = O) it follows that 

BG/3n = öG/öz nz = -öG/az on so 

which together with the free surface condition 

(? ) 

aG/az = VG on z-O (8) 

gives the result 
aG/an = -VG on so (9) 

Substituting this expression into eq. (1), the shallow draft 

Green's function integral equation describing the modes j=1,2, 

..., 7 reduces to 

41roj (P) +V 
fs 

$j (Q) G(P, Q) dS =- vj (Q) G(P, Q) dS (10) 

0 
so n 

with 

vi =4 
-iwn 

j 
for 

ný -öO°/8nI z=-h for j=7 

The change of the constant coefficient of the first term on the 
left-hand side from 271 in eq. (1) to 41 in eq. (10) is due to 

the contribution of the term 1/r included in the Green's func- 

tion since on so (where z= 0) the elemental surface integral 

of 3(1/r1)/8n at a point Q-P is equal to -27r. 

Eq. (10) requires no derivative evaluation of the Green's function, G, 

and the shallow draft Green's function can be expressed in much simpler 

forms with components 

4. 



Io = 2/R 

I1 = -V1r{Ho (VR) + Yo (VR) } 

I2 = 27rv Jo (VR) 

for infinite water depth and 

I=CY (kR) 
0o 

00 
2+V2 

I1 = 4m E 
1um cos2(umd) Ko(U R) 

(um+v2 )d-v m 

12 = -C J0(kR) 

C= 
27r (v2 -k 2) 

cosh2 (kd) 
(k2-v2)d+v 

for finite water depth. 

Solving for the unknown velocity potentials ýj (j = 1,2,..., 7) 
allows the added mass coefficients (A 4), damping coefficients 
(Brj) and wave exciting forces (Fr) EA be determined from the 
expressions 

A= Im(pj) n dS 
rj w so r 

B= -p Re(oj) n as 
rj jso. r 

for r 1,2,..., 6 and j=1,2,..., 6, and 

n 
7r dS n Fr = -iwp s 

Co 
0r dS -iwp 

fso 
0 

w 
for r= 1,2,..., 6. In eq. (15) the first term represents the Froude 
-Krylov force contribution and the other term the contribution 
from the diffraction potential. 

Since these hydrodynamic actions are now theoretically known, it 
can be shown that the equation of motion representing the jth 
displacement 

Xý (t) = Xja e-iwt 

may be expressed in the form 
6 

jEl{(Mrj+Arj)xj + (Brj+Bvrj)Xi + Crjxj} a Fr e'iwt 

where Mrj denotes the, eneralisedmass, Bvrj represents a viscous 
damping contribution which is set to zero in the present 
study, and Crj is the restoring coefficient. It is now a straight- 
forward procedure to determine the amplitudes Xja and the pressure 
distribution 

p--p 34/at a iwp(e °+07+ 
jEl Xja4j) 

5 

= iwp0 +ý +jE3Xjao 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

and if required the bending moments and shearing forcesLO experienced 
by the shallow draft marine structure. 

S. 



4. NUMERICAL FORMULATION 

By discretising the wetted surface s by N panels of elemental 0 area As, eq. (10) may be replaced by N simultaneous linear equa- 
tions of the form 

NN 

mElýJ(47f 
Ö+V 

Os 
(Grm 

Rarm) 
dS} _ ýElv Qs G dS (19) 

M rm m 
for r=1,2,..., N, and 

Ö{1 for r=m 
rm= 0 forr m 

To solve eq. (19) requires the evaluation of the elemental inte- 
gral of the Green's function which may be approximated by 

Ds Grm dS { 
rm- 

R+ 2k Rn(kR )} Asm+ 2f 
As m rm 
As R 

m rm 

- 2k fs ! fin (kRrM ) ds (20) 
in 

On the right-hand side the first term is regular everywhere in 
the fluid domain and is easily calculated using polynomial 
expansions for the special functions. To retain high numerical 
accuracy and to reduce as far as possible the total number of 
panel elements N, the first integral term on the right-hand side 
is computed by an analytical expression relating two nearby 
points. Namely, 

__ 07 c 

f 

Asm R 
vm 

Na 
E{k £n F(A)} 

k+l 
for R_ 2�js 

rk=1 Ili 2+ Yk) 1/2 k rm m 

t 
(21) 

Us 
m 

/R 
rm 

elsewhere 

where 
(Xk+Yk)1/2-(Xkcos9 +Yksin9) 

F(e) 
Xk sin6 - Yk cos6 

and as shown in Fig. 3 , Na is the total number of apices in the 
mth elemental panel with parameters 

Xk = ýk+1- ýkº Yk m nk+1+ nkº 

Zk .r (Ek+l-x) (nk-Y) - (Ek-x) (nk+l-Y) , for k=1,2 , ... , Na 

and eN 
+1 El' TN +l = nl" The local coordinates of the kth apex 

aa 
with respect to the local origin Cm(xm, ym, 0) are Ak(Ek, Tlk) whilst 
Cr(x, y, O) is the local coordinates of Ci with respect to Cm. ek 
is the angular position of the kth apex as shown in Figure 3. 

Finally the remaining integral can be evaluated from the expression 

As (ßn k4- 1/2) for R-0 
On MR ) dS mm rm (22) 

Jsm 

r°' Asm In (kRrm ) for Rrm 00 
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5. HORIZONTAL MOTIONS 

Because of the assumptions introduced into the present shallow 
draft theory, the equationsof motion describing surge (j - 1), 
sway (j - 2) and yaw (j = 6) reduce from the general expressions 
given in equations (13-17) to 

Xra = r/(-(2Mrr) = iP 
fs 

"o nr dS/(wMrr) (23) 

giving a response amplitude operator 

I x.,, 
a 

I /ca -PIsw00 nr ds I/ (wMrr C 
a) 

(24) 

where 
a 

denotes the amplitude of the sinusoidal incident wave. 

Further simplifications to eq. (24) may be achieved for struc- 
tures with simple side walls which can be modelled by a series 
of flat plates or if the geometry of the structure can be descri- 
bed by analytical expressions, i. e. circular cylinders, rectan- 

gular barges , etc. 

For a circular cylinder of radius R and not large draft h floating 
0 in deep water, the complex surge amplitude can be given by2 

la 
"-- 

n/2 
sin(vR cosA)cos8 dA 

in/2 4(1 - e-uh) o0 
16 a- Es Vh ifVR 

0 

i 
1- e-vh 

2 J1(VRo) 

vh VRO (25) 

where J1 denotes the Bessel function of the first kind of order one. 

For a rectangular barge of length L, beam B and draft h (Figure 2) floating in 
deep water, the respective surge, sway and yaw motion responses can be 
expressed as' 

.ý1 
v /> \I, i---� º vn z 
^ý_/S_ II 1/Casts 

xla/ýa 
= ein 

/2 1/sinß 

X2a 
a 

1/cosß 
44 0. l% 

sin (b sinß) 
b 

-Vh 
X6a/výs s eiR 

1- e ý2sin(k 
cosß) 

v3 K 2LBh 
Z2 

,rB cos(b sine) 
- 

2sin(b sinß) 
v sinß (v sine )2 

-2 sin(b sinß) ýL 
cos(t cosß) 
v cosß 

2 sin(I cosß) 

(v cosß)2 

- e-vh sinr?. e-e%o AI 
:gý%.; - - -- "ý^ -Wl 

(26) 

(27) 
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where R= L/2, b= B/2 and K denotes the radius of gyration of yaw 
about the vertical axis oz, anazß is the heading angle between the Ox-axis 
of the structure and the incoming sinusoidal waves (ß = 1800, head seas). 

Further analytical expressions for a triangular platform of length L, 
beam B and draft h in surge, sway and yaw motions can also be derived. 
For example, in deep water the surge and sway motion amplitudes are 
given by the complex forms" 

Xla 

X2. 

Xla 
4 1- e-vh 

1/l 

X,, A- (VB) (Vh) A /2 
GO 

1/2 sina2 - i(1 - cosa2) 

-r3/2 
a2 

+ 

where 

al 

c -1 (cosa3 -i sin(%3) sina4 

o a4 

al 
=2 VB (cosß + sinß 1r3) 

a2 

a3 i2 VB cosß 

a4 =2 VB sinß 

(28) 

Applications of these derived analytical formulas will be discussed 
in Section 7. 

1/2k sind. - 1(1 - cosd. ) 
-uh/1 --J-11 

41-e --- 
s- 

-f3/2 

ý a4 
0 

a2 
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6. COMPUTATIONAL PACKAGE 

The numerical examples to be presently discussed were calculated 
using a 3D shallow draft diffraction suite of programs (X. J. Wu, 
1984) which were derived by modifying a general 3D diffraction 
suite of programs (X. J. Wu, 1983). The computational programs 
include the following features: 

(i) an automatic mesh generator to provide the input data 
file describing the discretised body surface; 

(ii) the analytical evaluation of the simple source terms 
together with the generation of the geometric and hydro- 
static information; 

(iii) producing information on velocity potentials, hydrodyna- 
mic coefficients, wave exciting forces, etc for chosen 
wave headings and each required wave frequency; 

(iv) all data are stored in link files to ease manipulation, 
enabling predictions of responses, wave loads etc to be 
quickly performed. 

By suitably structuring the suite of programs, a highly efficient 
and time saving procedure was constructed which greatly benefits. 
the user to perform complicated computations. 
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7. APPLICATIONS TO SHALLOW DRAFT STRUCTURES 

An extensive series of calculations have been undertaken to 
verify the practical applicability of the present shallow draft 
theory and some examples are presented. Motion response 

for j= 1-6, 
are denoted by Xa, Ya, Za, 8a, Oa and *a respectively whilst the wave 
length by X. 

7.1 A jack-up rig in transit 

Matsumoto et a112 investigated the behaviour of a rectangular 
rig model in transit in regular waves Figure 4 illustrates the 
structure having dimensions 

L=1.5w, B=1.5m, h=0.1075w, KG = 0.17m, 
Kxx - 0.447m, Kyy = 0.433m, KzZ = 0.615m 

where Kxx etc denote radii of gyration and KG the distance 
between keel and centre of gravity. 

Preliminary calculations have been presented elsewhere2 and im- 
proved motion predictions are shown in Figure S. Matsumoto et al's 
experimental and 3D calculation data12 are compared with those 
determined by the proposed shallow draft theory. Satisfactory 
agreement is shown to exist between the sway motion data for 
beam seas (ß = 90°) and bow seas (ß = 150°) but large deviations 
in the yaw predictions arise . However, the latter motion ampli- 
tude is very small and the differences are therefore of only 
minor importance. Excellent agreement exists between the expe- 
rimental data and the heave and pitch predictions 
and reasonable agreement occurs in the roll motion responses 
excited by beam waves. It is seen that the ordinary 3D method12 
slightly over estimates the resonant roll response whereas the 
present calculation slightly under estimates the experimental 
values. 

7.2 Barge of intermediate length 

Brown et a113 performed model experiments on a rectangular barge 
of dimensions 

L=2.4m, B=0.8m, h=0.105m 
and calculated the motion responses by a 3D source method 
utilizing the panel description of the wetted body surface shown 
in Figure 6a. Since side walls of small area are involved a rather 
fine discretisation using a large number of panels becomes necessary. 
However, applying the present shallow draft theory to evaluate the 
radiation and diffraction potentials no side walls are included 
and therefore a much coarser panel mesh as shown in Figure 6b may be 
sufficient to achieve the required numerical accuracy. 

As illustrated in Figure 7, good agreement is observed between the 
present method computation(by analytical solutions for the surge and 
sway motions and numerical predictions for the heave, roll and pitch 
motions) and Brown et al's 3D source method calculation and experimental 
data (the solid line for the rounded keel-edge barge and the dash 
line for the sharp keel-edge model). 

This study using a simpler mathematical model has produced 
results of equivalent accuracy to those obtained from a much mare 
complicated model, but the demands on computing effort have been 
greatly reduced. 
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In this example study no yaw motion prediction is presented for lack 
of relative experimental data13. Therefore, an additional comparison 
between the present prediction and available model testing data for 
a similar rectangular barge (L = 3.0w, B=0.75m and h=0.0 15m)1 
is shown in Figure 8. Again, reasonable agreement is confirmed 
between the present analytical results from eq. (27) and the published 
3D source method calculation and experimental data 14. 

7.3 A circular dock 

To verify the validity of the present approach to predict the horizontal 
motion of circular platforms as given by eq. (25), a circular dock 
of radius R. (i. e. B= 2Ro) and draft h= Ro is chosen. Analytical 
prediction of the surge motion of the dock is given in Figure 9 by the 
dash line whereas the 3D source method results and experimental 
measurements 14 by the solid line and circular points respectively. 
The present predictions take very little computer time and these seem 
to agree favourably with the experimental data. 

7.4 A triangular platform 

Recently Chakrabarti15 reported model experimental data and theoretical 
computations for a triangular platform modelling a triangular jack-up 
rig or deck in a wet tow. This provides another typical shallow draft 
structure configuration to check the proposed shallow draft theory. 

A theoretical study applying the present method to such a model of 
dimensions of length L= 118m, B= 124.6m and h=3.05m as illustrated 
in Figure 10 has been performed" and main results are quoted here. 
The analytical results for the surge motion amplitude of the structure 
from eq. (28) are denoted by solid circular points in Figure 11. It can 
be seen that the present analytical predictions correlate well with the 
experimental data and retain the same degree of accuracy as a 3D 
diffraction theory calculationls. This further verifies the validity 
of the present horizontal motion predictions for mono-hull shallow 
draft marine structures. 

Furthermore, the numerically computed heave motion response in head 
seas is given in Figure 12. In this calculation, the flat plate So 
approximating the real wetted body surface Sw is subdivided into a total 
of 22 panels (i. e. 11 panels for the port half of so). Figure 12 
apparently indicates the excellent correlation of the present heave 
motion prediction with Chakrabarti's data. 

These example studies including various waterplane geometries of shallow 
draft structures, i. e. rectangular (aspect ratio ranging from 1- 4), 
circular and triangular areas, may imply the theoretical validity, 
numerical accuracy and computational efficiency of the proposed shallow 
draft theory in analysing mono-hull shallow draft marine structures. 
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7.5 A semi-submersible in transit 

Previous applications of the shallow draft theory have been restricted 
to mono-hull structures. To assess the possible extended applicability 
of the method to multi-hulled offshore structures in transit, further 
study on a twin-hull semi-submersible in transit is now presented. 

The semi-submersible model adopted was the subject of a previous 
investigation by Takaki et all and its main particulars are as follows 

L-2.23m, h-0.06m, pontoon beam B-0.24m, 
pontoon central distance Bc = 0.74m, 
displacement W- 59.76kg, 
KG = 0.133m, Kxx = 0.42m, K. = 0.622m. 

The general configuration of this semi-submersible model is illustrated 
in Figure 13. To determine the radiation and diffraction forces, the 
mean wetted body surface of the semi-submersible is approximated by 
a pair of parallel flat plates 2.23xO. 24m. Computed heave, roll and 
pitch responses of the structure excited by regular waves are given in 
Figure 14 and these seem to agree reasonably with the experimental 
evidence16. This limited study suggests that the shallow draft theory 
may be extended to predict heave, roll and pitch motions of multi-hulled 
offshore structures in a wet tow or transit operation. 
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S. CONCLUSIONS 

Existence of a large group of shallow draft vessels and offshore 
structures necessitates the development. of a shallow draft theory 
for motion and wave loading predictions of these realistic marine 
structures. By further extension of the previous flat ship approach 
a new shallow draft theory has been derived and applied to various 
shallow draft structures. 

The present study reveals that 

(i) The proposed shallow draft method enables realistic motion 
predictions to be determined with confidence for mono-hull 
shallow draft marine structures with finite volume of 
displacement. 

(ii) According to the basic assumption for the evaluation of 
the radiation and diffraction forces the wetted surface 
contribution from the small side walls is neglected and the 
total mean wetted body surface is restricted to an 
approximate flat surface So without any curvature. 
Consequently, no small area panels exist in the discretisation 
and this is useful to obtain stable numerical solution of the 
matrix formulation required in the numerical procedure. 
Thus a much coarser mesh arrangement of the wetted body 
surface may achieve necessary convergence and accuracy of 
the solution but produce a great saving in computational effort. 
In addition, both the shallow draft integral equation and 
Green's function become much simpler, enabling a further reduction of 
required computing time. 
Therefore, the shallow draft approach achieves the same numerical 
accuracy as the more complicated conventional 3D methods but 
with a significant reduction in coputing time. 

(iii) The simple expression or possible analytical formulas for the 
prediction of horizontal motions are easily understood, redily 
usable and reliable to apply. In fact, it implies that due to 
the mutual cancellation effect of multiple factors existing in 
shallow draft body motions, a simple formulation may reasonably 
predict horizontal motions of shallow draft marine structures. 

(iv) The efficient computer algorithm developed from the shallow 
draft theory is of practical use in the analysis of motions and 
sea loads, etc, and in the preliminary design of shallow draft 
ships and offshore structures. 

(v) Limited application indicates the possible extension of the 
proposed shallow draft theory to predict the heave, roll and 
pitch motions of multi-hulled offshore structures in transit. 

This paper is the revised and enhanced version of the paper titled 
"A shallow draft theory and its applications in computing motions and 
wave loads of shallow draft marine structures" read in the CADMO '86 
Conference (International Conference on Computer Aided Design, 
Manufacture and Operation in the Marine and Offshore Industries), 
Washington DC, September 1986, by inclusion of various example 
applications of the proposed shallow draft theory. 
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