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ABSTRACT

Predictions of the environmental loading and induced motional and structural responses are
among the most important aspects in the overall design process of offshore structures and ships.
In this thesis, attention is focused on the wave loads and excited bodily motion responses of large
offshore structures and special vessels.

With the aim of improving the existing theoretical methods to provide techniques of
theoretical effectiveness, computational efficiency, and engineering practicality in marine and
offshore applications, the thesis concentrates upon describing fundamental and essential aspects in
the physical phenomenon associated with wave-structure interactions and deriving new methods
and techniques to analyse offshore structures and unconventional ships of practical interest.

The total wave force arising from such a wave-structural interaction is assumed to be a sim-
ple superposition of the potential and the viscous flow force components. The linear potential
forces are solved by the Green function integral equation whilst the viscous forces are estimated
based on the Morison’s damping formula.

Forms of the Green function integral equation and the associated Green function are given
systematically for various practical cases. The relevant two-dimensional versions are then derived
by a transformation procedure. Techniques are developed to solve the integral equation numeri-
cally including the interior integral formulation and, in particular, to tackle the mathematical
difficulties at irregular frequencies.

In applying the integral equations to solve problems with various offshore structures and
special vessels, some modified, improved or simplified methods are proposed. At first, simplified
method is derived for predictions of the surge, sway and yaw motions of elongated bodies of full
sectional geometry or structures with shallow draft. Then, a new shallow draft theory is described
for both three- and two-dimensional cases with inclusion of the finite draft effect. Furthermore, a
three-dimensional strip method is formulated where the end effects of the body are fully taken
into account. Finally, an approximation to the horizontal mean drift forces of multi-column
offshore structures are presented.

Some new findings are also discussed including the multiple resonances occurring in the
motions of multi-hulled marine structures due to the wave-body interaction, the mutual cancella-
tion effect of the diffraction and the radiation forces arising from a full shaped slender body, and
so on.

Further to those verification studies for individual methods developed, more comprehensive
example investigations are given related to two industrial applications. One is a derrick barge
semi-submersible with zero forward speed; and the other, a SWATH ship with considerable
speed.

By correlation of all the proposed approaches with available analytical, numerical and
experimental data, the thesis tries to demonstrate a principle that as long as principal physical
aspects in the wave-structure interaction problem are properly treated, an appropriately modified
or simplified method works, performs well and, sometimes, even better.
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1. INTRODUCTION

With the development of offshore operation and ocean exploration, the invention, design
and construction of new ranges of unconventional shaped marine structures for both high worka-
bility and cost economy are largely demanded. The design of a new marine structure depends
mainly on knowledge and experience gained from some complementary practice, i.e. model tests,
theoretical analysis, field measurements and former design. construction and operation processes.
To ensure safety, operability, economy and designed life duration of a marine structure to with-
stand specific ocean environmental effects (i.e. waves, winds, currents, seabed, beach, ice, neigh-
bouring offshore structures or service vessels, etc.), theoretical estimates on motion responses and
wave loads (which is called seakeeping analysis in naval architecture) play an increasingly impor-
tant role in the overall design process. This trend is continuing as computer facilities and
software packages with their increased capability become  relatively less expensive to run
whilst experimental facilities, model tests and labour costs appear more and more expensive and
difficult to maintain.

In general, the body motion and wave loading analysis of large marine structures deals with
the predictions of operational performance of such structures at a site in a seaway or undergoing
sea transportation. This involves, for instance, rigid body motions, detailed fluid pressure distri-
butions, resultant local shearing forces and global bending moments, extreme sea loads and
motions, slamming and deck wetness associated with relative motions and velocities, accelera-
tions and subjective motions with respect to crew and machinery performance, resultant forces on
attached structures (e.g. pipeline stress, taut tension and mooring forces), etc. All of these indivi-
dual aspects require a method to estimate the wave-structure interaction. Therefore, development,
improvement and application of numerical techniques for analysing such an interaction becomes

one of the daily activities of naval and offshore hydrodynamicists and other related researchers or



engineers.

There exist various marine and offshore structures designated for different tasks. In this
thesis, however, attention is focused on interaction problems between waves and large offshore
structures of complicated but realistic configurations possessing massive and full shaped floater(s)
and/or multiple sub-members, e.g. a large mobile or fixed platform and a twin-hull vessel. The
structures are either stationary, moving slowly or subject to current of low speed. Neither fast
slender monohull ships and fixed framed platforms nor idealised geometries and topics of only
pure mathematical interest will be cited. The waves and motions in this study are restricted, as is
usually assumed in ordinary seakeeping analysis, to a range of low and intermediate frequencies.
That is, it excludes high frequency problems, for example, those aﬁeady covered by flexible
mode oscillations in hydroelasticity (Bishop and Price 1979), earthquake induced responses (see
OMAE 1986) and shock wave effects due to underwater explosions (Keil 1961). The sea is
assumed of an infinite or intermediate depth to exclude the necessity of using a shallow water

approximation.

1.1. General Review

L1.1. Separation of force components

Generally speaking, in the interaction phenomenon between water waves and a large body
of complicated configuration, the wave slope may be steep, the body motion excursion can be
large and there may unavoidably exist flow separation, vorticity or breaking waves. Therefore,
from a pure theoretical point of view the Navier-Stokes equation (Stokes 1951) for an incompres-
sible fluid with constant viscosity seems most appropriate. Just like a rough sea obstructing the

voyage of a ship the mathematical free-surface condition constantly produces an obstacle to the



development of a more sophisticated theory. The Navier-Stokes equation together with the com

plicated free-surface and body boundary conditions (Wehausen and Laitone 1960) are too difficull
to solve at present, and to my knowledge there is no published work so far implementing a full
application of this approach to an interaction problem of waves and a real offshore structure. By
using supercomputers and a tremendous amount of computing time, the Navier-Stokes equation
was very recently investigated by Miyata and Nishimura (1985). This work, however, adopts an
inconsistent treatment by ignoring the viscosity in the boundary conditions on the free-surface
and the body surface and the approach may have a long way to go before it becomes readily avail-

able for engineering applications.

In the past to advance technology engineers and scientists set up principles of simplification
which are widely used even today. One of these, the principle of linear superposition remains a
key element in present advancements. According to Lighthill (1979,1986), Kelvin was the first
who provided the principle of motion separation, which enables an analysis of the flow around a

body into a linear superposition of
(a) the potential flow satisfying the boundary conditions; and

(b) a residual vortex motion satisfying zero boundary conditions in infinity and the normal

velocity on the body surface.

Equivalent to an assumption of ignoring the cross-coupling terms between the potential flow
and the vortex motion components, this principle provides one of the most basic foundations used
in contemporary naval and offshore hydrodynamics, whether one realises it or not. Thus to obtain
the total fluid loading Fr; relating to the jth motion mode or direction, one needs only a careful
evaluation of F;, the potential flow force of (a) and a rough estimate of F,;, the drag force of (b),

ie.



Frj=Fj+F,; (1.1)
The component potential flow (a) representing a full nonlinear potential flow problem (Longuet-

Higgins and Cokelet 1976) is of great complexity and numerical techniques of practical use are
still under development. To avoid such a direct solution, a perturbation procedure with respect to
a small parameter € (Chosen as the wave slope) is used to derive systematically equations in vari-
ous orders of € (Peter and Stoker 1957, John 1949, Wehausen and Laitone 1960). The resultant
first-order equations, involving a linearised free-surface condition, form the linear (or the first-
order) diffraction theory formulation, whilst those in respect to order two construct the second-
order diffraction problem (Ogilvie 1983) and so on. Consequently, the potential force in Equation
(1.1) can be rewritten as a linear combination of potential force components in various order, that
is,
Fi=F"+FP+ -« +FM +0e™) (1.2)
Empirical formula for the drag force of (b) is available, known as the drag terms in the
Morison equation due to the landmark contribution made by Morison, O’Brien, Johnson and
Schaaf (1950). Alternatively, a more refined vortex method may be applied (see Stansby and

Isaacson 1986). Thus, correct to the second-order, the total wave loading now takes the form

Frj=F{" +F® +F, (1.3)

1.1.2. Wave model

It is common practice to derive a water wave model from a potential theory governed by the
Laplace equation and relevantboundary conditions. Various wave theories have been established
including the sinusoidal (or infinitesimal, or small amplitude) wave theory, the Stokes finite
amplitude wave theory, nonlinear shallow water wave theories of cnoidal, hyperbolic and solitary
waves, and so on (see the review by Sarpakaya and Isaacson 1981). Among these, the sinusoidal

wave (Airy 1845) is most relevant to this context due to its suitability in linear analysis and for



linear superposition in a modern spectral analysis.

Applying the statistical theory of noise in electronics by Rice (1944, 1945), Longuet-
Higgens (1952) first introduced a spectral representation of an irregular sea by the sum of a large
number of regular, sinusoidal waves. Moreover, a three-dimensional or multi-directional wave
spectrum can also be modelled (St. Denis and Pierson 1953, Price and Bishop 1974). In
engineering practice the phenomenon of wave-current interaction has been poorly understood
except for the resultant frequency of encounter (see §4.9.3 in Sarpakaya and Isaacson 1981) and
recent research activities are beginning to account for the current effect on a wave spectrum.
Related' works have been reported by Tung and Huang (1976), Mathiesen (1984), Sakai, Hirosue

and Iwagaki (1981), etc., and a thorough review is given by Peregrine and Jonsson (1983).

Based on the spectral technique St. Denis and Pierson (1953) pioneered the probabilistic
theory of ship motions which enables predictions of motions and wave loads on a marine struc-
ture in a real seaway to be derived from data relating to individual regular waves (also see Price
and Bishop 1974). Therefore, concentration can now be focused on analysing solutions in regular

waves only.

1.1.3. Force regime and validity of method

The real flow-body interaction is a rather complicated phenomenon changeable from condi-
tion to condition and any existing theoretical model may only be valid in a certain range of appli-
cation. The validation of wave loading prediction methods have been discussed comprehensively
by researchers with scientific backgrounds akin to ocean engineering, for example, Dean (1970),

Hogben, Miller, Searle and Ward (1977) and Garrison (1978).

For the problem of a fixed circular cylinder in waves let us denote § to represent the fluid

particle orbit diameter, H the wave height, A the wave length and D the typical member diameter.



A rough guideline describing the force regime is given by Standing, Dacunha and Matten (1981)

and this is summarised as follows:

(i) First-order forces
(1a) drag dominant when 8 /D > 1.0, using estimation method for inertia and drag forces,
(1) diffraction dominant when D/ A > 0.2, using diffraction theory,

(1c) inertia dominant when & /D < 1.0 and D/ A < 0.2, using either of the two methods as

stated in (1a) and (1b).

(ii) Mean second-order forces
(2a) drag dominant when (H/D)* > 60 (H/A)? ,
(2b) diffraction dominant when (D/A)* > (1/60) (H/M),
(2c) less clear when the first-order forces are inertia dominant as defined in (1¢).

These rough conclusions, shedding some light on the fluid-structure fundamental problem, are
shown diagrammatically in Figure 1.1 where the limit of occurrence of breaking waves is also

indicated.

L1.4. First-order forces and motions

Again, the principle of linear superposition enables the total wave potential solution to be
determined by the linear summation of the incident wave, the diffraction wave due to the interfer-
ence of the fixed body with the incident wave, the radiation wave with respect to each indepen-
dent mode of the body oscillatory motions and a steady wave field if forward speed or current

exists.



1.1.4a. Force and motion predictions
(i) Methods for slender ships

In the literature the Froude-Krylov theory was the first available linear theory to predict
wave forces and the excited motions of a slender ship. This was developed by Froude, W. (1861),
Froude, R.E. (1896) and Krylov (1896a, b). Their hypothesis assumed that the existence of the
body does not change the incident wave field if the beam and draft of the body are both small
compared with the wave length and this resulted in the so-called Froude-Krylov force due to the
incident wave only. Today this simplified approach receives little research attention except its
application by practical naval architects and offshore engineers for simple structures, It was very
recently that Wu and Price (1986a, 1989) applied, and then proved, a similar idea to predict all
the three horizontal modes of motion of either a long but full-shaped body or a shallow draft

structure, other than the more restrictive slender ship forms (see §4).

The first strip theory pioneered by Korvin-Kroukovsky (1955), treating a whole ship as a
number of two-dimensional strips and taking account of the diffraction effect by an artificial rela-
tive velocity concept, is one of the milestones in the development of modern seakeeping analysis
though, nowadays, it has almost been replaced by more rigorous and more powerful new strip
theories. Of these new strip methods, the STF method of Salvesen, Tuck and Faltinsen (1970) for
slender ships, includes predictions of five rigid body motions with the exception of the surge;
deals with the forward speed effect by the formulae of Ogilvie and Tuck (1969); satisfies the sym-
metric relations of the cross-coupling hydrodynamic coefficients proved by Timman and Newman
(1962) and obtains the diffraction forces by the Haskind relationship (Newman 1965) in terms of
radiation potential solutions from the close-fit method of Frank (1967). In spite of its critical high
frequency assumption, theoretical predictions are generally in good agreement with model test

data for slender ships. This technique has been extended by Beck and Troesch (1980) to exclude



the use of the Haskind relationship, by Lee (1976) to study SWATH ships (small waterplane area
twin hull ships), by Wu and Price (1986b) for possible application to a drydock with zero forward
speed in a semi-submerged condition, and so on. The lack of surge motion prediction in the
method may be complemented by the Froude-Krylov hypothesis as used by Grim (1963) and

proved by Wu and Price (1989).

In developing a strip theory it also necessitates the adoption of two geometric assumptions,
i.e. the infinite length and negligible ends effect, but as pointed out by Ogilvie (1974) the ship
ends cause many difficulties and this situation has not been thoroughly studied. It is particularly
the case when offshore structures are considered, since, in most cases these have blunt ends.
Furthermore, Ursell (1968) concluded that an infinitely long cylinder is not a satisfactory approxi-
mation to a ship of finite length in head seas. In a motion analysis, the strip theory may provide
acceptable predictions for ships with low length/beam ratios down to L/B = 2.5 (p. 404, ITTC
1987). However, as far as the shearing forces and bending moments are concerned the STF strip
method overestimates these loads for bodies with full-shaped ends because of the cumulative
error contribution of sectional forces by the Haskind relationship (Ogilvie 1974). From a deéign
point of view perhaps this does not matter since the predicted data are on the safe side, i.e. an

over-estimate.

In addition, the STF strip method also assumes high frequencies and ignores, in the formu-
lation, the free-surface integral due to the forward speed. These may lead to errors in the motion
predictions for high speed vessels (e.g. the reported erroneous resonant heave response for a con-
tainer ship by O’Dea and Jones, 1983). Nevertheless, new methods for ship motion analysis
based on more sophisticated mathematical formulations do not usually seem to give much better
results than the strip theory (Seakeeping Committee report, ITTC 1987) and the STF strip method

remains the most popular used in the seakeeping analysis of ships.



A competitor to the STF approach is the unified slender body theory (Newman and Scla-
vounos 1980, Sclavounos 1984), which is exclusive of the high frequency limitation and devoid
of the head sea singularity inherent in the diffraction problem of a strip theory (Ogilvie 1974). It
seems that the unified slender body theory gives more accurate force estimates but no better
motion predictions. Borresen and Faltinsen (1984) extended this approach to shallow water and
found little improvement over the strip method. Another interesting extension of this slender

body theory was made by Breit and Sclavounos (1986) to a twin-hull body.

(ii) Methods for vertically-walled bodies

Large circular cylinders are extensively used in offshore engineering, for example, offshore
piles and columns of a platform. An analytic close form solution of first-order forces and
moments for a free-surface piercing circular cylinder has been derived by Havelock (19402) for
deep water, by Omer and Hull (1949) for shallow water and by MacCamy and Fuchs (1954) in
general cases. If a large spacing assumption (Milne-Thomson 1968, Okusu 1974) is further
applied, wave forces for an array of multiple circular cylinders can be approximately formulated
(Mclver and Evans 1984) and exact expressions for these forces on such an array may be found

by the method of Kagemoto and Yue (1986).

For a vertical body of arbitrary waterplane geometry, Hwang and Tuck (1970) presented a
two-dimensional method to solve the diffraction force in the horizontal plane, which may be
referred to as the two-dimensional horizontal plane method analogous to the two-dimensional
vertical plane method in a strip theory. Furthermore, this approach is also applicable to a numeri-

cal solution of multiple vertical bodies of arbitrary waterline geometry (Isaacson 1978).

(iii) Shallow draft theories



Shallow draft bodies are very popular in offshore operations, for instance, barges (p.433-
435, ITTC 1987), ocean production units, crane barges, and platforms. The shallow draft feature
makes it possible to derive an effective and efficient shallow draft theory. Unfortunately, theoreti-
cal developments have lagged behind practical needs. The original shallow draft theory presented
by MacCamy (1961) is a two-dimensional version and Kim (1963) extended it to three-
dimensional cases. The body is idealised by a simple plate and this greatly reduces the comput-
ing time requirement. This original version, however, is unable to predict the horizontal motions
of surge, sway ahd yaw and has no draft correction to take care of the effect of finite draft of a real
shallow draft structure. Therefore, according to Odabasi and Hearn (1978), the application of this
method is extremely limited and it has not been used for seakeeping aﬁalysis of displacement type

vessels.

Very recently, a new shallow draft theory was proposed by Wu and Price (19863, which
includes a draft correction and is able to predict all the six rigid body motions. Full details of the

method are given in §6.

(iv) Three-dimensional approaches

Three-dimensional diffraction analysis of motions and wave loads of realistic marine struc-
tures became available only when modern computers allowed full solutions of the three-
dimeasional hydrodynamic coefficients and wave exciting forces to be derived. In the field of
pumerical hydrodynamics, the panel collocation technique of Hess and Smith (1964) provided a
major breakthrough by approximating the continuous body surface with a finite number of discre-
tised flat panel element and replacing the governing equation by a set of simultaneous linear equa-
tions for each discrete panel which are readily solvable by matrix manipulation. Further to the
constant panel technique, high order panel methods were subsequently developed (Hess 1973,

1980).

10



Various three-dimensional diffraction computer codes have been developed in the 1970s for
structures with zero forward speed, see Garrison, Rao and Snider (1970), Faltinsen and Michelsen
(1974), Hogben and Standing (1974), Ootmerssen (1976, 1979), Garrison (1978), Inglis and Price
(1979, 1980). Alongside these singularity approaches, the finite element technique based
methods (Zienkiewicz, Bettess and Kelly 1978) offer an alternative, especially in shallow water of
varying seabed topography. Furthermore, hybrid approaches combining a close domain finite ele-
ment representation and an outer region boundary integral idealisation have been developed (Yue,
Chen and Mei 1978, Euvrard, Jami, Lenoir and Martin 1981, Eatock Taylor and Zietsman 1982).

In this thesis, however, focus is limited to the singularity based methods only.

In the case of slender ships with forward speed, a three-dimensional motion theory is
described by Chang (1977) whose numerical data, however, showed no remarkable improvement
over the simple strip theory. The most comprehensive numerical investigation so far is found in
the work of Inglis and Price (1982a, b) who also suggest the application of simplified formulae to
tackle the forward speed effect similar to those in the strip theories. Such a simplification is
further extended by Beukelman, Huijsmans and Keuning (1984) for a ship in shallow water.
Closely related to the prediction of the second-order wave drift forces in a current, recently, two
low speed approximations describing the behaviour of a full body in a current are proposed
respectively by Huijsmans and Hermans (1985) and Zhao and Faltinsen (1988). Despite the
existence of a large number of three-dimensional computational packages, so far, no theoretical
complete numerical procedure for a full-shaped body with forward speed or/and under current is

available.

1.1.4b. Wave potential solutions

To supply sufficient information to the motion and wave loads analysis methods as stated in

1.1.4a., the first-order boundary value problem governing the wave-structure interaction needs to

n



be solved. Analytical solutions can be derived for some simple geometries and these were of
great interest in early years when modern computer facilities were not available. Nowadays, these
solutions are of limited application when analysing realistic structures other than to provide use-
ful guidelines to check updated numerical procedures or programs. However, numerical compu-
tation experience indicates that most of the existing computational packages produce satisfactory
data for these simple and idealised bodies, but give results showing large discrepancies for realis-

tic structures of complicated configuration (Eatock Taylor and Jefferys 1986).

Numerical ‘solution methods fall mainly into three categories. Namely, the singularity
approach (or the Green function integral equation method), the finite element technique and a
combination method as mentioned in 1.1.4a. The first singularity techmque developed is the
two-dimensional multipole expansion method of Ursell (1949a, b) originaily used to analyse the
hydrodynamic behaviour of a circular cylinder in deep water. This was extended by Tasai (1959)
and Porter (1960) incorporating a conformal mapping process to deal with more realistic ship sec-
tions and further extended by Wang and Wahab (1971) for the heave motion of twin circular
cylinders. Such a solution technique is still adopted in the strip method program SCORES (Raﬂ'
1972). Accuracy of this approach largely relies upon the precision of mapping of a given cross-
section into a perfect circle and difficulties arise when tackling complicated sectional forms (Tak-

agi, Furukawa and Takagi 1983).

The current singularity distribution method can be expressed in three alternative forms, i.e.
the source, the dipole and a mixed distribution (Yeung 1982). The dipole technique if in a double
derivative form may be difficult to evaluate unless proper approximations are introduced (Colton
and Kress 1983). The boundary integral equation are expressible in an exterior, surface or interior
integral formulation correspondingly to the chosen field point located outside , on or inside the

body surface. The surface and exterior integral equations are commonly used and a recent investi-



gation carried out by Wu (1987) suggests the applicability of the interior formulation.

It was Frank (1967) who provided the first source method program for the potential solution
of arbitrary two-dimensional sections and known subsequently as the Frank’s close-fit method.
This was incorporated into the STF strip theory program (Salvesen, Tuck and Faltinsen 1970) for
general motion and wave loading analysis of ships. In marine hydrodynamics the singularity dis-
tribution technique seems to be the most favourable solution method adopted. Since the 1970s,
after the pioneering work of Hess and Smith (1964), research has focused on finding an efficient
numerical formula for the three-dimensional Green function in order to reduce computational
efforts. Various contributions have been made to the zero forward speed case by Kim (1965,
1966), Monacella (1966), Hogben and Standing (1974), Faltinsen and Michelsen (1974), Hearn
(1977), Noblesse (1982), Endo (1983), Pidcock (1985), Newman (1985), Telste and Noblesse
(1986). In the cases of an oscillating body with forward speed or in current, the Green function
representing a pulsating, translating source (Wehausen and Laitone 1961, Chang 1977) is very
complicated. Several alternative forms of numerical evaluation have been investigated, e.g. by
Inglis and Price (1980) and Guevel and Bougis (1982). An urgent task remains to innovate a fast

algorithm to evaluate this Green function.

For a generalisation to a full-shaped body but with a limitation of lower speeds, a fast algo-
rithm was proposed by Huijsmans and Hermans (1985) and Huijsmans (1986). Their method is
based on a non-rigorous expansion form of the forward speed Green function and the integral
equation with respect to a small parameter, speed U, and the theory is correct to the order of
O(U). In the solution the effect from the steady wave field (Eggers 1981, Brandsma and Hermans
1985) has been taken care of. Under a similar restriction, Zhao and Faltinsen (1988) use a more
consistent model, remaining correct to order O(U), by matching a near field simple source distri-

bution and far field multipoles of a simplified pulsating, translating source (Grekas 1981).



The development of a complete motion and wave loading analysis method, however, solely
depends upon the availability of a complete solution technique for a full three-dimensional body
with speed, i.e. neither the limitation of a slender body nor the restriction to low speeds. Such a

theory and solution can be optimistically expected to emerge in the very near future.

More comprehensive reviews of the recent development of the first-order diffraction
theories can be found by Ogilvie and Beck (1973), Odabasi and Hearn (1978), Newman (1983),
the Seakeeping Committee Report of ITTC (1987) for the general motion and sea loading prob-
lems; Mei (1978) and Yeung (1982) for the numerical techniques available; and Sarpkaya and
Isaacson (1981), Hogben, Miller, Searle and Ward (1977), Standing (1981) and the Ocean

Engineering Committee Report of ITTC (1987) for more offshore related structures.

1.1.8. Second-order forces and motions

The second-order solution leads to the mean drift forces, forces due to ﬁ-equehcy sum and
forces due to frequency difference (Pinkster 1979, Standing and Dacunha 1982, Ogilvie 1983).
As defined by the perturbation process corresponding to the incident wave amplitude (Wehausen
and Laitone 1960) these second-order wave forces are an order smaller than the first-order ones
and serve to complement them. However, these forces play very important roles in offshore prac-
tice, for example, the slowly varying drift forces due to frequency difference of waves cause low
frequency resonances of a moored or guyed offshore structure in surge, sway and yaw or a small
waterplane area vessel in heave, roll and pitch, whilst the rapidly varying forces due to frequency

sum may excite high frequency resonances of a TLP in heave, roll and pitch.
The second-order forces are attributed to two kinds of contributions, namely,
(i) products of first-order quantities from the first-order potential and motion solutions

($1.1.4), and
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(ii) the second-order potential solutions.

1.1.5a. Mean drift forces

In a time average, components (i) give rise to the mean drift forces whilst component (ii)
gives simple set-down forces in the vertical plane but no contribution in the horizontal plane. To
this problem Maruo (1960) and Newman (1967) have made important contributions. The mean
wave drift forces and moment can be estimated by either a near field approach (Pinkster 1979) or
a far field one as described by Newman (1967) for the deep water case and by Faltinsen and
Michelsen (1974) for shallow water. As far as large offshore platforms are concerned both of the
these approaches are computing time consuming. Since these forces are closely related to the
design of the mooring or dynamic positioning systems applied to offshore structures, an engineer-
ing estimation method rather than complicated mathematical proof is urgently required. This pro-
moted a joint project undertaken by several Dutch offshore companies and research organisations
to develop a practical prediction technique for the calculation of the mean drift forces on semi-

submersibles and some preliminary results were reported by Angwin (1986).

1.1.5b. Sum frequency forces

Superharmonic resonances of TLPs at frequencies double or triple the frequency of the
incident wave have been confirmed in model tests (Yoneya and Yoshita 1983, Pinkster and Boom
1983). In regular waves, the two-dimensional double frequency problem has been studies by Lee
(1968), Potash (1971), Papanikolau (1984) for radiation problems, and by Soding (1976), Kyo-
zuka (1982), Miao and Liu (1986) for diffraction problems. In solving the second-order
diffraction potential, besides the treatment of the inhomogeneous free-surface condition,
difficulties exist to find a proper radiation condition. For the three-dimensional second-order

diffraction potential solution, Molin (1979, 1986) preseated a more complete analysis and
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proposed a likely form of the radiation condition. For a free-surface piercing circular cylinder,
recent studies are reported by Qiu and Wang (1986), Eatock Taylor and Hung (1987) and Liu
(1988). In regular waves, sum frequency wave forces have been investigated by Loken (1986)

and Hertjard and Nielsen (1986).

1.1.5c. Difference frequency forces

In irregular waves, both components (i) and (ii) (p.11) contribute to the slowly varying drift
forces (also to the sum frequency forces) inducing slow drift motions of a moored structure. This
is of major concem in offshore operations and a large number of studies have been reported, e.g.
by Hau and Blenkarn (1970), Remery and Hermans (1971), Newman ’(1974). Ootmerssen (1976),
Faltinsen and Loken (1978, 1979) and Standing and Dacunha (1982). Pinkster (1979) conducted
a comprehensive investigation on slow drift forces and motions of three-dimensional bodies and
presented related formulations as well as experimental verifications. A thorough review can be

found in Standing, Dacunha and Matten (1981).

A full evaluation of the slow drift force is a troublesome task because it requires the
second-order potential solution of which general solution methods are still under development, as
discussed in 1.1.5b. To overcome this difficulty, Lighthill (1979) derived a very useful formula
expressing the total second-order force in terms of first-order quantities by making use of Green's
theorem and Haskind reciprocal relations. Lighthill’s formula involves an integral over the entire
free-surface and usually some approximation is required for its evaluation. An exact application
of this approach was achieved by Matsui (1986) who also proposed an approximation to ignore
the free-surface integral. A comparison of his results with various approximate methods of
Bowers (1976), Newman (1974) and Pinkster (1979) seems encouraging, at least for the example

of an articulated cylinder.

16



It is particularly worthwhile mentioning Newman's approximation (1974). This much
simplified approach needs only the calculation of the mean drift forces in regular waves, requires
much less computing time and results in predictions of slow drift force and motion of acceptable
accuracy (Nass 1986) in practical problems. Therefore, this simplified method is widely used in
offshore engineering, especially, when today’s numerical techniques and experimental measure-

ments for the slow drift forces show some degree of uncertainty.

When slow drift resonant motion occurs, fluid damping (including the contributions of wave
damping, frictional damping and viscous damping due to drag) plays a significant role. But at
low frequencies the first-order wave damping is nearly zero, the frictional term is small and the
drag force proportional to the square of the frequency is small, too. Thus, a damping term
significant to the slow drift motion was identified as the second-order low frequency wave damp-
ing (Wickers and Sluij 1979, Wickers 1982). This damping value was formulated by Wickers and
Huijsmans (1984) exclusive of current and by Wickers (1986) inclusive of current as the deriva-
tive of the mean horizontal drift force with respect to the moving speed. This formula was also
applied by Hearn, Tong and Lau (1978), but confusingly they showed that a much more sophisti-

cated three-dimensional forward speed approach produced much poorer results.

The conventional slow drift motion theories as described above contain theoretical
weaknesses. First of all, the theory is inconsistent since the large excursion of the slow motion is
contradictory to the small motion amplitudes assumption necessary in the perturbation procedure
in order to decompose the first- and the second-order quantities. Secondly, the additionally intro-
duced low frequency damping contribution may be an indication of the incompleteness of the
current slow drift motion analysis. A possible consistent theory has been studied by Triantafyl-
lou (1982) who suggests that the slow motion potential is of first-order and satisfies linear boun-

dary conditions.
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1.1.6. Full nonlinear potential analysis

The powerful small amplitude perturbation method may be invalid when dealing with steep
waves, in particular, when breaking waves appear. These may necessitate a full nonlinear poten-
tial flow analysis. A finite difference time stepping procedure coupled with the boundary element
method solution is currently under development for time domain analysis of a steep wave-large
body interaction. This technique was first adopted by Longuet-Higgins and Cokelet (1976), fol-
lowed by Faltinsen (1977) in two-dimensional cases and by Isaacson (1982) in three-dimensional
problems. Lin, Newman and Yue (1984) paid particular emphasis on handling two principal
difficulties. One is the singular flow at the intersection of the body and the free-surface and the
other, to find an appropriate radiation condition at infinity. Although it seems to be a much
simpler approach compared to Miyata and Nishimura’s nonlinear viscous flow model (1985) the
technique is still so complicated that there is no reported engineering application in offshore

structures other than to a simple circular cylinder.

1.1.7. Drag forces

The separated flow component (b) (§1.1.1) of a residual vortex motion around an arbitrary
body should satisfy the free-surface and the oscillatory body boundary condition (or transformed
to a reverse problem of a fixed body in an oscillatory flow). Solution of this problem is very
difficult to obtain and considerable efforts have been made to develop a numerical model of vor-
tex flow and drag due to eddy making. Good progress has been achieved mainly in simple two-
dimensional cases particularly in the vortex flow around circular cylinders (Leonard 1980, Sar-
pakaya and Isaacson 1981, the Ocean Engineering Committee Report of ITTC 1987). For two-
dimensional ship sections Ikeda and Tanaka (1983) proposed a discrete vortex method which is

also applied by Muller (1985) for cross-sections with bilge keel and by Downie, Bearman and



Graham (1984) for rectangular barge sections. Alternatively Aarsenes, Faltinsen and Pettersen

(1985) present a vortex tracking method for ship sections.

Where the drag force due to viscosity is concerned, little else can be offered to practical
engineers and designers beyond the routine estimation tools obtained from Morison equation.
Morison, O’Brien, Johnson and Schaaf’s formula (1950) is based on experimental measurements
of a circular cylinder in an oscillatory flow and separates the total force into two independent
components, i.e. an inertia and a drag force. The inertia coefficient Cy, and drag coefficient Cp are
dependent on both the Reynolds number (Re) and the Keulegan-Carpenter number (K¢ = U, T /D
with U,, denoting the amplitude of the velocity, T, the flow period and D, the diameter) but are
always set down as constant values in design applications as suggested by classification societies

for simple geometries (e.g. Bureau Veritas 1975).

Since the members of most semi-submersibles fall into the inertia or drag force dominant
regime, the Morison equation method is theoretically reasonable to predict motion responses and
wave loads of semi-submersibles (Hooft 1971) and the taut tension and motions of TLPs (Yoneya
and Yoshita 1983). The accuracy of this simple technique is further confirmed in an international
investigation by Takagi et al (1985). For large offshore structures and unconventional vessels
with massive underwater floaters, the wave diffraction effect is of significance taking care of the
interaction between muitiple large sub-members but the Morison drag forces are also of certain

importance, especially, when resonant motions occur (Lee 1976, Wu and Price 19860).

In conclusion, the linear combination of more accurately described potential forces derived
from a sophisticated diffraction analysis (§1.1.4-5) and rough estimates of drag forces from
Morison equation (§1.1.7) with appropﬁate Cp values corresponding to structural geometry may
be appropriate practically when describing the dynamic behaviour of large offshore structures and

unconventional vessels, especially in our present stage of technological development, as
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discussed by Lighthill (1979, 1986), see §1.1.1.

1.2. Existing Problems

As can be seen from the brief review describing the motion and wave loading analysis in
§1.1, in the last forty years, great efforts have been spent and good progress achieved in deriving
numerical solutions of problems mathematically formulated in the 1940s or so (e.g. Kochin 1939,
Havelock 1940b, John 1950, etc) and also in the practical implementation of these numerical tech-
niques to solve problems arising in naval and offshore practice. However, much work remains to

be done.

1.2.1. Uncertainty in numerical investigations

It is not uncommon to find in the naval literature descriptions of numerical methods relating
to the evaluation of hydrodynamic coefficients, wave loads and motion responses supplemented
by mathematical derivations displaying the rigour of the methods as well as examples illustrating
the validity and advantage of the approach proposed. It is quite often that bodies of simple or
analytically defined geometries are selected for example calculations in order to verify a theory
and very few presentations include comments on the troubles of implementation, practicality of
the method to more complicated structures, deviation of solutions, limitations and even failure of
the methods. In recent years such problems have attracted great attention and both individual and
organised investigations have been reported.

In computing hydrodynamic coefficients Berhault (1978) found big differences among
different numerical techniques used. From the ITTC organised investigation into a semi-

submersible, Takagi et al (1985) reported that results provided by individual investigators show



(i) similar results for surge and sway motions and these are in good agreement with experimental

data (reasoning may be found in §5),

(ii) great scatter around the heave resonant frequency; in particular, data derived from a three-

dimensional diffraction theory are not necessarily better than the simplest Morison equation,

(iii) poor agreement of roll and pitch response in long wave periods, especially, around the natural
periods.

Moreover, Eatock Taylor and Jefferys (1986) summarised the ISSC organised studies on a
TLP and revealed severe discrepancies in the data generated by various methods and programs. It
is also interesting to observe that the predicted surge, sway and yaw responses are again in rea-
sonable correlation despite serious variations in relative added mass data, e.g. the ratio of the larg-

est and the smallest values of the surge added mass surprisingly exceeds 1.7.

Besides the objective complexity of the flow phenomenon, avoidable human error and una-
voidable factors in numerical treatment and in computational programming, all these comparative
studies bear evidence of uncertainties in our theoretical approaches and imply that our so-called
exact solutions or sophisticated theories are merely approximations to the real physical
phenomenon, similar to simplified techniques, though at different levels of sophistication. Large
offshore structures and unconventional vessels are physical objects of great complexity and the
flow regime associated with the body-structure interaction of interest seems partially or totally

beyond the diffraction dominated regime. Therefore, the argument of Paulling (1981) stands that

it is unlikely that a single unified computational procedure can be developed to satisfac-
torily treat all aspects of the response. In stead, a menu of programmes must be assembled to

treat the various members and types of forces.
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1.2.2. Uncertainties over theoretical approach
The following discussions give prominence to some areas which appear to hide weaknesses
in our theories. The list is not complete but the topics discussed are of special concern and

interest.

1.2.2a. Fluid damping

To determine the resonant motion response a more precise theoretical prediction or estima-
tion of the fluid damping is essential. This consists of various contributions (see p. 492-495,
ITTC Report 1987) of which the wave damping due to radiation waves and the drag damping due
to vorticity may usually be two major components. For a lightlydamped mode like the roll
motion of a ship and motion resonances at low frequency in offshore structures, fluid damping
due to drag (§1.1.7) is considerably important but more accurate techniques remain under
development. Furthermore, the resonant motion amplitude is large and the force arising through
the coupling between the potential flow (a) and vortex motion (b) (§1.1.1) is likely to have
significant effect, too. There is no available theoretical method to evaluate this contribution
except to solve directly the extremely complicated Navier-Stokes equation.

Because of theoretical difficulties, sometimes, measured damping coefficients are used to
gain the required accuracy in the resonant motion predictions, for example, the roll damping of
ships (Mathiesen 1988), a fast container ship (O’Dea and Jones 1983) and a small waterplane area

vessel (Smith 1983).

1.2.2b. Theory of uniqueness

Before commencing the application of the wave-body interaction theories (§1.1), a primary
pre requisite  is the establishment of a uniqueness proof. For a linearised three-dimensional

wave-body interaction problem in a finite water depth John (1950) proved uniqueness when



applying the Green function integral equation to any floating body embodied by a vertical bound
through its waterline. In the two-dimensional deep water case Ursell (1950) proved uniqueness
for a submerged circular cylinder. Recently, Simon and Ursell (1984) tried to find the uniqueness
for a two-dimensional floating body in deep water confined by a conical bound through its water-
line points up to an angle 45° away from the vertical. Regrettably, no generalisation of the
uniqueness proof has so far been derived. Of course, the geometries of large offshore structures
and unconventional vessels are outside the bounds of these existing uniqueness proofs and there-
fore, we are in fact applying linear diffraction theories by Green function integral methods with

the presumed existence of uniqueness proof.
1.1.2c. Mathematical problem in singularity methods

(i) Irregular frequency problem

The singularity methods are the most popular in use to solve linear wave-body interaction
problems but these techniques suffer from mathematical failure at discrete irregular frequencies
(John 1950). These irregular frequencies distributedinthe high frequency range cause errone-
ous results for predicted data at frequencies, especially in a second-order analysis and in a hydroe-

lastic modelling.

Great attention has been paid to eliminate this difficulty and various solutions are proposed
(see §4). Of these Ursell’s two-dimensional multipole potential solution is of significance (1981).
In principle, Ursell’s solution is applicable to three-dimensional cases and an alternative form is

proposed in §4 . Wu and Price (19863,1987) proposed an alternative Green function form which

was shown capable of removing the irregular frequencies from arbitrary mono-, twin- and multi-

hulled sections.



(ii) Intersecting angle problem

The second problem arises at the points of intersection when a concaved body intersects the
free-surface at a small angle since there exist a logarithmic singularity (Haraguchi and Ohmatsu
1983). This singularity may be eliminated by suitable practical modifications. For this Haragu-
chi and Ohmatsu (1983) adopted additional elements on the free-surface connected with the inter-
secting points and found the treatment effective for a circular section at various draft values.

From the physical point of view, it is inappropriate to apply a linear wave theory to a very
shallow layer of flow above the body wall slope because the problem appears to be highly non-
linear and thus verification may rely on comparisons with experimental data only. After a com-
parative study with model tests Takagi, Kurukawa and Takagi (1983) revealed that Haraguchi's
computational results considerably differ from the experimental measurements, and a modified
Green function technique incorporating a slightly changed geometry by substituting the intersect-

ing part with a small arc may give more satisfactory answers.

(iii) /ll-conditioning problem

In solving the Green function integral equation additional ill-conditioning frequencies have
been found apart from the two identified groups, i.e. the resonant frequencies due to the exterior
water waves and the irregular frequencies related to the interior problem. The reasoning is not
clear so far and it is most likely that there exists a third kind of ill-conditioning frequeacy of

theoretical and numerical interest.

1.2.3. Numerical convergence and error estimate

In the application of a singularity method in a discretised integral equation form, the global

solution errors may come from the following major sources:



(i) error due to panel discretisation,
(i) error due to evaluation of the kernel function integrals, and

(iii) error due to solution of the matrix equation,

besides the human errors arising from numerical manipulation and computer programming.

In numerical mathematics, convergence problems and asymptotic error estimates for the
Fredholm integral equation of the second kind have been developed, for instance, by Wendland
(1983), Amold and Wendland (1983) and Delves and Walsh (1974). Although numerous contri-
butions applying the singularity techniques are published every year, parallel approaches have not
been established in the naval field. Perhaps this is of secondary importance since there is no

uniqueness proof as well.

For a smoothly-shaped body with no sharp angle at the intersection with the free-surface or
a body in deep submergence a uniqueness proof is available and coincidently, rapid numerical
convergence can readily be achieved and good agreement is always shown by the various
equivalent computer codes. On the contrary, no uniqueness theory exists to cover complicated
geometries, such as a TLP and a semi-submersible, and correspondingly no good correlation can

be observed in the data resulting from the different computer programs.

Apart from a smoothly shaped body or a ship form it looks unlikely that there exists a gen-
eral formula to guide panel discretisation in order to achieve rapid convergence and to ensure
small error in the solution. It should be emphasised that a body may possess multiple geometric
singularities, e.g. at corners and sharp joints, where the potential solutions tend to infinity. Panel
arrangement around these region may have significant influences and solutions by very fine
meshes do not necessarily create improvements. Contrarily, distribution of larger panels neigh-

bouring these singular lines or a simple replacement of these by small arcs are likely to result in



reasonable answers.

1.3. Research Activities and Design Needs

In naval and offshore hydrodynamics research, theoretical developments maybe fall into

three categories:
(i) sophisticated and complicated theories of more academic interest but with less practical
applications,
(ii) simple engineering methods seemingly less scientific but readily accessible to practical

engineers and designers, and

(iii) various degrees of simplified approaches having not only a theoretical basis but also of
practical merit; this is achieved either by modifying complicated theories and/or from initia-

tive development or experimental observation.

All these complementary approaches play their respective roles in promoting marine tech-

nology.

Investigations into rigorous theoretical models usually aim to gain better understanding of a
phenomenon, to find new problems of interest, to check the relative influence or range of impor-
tance of factors neglected in a simpler method and to serve practical engineers with theoretical
back-up. But a complicated approach is not necessarily more accurate than a simplified one
because of the impossibility to perfectly match the realistic physical phenomenon, unimportance
of ignored factors or the mutual error cancellation occurring in a simplified technique. As can be
seen from the state of the art of the existing technology (§1.1), the contributions likely to be
regarded as milestones or breakthroughs are unexceptionally simple, practical but creative. Even-

tually, for practical applications, the complexity of the theory, the accuracy of results and the cost



of use should be appropriate to its degree of importance or rating in a total design process. In
other words, the ultimate version of our theoretical development must suit practical needs. To
bridge the more sophisticated and academic theories and the more practicable and affordable tech-

niques much demanded by industries, the key is simplification.

An ingenious concept of simplification may greatly reduce the time and effort from a
research development to engineering applications as shown in Figure 1.2. If theoreticians would
pay greater attention to tackle the problems of primary importance and with more physical sense,
and engineering researchers could devote more efforts to creative work towards mathematical
simplicity, numerical accuracy and high practicality, the difficulties existing in our field may be

solved much faster.

1.4. Outline of the Thesis
In Chapter 2, the general potential solution problem for a marine structure advancing in
waves is described and general formulations of the first-order motions and wave forces resulting

from the linearised unsteady potential solutions are described.

In Chapter 3, a general form of the Green function representing a pulsating, translating
source relating to the linearised general problem is given and reduced versions for various special
cases are deduced systematically. By a transformation formula relevant two-dimensional forms

can readily be derived.

In Chapter 4, a brief description of the integral equations corresponding to a singularity dis-
tribution is presented and a detailed discussion is focused on the Green function integral equation
representing a mixed source-dipole djstribution method. The difficulties due to irregular frequen-
cies in applying the integral equations are discussed and two remedy techniques proposed. One is

to predict the irregular frequencies more accurately and then to avoid numerical computations
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around these frequency values. The other, to use modified Green functions free of irregular fre-
quencies. Although a Green function integral equation has three forms depending whether the
field point lies exterior to, on or interior to the body’s wetted surface, the interior formulation has
never been used to produce velocity potential solution for marine structures. In the final part of
this Chapter, a numerical method and its theoretical basis are described, applying the interior
integral equation effectively.

In Chapter 5, new results describing the mutual cancellation effect between the diffraction
and radiation forces are reported. By an order analysis it is proved that all the three horizontal
motions of a structure can be reasonably predicted by simply ignoring both the diffraction and
radiation forces and leaving only the Froude-Krylov force as long as the body is elongated but

with full sectional shape, and/or is of shallow draft feature.

Shallow draft structures are further investigated in Chapter 6. In terms of a perturbation pro-
cedure, new shallow draft theory formulations are derived. For the three horizontal motion
modes, this analysis confirms the conclusion drawn in Chapter 5. As to the heave, roll and pitch
modes, the new formulae retain the simplicity of the flat plate theory but enable a finite draft

correction to be included.

With the aim of reducing the matrix size involved in the numerical solution of a three-
dimensional hydrodynamic analysis, in Chapter 7 a hybrid three-dimensional strip method is pro-
posed. Its feasibility in practical applications is further investigated by a series of studies involv-

ing three rectangular cylinders of different length to beam ratio.

In Chapter 8, the predictions of second-order mean drift forces are studied. At first, a
numerical procedure based on the near field formulations of the mean drift forces and the horizon-
tal plane method for the diffraction potential solution is described to determine exact theoretical

values of the horizontal mean drift forces on multiple vertical cylinders. Then, it is further applied



to approximate those acting on offshore structures comprising of large multi-columns or -struts.

Finally, examples are given for a semi-submersible and a tension leg platform.

Chapter 9 includes descriptions of two computer codes based on comprehensive applicétion
of the ﬁloﬁon theories developed. The first method combines the three-dimensional diffraction
theory and an estimation of the drag force, which is appropriate to analyse large offshore struc-
tures of more complicated configuration. The other, the two-dimensional strip formulation
together with an estimation of the drag and lift forces, which is suitable to predict the seakeeping
performance of multi-hulled vessels, such as SWATH ships. Example studies of a semi-
submersible and a tension leg platform demonstrate how theoretical development can be success-
fully applied to the process of research and development or design of more complicated large

éﬂ‘shore structures and special vessels.
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2. GENERAL PROBLEM

As discussed in §1.1.1, to avoid any unnecessary complexity in solving the Navier-Stokes
equation with the imposed rather complicated boundary conditions, Kelvin’s principle of linear
superposition of a potential flow and a vortex motion component can be used (Lighthill 1979,
1986). It requires only two independent analyses, i.e. a more sophisticated potential flow solution
and a crude drag force estimate. Therefore, the major focus is now concentrated on the potential

theory analysis of wave-body interaction problems.

2.1. The General Potential Solution Problem

The water flow is assumed incompressible, invicid and irrotational and the marine structure
is of arbitrary geometry, floating in the free-surface. An uniqueness solution of the flow motion is

also assumed since there exist no general uniqueness theorem as reviewed briefly in §1.2.2.
In the analysis four coordinate systems are chosen such that
- .
To = (Xos Yor 20), fixed in space;
D ; .
r=(x',y,z) fixedin the body;

B e - -
r=(x,y, z)=x~Ut, y,-Vt, z,

steadily translating with velocity

o 3
W, =, V, 0)=(W,cosa, W,sinc, 0)

with x coincident with the body axis;

7= &, ¥, 2) = (x=Wot, y,, 2oy =( x COSO:+y sinaL, ~x sina+; cosa, z)

- -
similar to r but with x axis coincident with the composite velocity W, .

The axes z,, z, z and z’ (when no angular motion) are upwards and origins 0, 0 and O’ are

at the same location on the undisturbed free-surface, see Figure 2.1.
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The flow velocity potential ® satisfies the Laplace equation in the steadily moving reference

frame Oxyz:
VE®(x, y, z;)=0 in the fluid domain D (2.1.1)
The fluid pressure derived from the Bernoulli equation is
p=—p[DP/Dt +gz + %(V@V(b)] (2.1.2)
with D/Dt = d/dt + V-V .

On the free-surface p = 0 and the wave elevation {(x, y; ) is given by

2=l yi )= -i [DOIDt + %(ch-%)],?,; 2.13)
On the boundary interfaces the kinematic conditions are given by
(T/:-th)-'r-:) =0 on S, (x, y, z; 1), the body wetted surface (2.14)
%(c-z)=o onz=8(x, y;1) (2.1.5)
whereT/), is the local velocity on S,, and 7 is the unit normal pointing into the fluid.
In terms of the conditions represented by Equations (2.1.3) and (2.1.5) the free-surface con-
dition is derived as
D2®/Dt? +2V&-DO/Dt + %V¢-V(V¢-V¢) +200z=0 onz={(x yit) (216)

By rearranging Equation (2.1.4), the body surface condition can be rewritten as

3D/on =H-(Vd - VTV),) onS,(x,y, z;¢) (2.1.7)

For simplicity, the seabed topography is taken as level and flat, i.e. the water is assumed of

uniform depth, d, or deep (d = oo ). Thus, the seabed condition is now written as

o®/0z=0 onz=d (2.1.8)
In addition, a radiation condition is required to guarantee an unique solution of this boun-

dary value problem but its correct form is not known. In practice, as an approximation, use is
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made of the Sommerfeld condition adopted in linear potential problems.

Application of such a nonlinear set of equations is rather difficult and may be limited to zero
forward speed cases (e.g. Isaacson 1982), but more success has been achieved when a linearised

set of equations is considered.

2.2. Linearisation of the Unsteady Wave Potential

At first the total wave potential is assumed to be the sum of the steady wave potential com-
ponent @, and the unsteady one @, i.e.

O=0, +d, 221)

To make the problem more tractable, a perturbation procedure can always be used under the

assumption that the steady wave elevation and the body oscillatory motion are both small. There-

fore, relative physical and geometrical quantities can be expressed in a series of expansion form

with respect to a small parameter € , chosen as the wave steepness say, e.g.

P, = 20("), L= zc("), etc.
a0 a=0
(see Wehausen and Laitone 1960). Hence, correct to order €, the total potential is given by
o=, + 0 + 0P +0(}) 22.2)
The first order unsteady potential can be derived by the following conditions (Newman

1978):
(A) Laplace equation

V2@ =0 in the fluid domain D" (22.3)
(B) the free-surface condition

d

@ + W-vd'))[%-%(i’v-vwz) +80 (g + VV)-;WI +of)



- -
+ 2v_V)-Vd>S') +WVW-VoiV) + %V@"’-V(W’) +g®N =0 onz={ (22.9)

(C) the body surface condition
O 5
IDV/Rn = [F+(WVR (VW7 onSP 22.5)
(D) the seabed condition
00M09z=0 onz=-d (2.2.6)
and a radiation condition.

The total free-surface elevation is now of the form

¢= —i[(bf‘) + W2 = W) + W00, 22.7)

Here ¥is the body replacement vector in the form

_)

X = (1, X2, X3) + (X4, X3, X6)X(T = T5) (2.2.8)
where (x{, x5, x3) and (x4, Xs, X¢) denote the unsteady translation and rotation components of
the body. The relative velocity vector is given by

-
W=V, =V(p; - W, x) (2.29)
Here the steady wave potential includes the first-order unsteady wave effect and it satisfies the

following equations:
(a) the Laplace equation

Véos; =0 in the fluid domain (2.2.10)
(b) the free-surface condition

-
%W'V(Wz) + 20, + O +2W-VOD + W-VW-VOD)

+ -lé-th“)-V(Wz) +g00 =0 onz=l 22.11a)
or
12,
;W-V(W )+80:=0 onz={ (2.2.11b)



(c) the body surface condition

-
Wrn=0 or 3¢,/0n=W,n, onS,, the body steady—state position (2.2.12)

and the seabed condition and a radiation condition.

The steady free-surface elevation component is

1
¢ = 2% W2 -Wd), (2.2.13)
The combination of Equations (2.2.7) and (2.2.13) results in the total wave elevation as

given by

- = 2
§ =8 — (@ + W-VOD)i(g + W-aW/dz)],=¢, (2.2.14)
This linearisation validates a further linear decomposition of the total first-order unsteady

wave potential as

6
oV =y exp (~iw,t) = (¢o + ¢7 + T Xju®;) exp (=i, 1) (2.2.15)
j=1

where ¢y is the incident wave potential expressible in
igla . :
¢ = -? Z(z) exp[ik (x cosp +y sinf)] (2.2.16)
Here o, denotes the wave frequency, {, the wave amplitude, B the wave incident angle

( B =180° indicating head seas), and

exp (k,2) d=o
Z@)= cosh k(z+d)cosh kd d < o 2:2.17)

The wave number k is determined by

o? [k d=oo

V=T T kg d <o (2.2.18)

and the wave encounter frequency is defined as

o, = W, — kW, cosp 2.2.19)
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The diffraction potential ¢ satisfies the body surface condition

'a%(% +¢;)=0 onSP (2.2.20)

The radiation potentials ¢; (j = 1, 2,..., 6) are due to bodily oscillatory motion of unit ampli-
tude in the six degrees of freedom of the rigid body motions, i.e. surge, sway, heave, roll, pitch

and yaw respectively. Each component satisfies the body surface condition

9¢;/0n = —iwn;+ W, m; on SO (2.2.21)
where
(ny, g, n3)=7 (22.22)
(14, ns, ng)= (7= | (2.2.23)
(m1, m3, m3)=~(RVIW (22.24)
(g, ms, mg) =~(RVI(P-Ts) x W] 2.225)

and Xj;, is the complex amplitude of the jth oscillatory mode as defined by

X=X, exp(-io,t) j=1,2,.,6 (2.2,26)
Each of these linear potential components §; (j =0, 1,..., 7) also satisfies the Laplace equa-
tion (2.2.3), the free-surface condition (2.2.4), the seabed condition (2.2.6) and a proper radiation

condition.

Although a great step of simplification has been made to obtain the linearised unsteady
wave potential problems as described, when coupled with a steady wave potential, these are still
too difficult to be of practical solution and application. In practice, further simplifications are
made to solve two special cases of great interest, i.e. a full three-dimensional body moving in low

speed or undergoing current and a slender body advancing with considerable forward speed.



2.3. Low Speed Approach

The low speed assumption introduces an additional small parameter with respect to the

speed either when the body is advancing or when there exist ocean current. By retaining terms up

to O(W,) and ignoring all the terms containing O(W5), n 22, the low speed boundary value

problem can be expressed in the form

qu)j =0, j=0,1,..,8 inthe fluid domain

(2.3.1)

(—020;+20¢;/0z) 2iw, Vo, Vo +iw, 20,/0z2 ¢;=0 j=1,2,...,80nz=§ (23.2)

opjlon =-iw, nj+W, m; j=1,2,..6
3 on the body surface
Os/0n = = ~(d0 +¢7)=0

00;/0z=0 j=0,1,.,8 onthe seabed

and a radiation condition.

Here the approximate steady potential

o, =D, +O(W2)

is governed by the following conditions

V24, =0 in the fluid domain

g 90,/0z + (0?2 0+ g 3/9z - 2i@, Vo, Vo) exp(~iww,t) =0 onz={

or
0¢;/0z=0 onz=§=0
dd,/on =W, n, on the body surface
09,/0z =0 on the seabed
and a radiation condition.

Noting that the steady wave elevation from Equation (2.2.13) is

{,=0+0(W2)
the total wave elevation in Equation (2.2.14) takes the form

k14

(23.3)

(234)

(2.3.5)

(2.3.6a)

(2.3.6b)
(23.7)

(2.3.8)

(239



E=~ i [ + WV 1, 4 +0 (W) (2.3.10)

In terms of condition (2.3.2), condition (2.3.6a) can be rewritten as
g 90,19z — i 32¢,/02% ¢ exp(~iw,t)=0 onz={ (2.3.6c)
The steady wave potential can be easily solved for the rigid free-surface condition (2.3.6b)
and for simple geometries analytical solutions are available (see Appendix 1). However, numeri-
cal solution of the radiation and diffraction potentials governed by Equations (2.3.1)-(2.3.4) are
still very diﬂ‘i_cult because of the complexity of the free-surface and the radiation condition at
infinity. Numerical and experimental investigations into a hemi-sphere have been conducted by
Zhao and Faltinsen (1988) but further development of a numerical technique of reasonable accu-

racy and computational economy is required for applications of general body configurations.

2.4. Linearisation of Both the Steady and Unsteady Potentials

In order to decouple the steady wave potential effect on the unsteady wave potential solu-
tions, further linearisation is necessary. Here, it is assumed that the geometry of a body is such
that the steady wave potential ¢, and its derivatives are small and therefore, higher order terms
and their cross products with the linearised unsteady potential components ¢ (G=0,1,.,7)can
be ignored. Thus the coupled conditions involving unsteady wave potentials in §2.2 reduce to

fully linearised equations as are now described:

V29;=0 in the fluid domain (24.1)
(313t - W, 3/3x * +g 910z )] ¢;=0 onz=0 (24.2)

: -i(onj+Wo m; jal, 2,..., 6
9¢;/0z =0 on the seabed 244)

and the radiation condition



Lim VR (39;/0R - ik9) =0 24.5)

where the total unsteady wave potential is written as

6
O=0o +7 + _ZIX,-A,- (24.6)
]=
see Chang (1977) and Inglis and Price (1980). But here more general expressions are used to
—)
describe the composite velocity W resultant from both the forward speed and a current or a steady

drift velocity (Figure 2.1).

It can be shown that the first-order steady wave potential satisfies the equations

V29, =0 in the fluid domain (24.7)
(W2 3/39x2 +g 30z Y0, =0 onz=0 (2.4.8)
op;/an=W,n, onS, (2.4.9)

00,/0z =0 on the seabed (2.4.10)

O(1/R) x>0
¢, = o) for .o R (2.4.11)

This linear steady wave potential problem is outside the scope of the present study and

therefore no further discussion will be given.

Conditions (2.4.1)-(2.4.5) form the basic linear wave-structure interaction problem and
further simplification can be introduced depending upon the problem under investigation. For
example, if W, =0, i.e. ®, = w, , these equation represent a linear interaction problem between

waves and a stationary structure.

2.5, First-Order Motions and Wave Forces

By means of an appropriate numerical technique to solve the linear boundary value prob-
lem, Equations (2.4.1)-(2.4.5), the resultant velocity potential values are then used to calculate the

wave elevation { , wave pressure p, wave force components F, (r = 1, 2,..., 6), and hydrodynamic
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coefficients (i.e. added mass A,; and damping B,; ). It can be shown that these quantities are

derived by the following formulae:

7 7 1
{=38i=3 [- @3t - W, d/ox ) §; exp (—i®,t)]; =0 (25.1)

j=0 j=0o 8§
pj =—p(d/dt W, d/0x)d;exp (—i,t) (252)
Fo =—~iop | n, ds 2.5.3)

sl'
Foqy==iop [ (~iw, - W, 3/3x Yoy n, ds (2.5.4)
s.

FE = —iop X, SI (=i, = W, 313x )4 n, ds 2.5.5)
A= % s{ Im{( =i, — W, 3/3x ;1 n, ds (2.5.6)
B,=-p Sf Re [(~iw, ~ W, 3/3x ), | n, ds 5.7

wherer, j =1, 2,...,, 6. The total wave exciting forces are the sum of the Froude-Krylov force Fg,

and the diffraction force F 7, , that is,

F,=Fg, +F4, (2.5.8)
The equation of motion describing the behaviour of the body in a regular sinusoidal wave

may be expressed as

6 - .
Y (M +A;) Xj +(Byj +Byy) X; + C,j Xjl = (Fo, + F 1, + Fyy) exp (-idet)  (2.5.9)
j=1

where M,; is the generalised mass, C,; is the hydrostatic restoring coefficients and -8,,; J't,- and
F,, are respectively the drag damping force and the viscous exciting force due to viscosity, vorti-
city and eddy making, etc. A description of these two terms is given in §9. From all the informa-

tion calculated, shearing forces and bending moments can also be determined (Salversen, Tuck



and Faltinsen 1970).

With all these regular wave loading and motion information on hand the irregular sea
characteristics are readily estimated for a required wave spectrum and sea state (St. Denis and
Pierson 1953, Price and Bishop 1974). Detailed applications are discussed in §9 for SWATH

ships.

2.6. Second-Order Wave Forces

The second-order wave forces arise from the products of first-order quantities and the
second-order wave potential ®® (see Equation (2.2.2) ). According to Pinkster (1979) and Stand-
ing and Dacunha (1982) these may be expressed by the sum of six terms, namely,

FO=F 4+Fy+Fy+Fy+Fy+Fy (26.1)
These force components are known as the force term associated with the surface elevation, the
quadratic pressure term arising from the Bernoulli’s equation, the structure displacement term due
to the effect of first-order motions, the contribution due to the rotation of the force vector, the
second-order motions of the structural centre of buoyancy and waterplane area and the contribu-
tion from the second-order potential, respectively. The time average measures of these second-
order forces have steady components known as the wave drift forces. Details of the approach are

described in §8.



Figure 2.1. The coordinate systems.
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3. FUNDAMENTAL SOLUTIONS

The disturbance created by a body in a flow field can be represented by singularity distribu-
tions on the body surface, including source, dipole, their mixture (Yeung 1982) or multipoles
(Ursell 1949a, b). The Green function representing a pulsating, translating source related to the
general problem of an oscillatory body moving in waves, i.e. Equations (2.4.1)-(2.4.5), can be

derived from the following Poisson equation and associated boundary conditions:

VG(x, y, 2; .M QO =8x &) 8(y -) 8z —&) in the fluid domain D  (3.0.1)

(~iw, =W, 3/0x)*G +g 3G/9z =0 onz=0 (3.0.2a)
or
(-iw, — U o/dx -V 3/3y)*G +g 3G/dz =0 onz=0 (3.0.2b)
0G/oz=0 onz=—d (3.0.3)
lim VR (9G/3R - ikG )=0 (3.04)

where 8 is the Dirac delta function. To distinguish the Green function expression for various
-
cases, it is now denoted by G(P, Q; W, , k, d) with two point P(x, y, z) and Q( &, 1, {) , speed

!TV),,. wave number k and water depth d.

3.1. Three-Dimensional Source Potential (Finite Depth)

3.1.1. General solution

In the most general case governed by Equations (3.0.1)-(3.0.4), the source poteatial can be

derived as:

- .1
G, Qi Wy b dy=+ +r— i{ dp | d0 exp (—ud) cosh p(z + d) cosh p(C +d) H(1.9)
-



(3.1.1)

with r2=R2+(z-0?, r}=R2+@+{+2d)%, RZ=(x-&)* +(y - )’

[gH + (@, + W, p cos8)?] exp {iu [(x = E)cos0 + (y - n)sine]]

H@,0)=
®9) cosud [gy tanh ph — (@, + W, p cos6)?]

— -
or alternatively with W, = (U, V, 0) in the O xyz frame

(gl + (©, + Up cosd + Vi sinB)?] exp

inl& —E)coso +(y- ﬁ)sine]]

Hy,0) =
.5 cospd [gy tanh pd - (o, + UL cos@ + Vi sin6)?]

3.1.2. Zero speed case

. . -5
If there exists neither a body forward speed nor wave current influence, i.e. W, =0, the

Green function reduces to (John 1950)

G(P,Q;O, k, d)=l/r+1/7'2+l|d+i1u (3.1.2a)
with
1 v+u
Iy=2PV !dp i sostyd P (¥4) COSH(z +d) coshis(Gd) Jo(uR)
k2 - '
Ig=2n W —vd e coshk (z + d) coshk (§ + d) J,(kR)
or in a series form
GP. 00, k dy=—2EV =KD i c + d) coshk (L +d) Ya(kR) - i Jo(KR)]
*k*-v¥)d +v ?
= _Ma+V:

+4 Y COSpm(z + d) cospy (£ + d) K, (UmR) (3.1.2b)

M3 +v)d=-v

with ., being the mth positive root of equation



Wy tanp,,d +v=0
where J,, is the Bessel function of the first kind of mth order,

Y,, is the Bessel function of the second kind of mth order,
K,, is the modified Bessel function of the second kind of mth order.

Practical numerical procedures to evaluate G(P, Q; 0, k, d) can be found in Hogben and
Standing (1974) and Faltinsen and Michelsen (1974). Pidcock (1985) presented an alternative
form of expression (3.1.2b) useful for small R/d values whilst Endo (1987) proposed a Gauss-

Laguerre quadrature method based on expression (3.1.2a).

An algorithm developed by Newman (1985) re-writes expression (3.1.2a) into

4 2
Re[GP, 0;0, &, d)]=-:-+;12-+( Xhim+ Y L) (3.1.3)
m=1 n=l
with
2d-1z-81 m=1
i 2d+iz-8l m=2
= n+yv =
I.M-Pvgu_v PV LERYAE Vn= {12 r) e
4d-1z+fl m=4

\

1 _2ep(d)
u sinhpd — v coshud p=-v

In=PV[ du[ ] (4 +V) coshpU, exp (—hid) J,(4R) dis
0

1z =Ll n=1

Un=12d-12-8 n=2
Here terms denoted by /y,, can be more efficiently evaluated by the methods developed for the
deep water Green function, which are to be described in §3.2. The integrand in /,,, decays like
exp (—2ud) for large W values and a numerical approximation can be implemented for its estima-

tion.



3.1.3. Asymptotic forms (k — o or 0)

At high frequencies, i.e. k — oo, the asymptotic form of the Green function can be readily
derived as

GP, Q;0,0,d)=1/r +1/r+ i (1) (Urg, + Urgy) + (1" (1r, + 1r3,)] (3.1.4)

with

ri=VR24E+0? and rp,=VR? +(-2nd - V,,)?

As the frequency tends to zero, i.e. k — 0, it can be shown that

- 4
G@P, 02:;0,0,d)=Vr+1lIry+3 ¥ Uy, (3.1.5)

Expressions (3.1.4) and (3.1.5) can also be found in Garrison (1978).

3.1.4. Shallow draft structure (z = { =0)

If the draft of the body is small enough, say h — 0, expression (3.1.2) can be rewritten as

(Wu and Price 19862) :
Gix,y, 061,00,k d)= 2m” — k) cosh?kd [ Y,(kR) = i J,(kR)]
K2=-vHd+v
- pi+v?

+4 ¥ cos?pnd K,(tmR) (3.1.6)

m=l (“3! + v2 )d -V
An alternative integral form can be deduced from Newman's expression (3.1.3) when set-

tingz={=0.

3.1.5. Steady source potential (k=0, W, = 0)

For a steady moving source, i.c. k = 0 but W, #T)’. the general Green function expression

(3.1.1) takes a form given by Kostyukov (1959):



w2
<
| 40 G.L7

é on -
G@.Q:W,, 0,dy=1ir+Ur, + 2 [a0 Pv[ Lap +av,
Ko o B o,

where

A = exp (—ud) coshy(z + d) coshp(§ +d) cos [u(x — E)cos8] cos [y —n)sin6] (ucos?0 +v,) =V,
B =coshud (u cos?0 - v, tanhud)
C =cosh[k,(z + d)] cosh [k,(€ + d)] sin [k,(x — E)cos6] cos [k, (y —n)sin6]

D =cos®0 cosh?k,d — k,d

cos'W,d  v,d<1

% =10 vd21

for t/226, 20

where v, = g/W§ and k, is the real positive root of

k, =V, sec?@ tanh k,d =0

3.2. Three-Dimensional Source Potential (Infinite Depth)

Let the water depth in the finite depth Green function expression in 3.1 tend to infinity, i.e.

d — oo, then formulae applicable to relative deep water can be readily derived.

3.2.1. General solution in deep water

In expression (3.1.1), let d — oo and this results in the general deep water Green function in

the following form (Havelock 1958, Wehausen and Laitone 1960):

o 1
GP, Q; VV),,, k,oo)=1/r-1r, + % I dp Ip(u. 0) do (3.2.1a)
0 1]

- R
P, 0)= u exp [p(z + Q) +i pix — E) cosB] cos [u(y —n) sin6]

(1~ (®, +W, 1 cos0)%/g ]

or alternatively, in the Oxyz frame as



W exp [z + ) + i p(x =) cosd] cos [u(y — 1) sind]

P, 0)=
@9 B - (@, + U p cos® +V p sin6)?/g ]
where the integral is defined as
o W2 T 0x
Idufde JT1+7 [+]] rauae
00 y b g2l
and
0 t<1/4
=1 1. 214 C=0Wg)
cos (4—1:)

The contours L, and L, are illustrated in Figure 3.1 with singularities at

ngl, gks =co[l—“l—4tcos0]/(2'ccos0)
‘Jgkz,— gkq =o)[l+“l—41:cos0 17/ (2 T cosB)

Figure 3.1.  The contours L and L, in Equation (3.2.1c).

(3.2.1v)

(3.2.1¢)

3.2.1d)

(3.2.1e)

Applications of this Green function form have been conducted by Chang (1977), Inglis and

Price (1980) and Guevel and Bougis (1982). Its evaluation, however, is very computer time con-

suming. Therefore, it necessitates further development of more efficient algorithms. Moreover,

the predictions derived by this most sophisticated theoretical approach so far available do not

appear to provide much improvement over simple strip method results. Because of this, Inglis

and Price (1979) suggested the use of a simplified forward speed correction, similar to that

adopted in strip theories.



3.2.2. Zero speed case (W, =0)

> -
In the absence of the speed, i.e. W, =0, Equation (3.2.1a) reduces to a much simpler ver-

sion:
G/, Q ;6), v,e0)=1/r +1r  +1, +i2xvexp[v(z +{)]J,(VR) 3.22)
Iy =2v PV [ dpexp[uGz + D1 J,(R)/ (1= V) (3.2.23)
0

Kim (1963) re-wrote /, in a very useful finite integral form:

Ve e’ ds

Iy=-v v(z + ® [Y,(VR) + H,(VR)] +2 —_— 3.2.2b
L=V exp vz +0)] {7 [, (f, Yol e

Numerical evaluations of this finite integral form have been reported by Hearn (1977),
Newman (1985) and Telste and Noblesse (1986). An efficient numerical approximation is also

derived in the present work.

3.2.3. Asymptotic forms (k — oo or 0)

At high frequencies, i.e. k — oo, both the non-zero and zero speed Green function expres-

sions (3.2.1) and (3.2.2) reduce to the same simple form

G(P, Q:0,0,0)=1/r~1/r, (32.3)
In the low frequency limit £ — 0, the zero speed expression (3.2.2) becomes the double
body formula:

GP,Q:;0,0,0)=1/r+1/r; (3.24)
whilst the non-zero speed form (3.2.1) becomes the Kelvin source expression
4v

n2 . w2
; I dGPVI A, 0)dpu ~4v, I Cc@®)de (3.2.5)
0 0 0

G(P- Q;v—v)o’ Oo °°)= 1/"-1/’] Ll



exp [L@z + O] cos [p(x — &) cosO] cos [U(y —n) sind}
(1 c0s%0 — v)

AW, 9)=

C®)=exp[viz +§) sec?0) sin [v,(x - €) sec6] cos [v,(y — M) sind sec20) sec?@
with v, =g/W§=gNU2+V2.

3.2.4. Shallow draft structure (z = { =0)

For a marine structure of small draft, say z — 0, { — 0, a zero forward speed and zero draft
Green function formulation (Kim 1963, Wu and Price 19862) can be derived as

G,y 0;£,1n,0;0,v,0)=2R -t v [Y,(VR)+H,(VR) ] +i 2r v J,(VR) (3.2.6)

and 9G/dz =v G, which is an important result, providing much simplification in the theoretical

model.

3.3. Two-Dimensional Source Potential

In engineering practices, two-dimensional methods and solutions are much more popular
than the three-dimensional ones. It can be shown that there exists a two-dimensional form
corresponding to each Green function expression described in 3.1 and 3.2. These two-dimensional
formulations can be derived either from a two-dimensional boundary value problem (Wehausen
and Laitone 1960) or from the Fourier transformation of a three-dimensional Green function (Wu
and Price 1986b)..As suggested by Wu and Price (1986h a two-dimensional Green function may

be expressible by a transformation of the relative three-dimensional one as:

oo
G2, q:Wa.k, d)=-% f G,y z;: &, q.g;F/’,, k, d) exp[—-i & (=k cosP)) d€ (3.3.1)

where p(y, z) = P(0, y, 2), g0, §) = Q(&, 0, {), and P is the wave heading as defined previously.



3.3.1. General solution (finite water depth)

The insertion of the general three-dimensional Green function expression (3.1.1) into Equa-
tion (3.3.1) allows the general two-dimensional finite water depth Green function to be derived. It
represents the behaviour of a two-dimensional translating, pulsating source in a incident wave of
heading angle B. After completing the Fourier transformation, the two-dimensional Green func-

tion is given by
-
Gy, q;W,, k, d)=-K,(k1cospIR)~K,(k |cosBIR,)

oo 2
+PV I duF (1, =k cosP) +i® ¥ F (i, —k cosp) (3.3.2)

m=1

with R = V(y-n)? + @ ++2d)?, and

exp (—cd) cosh[c (z +d)] cosh[c (§ + d)] [cg + (@, +bU +aV)*] exp[i a(y = )]
¢ cosh cd [cg tanh cd - (@, + bU +aV)?]

Fl(a9 b)=

exp(—cd) cosh[c(z +d)] cosh[c (§ + d)] [cg + (0, +bU +aV)*] exp[i a(y - M)}
ag [sinh cd + cd sech cd =2V (@, + bU +aV) cosh cd |

Fy(a, b)=
wherec = ‘Jaz +b2, p,',, (m =1, 2) are the two roots of the following equation:
qp.z + (k cosP)? tanh Jpz + (k cosﬂ)2 d] - (®, = Uk cosp +uV )2 =0 (3.3.3)

From this two-dimensional general formulation, various two-dimensional Green function formulae

can directly be deduced for individual special cases.

3.3.2. Zero speed case (W, =0)

At a zero composite velocity, i.e. Wo = 0, the following Green function form is obtainable,
either reduced from Expression (3.3.2) or derived from a combination of Equation (3.3.1) and

expression (3.1.2a) as
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2PV | duFiu, —kcosP)-i 2w F 4(v,~k cosp) (3.3.40)
(kcosB)*

_ (v+n) exp(-ud) cosh [u(z+d)] cosh €+ cos[(y-m) Vu—(k cosP)?1

F;

M sinh pd — k cosh pd \Juz - (k cosB)?
cos [(y=m)Vk3—~(k cosP)? ]
g = EP=V)cosh[k(z+d)] cosh[k(E+d)] V2 (k cosp)? lcosBl #1
4= (2—v2)d +v 0 lcosBl =1

The combination of Equations (3.3.1) and (3.3.2b) results in an alternative expression given

by
an(v>—k?) ly -l

» 450,k d)= h (k(z+d h [k (C+d

Gu(p, 40, k, d) ey < (k(z+d)] cosh [k (C+d)] i exp i 1y=n | Ve?Ck cosp?)
Vi? = (k cosp)?

-  pi+v? K exp(~ly =11 Vu2+(k cosp)?  lcospl =1

2L e oy Dl sl G i + (k cosp)? lcospl #1
(3.3.4b)

3.3.3. The case of zero speed and beam seas

For the case of zero speed and in beam sea waves (i.e. p = 1/2), the relative Green function
form can be readily derived from expressions (3.3.4a) or (3.3.4b). Its series expansion form

reduced from expression (3.3.4b) is given by

232
G, q; 0, k, dy= - 2B ok k(2 +d)] cosh [£(Gad)] [sin (k ty-n1) =i cos (kly-n1)]

k (K2-v*)d+v
o __Ba+V % exp (~itm |y =71)
4 ..2.:1 @2 +vid-y [Hm(z +d)] cos [im(C+d)] o (3.3.5)

It should be noted that this form also represents a two-dimensional pulsating source in an

otherwise calm water (Wehausen and Laitone 1960).



3.4. Two-Dimensional Source Potential in Deep Water

For two-dimensional deep water cases, not all the inclusive forms are described but those in

practical use.

When allowing d — o, expression (3.3.4a) reduces to

Gu(p, q;0, k, o)y ==K, (k1cosPIR) = K,(k IcosBIR,) +1, +i I,

(34.1)

exp (=12 +1 Vu2 + (k cosB)? ) cos [u(y =)
Vu? + (k cosP)? -k
=2 1t k exp(=k 1z41) cos [u(y=1) k2 — (k cosB)? |

Nk — (k cosP)? lcospl #1
lcosp! =1

I, ==2PV fdp lcospl #1 (3.4.1a)
0

This Green function form has been derived by Haskind (1953) and Wehausen and Laitone

(1960) and an alternative series expression by Ursell (1975).

To gain high numerical efficiency, an alternative expression for /,, expression (3.4.1a), can

be derived from Equations (3.3.1) and (3.2.2b) in the form:
—nsin[ly-n1 VK> ~kcosP)®] . T Ny
1, =2k exp -k 124 1) | ZSinlyn Ik eosBY ] - f ek ko Gk tcosBl V52 —)
Vi —(k cosp)? 1281 °

(3.4.1b)

This alternative remains valid even as |cosf| — 1, because

sin(1y=n1VE2—(k cosB)? ) =ly-

|
lcosPl -1 ‘Jk?-_(k COSB)Z n



3.4.1. Deep water pulsating source

In expression (3.4.1) let B — n/2, the Green function representing a two-dimensional pulsat-

ing source in deep water is readily deduced as

. 1. - +E-0?
G’M(Pa q’O, k9°°)" 2 In (y—'ﬂ)2+(z—§)2

+1 +i12 (34.2)

I, ==PV [ dpexp (1 z+1) cosluy =) / (.= k)
0

I, =-nexp(=klz+{ 1) cos [k(y = )]
This expression can be easily evaluated by the numerical procedure proposed by Frank

(1967) and it seems to be the most popular one used in solving the two-dimensional wave-

structure interaction problems.

3.4.2. Shallow draft source in deep water
When both the source and the field points reach the free-surface, i.e. z, { — 0, expression
(3.4.2) further reduces to the two-dimensional shallow draft, deep water Green function given by
G2(Po» 903 0, k, 02) = [42 Si (k ly-n 1] sink Iy-n 1)
+2cos(kly-nl)Ci(kly-ni)=i2xmcos(kly -nl) (3.4.3)

This expression has been derived by MacCamy(1961) and used by Wu and Price(1986d)in

developing a new two-dimensional shallow draft theory.



4, INTEGRAL EQUATIONS

The singularity distribution is the technique most widely adopted to analyse wave-body
interaction problems. In such an analysis, an integral equation representing a certain kind of
singularity distribution is formulated to solve the unknown wave potentials induced by a marine
structure. Accordingly, the hydrodynamic coefficients, wave forces and motion responses,

together with generated wave patterns, can be predicted.

In this Chapter, a brief description of the integral equations is given. Further discussions
are focused on their mathematical failure at irregular frequencies associated with floating body
analyses. Then, modified formulations and methods are proposed to eliminate or remedy this

theoretical difficulty. Finally, an interior integral equation approach is presented.

4.1. The Three-Dimensional Integral Equation

According to Brard (1972), the Green function integral equation associated with a mixed

source-dipole distribution is given in the form:

4
2} roe)= @56 ?.0)- $LG p.onas +2 | [izoa W.4(0) G (P.0)
0 4 ‘s

D a
+W? [«Q)gagG(P,Q)- %%Q)- G, Q) ]dn forQe S,,Pe {S, (4.1.1b)
5 c

where D and D refer to the two fluid domains outside and inside the body surface §,,, respec-
tively. L, is the mean waterline of the body. The Green function G(P, Q) is given by G(P, Q; ﬁ",,

k, d) in expression (3.1.1) for finite water depth or by G(P, Q; Wo, k, oo) in expression (3.2.1) for

deep water.
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This formulation can be rearranged into a more compact source distribution form with a
source strength ¢ (Chang 1977):

2

-

W,
2u¢(P)=£ o(Q)G(P, Q)dS + . {c(Q)G(P. Q)n,dn foP,Qe s, (412)

For a marine vehicle travelling at high speed or an intermediate speed vessel with a blunt
bow, the additional line integral in the two equations above provides a significant contribution to
the final solution. However, for a marine structure travelling at a low speed, i.e. W, = O (¢), or
with a slenderness feature, i.e. n; = O (€), this line integral is a higher order small quantity and

therefore, it may be ignored in some cases of practical application.

For stationary or fixed offshore structures and service vessels, a zero speed approach is often

appropriate. As derived by John (1950), the zero speed Green function integral takes the form:

4 D a

pAR Q(P)=J; [HQ) % GP,0)- -a-gfsl G@P, Q)ldS forQeS,,Pe {S, (4.1.3b)

0 ¥ n c
D

where the Green function is given by the three-dimensional zero speed Green function

G(P, Q: 0, k, d) in expression (3.1.2) for finite water depth, or by G(P, Q; 0, k, ) in expression

(3.2.2) for deep water.

Correspondingly, the source distribution form (4.1.2) reduces to

21 0(P)=[ 0Q)G(P,Q)dS forP, Q¢ S, @.1.4)

4.2. The Two-Dimensional Integral Equation

Two-dimensional versions of the integral equation can be derived directly by applying the
Green’s theorem in the same manner as the three-dimensional ones, or indirectly by a transforma-

tion procedure (Wu and Price 1986t). The equation equivalent to Equation (4.1.1) is



2

9 3d(q) yim 9G (p, ) 3t(g)
1trép)=] [5G P+ G, 9)ldl - — Yd(q) -G q)
: op)=[ F o, Tl 0. 95
W U D a
+( 2m,—V"--i2k7cosﬁ)¢(q)G(p, @)l forqgeC,, pe {C,  (42.1b)
B c

whilst the one equivalent to Equation (4.1.2) is

2 m

2 n¢(p)=[_ o(@) G, q)dl - VT 3 [6(9) G(p, @) n2(@)lg=0 forp, g€ C, (4.2.2)

In the cases of zero speed, the equation equivalent to Equation (4.1.3) is

2 D a

1 n¢(p)=L [—¢(q)3%q‘G(p, q)+%ﬂG(p, Pldl forge Cp pe {Co (423b)

0 i 1 n c
D

and that equivalent to Equation (4.1.4) takes the form:

2®o(p) =L o6(q)G(p. q)dl forp, qe Cy, 4.24)

where G(p, q) is a two-dimensional zero speed Green function given by G(p, g; 0, k, d) in expres-

sions (3.3.4) and (3.4.5) for finite water depth, or expressions (3.4.1) and (3.4.2) for deep water.

4.3. Mathematical Failure at Irregular Frequencies

The Green function integral equations in §4.1-2 take the form of the Fredholm integral
equation of the second kind which has no unique solution at an infinite number of discrete fre-
quencies. It shows that the refated set of discretised linear equation describing the problem is ill-

conditioned over a finite frequency bandwidth (Newman 1983).

In his classical paper, John (1950) showed that, for a free-surface piercing body, the Green

function integral equation admits non-trivial solution at the eigenfrequencies of the related inte-



rior fluid oscillation problem. These solutions satisfy the free-surface condition inside the body
and are of zero value on the interior body boundary. In his two-dimensional computation, Frank
(1967) identified that at an irregular frequency the matrix formulation becomes ill-conditioned.
Yeung (1982) further pointed out that both the source and mixed source-dipole distribution
methods have irregular frequencies at the same values since the kernel of one is the "transpose” of

the other.

It may be concluded from reported investigations that whichever distribution method is
adopted with a classical Green function expression in any numerical calculation associated with
floating marine structures, it is difficult to hit the irregular frequencies precisely unless some

proper remedy techniques are introduced.

For a marine structure piercing the free-surface in deep water, there exists, as always

assumed, an exterior velocity potential solution ¢(x, y, z) which satisfies the following condi-

tions:
A .
V= [ " + 37 + 5.2 ] =0 inD (4.3.1a)
V- 382 =0 onS§; (4.3.1b)
z
% =0, on seabed (4.3.1c)
9z
9 _
an Vg, ORS,, (4.3.1d)
and a radiation condition
tim VR (2 =i k¢)=0 (4.3.1e)

R—boe oR

To describe the corresponding interior problem, an interior velocity potential 3 may be con-

structed, which satisfies the equations:



Vig=0 inD (4.3.22)

vo-22_¢ onS; (4.3.2)
oz
and an imposed interior body boundary condition. Here §; and §f denote the exterior and the

interior free-surface.

As previously discussed by John (1950), the determination of a solution to the exterior
irregular frequency problem may be replaced by a solution to the equivalent interior eigenvalue

problem derived from the following set of equations describing the interior boundary value prob-

lem, namely
V2¢=0 inD (4.3.32)
vo-2 -0 on S (4.3.3b)
dz
$=0 on S, (4.3.3c)

At an irregular frequency related to the solution of Equation (4.3.3), the Fredholm integral
determinant of Equation (4.1.3b) or (4.1.4) (or, (4.2.3b) or (4.2.4) in two-dimensional cases)
equals zero. According to the Fredholm integral equation theorem, Equation (4.1.3b) (or (4.2.3b))
is solvable but has no unique solution; whilst Equation (4.1.4) (or (4.2.4)) has no solution at all.
In numerical computation practice, however, the determinant tends to a small value over a narrow
band of frequency and the numerical formulation becomes ill-conditioned. Therefore, for both
the mixed source-dipole and the source integral equations, only erroneous solutions can be
obtained.

There may be two alternatives to solve the irregular frequency problem:

(1) To predict the irregular frequencies precisely and then simply ignore computations around

these frequency values.



(2) To develop modified mathematical formulations free of irregular frequency effects.

4.4. Prediction of Irregular Frequencies
4.4.1. Analytical formulations

For some simple and regular body geometries, analytical expressions of 5 and the irregular

frequencies corresponding to Equation (4.3.3) can be derived.

A rectangular section

For a two-dimensional rectangular section of beam B and draft h, a suitable form of 5 satis-

fying Equation (4.3.3) is given by

-  mn B . . BR22y2-B/2 44.12)
O = sin( B (- ) )] sinh[k(z +h)] form=1,2,3,--: 027> —h (44.1a
provided that
k=mn/B (4.4.1b)
and there exists an irregular frequency with value
@m = Vg k coth (kh) (44.1¢c)

A triangular section

For a triangular section of beam B and draft h = B/2 the solution satisfies Equation (4.3.3)

can be obtained as

- [sinh(ky) sin(kz) - sin (ky) sinh (kz")  (antisymmetric)
= lcosh (ky) cos (kz) = cos (ky) cosh(kz) (symmetric) (4.4.2a)

wherez’'2y2-z'and h 2z’ 20 withz’'=z +h.



Irregular frequencies occur at

Ngk cotan (kh)  (antisymmetric)
Ngk tan (kh) (symmetric) (4.4.2b)

This formula can be further simplified to (Wu and Price 1986d):

_ m (antisymmetric)
Om = g(m—1/4) i/h  (symmetric) form=1,2,.. (4.4.2¢)

Three-dimensional bodies

In three-dimensional cases, analytical solutions of irregular frequencies are available for a
rectangular box (Inglis and Price 1981), a circular tank (Nojiri 1981), a sector of a circular tank
and a horizontal triangular prism (Appendix 4.1). In addition, analytical expression can also be

derived for an elliptical dock.

An elliptical dock

For a dock of elliptical waterplane area with the major and minor axes a and b

(c= Va2 + 52 ) and draft h, 5 of Equation (4.3.3) is expressible by

- Cep(§.dpm) cep(Mgpm) Sih{km(z +h)]  (p =0,1,...)

i sep(g'ap"') se}’(ﬂ’at"") sinhf;;pm(z + h)) P=12.) (44.3a)

Bpom =

for, 2, 2r2n20and 02z 2-h.

Here Ce,() and Se,( ) are modified Mathieu function of the first kind (McLachlan 1951).

(¢, m) are the elliptical coordinates defined by

x = c cosh§ cosn
y = ¢ sinh& simm
The elliptical sectional contour is represented by E=E, = % m-"—"’-?—,-. and
a -
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Irregular frequencies occur as g, and ij,,, are positive roots satisfying

CepCorgpm)=0 (p=0,1,...)
SepEpgpm) =0 @ =12..) (4.4.3b)

To find values of g, and EP,,, necessitates solving a linear equation. For example, by solving

coshdf,

Ceo(E.qum)=%2[l—g-cosh2§o+q2( 12 -E)—...]=O

to obtain

90| ‘,1 coshdf, |
[402]~(c°82§"i 2T

4.4.2. Approximate formulations

As derived and described in §4.4.1, analytical predictions for the irregular frequency are
quoted only for very simple geometries and not available for realistic marine structures of more
complicated or of more irregular configuration. By using the known expressions of irregular fre-
quencies for a rectangle or a rectangular box, Wu and Price (19866 introduced an equivalent rec-
tangle or rectangular box method to approximate the irregular frequencies occurring in the

analysis of an arbitrary two- or three-dimensional body.

4.4.2a. The equivalent rectangle formulation



The equivalent rectangle formulation is based on an assumption that
the irregular frequencies in an arbitrary two-dimensional section are equal to those of an

equivalent rectangle of an equal sectional area (A;) with an equivalent beam (B,) and draft (h,).

The equivalent rectangle formula is given by

W, = ng coth(kh,)

444
mix form=1,2,... ( )
B,

k =

where ,, is the mth irregular frequency and

A
B.=(C)°B, hy=—~
B,
Here C; = A,;/Bh is the cross-sectional coefficient, B is the beam on the waterline and h is the draft

measured from the midpoint of the beam. o is an empirical correction coefficient and the recom-

mended value is o= (1 +ln m)/8.

Apparently, when a section tends to a rectangle, the above equivalent rectangle formula
becomes the exact solution of a rectangle as given in Equation (4.4.1). It can also be found that
the approximate predictions correlate the analytical results for a triangle from Equation (4.4.2).
That is, the first three irregular frequencies (a)‘fB/Tg) are 1.53, 1,94 and 2.38 by approximation

against 1.54, 1.98 and 2.34 by analytical solution.

The equivalent rectangle method has been incorporated in the developed two-dimensional
hydrodynamic analysis computer package and experience gained through various practical appli-
cations to ships and offshore structures. To demonstrate this, Station 16 of a ship is taken as an
example computation. The predicted approximate values of the first two irregular frequencies are
1.43 and 1.86. These precisely coincide with the irregular phenomena observed in numerical cal-
culation of added mass and damping coefficients of the section appearing around frequencies 1.43

and 1.89, see Figure 4.4.1.



4.4.2b. The equivalent box formulation

Similar to the equivalent rectangle formulation for two-dimensional bodies (§4.4.2a), an
equivalent box technique is also devised to approximate the irregular frequency values associated

with the three-dimensional body analysis. It is dependent upon an equivalent box assumption:

in order to evaluate irregular frequencies, an arbitrary three-dimensional body may be
represented by a rectangular box of 'equivalent’ length, beam and draft with the same displace-

ment volume as the original structure.

Based on the above assumption, the irregular frequencies of an arbitrarily shaped body may

be expressed by an equivalent box formula:

Wpm = ng coth(kh,)

k = 1:\/(-'5—)2 + (-";":')2 forp =1,2,.., m=1.2,...

(44.2)

where L,, B, and h, are the equivalent length, beam and draft.

Detailed formulation, validation and application of the equivalent box technique are given

in Appendix 4.1.

4.5. Modified Greea Function Method

Great efforts have been made to eliminate the irregular frequencies. Though various
remedies are proposed (for details, see INTRODUCTION, Appendix 4.2), few have been widely
accepted and efficiently applied in practical computation. Amongst all these proposed techniques,
the modified Green function approach seems rather promising and is more relevant to the present
work.

Theoretical approaches using the modified Green function originate in the solution of high

frequency problems derived by Ursell (1953). And recently, Ursell (1981) further provided the
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method with a rigorous theoretical basis, and proved that a modified Green function integral equa-
tion is free of irregular frequencies when a proper combination of the basic Green function and a
sufficient large number of multipoles is used.

In a more practical way, Ogilvie and Shin (1978) proposed an efficient two-dimensional
Green function form and showed that the method was capable of eliminating the first irregular
frequency.

Because of practical importance in analysing SWATH ships, catamarans and offshore struc-
tures, this method is further extended in the present work to eliminate irregular frequencies asso-

ciated not only with mono-hulls but also with twin- and multi-hulled bodies.

4.5.1. Outline of Ursell’s theory

Ursell (1981) defined a modified two-dimensional Green function as

* M N
G P.9)=G,p.9)+ Y an On(p) Pu(q) + 3 bV (p)¥n(q) (4.5.13)
m=0 m=0

where G,(p,q) is the ordinary Green function, Equation (3.4.2). The multipoles ®,, and ¥,, are

given by
T ok
®,(p)= I—e-;9°—ff‘ldu ~i mexp(vz +ivz)
s M-
od, et si
W,(p)=- —2 = RS 4 o vz +iv2)
dy o R-V (4.5.1b)
_ cos2m8 v__cos(2m-1)8
®,(p)= m P omo1 2 M=12.)
oDn  sin2m+1)0 . _v_ sin2m@
Y.(p)=- % =—r2""'" +E—r7"’—- M=1,2,.)

with a,, and b,, chosen such that the imaginary parts of a,, and b,, are positive. If M and N are

sufficiently large, Ursell proved that the two-dimensional Green function integral equations



(4.2.3b) and (4.2.4) are free of irregular frequency. A modified Green function form for finite

water depth is also derived by Ursell (1981).

4.5.2. Modified three-dimensional Green function

Analogous to Ursell’s two-dimensional theory outlined in §4.5.1, a possible modified three-

dimensional Green function may be written as

M N L
G (P.Q)=Go(P,Q)+ 3 ap Op(P) On(Q) + X bm ¥m(P) ¥n(Q) + T ¢ ©, (PO, (0)(4.5.20)
m=0 m=0 m=0
where G,(P,Q) is the ordinary three-dimensional Green function given by Equation (3.2.2).

The multipoles ®,,, ‘¥,, and ©,, may have the forms:

(1) Wave source: ¥,(P)= Go(P.é );

ad

(2) X-direction dipole: ¥, (P) = — Ecb‘,;
N d
(3) Y-direction dipole: ©,(P) = - -a—y-tbo;

(4) Symmetrical multipoles:

P v Poma(W)

2m+l om om M=12.)

D, (P)=

(5) Anti-symmetrical multipoles:

\Fm(P) X=-a -1 v 1 dm+l r—e .
[em(P)] S ly-b ] S 2m 42 [ym‘ [(@m) P oy () + = P om-y (W] - Pan@®)= =5 Pam()

where 6 (a, b, c)= é(a, b, O)EB is a point on the interior free-surface. P, is the Legendre

function. M, N and L are chosen sufficiently large and the imaginary parts of a,,, b, and c,,

are positive. r = V(x—a)? + (y-b)? +(z—)’ and g = (z - c)ir.



An equivalent expression for finite water depth is possible if the multipoles take the forms

given by Thorne (1953).

4.5.3. A multiple Green function

Two-dimensional hydrodynamic computation programs are the routine tools used in sea-
keeping (or further, structural) analysis of ships and a wide range of offshore structures such as
semi-submersibles. In particular, a recent development in both naval research and commercial use
is focused on SWATH ships and catamarans (§9.3). Development of a more sophisticated two-
dimensional method free of mathematical failures for twin- and multi-hulled marine structures

becomes an urgent task.

4.5.3a. Formulation

By extending Ogilvie and Shin’s asymmetric Green function form (1978), a procedure has
been proposed to derive a multiple Green function expression (Appendix 4.2). The new formula is

given by

. - = - N ~ -
G @ qp1, P2 ... PN)=Go(.9) + TG, 4, pj) (4.5.3a)
j=
where G, (p,q) is again the basic two-dimensional Green function, whilst C.;(p, q frj) is the addi-

tional Green function written as

- - ' — _ 3G, " 3G, "

G, q. p)=exp(vE—=iv|n=-y;|) {Cj1 sgn(n-y)) 3'“- |§=0 +C,-27c-|§=o (4.5.3b)
The integer N relates to the multi-hull body with N separate free-surface piercing hulls. E,-Gj. 0)
is located on the interior free-surface of the jth sub-hull. That is, for a mono-hull, N = 1; for a

twin-hull (or two mono-hull system), N = 2; and for a four-hulled body (or four monohuil sys-



tem), N = 4; and so on.

Details of the theory, derivation and reasoning are given in Appendix 4.2.

4.5.3b Examples

Around an irregular frequency, the mathematical formulation of the Green function integral
equation becomes ill-conditioned and erroneous solutions are obtained. In particular, abrupt
changes with unrealistic values are found in the resultant added mass, damping coefficients and

wave exciting forces (Appendix 4.1).

In addition to the application of the multiple Green function in effectively eliminating irreg-
ular frequency effects in the analysis of a rectangular section shown in Appendix 4.2, another
three examples, i.e. a circular, a triangular and a caisson section, are presented in Figures 4.5.1-3
respectively. In these mono-hull examples, again, abrupt variations associated with irregular fre-
quencies in sway, heave and roll added mass and damping coefficients are removed by the present
method. These confirm the validity of the present technique in solving the irregular frequency

problem associated with mono-hull sections.

Moreover, the present formula is also capable of removing irregular frequency effects from
the analysis of twin-hulls (or two body systems). Two examples are already displyed in Appendix
4.2 for a twin rectangular section, and a two-hull section consisting of a rectangle and a triangle.
Here, a set of computational data is shown in Figures 4.5.4a, b, for a twin rectangular hull at 15°
of heel angle. It can be seen from Figure 4.5.4a that, by an ordinary Green function method,
abrupt changes appear in the resultant added mass and damping coefficients with unrealistic nega-
tive damping values. When the multiple Green function formulation is used, however, the abrupt
variations with negative damping values disappear, whilst the rapid changes due to resonant

waves between the two sub-hulls remain. According to Wu and Price’s formulae (1986f) of



resonant waves for various marine structures, the first wave resonance occur at around
@’B/2g =1/2 =1.57, exactly matching the remaining rapid changes in the calculated added mass

and damping coefficients in Figure 4.5.4b.

The final examination involves the floating four circular structure shown in Figures 4.5.5a, b
and ¢. This consists of four circular cylinders of radius a = 1.0m, with a central line distance
between adjacent cylinders of 3.0m. The results derived using the basic Green function are
shown in Figure 4.5.5a, whilst those produced by the present multiple Green function technique
are given in Figure 4.5.5b. In Figure 4.5.5a, a mathematical failure occurs in the ordinary method
analysis at frequency @”B/2g = 1.87, but this is eliminated by the present modified mathematical
model. In Figure 4.5.5¢, the results of both methods are presented together. This shows that the
predictions derived by the two theories agree very well except in the vicinity of the irregular fre-

quency.

From these studies and several more practical applications carried out though not described

here, it may be concluded that:

(1) The present method calculation coincides with the original integral equation method results

at the frequencies below the first irregular frequency.

(2) The multiple Green function method removes irregular frequencies from the calculations

associated with mono-, twin-, and multi-hulled ship or offshore structure sections.

In short, the proposed multiple Green function method is efficient and effective.

4.6. The Interior Integral Equation Solution

In analysing hydrodynamic characteristics of ships and offshore structures by a singularity



distribution technique, without exception, the surface integral equation, i.e. Equation (4.1.3b) or
(4.2.3b) (or the related source distribution form, Equation (4.1.4) or (4.2.4)) is used to obtain the
wave velocity potential (or source strength) solution. Subsequently, the velocity potential at any
exterior location can be determined by the exterior integral equation, e.g. Equation (4.1.3a) or

(4.2.3a), from the solution obtained over the body surface.

In the present work, the feasibility of applying the interior integral equation, i.e. (4.1.3c) or
(4.2.3c), to solve the boundary value problem representing the wave-structure interaction is exam-
ined. The theoretical explanation and numerical techniques for the interior integral equation are

given in Appendix 4.3.
In Appendix 4.3, two major conclusions are drawn:

(1) The resultant matrix equation of the interior integral equation retains the diagonal dominant
feature to the same level as the surface integral one, if all the interior field points are

arranged close to the body’s wetted surface.

(2) If all the interior field points are located on an artificial interior surface nearly parallel and
sufficiently close to the body surface, the interior integral equation method results in hydro-

dynamic data correlating well with those derived from the surface integral approach.

Two examples are illustrated in Appendix 4.3 including a ship section and a rectangular sec-
tion. The first example indicates that the interior formulation works and possesses the same irreg-
ular frequency problem as the surface integral equation. And the second shows that the modified
Green function proposed in §4.5.3 eliminates the irregular frequency effects associated with an

interior method as it does in the surface integral technique.

A range of numerical experiments have been conducted to examine the applicability of the

proposed method. Of these, three more examples are discussed here.
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A triangular section

A triangular section of beam B and draft h = B/2 is taken in a series of computational study.
The interior field points are chosen such that they form an interior triangle of scale reduction fac-
tor C;. These interior geometric data are produced automatically in the calculation. When
C; = 1.0, these field points are on the true body surface and the interior integral equation becomes

identical with the surface integral one.

Numerical studies range from C; = 0.5 to 1.0 and the calculated data are shown in Figures

4.6.1a-d with each compared with the surface integral equation results denoted by C, =1.0.

Figures 4.6.1a-c show computed sway, heave and roll added mass and damping coefficients
by the interior integral technique for C; = 0.99, 0.9 and 0.8 respectively in comparison with the
surface integral method data, i.e. C; = 1.0. These demonstrate that except for the abrupt variations

due to the irregular frequencies, good agreements are observed.

In Figure 4.6.1d, the interior integral method data for C, = 0.65, 0.60, 0.55 and 0.5 are
presented against the surface data indicated by C; = 1.0. The comparison clearly shows that when
the interior surface is chosen too small, the interior integral formulation produces hydrodynamic

data greatly deviating from those derived by the surface integral method.

Similar observations can be found from investigations into various sectional geometries.
Therefore, it is suggested that the interior surface, where the interior points are located, be chosen

sufficiently close to the real body surface.

A rectangular box

For a rectangular box of length B, beam B and draft h = B/2, computations are carried out
using both the interior and the surface integral equation methods with C, = 0.965 and 1.0, respec-

tively. As can be seen from Figure 4.6.2, the calculated sway and heave added mass coefficients

are again in reasonable agreement.
n
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Figure 4.6.2. Comparison of the sway and heave added mass and
damping coefficients calculated by the surface
and the interior integral equation.
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5. SOLUTION APPROXIMATION TO HORIZONTAL PLANE MOTIONS

5.1. Introduction

Due to the sophisticated theories developed by theoreticians and with the help of modem
computers, more and more complicated mathematical formulations and related computer pack-
ages are used nowadays for the predictions of wave loads and motion responses of offshore struc-
tures and unconventional vessels. Such rapid advances bring great advantages but they may also
conceal dangers, since some researchers and analysts rely too much on mathematics and forget,
partly or wholely, the physical ’feel’ of the problem under investigation. With a little insight into
the physical nature of the phenomenon, some confused theoretical predictions puz;lhig theoretical
researchers might be clearly explained and some so-called rigorous approaches appear superfluous

and can therefore be substituted by much simpler ones.

As discussed in §1.2, two important organised international investigations into the numeri-
cal evaluation of motions and wave forces of a semi-submersible (Takagi et al 1985) and a TLP
(Eatock Taylor and Jefferys 1986) showed that although significant discrepancies were observed
in the predictions of vertical plane modes, i.e. heave, roll and pitch, numerical results for the hor-

izontal plane modes including surge, sway and yaw displayed good mutual agreement.

The reported discrepancies in the vertical plane modes indicate a large scattering of the
predicted data of radiation and diffraction wave forces. This should occur not only in the vertical
plane but also in the horizontal plane since both are solved by an identical mathematical process.
Hence, the achieved reasonable correlation in the horizontal plane motions can only arise because
of the negligible contributions from the total of the radiation and diffraction forces compared with
the Froude-Krylov forces. Previously, Wu and Price(19864) realised this possibility and intui-

tively set up an assumption that both the radiation and diffraction forces in the horizontal plane



modes can be ignored for certain types of marine structures. Based on this hypothesis, very rea-
sonable approximations for the horizontal plane motions of shallow draft structures are obtained

though originally no full theoretical proof was given.

This Chapter provides a theoretical basis and physical reasoning of the phenomenon occur-
ring in the horizontal modes of motion of long bodies of full sectional shape or shallow draft
structures. This is of significance since the main floaters of many large offshore structures and
service vessels likely fall into these two groups of geometries. On the basis of order estimates,
approximate solutions to the horizontal plane motions of these structures can be derived and are
further verified by comparison with experimental data or more sophisticated theoretical resuits.
These solutions are applicable in the preliminary design stages of vessels. Details of this theoreti-

cal study are described in Appendix S and here only the major points and conclusions are out-

lined.

§.2. Brief Description of the Work

The marine structures under consideration are restricted to full shaped bodies of slender
and/or shallow draft geometric feature. A full shaped body is one having a full midsection form
and a large vertical prismatic coefficient. Namely, C, =A,,/(Bh) is nearly unity and
C.p = V/(A, h) tends to 1.0. Here A,, and A,, are the midship section and the waterplane area. B

is the beam. h is the draft. V represents the body displacement volume.

Within Appendix 5, §3 deals with floating slender bodies, §4 treats submerged slender
structures, §5 includes a discussion of two-dimensional shallow draft bodies and §¢ involves full

three-dimensional shallow draft structures.



5.2.1. Slender bodies (§3-4, Appendix 5)

A slender body is characterised by a slenderness parameter €=B/L,
h/IL =0 (g)and n| = O (€) as listed in Table 1 of Appendix S. Corresponding to wave length
L /A= 0(1), estimated orders of various force components are listed in Tables 2 and 3 (Appendix

5). From the order analysis, the following conclusion can be drawn:

(1) In the surge motion, the radiation and diffraction forces (F’l” ansz) are higher order small
quantities compared to the Froude-Krylov force (F?), which therefore dominates the surge

response.

(2) In the sway and yaw modes, the radiation and diffraction forces (F/f and F’ for j = 2, 6) are
of the same order in magnitude to the Froude-Krylov forces (F? ,J =2, 6) but their combina-
tions, i.e. F¥ =F] +F}, j=2,6, are of O(e) smaller than the latter. Therefore, in the sway
and yaw response predictions, by ignoring the former two contributions (i.e. Ff ) leads to an

error of O (€) only.

5.2.2. Three-Dimensional Shallow Draft Bodies (§6, Appendix 5)

The shallow draft feature of a body is denoted by the small parameter €= k/B and also
h/L = O (€). Orders of geometric dimensions are displayed in Table 7 (Appendix 5). Based on
wave length L /A = O (1), the derived orders of individual force components are given in Table 8
of the Appendix. Resultant order estimates show clearly that for all the three horizontal motions
the radiation and diffraction forces are of order €2 and are respectively O (€) higher than the rela-
tive Froude-Krylov forces of O (€). Hence, to the first order approximation, the surge, sway and
yaw responses can be rationally predicted by inclusion merely of the Froude-Krylov force contri-

butions.



5.2.3. Two-Dimensional Shallow Draft Bodies (§5, Appendix 5)

A combination of the slenderness and shallow draft features of the vessel makes the main
body dimensions of orders h/B = O (g), B/L =€ and h/L = 0(82), see Tables 4, 5 of Appendix 5.
With assumed wave length L/A =0 (1), the orders of magnitudes of various forces on such a
body can be estimated as displayed in Table 6 of the Appendix. Now the sum of the radiation and
diffraction forces for each horizontal plane mode is a 0(e% higher small quantity than the
Froude-Krylov force. Thus more accurate horizontal motion predictions can be expected, correct
to O (€%), by neglecting both the radiation and diffraction force contributions in the case of a

slender shallow draft body.

These discussions lead to a conclusion that as a marine structure possesses slenderness and
shallow draft, the surge, sway and yaw motions can be reasonably approximated by considering
only the Froude-Krylov forces, and the error in the motion predictions are generally O (€) or
0 (e%).

According to this approximation theory, analytical formulae describing the surge, sway and
yaw responses are derived for marine structures of simple geometry i.e. rectangular barges, circu-

lar or elliptical docks and triangular jack-up rig platform, etc.

Besides the theoretical proof, numerical data provided by the present theory for horizontal
motions of rectangular barges, a circular dock and a triangular platform are illustrated together
with other available data. These show satisfactory correlation with existing experimental results
and data derived from full three-dimensional analyses not only in long wave lengths as initially

imposed in the theory but also in shorter waves ( §7, Appendix 5).



5.3. Practical Importance

(1

)

3

@

(&)

The following points of practical importance may be deduced from this investigation:

This work validates the negligibility of the radiation and diffraction forces in surge motion

predictions of slender and/or shallow draft bodies.

This analysis reveals the mutual cancellation phenomenon between the radiation and
diffraction force components in sway and yaw modes of a long marine structure of full
shaped sectional geometry.

The above two findings provide an explanation to the observed good agreement of horizon-
tal motion data from the different sources included in the international investigations as dis-

cussed in §5.1, despite the severe deviations existing in the vertical plane motions.

An approximation theory for the horizontal motions is established similar to the Froude-
Krylov hypothesis (§1.1.4) and is proved correct to O (€) for slender or shallow draft bodies,
or to O (€2) for slender shallow draft structures.

High computational economy and prediction accuracy comparable to much more compli-
cated approaches may make this approximation theory of more practical use in preliminary

design stages.



6. ANEW SHALLOW DRAFT THEORY
6.1. Introduction

Because a large group of offshore structures and service vessels can be classified as shallow
draft bodies, theories to tackle this type of marine structure have been proposed. As discussed in
the introductory part and illustrated in Figure 1 of Appendix 6, the original development work
was done by MacCamy (1961) and Kim (1963), and extended by Maeda (1981), to deal with flat
plates only. The weakness of the idealised model in application is obvious, since the real shallow
draft structures are of finite draft rather than of zero value, and they experience six modes of

motion (as far as rigid body is concerned) rather than only the three vertical plane motions.

To achieve further improvement on the shallow draft theory, Wu and Price (1986a, d) sug-
gested a selfconsistent shallow draft method capable of predicting the six degrees of motion as

well as including the effect of finite draft. Their assumptions can be summarised as follows:

(1) In determining the surge, sway and yaw motions, both the radiation and diffraction forces

can be ignored.

(2) The finite draft effect on the wave exciting forces in heave, roll and pitch is taken into

account by a factor of exp (=kh), where k denotes the wave number and h draft of the body.

This more or less heuristic theory in both the two- and three-dimensional versions has been
successfully applied to various realistic marine structures, including barges, docks, offshore plat-
forms and a semi-submersible in transit (Appendix 6). This effective approach, however, has not

been fully theoretically justified.

In the discussion of §5 and Appendix 5, it was concluded that for a shallow draft body the
errors introduced in surge, sway and yaw motion predictions are of higher order small quantities

due to the neglect of both the radiation and diffraction forces. This goes the same way to justify
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the first assumption as stated above.

To complement the work presented in Appendix 6, a perturbation procedure is adopted,
which enables the present theory to be formulated more rigorously. To avoid tedious mathemati-
cal derivation, which is of less interest to naval architects and offshore engineers, mathematical

descriptions are given only where thought necessary.

6.2. Special Case: a Flat Plate

Consider an idealised flat plate, i.e. a structure of zero draft (h = 0) and of flat surface S,,
coincident with its waterplane area or projective area on the free surface, S,. There exist the
resuits that

i’%:_iii:kG(P,Q) on S, (z=0)

timit [4m— | <22 + Ldds) = 4n
20 a5 ong r r
C—)O

Hence, the integral equation (4.1.3b) reduces to

41.0,(P) +£ [0/00) 60,00 85 =-[Vi0) G @00 dS Pl Se (621
. ! 2.

Jj=1
Vaj = 1-30,/0n =1

Here the Green function G(P,,Q,) is given by the shallow draft Green function (3.2.6) for
deep water or (3.1.6) for finite water depth. Apparently, over the flat surface, n; =0 forj=1,2,6

and therefore potential solutions for these three horizontal modes are all zero.

The integral equation (6.2.1) with the Green function expression (3.2.6) forms the deep
water flat plate theory of Kim (1963), whilst with expression (3.1.6) represents the flat plate

theory of Maeda (1981) for finite water depth. The following discussion shows how the finite

”



draft can be included in the mathematical model and approximations given for the three horizon-

tal motions.

6.3. Shallow Draft Perturbation

For a three-dimensional shallow draft body of length L, beam B and draft h, the shallow

draft characteristic is given by a parameter'a =kh «1,and
hiL =0O(€), h/B=0(€), hIA=0(€),
ny =0(), np, =0(), n3 =0(1).
The mean wetted surface §,, is assumed expressible by

:=eS(x, y)sO 6.3.1)

and its projected area on the mean free-surface is denoted by S,,.

The velocity potential solution satisfying the boundary value problem (4.3.1) is assumed
expandable with respect to order €, i.e. the same as the other physical and geometrical quantities.

That is

oj(x.y.2:€)= Y 0V (x,y,2) € forP(x,y,z)e D (6.3.2a)
n=0

On the body surface S,,, a Taylor series expansion gives

"¢ (x,y, 0)
0,0.7:2) = 0;(x3,E S (x,y)) = % s L —Ja—ml—m( € (632b)

o0, (x.y.z) = o(x, ,0) o g a4l

nj= ¥ .y, 0)€" (6.3.2d)
nxl

and so on. Here A = \[l + ez[(%)2 + (%)2] , and for deep water



explik(x cosp +y sinf)] [~ 1 + ie(-aicosﬂ + is-sinﬁ)].

ax dy

The resultant perturbation potential ¢ (x,y,z) (n =0, 1,...) satisfies the equations

i
B,(x.y) =~ gﬂf"

v? ¢ (x,y,2)=0 in D
a
(a% -k) ¢}")(x,y,z) =0 on z =0 (off the body) (6.3.3b)
3 c
-a;¢§"’(x,y,z) =0 on the seabed
3 -ionM A
- 3;¢§")(x,y. 0)=V"(x,y,0) + 3, (1,7, 0) on z =0 (on the body) (6.3.3d)
-l on 1" 4
hmzt‘[— [ ¢("’(x,y,z) -i ko (xy,2)1=0 (6.3.3¢)
with
ViP(x.y,00=0
as d BS d
N =
V] (X,)’»O) (a a ay ay)¢] (x'y' 0)

( (D 4) )
Vi, 0)= - [29%—]‘"’ - 33;¢}"’(x,y. 0)

@ ,nP.nP)=(0, 0, -1Y/A
nfP P sy = (2, gj Oy/A
(n§?.n$.n)=0 fori 22
2,1 ,n) = (<y-yg), x—xg, OYA
as d
(nsl)'ngl),ngl))=(za ay y =2G £ (x XG) ay ()“YG)%)/A
PP nP)y=(-S & 98 , 0)/A

dy’ ax
n$.n§,n§)=(0,0,0) fori>3

Equations (6.3.3) define a set of perturbed linear potential problems and therefore, each
individual order of the velocity potential ¢ (n = 0, 1,...) may be solved by the integral equation

below:



am 9 (P,) +k[0(Q,) G (P,,0,) dS = - a%(bﬁ"’@o) G(P,.0,)dS P,,Q,€S,
S s,

’ (6.3.9)

6.4. First approximation
To a first approximation, only ¢§°) needs to be solved. That is,

am 0OP,) + k[00(0,) G (P,,0,) dS == - §E¢§°’<Qo> G(Py,0,)dS P, Q,€So

S, S,
(6.4.1)
This is identical with the flat plate theory of §6.2.

From the perturbed normal components of the body given by Equation (6.3.3), it shows that
—a-;¢§°’(x.y, 0)=0 forj=1,2,6

resulting in
0" (x,,0) =0 forj=1,2,6

Consequently, the zero order radiation forces are equal to zero for the surge, sway and yaw
modes. According to the Haskind relationship, the zero order for the diffraction forces for these
three horizontal modes should also have zero values. Since the zero order component of the
incident potential ¢, is non-zero, the relevant Froude-Krylov forces, as well as the inertia forces,
become dominant in the predictions of the surge, sway and yaw motion responses. The resultant
orders of magnitudes of the various forces are exactly the same as those listed in Table 8 of
Appendix 5.

Therefore, from the perturbation procedure based on the shallow draft of a three-
dimensional body, it can also be concluded:

In surge, sway and yaw motion predictions, when both the radiation and diffraction forces

are ignored, errors of order € are introduced into the mathematical model.
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This proves assumption one adopted by Wu and Price (§6.1).

6.5. Solutions of Order €

In addition to the first approximation formulation given by Equation (6.4.1) the integral
equation with respect to O (¢€) may be written as follows:

4m 0P, +k [0 G P00 dS == [ 1, G®o0)dS P Qi€ S, (651
S, §, e

o (]

with

4

- im-g% forj=1
as
—io— forj=2
ay J
. 2 _
- zco[(x—xc)gs - (Y-yG)g—i] for j =6
I;= {V(x,y,0) forj=3

Vidy, 0)-i @ (zg) ?;S forj=4

Vid(,y, 0) =i @ (~zg) —gf forj=5

viPxy, 0) - VA forj=7

[ a¢0 (xsyv 0)
on

\

Adding these order € solutions to the zero order ones of Equation (6.4.1), all the radiation

and diffraction potentials can be derived with error of O (€, ie.

0; =00 (x.y,0) +& 6{"(x,y, 00+ O(e?) forj=1,2,..,7 6.5.2)



6.6. Finite Draft Correction

It can be seen that, for a three-dimensional shallow draft structure, Equation (6.5.2) together
with integral equations (6.4.1) and (6.5.1) can be used to achieve motion and force predictions up
to error O (ez).

From a practical point of view, however, it is not convenient to solve Equation (6.5.1)
related to order €. Instead, a rational finite draft correction can be derived at least for a shallow
draft body of a large flat bottom area. At first, only the diffraction potential is treated. In Equa-
tion (6.5.1) for j = 7, a simplification can be introduced by ignoring the first term V4" on the right

hand of /,, j (= 7), i.e. assuming
Iy =- [j—q’ (x.y, 014
n7 a’l o\ Xy )Y .

Under this assumption, the combined diffraction potential of Equation (6.5.2) is now depen-

dent upon a combined body boundary condition given as:
Va7 = =(1 = kY20, (x,y, OO =-exp (kM- 0, (6,3, 1@ = - 2 | (6.6.1)
n? on 0\ ) . on (4 on Yo z=-h 0.

The combined potential is now solvable by the combination of integral equations (6.4.1)

and (6.5.1). That is,

4r ¢;(Po) +kj‘¢;(Qo) G®P,,Q,)dS =~ IV;7 G(P,.Q,)ds P,,Q,€ S, (6.6.2)
S, S,

This confirms the second assumption by Wu and Price as stated in §6.1 and used in
Appendix 6.
The rationality of the proposed draft correction can also be verified by the form of the inner

region solution which is explained as follows.

In the inner region close to the body surface, there exist:



‘a—=0(€), 2 =0(€), and

d
W 3 =0(1)

2
and therefore, the Laplace equation governing the diffraction potential in the inner region may be

approximated by

?
3,2 ¢7(x,y,2)=0 (6.6.3)
This sheds light on the possible solution in the near field. An approximation solution satis-
fying Equation (6.6.3) and the free surface condition (6.3.3) in the inner region may be written in

the form:

¢1(x3,2) = (1 +k2) 69 (x,y, 0) (6.64)
where ¢ (x,y, 0) is the first approximation solution from the integral equation (6.4.1).

For a shallow draft structure of large flat bottom surface (other than curved one) of draft h,

the diffraction solution on the flat bottom surface may be constructed as

07(x,y,2) = exp (=kh) 6 (x,y, 0) + O (€°) (6.6.5)

This derived formula is identical to expression (6.6.1). Therefore, from the point of view of
the inner region solution, integral equation (6.6.2) together with the body boundary condition

(6.6.1) represents a suitable approximation to the diffraction problem of a three-dimensional shal-

low draft structure.

6.7. Practical Procedure

In §6.6, a simple small draft correction is derived for the diffraction potential solution.
However, the draft correction factor becomes more complicated as far as radiation potentials are
concerned. Instead of finding directly a correction term, use can be made of the energy relation-

ship between the wave exciting force and the related damping coefficient. From the energy rela-



tionship (see Newman 1978), there exists

p Z
B;;=———— | |F;(B)|* d® 7.1
= Brpg v, ({ ;B (6.7.1)
where V, = w/2k in deep water and P is the heading angle of the incident wave as defined previ-

ously.

From §6.6 it can be seen that

07 = exp (~kh) 6 (x., 0) (6.7.2)

and the resultant wave exciting force

Fj =exp(-kh)F{" forj=3,4,5 (6.7.3)

Substitute Equation (6.7.3) into Equation (6.7.1) it is resulted that
Bj; =exp(-2kh)BY forj=3,4,5 (6.7.4)
That is, the finite draft correction to the damping coefficients of heave, roll and pitch take the
form of exp(-2kh). In other words, when the shallow draft correction is considered, the heave,
roll and pitch damping values equal those from the zero draft solution (6.4.1) (or (6.2.1)) multi-

plied by a factor exp(-2kh).

When the damping coefficient becomes known, the relative added mass can be calculated

from the Kramer-Kronig relation:

]: Bjk(l‘z — B (o) d

2
A ~Ay(0)==PV 6.7.5
 jk Jk( ) - 5 “"-O)z ( )

The above derivations complete the shallow draft solution with draft correction. But the last
formula is not applicable because it needs the damping data over a very wide range of frequency.
Therefore, it introduces excessive demands on computational effort and this offsets the major gain
due to the shallow draft approximation. In the computer code of the present shallow draft theory,

the added mass coefficients are simply set equal to those from the zero draft formulation. This is



accurate for the heave motion and may be acceptable for roll and pitch modes. Further reasoning

will be presented in §6.8.

6.8. Two-Dimensional Shallow Draft Body

For an elongated shallow draft body, as digcussed in §5 of Appendix §, its main dimensions
can be characterised in orders of magnitude by (Table 4, Appendix 5)
kh =g=€2, kB=0(€), kL =0(1),
ny =0 (€%, n2=0(), n3=0(1),and S, =0 (e).
The mean wetted surface S,, is assumed of the form
z=e2S(xy)

The perturbation procedure is rather similar to those described in §6.2-7. Similar conclu-
sions and the same finite draft correction factors are derived. Therefore, no theoretical derivations

will be performed or included here for the two-dimensional shallow draft structure.

6.8.1. Major conclusions

(1) Surge, sway and yaw motions: Based on the perturbation analysis, order estimates given
in Table 6, Appendix 5, are confirmed. Hence, in surge, sway and yaw motion predictions,

ignoring both the radiation and diffraction forces leads to a small error of order &

(2) Shallow draft correction: In deep water, with the finite draft correction the diffraction
forces in heave, roll and pitch are those for the related zero draft line times a factor exp(-kh),

but multiplied by exp(-2kh) when wave damping coefficients are concemed. Similarly, a

sinh [k(d = h)]
cosh (kd)

draft correction factor of may be appropriate when the sea is of finite water
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depth of order kd = O (1).

(3)  Zero draft formula: The integral equation for a zero draft line (MacCamy 1961) can be

written as

270;(0,) "kj¢j(40) G ®,.9,)dl = Ian GPoiqo)dl forp,, g, € Coonz=0 (g,
c, C

—ionj  j=3,4
T 3@ j=T
on

where the two-dimensional shallow draft Green function is given by Equation (3.4.3) in
deep water or Equation (31) (Wu 1986) in finite water depth. Calculated radiation and
diffraction forces, based on the radiation and diffraction potential solutions from the above

zero draft integral equation, are corrected by draft factors as stated in (2).

(4) The principle of similarity: Since any two flat lines lying on the free-surface are geometri-
cally similar, stored non-dimensional hydrodynamic data for a unit straight line on the free-
surface can be used for any flat line of arbitrary length. By multiplying with the draft
correction factor, the standard data set is capable of producing hydrodynamic coefficients
for any two-dimensional section of a shallow draft feature. This finding may be called the
principle of similarity of a two-dimensional shallow draft section. In graphic presentation,

such a set of standard non-dimensional data for a flat line is given in Figure 6.8.1.

6.8.2. Comparison of three rectangular sections

Numerical formulation and treatment have been described in Appendix 6 for the three-
dimensional shallow draft body and these are much simpler for two-dimensional cases. In the
present study, using both the ordinary and shallow draft methods, three rectangular sections are

investigated, involving three different draft values, i.e. h/B =0, 1/20, and 1/10.
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For the zero draft case, the two-dimensional shallow draft program based on Equation
(6.8.1) is used, whilst for the two non-zero draft cases, calculations are based on the two-
dimensional formulation (4.2.3b). Resultant heave and roll exciting forces and phases, added

mass and damping coefficients are given in Figures 6.8.2-3.

In Figure 6.8.2, the wave exciting forces for heave and roll modes are also estimated by the
values for the zero draft line times the shallow draft correction factor exp(-kh), as suggested by
the present shallow draft theory. Such estimates appear in reasonable agreement with the force

data derived from the ordinary two-dimensional approach.

For the heave and roll damping coefficients, as shown in Figure 6.8.3, the resultant data
from the zero draft values multiplied by the draft correction factor exp(-2kh) seem to give reason-
able approximations. As far as heave added mass is concerned, the change in the small draft
value has very little impact on their predictions and therefore no draft correction may be needed
for the prediction of the heave added mass coefficients by the shallow draft theory. But devia-
tions are observed for the roll added mass coefficients among these three small draft structures.
This is because the side wall, which is ignored in the shallow draft theory, has an influence on the
roll added mass (but obviously much less influence on the heave). Nevertheless, example compu-
tations for various shallow draft structures have shown that even for the roll motion, predictions

by the present shallow draft method correlate well with experimental data and results from more

complicated theories.

6.9. Example Studies

Various numerical applications of the present shallow draft theory to realistic offshore struc-

tures and service vessels have been conducted and very promising results have been achieved so
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far. These include:
(1) A rectangular jack-up rig in transit (Figures 4 and S, Appendix 6);
(2) A triangular platform (Figures 10-12, Appendix 6);

(3) Rectangular barge models (2.4x0.8x0.105m and 3.0x0.75x0.015m respectively) (Figures 6-

8, Appendix 6);
(4) A circular dock (Figure 9, Appendix 6); and
(5) A semi-submersible in transit (Figures 13-14, Appendix 6).
Detailed discussions can be found in §7 of Appendix 6 and will not be repeated here.

In addition to these three-dimensional example calculations, applications of the present

two-dimensional shallow draft version are now described. These involve a long drydock and a

rectangular barge.

A drydock
The configuration of a drydock in marine operation is shown in Figure 6.9.1a and its under-
water portion is illustrated in Figure 6.9.1b. The major dimensions of the dock are such that:
L/B=48,Bh=20,L/B,=19,L/B,=14andL/1=7.6.
The centre of gravity is at G(-3.3h, 0, 0.8h) and the radii of gyration are K, =0.43B and
K,, =0.33L.
By means of the two-dimensional shallow draft theory, calculations for this drydock were
performed at wave heading angles f§ =0, 45, 90, 135 and 180 degrees for wave lengths within the

range 0.35 S VL <3.0.

Predicted heave, roll and pitch motion amplitudes are given in Figures 6.9.1c-e. These again

were found to have the same degree of correlation with measured model testing data.
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A rectangular barge

A rectangular barge model of length L = 3.0m, beam B = 0.75m and draft h = 0.0159m has
been used by Nojiri (1981) and both the experimental and theoretical data are available. Since
L/B = 4.0, the two-dimensional shallow draft theory of §6.8 can be applied to derive the motion

response data.

According to conclusion (1) of §6.8.1, the surge, sway and yaw motions can be reasonably
approximated when both the radiation and diffraction forces are neglected. Moreover, the barge is
of rectangular shape and the analytical formulae, i.e. Equations (36) and (37), derived in Appen-
dix 5 are applicable. The predicted surge, sway and yaw responses are presented in Figures
6.9.2a, b and f. As can be clearly seen, good agreement exists between the present predictions and

those reported by Nojiri.

In the computation of the heave, roll and pitch motions, the zero draft formulation is used
together with the finite draft correction factor exp(-kh). The integral equation is solved over a
straight line of length B = 0.75m. The very simple and well defined shape of the integral domain
enables a much smaller number of discrete elements to be used to describe the contour. In fact,
only half of the line contour is required in the calculation, which is further subdivided into 5 line
élements of equal length. Figures 6.9.2c-¢ includes illustrations of the computed heave responses

in beam and head seas, the roll response in beam and bow seas and the pitch response in head
seas.

All the information displayed in Figure 6.9.2 further confirms the validity and acceptance of
the present shallow draft approach, providing results with an accuracy similar to those derived

from more elaborate ordinary three-dimensional theories, but at a fraction of the computing effort.
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Figure 6.9.1la.
Configuration of a drydock.

Figure 6.9,.1b.
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7. A HYBRID THREE-DIMENSIONAL STRIP METHOD

7.1. Introduction

The development of three-dimensional wave-structure interaction analyses commenced
forty years ago or more. Namely, the theoretical establishment of the method in the late 1940s
and early 50s (e.g. John 1950); the early stage applications to simple geometries (e.g. Kim 1963,
1965); the development of basic numerical concepts in the 1960s (Hess and Smith 1964); detailed
numerical procedures and applications to arbitrary body geometries in the 1970s (Garrison et al
1970, Garrison 1978). The 1980s saw great improvements in the numerical evaluation of the

Green function (e.g. Telsle and Noblesse 1986).

Before a three-dimensional model can be used in a design process, the remaining major
problem to be overcome is the difficulty in deriving solutions since this can require an enormous
amount of CPU time to solve the matrix equations involving large matrices. In particular, when
the structural configuration of the body is complicated, for example, with shape variations around
the bow and the stern or possessing joints at an angle, the time factor appears to be a real big obs-
tacle to its applications to design analysis and synthesis.

The computing effort required in the analysis depends mainly on the size of the matrix to
solve the unknown wave potentials. Suppose N panels are necessary to describe the whole wetted
surface of the body. If the ratio of the time needed to generate a matrix coefficient to that required
in an inversion process is "a", the total computing efforts may be roughly estimated by (Yeung
1981)

Typ=N*@N+3a)

In a simplified two-dimensional strip method, if a structure is divided into », sections and
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the average number of elements at each section is denoted by n, the computing efforts needed for
this approach is
Top=nsn* (n+3a)

In terms of these estimate formulae, relative computational efficiency can be examined. For
instance, a mono-hull marine structure analysed by a two-dimensional strip method with 20
discretised sections and an average of 18 elements on each section, requires a total computational
effort of T,p =20x18 (18 +3a). Whilst in a three-dimensional computation of 280 (20x14)

T
panels, it needs T3p = 280% (280 + 3a). These estimates result in ?& = 188 provided that the
2D

ratio "a" is relatively small owing to the development of more efficient techniques in evaluation of
the Green function. Although by use of symmetry properties the size of matrix can be reduced,

the comparative order holds.

This comparison gives a simple explanation why two-dimensional strip theories are still the
routine tools used by practical engineers when three-dimensional techniques are so well esta-
blished.

The strip method has, however, its own theoretical and practical weaknesses. For example:

(1) The infinitely long length assumption may lead to accumulative error of longitudinal wave

loading such as bending moments and shearing forces;

(2) Ignoring ends effect results in no information for the surge mode and also difficulties in the

head sea diffraction problem when suitable modified formulations may be required.
@) Itis not applicable to marine structures of small length to beam ratio.

To update the routine two-dimensional strip method and to popularise the application of the
more sophisticated three-dimensional theory, new concept based approaches should be developed

to gain both the accuracy of the three-dimensional model and the efficiency of the two-
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dimensional simplification.

It is most desirable if a theoretical approach possesses the accuracy of a three-dimensional
theory and the efficiency of a two-dimensional strip method. To reach this target, the geometric
property of the structure under consideration is of most significance. Many large ships, offshore
service vessels and the main floaters of offshore platforms have a long parallel midbody portion,
and their cross-sectional geometries change slowly over the whole length of the body except at
the bow and the stern, where large curvature or abrupt changes occur in bodily shape. The slowly
varying sectional geometry implies less variation of the wave potentials over the main body por-
tion, whilst the sharply shaped bow and stern indicate rapid changes of these quantities.

Logically, a rational new approach should utilise the midbody portion geometric feature and
account for the three-dimensional details of the bow and stern regions. To realise this, the con-
cept of a three-dimensional strip method has been proposed by Wu (1985) to analyse surge forces
and motions of three-dimensional barges. This idea was further extended by Wu and Price (19860

to include other motion modes. In this chapter, details of the three-dimensional strip technique is

described.

7.2. Mathematical Model

7.2.1. Geometric parameters

Figure 7.2.1 illustrates the form of a typical structure under discussion. It has a long paral-
lel midbody S, between coordinates x; Sx < x,, a bow and a stern area S, and S, respectively,

each of large curvature. These three portions make up the whole wetted surface of the body

Sw(= Sm + Sp + Ss).
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It is assumed that

el onSy

ng = 0() onS,, S, nj=0(1) onSy, forj=2,3 (7.2.1)
In addition, all the major dimensions of the body, i.e. the length, beam and draft, are assumed of

O(1), too.

7.2.2. The potential distribution

Over the slowly varying midbody portion, the velocity potential distribution is assumed
separable in the form:

6;(x,y,2) = y;(3,2) xj(x) forx; <x <x, (7.2.2a)

with x(x) expressible in a polynomial expansion form:

o M
%)= T Cmx" ' = T cjmx™! (1.2.2b)

m=1 m={

where Cjm(m =1,2,..M) denote unknown coefficients dependent on the midbody geometry and

the form of the hull’s extremities. M is an integer number.

7.2.3. The integral equation

Substituting Equation (7.2.2a) into the integral equation (4.1.3b) yields the following three-

dimensional strip formulation (correct to order €):

o)~ | 40 3-6P.085 - [v@ 3= Gna)a
5,45, no C. "q (712.3)

=- | vi(@)GP.Q)ds - [ v & Gy al
$,4S, Ca

with
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G3(P.q) T

Xy

é.]dé 2 cim I'G(P Q) {gmﬂ]dé

wherei=0forj=1-4,andi=1forj=35, 6. C,, is a characteristic sectional contour of S,,.

7.3. Numerical Formulation

To solve the three-dimensional strip method equation (7.2.3), numerical techniques are

required to deal with its discretised version and to evaluate the transformed Green function.

Suppose M coefficients are needed in expression (7.2.2b), M sections in the midbody S,, are
necessary to solve all the unknowns. Provided that these chosen sections are located at x = x,, (m

=1, 2,... ,M), there exists the relationship

Cj1 ¢j(xly)'sz) -lxlx% tt "}l{.‘.l
Clz -~ ¢j(x2,)',z) -~ lxzx% ct x%l
y0o.2)=T | ... With T = [tw = | . .. (7.3.1)
Cjm 6j(xm.¥:2) 1xpgxd - X%
and this indicates
M - M
0j(x.y.2) = ):lcj.. x"y2)= 3, z tmk 0j(Xp,y,2) x™ ! (132)
m= m=1 k=1

Therefore, the discretised version of the three-dimensional strip integral equation takes the

form:

maP)- [ T 3 tm 4END —G,.a’ Dd- | 4@5-6e.0ds
C, k=l m=1 S,45, Q 733)
.

e ] T T kG OE GrPuddl = | v,j(@) G Q) S

Ca k=1 m=l sb'.'s:

wherei=0forj=1-4andi=1forj=35,6,and
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Gn(P.g)=| E" G (P.0)dE (733a)

xl
Here the Green function G(P,Q) is defined by Equation (3.2.2) and efficient approximations,
in partly or fully polynomial expansion forms, are available (e.g. Newman 1985). Therefore, no
numerical problems exist in the evaluation of G,, of expression (7.3.3a). The following formula-

tions are given to show how the singularity is treated in the numerical calculation of G,,.

Integration of 1/r
' +R
x-€ +R2 R %0
x =€ +R,
-x +
=" §+2a‘/—1; R=0,x,<E<x,
T x3-§
T = g— X3 (7.3.43)
%1 =In R=O,§>XZ,.X1
E-x
lan-§ R=0,§<x,x;
x; -8
X3 X3
x dx dx
! r _Rz—Rl+§£r (7.3.4b)

Here Ry =7 | 4, & =0.9945 and the term of 2a‘/; is derived by integration of 1/r over a square

panel.

Integration of derivatives of 1/r

fdx 1 x2-§ x.-§
dx 1 - ) R#0 7.3.59)
,J:r:’ R( R, R, (
%t x dx 1 1, fdx
X
— e —— w— — 7.3.5b
r’ R2+Rl +§Ir3 ( ‘
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-0 m+a-Hml [5 R20
Taw -
JE g = |-2mal R=0,x,<E<x, (7.3.50)
o 0 R=0,&<xi0r&>x;
faq f
J'—a%,n—'l xdx==[(-N) nz + (=) n3) j'"r;‘:’ (7.3.5d)

and so on. Here Al is the elemental léngth on the contour C,,.

Provided that M = 3 or 4 is appropriate, the above formulation is rather simple and involves

unknown wave potentials on the bow, the stern and 3 or 4 selected representative cross-sections.

7.4. Numerical Examples
7.4.1. A submerged pontoon

For a submerged pontoon of length L = 117m, beam B = 45m, draft h = 15m and submer-
gence H = 15m, two discretisations are used. In the three-dimensional calculatic;n (i.e. Equation
(4.1.3b)), the pontoon surface in divided into 88 panels in total, whilst in the hybrid three-
dimensional strip approach (Equation (7.3.3)), only 16 panels are used for the flat bow and stern
and three representative sections in the midbody portion. The calculated heave and roll hydro-
dynamic coefficients are illustrated in Figure 7.4.1. It can be seen that the latter calculation corre-
late well with the experimental evidence of Ohkawa (1980) and are also in good agreement with

the conventional three-dimensional calculation data.
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7.4.2. Three rectangular cylinders

The second example study involves a series of floating rectangular cylinders of beam B =
40m, draft h = 20m and varying length L = 120, 80 and 40m. Three theoretical methods are used,
including the ordinary two- and three-dimensional methods, based on Equation (4.2.3b) and

(4.1.3b), and the present hybrid formulation (7.3.3).

In the three-dimensional computation, the mean wetted surface area is discretised into 136,
80 and 48 panels, respectively for the three cylinders of different length. When the two-
dimensional theory is adopted, each cross-sectional contour is divided into 16 elements. For the
present method calculation, the bow and the stemn are each represented by 8 panels only, and the

midbody by three selected sections.

Figures 7.4.2 illustrates the computed surge added mass and damping coefficients.
Apparently, the two-dimensional method fails to produce the surge data. However, the present
hybrid method results demonstrate its capability and accuracy in the prediction of the surge
related information.

For sway, heave and roll motions (Figures 7.4.3-5), deviation exists between the data from
the two- and the three-dimensional computations, and becomes wider when the body’s length to
beam ratio decreases. Again, the present method results are shown in reasonable agreement with

those from the three-dimensional calculation.

This series of study clearly demonstrate that the proposed three-dimensional strip method

can achieve a similar degree of accuracy to the ordinary three-dimensional technique.
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7.5. Concluding Remarks
(1) The slowly varying longitudinal geometry of the midbody of a marine structure implies a
slow variation of the wave potentials along the midbody length. This geometric property

can be used to simplify the solution formulation.

(2) A three-dimensional strip method is derived based on an assumption that the wave potential
on the parallel midbody has a separable longitudinal distribution function, i.e. Equation

(7.2.2).

(3) Consequently, the body wetted surface is represented by three-dimensional panels over the
bow and the stern areas but by a number of sections over the parallel midbody, which are
further divided into two-dimensional elements. This reduces the large matrix size as
required in the three-dimensional calculation into a hybrid three-dimensional strip formula
of much smaller size.

(@) Because of the inclusion of the details of the bow and stern regions in the computation, the
present method is capable of generating surge motion related data, which, however, cannot
be produced by a two-dimensional strip theory.

(5) Example studies correlate well with experimental data and the full three-dimensional results

and show that the hybrid method works even when the length to beam ratio is equal to

unity. This can be a major merit over the conventional two-dimensional strip theories.

(6) From computational practice, it is found that three or four sections (i.e. M = 3 or 4 in Equa-
tion(7.3.3)) are sufficient to produce data of reasonable accuracy. When the wave length

becomes much shorter than the body length, it is necessary to increase the section number.

(7) Numerical studies covered only structures of long parallel midbody without any sectional

geometric change. Further investigation should be directed to deal with a body with a small

midbody variation.
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8. WAVE DRIFT FORCES ON OFFSHORE STRUCTURES

8.1. Introduction

In recent years, the calculations of the second-order wave drift forces have attracted much
attention. This is because of their importance in estimating the performance of moored ships and
offshore structures in offshore operation. A general review of the second-order wave forces and

motions has been given in §1.1.5.

The evaluation of the second-order wave drift forces is associated with the practical require-
ments of offshore operations. As far as large and complicated offshore structures are concerned,
the conventional methods based on a three-dimensional diffraction solution may be too time con-
suming to be of practical use in a preliminary design. Therefore, an engineering estimating tech-

nique rather than a complicated rigorous mathematical proof is sometimes required.

In particular, according to organised international investigations into a semi-submersible
and a TLP, hydrodynamic prediction data from various sources displayed vast scattering even for
the first-order radiation and diffraction forces. Since the second-order calculation is dependent on
the first-order solutions, logically, one can not expect good correlations among the second-order
predictions by these different methods, programs or organisations. If a general good agreement is

found in calculated second-order force data, this lucky success can only be attributed to either
(1) some first-order terms are of no significance; or
(2) the mutual error cancellation effect.

These two are quite often the reasons why, in the field of naval architecture and offshore engineer-

ing, a much simplified method works or performs even better than a much more sophisticated

theory.



It is not an illogical consideration to ignore these terms of much less significance and/or of
mutual cancellation effect in order to concentrate on contributions of greater importance and to

develop simpler techniques of higher efficiency and with acceptable accuracy.

In this chapter, the "horizontal plane method" of Hwang and Tuck (1970) is used to evaluate
the first order wave potentials on vertical cylinders of arbitrary geometry. Together with the near
field approach of Pinkster (1979) the second-order mean drift forces are calculated. Then, this
exact theoretical solution method is extended to approximate the horizontal mean drift forces on
offshore structures composed of multiple vertical columns and submerged horizontal pontoons.
Finally, this approximate method is used for predictions of the horizontal mean drift forces and

moments on a semi-submersible and a TLP.

8.2. General Formulation

It has been shown by Pinkster (1979) and Standing et al (1981, 1982) that the second-order

mean drift forces can be expressed in the form:

-@ =@ =@ o, -
FO=F", Fy F3 )= Y Fn (8.2.1)

m=[

where the bar indicates the time average, i.e. the mean value. The six components are:
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- 1
Fp=7p I |Vo|2 7 dS

2P 1M
Fyp=- PJ [Vg, il R ds 822)
— q'
Fr =RF
- 5=
FV =W|
Fy =—p | 0@ ds

s, —

These are respectively (I) the force term associated with the surface elevation, (II) the quadratic
pressure term arising from Bernoulli’s equation, (III) the structure displacement term due to the
effects of first order motions, (IV) the contribution due to the rotation of the force vector, (V) the
effect of the second-order motions of the structure’s centre of buoyancy and waterplane area
(Standing et al 1981, Ogilvie 1983), and (V) the contribution from the second-order potential
el

Here L, is the mean water line, A,, is the mean waterplane area and

=7 n 2 +ny?

=1 X2, X5)+ (Ka, X5, Xo) X G =T5)

The relative wave surface elevation is given by

& =8-X3-X4 0 -y6)+Xs (x - xg)

with the first-order wave elevation

=-1
G- 5

Here ¢ is the first-order wave potential. In the above equations, the underlying subscript - denotes
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a real number.
Since the complex values are much more convenient to manipulate in the diffraction solu-
tion, the real values in the above equations can be re-expressed as a complex number using the

identities:

Re(A)Re(B):%Re(AB)+—;'Re(AB')
2 _ L1l 2,1 2
R =7 |4[2+ Re(a)

Re(A)Re(B):-é-Re(AB')

1
[Re(a))? = |A|?
where A, B are complex numbers and A* and B * are their conjugates.

In complex variable notation the above mean drift force components may be written as

1 =,
Fio=pe ] 1L 1P7a
L,

= 1
Fu="p|1Ve|*Ras
slv
= _1 * Vo 17
F”]—z PS{ ﬁ? Vé,] n dS (8.2.3)
Fy =L R'F
V=

- 1
Fy == P&t Aw (IXa|* +Xs5| 0.0, 1)
Fy =P A, 0,0, 1)

where P is the mean set-down pressure in the undisturbed incident wave as given by Standing et

al (1981).



8.3. Mean Drift Forces on Vertical Rigid Cylinders

For a system of multiple vertical cylinders of arbitrary cross-sectional contour C,,, extend-
ing from the seabed of depth d and piercing the free-surface, as illustrated in Figure 8.3.1, the hor-
izontal mean drift forces have only two components, i.e.

-2 = -
F®=F +Fy 8.3.1)

and the total first-order potential ¢ is the sum of the incident wave potential and the diffraction

potential, i.e.

¢=0¢, +¢7 (8.3.2)

8.3.1. First-order diffraction solution

A horizontal plane method can be used to evaluate the diffraction (also the radiation) wave
potentials associated with the vertical cylinders excited by regular waves. This method was first
developed by Hwang and Tuck (1970) in the study of harbour resonances and it has also been
applied by Isaacson (1978) for the determination of the wave loads on offshore cylinders. In their
formulation the source distribution technique was applied whilst here a mixed source-dipole dis-
tribution is used, but the general procedure is rather similar,

In the case of finite water depth, the incident wave potential expression (2.2.16) may be

rewritten as

0, =Z(2) Yo withy, =~ % exp [ik (x cosP + y sinf)) 8.3.3)

cosh k(z+d)/coshkd d < oo

()= exp (kz) d=o

The relative diffraction potential amplitude is expressible by

=Z@) vy, 8.34)
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From expression (8.3.4), the Laplace equation valid over the whole fluid domain transforms

into the Helmholtz equation over any horizontal plane, i.e.

3t THW=0 (8.3.5)

and the corresponding Green function, satisfy the radiation condition, is given by

Gu(p.q)=i R HP(KR) = — 1t [Y,(kR) — i J,(kR)] (8.3.6)
with p(x,y) being the field point and g (§,n) on the contour C,,.

The integral equation in a mixed source-dipole distribution form can be written in the form:

2ry(p) - j\ll-;(q)a—i"GH(p,q) dl =CI Gu(p.q) a%\vo(q)dl p.q€Cy (83.7)
. q

C. q

This provides a means of solving for y;. Subsequently from Equation (8.3.4), the first order wave

diffraction amplitude can be determined.

In solving the relevant discretised linear equations of Equation (8.3.7), the elemental

integrals over each discrete line element A/ are estimated by following approximations:

I=[Ga=-2 f In(kR) + [i w HO(KR) +2 In (kR)] Al
Al
(8.3.8)

I aG 2[ ln(kR)dI+——[t ® HP(kR) + 2 In (kR)] Al

where the remaining integrals on the right hand are calculated analytically for R 2 2 Al and other-
wise approximately. The Bessel functions involved can be efficiently evaluated by polynomial

approximations (Abramowitz and Stegun 1972)

8.3.2. Mean drift forces

When the diffraction potential is known, the wave elevation and wave particle velocity on

the body surface can be readily determined from the relationships:
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Clio=Cl;m0= %"- Yo +W1)im0 (83.9)

d d
Vo> =5 @0+ 1>+ | @ +e)|*  ons, (8.3.10)
where 1 is the local tangent coordinate to the cross-sectional contour C,,.
From expressions (8.3.9) and (8.3.10), the horizontal mean drift forces on vertical cylinders
(single pile or multiple columns) of arbitrary sectional geometry can be evaluated by Equations

(8.2.3) and (8.3.1).

8.3.3. An example

To verify the described numerical procedures developed, a vertical cylindér is used in an
example study. It has radius a = 1.5m, extends from the seabed (at depth d = 5Sm) and pierces the
free-surface.

To apply the horizontal plane method described above, the circular cross-sectional contour
of the cylinder is discretised separately by 16, 24 and 36 segments in order to test for numerical
convergence. It is found that only small deviations occur between these three sets of data. There-
fore, the mean drift force displayed in Figure 8.3.2 is calculated from a 16 segment model. The

present numerical results agree well with other quoted sources (e.g. Standing et al 1981).

8.4. Approximation for Offshore Structures

To develop a simplified method to estimate the horizontal mean drift forces for offshore
structures consisting of multiple vertical columns and horizontal pontoons, the following assump-

tions (based on physical reasoning and intuition) are made:
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(1) The first order motion responses are comparatively small and their contribution to the

second-order mean drift forces can be ignored.
(2) The interactions between the vertical columns and the horizontal pontoons are negligible.

(3) The contribution to the horizontal mean drift forces from horizontal members can be

ignored.

The first assumption is true at frequencies of high or intermediate values because of the
small waterplane area of the structure under consideration. Although at low frequencies the first
order motion responses may have large values, the mean drift forces become rather small and may

have little importance.

As far as this column-pontoon type of offshore structures is concerned, the first-order fluid
forces, as discussed in §1.1.3,aremost likely out of the diffraction dominant regime and possibly
fall into the inertia dominant one. In this case, either estimate method based on empirical inertia
and drag coefficients or a diffraction theory can be used for prediction of the first-order forces, and
the latter is not necessarily superior to the former. Moreover, the regime of the mean second-order
forces is less clear. Therefore, the second assumption may be somewhat of a compromise

between the two alternative methods mentioned.

The third assumption is based on existing theoretical proof and numerical evidence. In fact,
it has been shown by Ogilvie (1963) that for a deeply (actually it is not necessarily very deep)
submerged horizontal circular cylinder the mean horizontal drift force is zero.

In accordance with assumption (1), the mean horizontal drift forces are independent of the
first-order motions, in other words, just like a fixed body as described in §8.3, they rely on only

two force components, i.e. ;’, and F,, as given by Equation (8.3.1).

Furthermore, by assumptions (2) and (3), these forces are solely dependent on the first-order

potential solution for the multiple columns only. That is,
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where S, denotes the mean wetted surface area of the columns of the offshore structure.

When the cross-sectional geometry of the column is circular, exact or approximate analyti-
cal solutions for diffraction potentials are available, for example, by Masumoto (1982). The
analytical formulation, however, is not applicable to columns of cross-sectional geometry other

than circular ones.

To further simplify the problem solution, the approximation proposed by MacCamy and
Fuchs (1954) for a single circular cylinder may be used, which suggests that horizontal wave
forces on a circular cylinder of draft, h, less than the water depth, d, is the same as if the cylinder
extended to the bottom. Based on this assumption, all the quantities required for evaluating
expression (8.4.1) take the values from a system of multiple cylinders of the same cross-
sectional geometry as the multi-columns of an offshore structure. Therefore, the exact theoretical
and numerical procedures for solving the wave potential problem around multiple vertical

cylinders of arbitrary sectional geometry, as described in §8.3, are exploitable.

On this basis, the horizontal mean drift force on an offshore structure of multiple columns is

given by

_ 0
FPo-LoefiPraeto[a [ (voi27a 842)

where {, and ¢ are solved from Equation (8.3.7) for multiple cylinders extending to the seabed.

8.5. Numerical Examples

To verify the proposed approximation technique for multi-column offshore structures, and

to provide a measure of the strength or weakness of the approximation adopted, the horizontal
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mean drift forces associated with a semi-submersible and a TLP are determined and the results are

compared with experimental and theoretical data where available.

8.5.1. A semi-submersible

A six-column semi-submersible platform is used for an example study since experimental

and theoretical data have been presented by Pinkster (1979).

The lay-out of the semi-submersible and its main particulars are displayed in Figure 8.5.1.
The length, width and draft are 100m, 76m and 20m respectively and its displacement volume is
35925 m>. The diameter of the vertical columns is 12.6m. The pontoons are of rectangular shape

of dimensions 100x16x8m and at submergence of 12m.

With the present approximation, the diffraction potential is obtained by solving Equation
(8.3.7), in which the water line L, is chosen for the sectional contour C,,, and the mean horizontal
drift forces are determined by Equation (8.4.2). In the numerical calculation, the cross-sectional
contour of each column is divided into 16 elements and this makes a total number of 96 seg-
ments. Because of its two planes of symmetry, the actual panel number involved in the numerical
computation is rather small. The computations cover 3 wave headings, including the head, bow
quartering and beam seas; 32 wave frequencies ranging from mm = (.35 to 2.60; the mean

longitudinal and transverse (i.e. surge and sway) drift forces and mean yaw drift moment.

The resultant mean drift force predictions are given in Figures 8.5.2-6. In these figures, the
solid circular points indicate the present approximation method data whilst the hollow circular
points are the experimental data of Pinkster (1979). Pinkster’s computational predictions are also
shown by solid lines, which were calculated by a three-dimensional near field method over the
whole wetted surface of the semi-submersible. A comparison amongst these data shows that for

the semi-submersible under investigation, the present approximation method results are in
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reasonable agreement with the model test measurements, and at least of the same degree of accu-

racy as the data derived from the much more complicated three-dimensional analysis.

8.5.2. A tension leg platform

The TLP illustrated in Figure 8.5.7a has been used in an experimental investigation by Tan
and Boom (1981). It is constructed with four vertical columns of diameter 16.87m and length
24.5m. The four horizontal rectangular pontoons are of cross-section 7.5x10.5m and the structure

is of total draft 35m floating in deep water.

In terms of the present method (§8.4), the evaluation of the horizontal mean drift force is
determined from only a horizontal cross-sectional contour consisting of four circies as shown in

Figure 8.5.7b.

In the numerical calculation each circular contour is discretised into 16 segments, such that
the contour of the four circles is described by a total of 64 equal elements. However, only 16 seg-
ments on the same column is necessary in the computation owing to its geometric symmetry
about two planes. After solving ¢,; by the numerical procedure presented in §8.3, the horizontal

mean wave drift forces are further calculated from Equation (8.4.2) with draft & = 24.5m.

Computations are carried out for wave periods from 5 to 24 seconds and for wave headings
B=0, 22.5, 45 degrees. The resultant mean surge drift forces are given in Figures 8.5.8-10,
respectively for wave heading 0, 22.5 and 45 degrees. Those for sway at a wave heading of 22.5
degrees are displayed in Figure 8.5.11. The calculated mean yaw drift moments are shown in
Figure 8.5.12. In Figures 8.5.8-12, all the alphabetic points denote the numerical data from
different sources following the notation adopted by Eatock Taylor and Jeffreys (1986), and the
circular, triangular and square points indicate the experimental data by Tan and Boom (1981). It

can be seen that, in general, the results derived from the present simplified approach display the
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characteristics of the other data. It can be noted in Figure 8.5.12 that the model testing data for
the mean yaw drift moment display significant scattering at the same wave period most likely due

to other non-linear effects such as viscosity.

8.6. Concluding Remarks

A horizontal plane method was used to evaluate the mean drift forces on vertical cylinders

(single or multiple) of arbitrary sectional geometry and extending to the seabed.

The proposed method was further extended to approximate the horizontal mean drift forces
on multi-column offshore structures. Although assumptions are introduced into the mathematical
model to simplify the numerical procedures, example studies of a semi-submersible and a TLP

appear to show promise.

Although only offshore structures of circular column sections are presented in the example
studies, the present method is capable of predicting mean wave drift forces on a multi-column

off shore structure of column section other than a circle.

One of the advantages of adopting this approximation is the great saving in computing time

and this may enable the proposed technique to be of more practical use at the preliminary design

stages.
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9. SEAKEEPING ANALYSIS WITH VISCOUS EFFECT

9.1. Introduction

With the continuous development of maritime and offshore activities, there now exists a
wide variety of floating structures with configurations of far greater complexity than is found in
ordinary mono-hull ships. Among those designed and built, many novel structural features have
been introduced, such as various semi-submersible and tension leg platforms (TLPs) in offshore
operation and the small waterplane area twin-hull (SWATH) vessels for both civil and naval

applications.

Being different from framed structures such as fixed jackets and conventional ships of one
large floating hull, these large offshore structures and special vessels under discussion are com-
posed of, in general, multiple submerged floaters (e.g. pontoons or lower hulls) as well as multi-
ple vertical members (e.g. columns or struts) piercing the free-surface. Their relative smaller
waterplane area results in much longer resonant motion periods such that better seakeeping per-

formances can be achieved.

Due to the interaction between the surrounding fluid and the multiple sub-members of such
a structure, multiple natural frequencies (Wu and Price 1986¢) may occur in the vessel’s motion,
apart from the conventional resonant frequency designated at a small frequency value. It has been
found that for these large marine structures viscosity plays an important role in determining
motion responses at the vicinity of these natural frequencies but has little significance beyond

these resonant frequency bands (Lee 1976, Wu and Price 1986¢).

Corresponding to Kelvin’s principle of fluid motion separation (§1.1.1) a rough estimate of

the viscous drag forces can be added, as a correction, into the potential forces predicted by either
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two- or three-dimensional diffraction theory analyses. A brief review of the drag forces has been

given in §1.1.7.

As examples of comprehensive application of the hydrodynamic formulations, motion
theories and numerical techniques described in the previous chapters, the seakeeping perfor-'
mances of two groups of structures are investigated. One is a multi-column or -strut stabilised

large offshore structure without forward speed; and the other, a multi-hulled special vessel with

forward speed.

9.2. Large Offshore Structures

In this study, focus is concentrated on large offshore structures of submerged massive
floater(s) and multiple large columns or large struts. For motion predictions of this group of
offshore structures, a method combining the three-dimensional diffraction theory and a drag force
estimation is described. As an example, the motion characteristics of a derrick barge semi-

submersible are investigated using the combination method developed.

9.2.1. Viscous effect

In order to estimate the viscous damping and the viscous exciting forces resulted from the
drag forces on the structure, the method devised requires the structure wetted surface to be sub-
divided into three typical sets of strips along thé Ox, Oy and Oz axes. Suitable representative
points on the strip contour are selected for the viscous force estimation. The elemental com-
ponents of the viscous force due to drag acting on an elemental wetted surface area AS may be

expressed by the approximate expressions (Sarpkaya and Isaacson 1981, Wu and Price 1986¢):
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1 . . .
(AFpy, AFp, AFp3) =~ pCp |V, | (X481, Y,AS >, Z,AS3) 9.2.1)
and when summed up over the total wetted surface result in the total drag forces in the form:

Fpj=Y AFp;  j=1,2,3 (9.2.2a)

The corresponding components of the moments of the drag forces may be simply given as

Fpa==Y(z-25)AFpy + Y (y = ¥6) AFp3
Fps==Y(x—-x5)AFp3 + Y (z — z5) AFp, (9.2.2b)
Fps==Y( —yc)AFp| + Y (x —xg) AFp,

where Cp is the drag coefficient which is dependent on the Keulegan-Carpenter number (Kc) and
the Reynolds number (Rn). These may be chosen from experimental data or the recommended
values tabulated for typical geometries (Sarpkaya and Isaacson 1981). AS; is the projected area of
a strip element in the jth direction. Y denotes a summation over the whole wetted surface of the
body. f(,, i’, and i, are relative velocity components (along the Ox, Oy and Oz axes) of the

overall relative velocity V, between the water particle and the body motions. These are defined by

X, =W, -X|-(z-26)Xs+(~y5) X

I;'r=Wz-7'(2 -(X-Xa)k6+(z -ZG)?.Q 9.2.3)
27=W3 -X3-0-Y6) X4+ (x=x5)Xs
0 9 90

where W; = W,; exp(-iwt) with (W,,, Woz.Wos)=($, ' % ) 9, and X; =X, exp (~icr)
denotes the jth mode of motion.

After applying an equivalent linearisation procedure, it follows that

4 . . .

AFp, ol PCpAs1 Vo X1+ -26) X5 -0 ~¥5) X6 = W]

AFp,=- ;4; pCpAsaV,, [X2 +(x —xg) X¢ - (z — 26) X4 -W,] (9:24)
4 . . .

AFp;=- I PCpAs3 Vi [X3+ (Y —y6) Xq4— (x =x6) X5 — W3]

where V,, is written as
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3
Vo=@ "\ ’ Z(ij)2 (9.2.42)
j=1

and X,,; is defined by

Xm1 = |X 10+ (Z-26) Xsa = (V= ¥6) Xea + W, /i@
Xn2= X0+ (x =x6) Xog = (2 —26) X4g + W52/i0)| (9.2.4b)
Xn3=|Xsg+ O =Y6) X4a = (x —x6) X 55 + W,3/i0]

From such expressions, the viscous force may be separated into contributions associated

with viscous damping and viscous exciting force terms. That is

6 .
FD!' =- Z Bvij XJ +Fvi i=1,2,..6 (9.2.5)
=

where the components of the viscous exciting forces are given by

F,=YaV,W, i=1,2,3

Foa=30-y6)a3 Vo W3—3(z-z5)az Vo W3
Fos=3(z-25)a 1V, Wi =3 (x=xg)az V,, W3
Foe=3Yx-xg)a2 Vo, Wy =Y -ygla1 Vo W)

4
3r

(9.2.6)

Wilh(al,aba3)=' pCD (ASI'ASZvAs3)-

The determination of these viscous terms requires information on the motion response
amplitudes ( i.e. X;,) and therefore the viscous effect can only be estimated simultaneously with

the motion solution of Equation (2.5.9) by an iterative procedure.

9.2.2. General configuration

The semi-submersible consists of a huge barge-like submerged floater and six large struts as
shown in Figure 9.2.1. The floater is of dimensions 144x43.5x10.5m and at 12m beneath the
calm water surface, making a total draft of 23.5m. The major sizes for the mid-struts are

45x16.2m and for the end-struts, 15x16.2m. The displacement volume is 91,196 m* and the
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coordinates of the centre of gravity are G(0.3, 0.0, -8.36). The gyradii for roll, pitch and yaw
motions are 23.6, 41.0 and 40.35m, respectively. These main dimensions indicate that a three-
dimensional diffraction theory is necessary for the hydrodynamic analysis. In particular, since a
layer of partially truncated water region is surrounded by the structural members, resonant waves

excited by the body motion make the wave-structure interaction problem much more complicated.

9.2.3. Numerical computation

Taking advantage of the port and starboard symmetry, only a half of the body’s wetted sur-
face is needed. This is discretised into 193 panels for the three-dimensional analysis. A quarter of

the body surface is illustrated in Figure 9.2.2.

By the three-dimensional Green function method analysis based on Equations (4.1.3b) and
(3.2.2), the three-dimensional hydrodynamic coefficients, including surge, sway, heave, roll, pitch

and yaw added mass and damping, are calculated and illustrated in Figure 9.2.3.

In Figure 9.2.3, superposed on the heave and pitch added mass curves are the condition

lines defined by
Ajj=Cjjle’ - M;; (9.2.7)
As used in naval architecture, the intersecting points of the condition line and the added
mass curve represent the resonant frequencies. It can be seen that there exist three heave resonant
frequencies at @= 0.222, 0.393 and 0.52 rad/sec, two possible pitch natural frequencies at @ =
0.246 and 0.54 rad/sec but only one roll natural frequency at @ = 0.221 rad/sec. The first resonant
frequencies predicted precisely coincide with the measured data, i.e. 0.224 rad/sec for the heave,
0.247 rad/sec for the pitch and 0.227 for the roll mode (de Boom 1978). Besides these designed

first natural frequencies of small values, extra resonances in the heave and pitch motions can
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therefore be expected.

Using these computed three-dimensional hydrodynamic coefficients and wave exciting
forces together with viscous effects, the predicted surge, sway, heave, roll and yaw responses are
displayed in Figure 9.2.4. These theoretical predictions are shown in good correlation with exist-
ing experimental results (de Boom 1978) but generally these model testing data are not available
for illustration. Fortunately, a set of data for the pitch motions in quartering seas have been
released by MSC (198S), which provide some measure of the accuracy of the present theoretical
predictions. As shown in Figure 9.2.5, the present calculation results are in very good agreement
with the measured data of the pitch motion. Particularly, an additional pitch peak response occur
around = 0.57 rad/sec, which confirms the finding of the multiple resonances. A small fre-
quency shift from the predicted second pitch natural frequency at 0.54 rad/sec is most likely due

to the existence of damping.

For heave motions (Figure 9.2.4), besides the first heave natural frequency predicted at
0.222 rad/sec, peak heave responses appear around the third natural frequency but there is no indi-
cation of the second one. The reason for this is clearly evident from these figures since at the
predicted second heave natural frequency (0.393 rad/sec) the damping coefficient is nearly a max-

imum value and this influence suppresses the appearance in the second peak response of the heave

motion.

In Figure 9.2.4, two-dimensional calculation results are also presented. However, these are
shown to be unsatisfactory; in particular, they fail to predict the multiple resonances occurring
and associated with the wave-structure interaction. As can be seen from Figure 9.2.6, from the
added mass curve derived by a two-dimensional analysis no additional heave natural frequencies

can be found apart from the first one round about 0.222 rad/sec.
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To understand the influence of the viscous effect, a comparison was made between heave
motion data predicted with and without viscosity. These results are given in Figure 9.2.7 for the
heave motions at wave heading angles 180, 225 and 270 degrees. It shows that the viscous effects
have an important contributory influence in the vicinity of the natural frequencies of the body

motion even for offshore structures with sizable sub-members.

9.2.4. Concluding Remarks
From this example study, the following conclusions are drawn:

(1) For a structure with multiple large sub-members, there can exist multiple natural frequen-

cies in a motion mode and these can induce extra peak motion responses.

(2) For this kind of large marine structure, viscosity is of importance when determining the

magnitudes of the body responses near natural frequencies.

(3) A combination of the three-dimensional hydrodynamic analysis and an estimation of the
drag forces provides a useful tool for motion predictions of large offshore structures with

more complicated configuration.

@) For this particular example, the two-dimensional analysis seems inadequate to provide rea-

sonable information for design purposes.

9.3. Multi-Hulled Special Vessels

This group of ships include SWATH ships, catamarans, tri-hull crafts and so on. In the

present study, however, attention is focused on SWATH ships only.
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9.3.1. SWATH ships

The revival of active research and development on SWATH ships started in the later 1980s
associated with the design and construction of SWATH T-AGOS (Covich 1986), though initial
theoretical and experimental studies were carried out in the mid 1970s (Lee 1976). Recently, the
development of fast commercial SWATH prototypes of considerable displacement has caused

much excitement worldwide.

From the geometric configuration, a SWATH ship is characterised by its twin-hulls of small
waterplane area and a top deck of large operation area. The small waterplane area results in long
natural periods of heave, pitch and, in particular, roll motions. These natural motion frequencies
are designed to be far away from the energy concentration frequencies of the sea wave spectrum
such that serious resonant motions can be effectively avoided. In addition, the added viscous
damping due to the submerged lower hulls can reduce, to a great extent, the peak motion
responses if resonances occur in these motion modes. Therefore, SWATH ships possess higher
seakeeping qualities, especially, small vertical motion and acceleration amplitudes. The increased
operability together with the large open deck area makes the SWATH ship very attractive for lei-

sure, transportation, engineering and naval purposes.

9.3.2. Theoretical bases

To analyse the seakeeping performance of a SWATH ship advancing in water waves, great
efforts have been made to improve the prediction theories (Lee 1976, McCreight 1987). In the
present work, a computer program has been developed based on a comprehensive application of

existing theories and new achievements:

(1) A two-dimensional strip theory is applied which is based on a forward speed correction

(Salvesen, Tuck and Faltinsen 1970).
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A mixed source-dipole distribution method is used to obtain two-dimensional wave poten-

tial solutions, which is based on Equations (4.2.3b) and (3.4.2).
At higher frequencies, the modified Green function form as described in §4.5.3 can be used.
The estimation formulae for the viscous forces (Lee 1976, McCreight 1987) and calculation

procedure over the body surface are similar to those described in §9.2.1 with minor

modifications:

i) the relative velocity component J.(, includes the forward speed U,
ii) the encounter frequency of expression (2.2.19) is used; and

iii) the drag coefficient Cp, is treated as K¢ number dependent;

The lift force in the heave mode and the lift moment in the pitch mode due to the control

fins are estimated by the following formulations:

AF3L=';-PAP Ca U0,
Fy = Y AFy 9.3.1)
Fg ==Y (x=xg) AF 3,

where o, =W3/U —Xs with W3 defined by Equation (9.2.3), Formulations for the lift

coefficient C;, with corrections can be found in Dallinga, Graham and Huijsmans (1988).

A, is the fin area. The summation is carried out for all the four fins involved.

All the rigid body motion modes, except surge, are predicted. The surge motion responses,
however, may be predicted by an approximation based on the Froude-Krylov hypothesis

(§5.2.1) but this requires further experimental verifications.

9.3.3. Example studies
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The general arrangement of the SWATH model is illustrated in Figure 9.3.1. The hydro-
dynamic behaviour of this vessel has been thoroughly studied by model tests and theoretical ana-
lyses by ARE (Haslar) (Blackman 1989). The picture of the model under test in the towing tank

of Haslar is shown in Figure 9.3.2 (by courtesy of Blackman 1989).

The SWATH ship is composed of two parallel lower hulls, mainly of elliptical cross-
sections, and two long struts, extending from the bow to the stern area and supporting the upper

deck structure.

According to the scaling factor of 1:20.55, the main particulars of the relative SWATH ship
are given in Table 9.3.1. That is, the two lower hulls are of overall length 61.75m and maximum
sectional dimensions 6.72x4.45m (elliptical), with a separation distance 18.37m between their
central lines. The two long struts are 50.459m long and 2.44m wide. The total displacement

volume is 2167 m>.

The present theoretical computations cover 4 speed conditions (i.e. U = 0, 5, 10 and 14
knots), 5 wave headings (B = 0, 60, 90, 120 and 180 degrees) and wave lengths ranging from \/L

= 0.407 10 5.086. The matrix of the computational analysis is given in Table 9.3.2,

The heave, roll and pitch motion, relative motion and vertical acceleration amplitudes are
predicted by the method described in §9.3.2. These are compared with experimental data released

by ARE (Haslar 1989) after the calculations were performed.

Figures 9.3.3-6 display the heave, pitch and relative bow motion amplitudes in head seas at
forward speed 0, 5, 10 and 14 knots respectively. Good agreement between the experimental data
(circular points) and the present theoretical predictions (solid lines) can be observed within this
speed range. In particular, the predicted relative bow motion with respect to the wave surface
appears rather promising and this parameter is of primary importance when determining slam-

ming on the under deck of the SWATH ship.
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In Figures 9.3.7a-c, calculated roll responses at heading angles 60, 90 and 120 degrees are
presented. These correlate well with the model test data. The heave and pitch response predic-
tions in beam seas are shown in Figure 9.3.8 and those related to stern seas given in Figure 9.3.9.
Again, these computational results agree favourably with experimental results. This limited data

set gives some indication of the validation of the present method over the conditions examined.

The acceleration parameter is the most important measure to define the suitability of the
vessel for human activity and equipment operation. Figure 9.3.10a shows the predicted bow vert-
ical acceleration amplitudes at speed of 10 knots in head seas, whilst Figure 9.3.10b displays the
stern vertical acceleration amplitudes at the same speed but in stern seas. The present prediction

method seems to provide reasonable data for this important parameter.

To complement the above study, some theoretical predictions for two other SWATH ships
under design consideration are presented here. Figure 9.3.11 shows the surge motion amplitudes
of a 1000 ton SWATH ship predicted by the simple method based on the Froude-Krylov

hypothesis. Regrettably, no model tests are available to verify this simplification.

Corresponding to irregular waves of sea state 6 defined by the ITTC wave spectrum (Figure
9.3.12), the calculated significant heave, pitch, vertical acceleration amplitudes and the subjective
motion magnitude (Price and Bishop 1974, Lloyd and Andrew 1977) are given in Figure 9.3.13
for two similar SWATH vessels of different displacements, i.e. 1000 and 2000 tons respectively.

As expected and comfirmed by these findings, the larger vessels exhibited the better seakeeping

performance.

9.3.4. Concluding remarks
From the comparative studies of the present method predictions and model test data, it may

be concluded that the proposed method to analyse the seakeeping of a SWATH vessel can pro-
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duce reliable theoretical predictions in the speed range up to Fn = 0.294 (equivalent to the speed
of 14 knots in the example study). Further verification is necessary for forward speed far beyond
this limit.

Because of the efficient two-dimensional formulations adopted, the present computer code is

applicable in the design process of SWATH ships.

Since the recent worldwide interest is in developing fast SWATH prototypes travelling with
forward speed greater than Fn = 1.0, significant modifications to the present method may be

required to meet this new challenge.
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Table 9.3.1.
MAIN PARTICULARS OF THE SWATH SHIP (BASLAR)
IN FULL SCALE

. .DESCRIPTION SYMBOL - UNIT . VALUE
Displacement Tons 2221.65
Volume Cubic M. 2167
Centre of gravity L M. 28,667 (from forward tip)
yG~ M. 0.0
ZG M. 0.,789*
L.673%%
Radius of gyration K44 M. 11.138*
- 9.576%*
K M. 16.461*
33 14,138+
K66 M. 17.500 (assumed)
LOWER HULLS:
Beam between Bh M. 18.370
central lines ‘
Length Lh M. 61.750
Max. diametex 4.449 (height)
(elliptical) 6.720(width)
Draft h M. 6.649(from the keel)
hc M. 4.425(from hull axis)
STRUTS:
Length Ls M. 50.459(x=-26.042 to x=24.417)
Strut beam bs M. 2.440
Water plane area A Square M. 196.940(two strutsin total)
Strut spacing Bs M. 18.370(between central lines)
FORWARD FINS:
pistance from nose M. 8.647
to CL stock
Dihedral angle _ Degree 0.0
Choxrd M. 3.699(root chord)
1.670(tip chord)
Span M. 3.479
AFT FINS: :
Distance from nose M. 50.477
to CL stock
Dihedral angle Degree 20.0
Chord M. 4.899 (root)
2.359(tip chord)
Span M. 5.351

NOTE: * for beam and oblique seas (90, 60 and 120°).
#» for head and following seas (180 and 0°).
#x+ the fin section is given by the standard NACA 0015 basic form.
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Table 9.3.2.

MATRIX OF COMPUTATIONAL ANALYSIS OF
THE SWATH SHIP (HASLAR)

WAVE HEADING degrees 0, 60, %0, 120, 180

SHIP SPEED knots O (for all the wave headings)
S, 10 and 14 (for headings o® and 180°)

~WAVE HEIGHT metres 1.234 (for headings 60°, 90° and 120°)

%wave length (for headings 0° and 180°)

WAVE LENGTH/C.L. BEAM 1.118 - 13.427
WAVE LENGTH/STRUT LENGTH 0.407 - 4.888 (U = 0)
0.815 - 5.086 (U # O)

INFORMATION REQUIRED  HEAVE RESPONSE
ROLL RESPONSE
PITCH RESPONSE
RELATIVE BOW MOTION
RELATIVE STERN MOTION
BOW VERTICAL ACCELERATION
STERN VERTICAL ACCELERATION
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Figure 9.3.3. Comparison of heave, pitch and relative bow motion
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10. CONCLUSIONS AND FURTHER DISCUSSIONS

From these investigations the following conclusion can be drawn:

¢))

)

€))

As far as large offshore structures and special vessels are concerned, the simple treatment to
decompose the total fluid force into two separate components due to the potential flow and

the viscous flow effect respectively is proven adequate.

The fluid viscosity seems to have significant effects on the peak motion amplitudes around
the resonant frequencies of these large marine structures, but may be negligible outside

these frequency regions.

As demonstrated by two industrial applications to a semi-submersible and a SWATH ship, a
combination method of the diffraction theory for the wave potential solution and the
Morrison damping formulation for the viscous force component can provide predictions of

reasonable accuracy.

Within the diffraction force dominant regime the linear wave-structure interaction problem
can be solved by the Green function integral equation. In addition to its conventional sur-
face integral form, an interior integral equation technique is developed and in terms of the

numerical procedures proposed the same degree of numerical accuracy can be achieved.

To avoid the mathematical failure of the integral equation at irregular frequencies, approxi-
mation formulae are proposed to predict the irregular frequency values for arbitrary three-
and two-dimensional floating bodies. The formulations satisfy the exact solution of a rec-
tangular box in three-dimensional cases and a rectangle section for two-dimensional bodies.
Furthermore, these provide accurate predictions of irregular frequencies for well defined
body geometries (analytical formulae can be derived) as well as realistic body shapes for

offshore structures and ships. These proposed formulae have been accepted by marine
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industries (e.g. Dawkins 1989).

A modified Green function in a multiple Green function form is derived, which effectively

eliminates irregular frequencies for mono-, twin- and multi-hulled sections.

A new shallow draft theory is presented based on improvements over the existing flat ship
approaches. It improves previous zero-draft theories by inclusion of all the six degrees of
motion (rather than the vertical plané motions) and by introduction of a finite draft correc-
tion. Hence, the present theory is #pplicable to realistic shallow draft structures of small but
finite draft and capable of more accurate predictions of motion responses. This conclusion is

supported by vast example applications to various shallow draft structures.

In particular, according to the similarity principle revealed in the study, hydrodynamic pro-
perties of any two-dimensional shallow draft section is exclusively determined by the same

data for a line section of unit length. Therefore,no  further computations are required.

Since a large group of offshore service vessels and transportation barges, etc., are of shallow

draft feature, the present shallow draft theory can be of more practical use.

To significantly reduce the computing time involved in the solution of a large size matrix
associated with a complicated three-dimensional wave-structure interaction and meanwhile
to retain end effects of the body, the three-dimensional strip formulation derived reduces
the large size matrix associated with the solution of a complicated three-dimensional wave-
structure interaction and therefore can greatly reduce the computer time required.
Meanwhile, because it retains the details of the body ends the proposed method can provide
hydrodynamic information of three-dimensional feature. The method works well even for

relative small length to width ratio.

This study does confirm that the wave potentials vary: slowly around the length of a body

of small sectional variation. This property should be exploited in further efforts to reduce
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the computer time with the diffraction theory analyses.

Further work should be done to prove its applicability in practical analysis of marine struc-

tures.

The three horizontal motion modes (i.e. surge, sway and yaw) of an elongated body of full
cross-sectional shape or a structure with a shallow draft feature can be determined by con-
sidering only the Froude-Krylov forces. A mutual cancellation effect is found between the
radiation and diffraction force components in the modes of sway and yaw. Therefore, this

work provides a further extension of the conventional Froude-Krylov hypothesis.

The exact solution based on the horizontal plane method for vertical cylinders of arbitrary
sectional geometry may be used to approximate the horizontal mean drift forces on a multi-

column offshore structure, such as a TLP or a semi-submersible.

Although the outlined improvements, modifications and developments are restricted in the
thesis to forces and motions for rigid bodies, in principle, these are also applicable to flexi-
ble structures. To achieve this one needs only replacing the rigid body boundary conditions
imposed in the solution problem by flexible body boundary conditions for each flexible

mode shape under consideration. Some work has been done and will be reported elsewhere.

Because of the complicated flow phenomenon associated with the interaction between water
waves and marine structures of peculiar configuration, a more sophisticated theory is not
necessarily more accurate practically. As long as principal aspects in a physical
phenomenon are properly treated, a simplified method works.

As far as the hydrodynamic theories in motional and structural analysis are concemned, the
gap between the academic theoretical development and the daily tools in industrial design is
rather wide and deep. To meet the challenge in future marine and offshore activities,

creative approaches are needed to produce more practicable and affordable techniques with
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strong theoretical back-up.
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An equivalent box approximation to predict irregular
frequencies in arbitrarily-shaped three-dimensional
marine structures
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An ‘equivalent box technique’ is developed to derive an analytical solution for the approximate
predictions of the irregular frequencies associated with a source or a mixed source-dipole distribution
method analysis of an arbitrarily-shaped three-dimensional (3D) marine structure which is free
surface piercing. Both analytical and numerical examples are given to confirm the validity and
accuracy of the present formulation. By means of this approximation irregular frequencies are known
d priori to the numerical computation and therefore it becomes possible to avoid 3D calculations

around these discrete irregular frequencies.

INTRODUCTION

The singularity distribution method! based on a boundary
integral equation with a Green’s function expression? is one
of the most powerful theoretical tools in the field of marine
hydrodynamics, but unfortunately is partially defective
due to the existence of irregular frequenci«:s.2 That is, when
the method is applied to a free surface piercing structure
oscillating in calm water or excited by an incident wave,
such a method fails to give correct solutions at discrete
‘irregular frequencies’ due to mathematical failure because
the resulting integral equation takes the form of the Fred-
holm integral equation of the second kind and this has no
unique solutions at these irregular frequencies. This has
been previously pointed out by John? who showed that the
irregular frequencies are the eigen-frequencies of an interior
cigenvalue problem.> Two possible approaches may be
conceived to tackle this irregular frequency problem. That is

(i) to adopt an alternative technique or some pre-
scription which erases the irregular frequencies, or

(i) to predict the irregular frequencies precisely and
then simply avoid the 3D computation around
these discrete frequencies and so greatly reduce
computing time.

Efforts have been focused mainly on 2D cases to develop
remedies? to eliminate the irregular frequency. An effective
method, amongst the many proposals is a 2D non-analz'tical
deep water Green’s function given by Ogilvie and Shin.” This
method was confirmed numerically by Takagi.® However,
at present there is no parallel procedure for twin or multi-
hull sections when both serious resonant wave effects
(physical) and an irregular frequency influence (computa-
tional) can arise together, as well as no general treatment
applicable to 3D structures.
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As to the second approach, analytical solutions to
predict the occurrence of irregular frequencies are only
available for limited simple geometries,? such as a rectang-
ular section,® a rectangular box’ and a vertical circular
cylinder.® Regrettably, for a more realistic marine structure
of arbitrary geometry irregular frequencies are not known
before a numerical computation commences and this may
produce difficulties in the subsequent numerical procedures
if such a frequency is encountered.

The present paper adopts the second approach to solve
the irregular frequency problem in which the arbitrary 3D
marine structure geometry is represented by a box of
equivalent dimensions to the original, i.. the ‘equivalent
box assumption’. By this means an empirical approximation
is deduced to predict the occurrence of irregular frequencies.

BASIC THEORY

Within the bounds of linear theory, the wave-structure
interaction problem is governed by the following set of
equations.’ Namely,

V% =0 inthe fluid domain V )

9
-a-g—w=o on z = 0, the still free surface F

L

—=0 on the seabed

0z

Y (1)
Pt Un on the body mean wetted surface S,

and the radiation condition

. 2 )
lim —— =
R ﬁ(ak g |=0

L
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where ¢ is the time-independent complex amplitude of the
velocity potential g™ “*; » = w?¥/g and w denotes the wave
frequency, n is a unit outward normal on the body surface
and v, is the normal component of the velocity on the
body surface. In a Cartesian coordinate system with x-y
axes lying in the still water surface plane and the z axis
positive upwards, the horizontal distance R between a
field point P(x, y, z) and a point on the body surface
O, m, §) isgiven by {(x - §)* + y — m)*}'2.

By means of the Green’s theorem the wave-structure
interaction problem results in an integral equation® in the
mixed source-dipole distribution form

aG(P,
2n00) - f 0@ —2as
s "o
(2
-- [ 6@, @
sW
or in the source distribution form
oG (P,
— 2n6(P) + J[ 0(Q) a( Q)dS = vu(P), 3
np

Sw

where both the points P and Q are on the body surface,
g is the source strength, G( ) is the Green’s function and
§ denotes the principal value surface integral.

The integral equations (2) and (3) are representative of
the Fredholm integral equation of the second kind which
breaks down at an infinite number of discrete ‘irregular
frequencies’ when applied to a free-surface-piercing marine
structure. It was John? who pointed out that these irregular
frequencies are the eigenfrequencies of an image interior
eigenvalue problem defined by the equations

V% =0 in the interior domain ¥

9 . o =

— — v = 0 on the interior free surface F

0z > (4)
and

$=0 on the body mean wetted surface S, |

where @ denotes an image interior velocity potential.

In addition to these conditions Wu and Price® derived a
supplementary condition to determine the influence of
irregular frequencies in a particular mode of body motion,
j.e. surge, sway, heave, roll, pitch or yaw in addition to
flexible modes of oscillation. For practical applications
this supplementary condition can be simply described in
the following manner. That is ‘at an irregular frequency a
singular behaviour may not occur in a mode of body
motion which is of opposite symmetry to the interior
potential solution ¢’. Since this statement is confirmed and
illustrated elsewhere® a repetition of the discussion in the
present analysis is omitted.

INTERIOR EIGEN SOLUTION FOR A RECTANGULAR
BOX

For a rectangular box of length L, beam B and draft h, the
exact eigen solution of the interior problem given in
equation (4), may be written as
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Bom = sin[%r(x - L/2):|sin|:m—; - 3/2)]

: %)
sinh [k(z +h)}
for IxX|<SLR,|yI<B2,—h<z<0;p=12,...,q,
...andm=1,2,...,n,.... The irregular frequencies are
given by
Wpm = [gk coth (kh)]*/2 (6)
with

2 291/2
#=a(7) +(3)]
L B
Corresponding to the supplementary condition as stated in
the foregoing section the possible bodily oscillatory modes
influenced by the irregular frequencies are listed in Table 1.
The predictions in Table 1 are confirmed by the numerical
calculation presented by Inglis and Price.”

Furthermore, Wu and Price® found that amongst the
infinite set of irregular frequencies, a dominant influence in
the calculated hydrodynamic coefficients arises from the
frequencies wp,, (p=1,2,...)and wy, (m=1,2,...) and
therefore these may be referred to as the ‘principal irregular
frequencies’.

In addition to the rectangular box, analytical solutions
of equation (4) may be obtained for a circular tank,® a
sector of a circular tank and a horizontal triangular prism?
and these solutions are summarised in the Appendix.

AN ‘EQUIVALENT BOX TECHNIQUE’

The derivation of a closed general analytical expression to
predict the occurrence of the irregular frequencies for an
arbitrarily-shaped 3D body is most likely impossible. To
overcome this theoretical difficulty an equivalent box
assumption is now introduced taking advantage of the
previous solution for a rectangular box. That is, ‘in order
to evaluate irregular frequencies, an arbitrarily 3D body
may be represented by a rectangular box of “equivalent”
length, beam and draft with the same displacement volume
as the original structure’.

Based on this assumption the irregular frequencies (i.e.
the eigenfrequencies of equation (4)) of an arbitrary body
geometry may be expressed by an equivalent box formula

Wpm = gk coth (kh )]V, ()

p\2 [/m\2712
withk=1r[(—) +(——)] for p=1, 2, ...and
L, B,

m=1, 2, ..., where L,, B, and h, are the equivalent
length, beam and draft.

In naval architecture and offshore engineering, it is well-
known that the properties of a marine structure heavily
rely on the ratios of its main dimensions and some in-

Table 1. Modes affected by irregular frequencies for a rectan-
gular box

P
m 2q-—-1 2q
Mode Mode
2n—-1 Heave Surge, pitch
2n Sway, roll Yaw
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dependent form coefficients.” Since the irregular frequency
is a singular phenomenon associated with a peculiar interior
standing wave® defined by equation (4), it must depend on
some typical geometric coefficients as well. By choosing
the aspect ratio of length to beam L/B and three independ-
ent form coefficients, namely, the waterplane coefficient
C, = A,/LB, the midsection coefficient Cp, = Am/Bh
and the central longitudinal section coefficient C, = A./Lh
(where A, A, and A, are the areas of the waterplane, the
midsection and the central longitudinal section of the
marine structure respectively, and the characteristic length
L, beam B and draft A may be defined by the relevant
intersecting lines of the three characteristic planes), the
equivalent dimensions may be expressed in the following
forms

with
L, = B:(Bo)*:L
B, = BABo)**B
hg = V/(LeBe)
a, =LY+ BY)

a = BY(L* + BY) > ®
Bo=(Cw)®

Br = (Cc)°

Br=(Cm)®: J

where V is the displacement volume whilst the empirical
‘correction coefficients’ cq, ¢; and ¢, are assumed expressed
as

Co= 3/4’

c,=[1+6li:zlln(p)]/8 ©)

c;=[l+6|ﬁ:zlln(m)]/8

It is obvious that as the geometry of a structure tends to a
rectangular box, the coefficients C,, 1, C,~>1 and
C, = 1, and the equivalent box formulation of equation
(7), reduces to the same as the exact solution for a rectang-
ular box of equation (6). This indicates that in the limiting
case the present formula is consistent with the exact solu-
tion for a real box.

Since such expressions are constructed based on the
equivalent box assumption and the main parameters of the
marine structure, there is no strict theoretical justification
for their forms. However, no previous alternative approxim-
ation exists and from a practical viewpoint the present
approximation is found to work.

RESULTS

To assess the accuracy of the values and distribution of the
irregular frequency predicted by the equivalent box
formula, a comparative study was conducted on a variety of
3D body geometries for which the characteristics of the
irregular frequencies are determined ecither analytically
from available exact solutions or numerically by 3D
computations.

Analytical examples
Tables 2-4 illustrate the predicted non-dimensional
values of the irregular frequencies for a circular tank, a

Z‘::fltehl Irregular frequencies for a circular tank of radius r, and

h/2r, &, analytical solution from eq. (A2)

1.0 1.551 1.958 2.266 2.350
0.5 1.564 1.958 2.266 2.350
0.25 1.698 1.990 2.280 2.359
hf2r, G, approximate solution from eq. (7)

1.0 1.560 1.962 2.206 2.333
0.5 1.576 1.963 2,206 2.333
0.25 1.726 2.016 2.230 2.350

Tab‘le 3. Irregular frequencies for a sector of a circular tank of
radiusry =10 m, angle 2a = /3 and draft h = 0.5 m (B = 5.774)

Method w
Exact 2.44 2.50 257
Approximate 247 250 255

Table 4. Iregular frequencies and affected modes for a hori-
’zlomgl/ztriangular prism of length L, beam B =L/2 and draft
(a) Analytical solution derived from equation (A9)

. P
® 1 2 3 4
@ @ @ @
1.58 1.67 1.7 193
y-symmetric
heave surge, pitch heave surge, pitch
1.99 2.05
y-antisymmetric

sway, roll yaw

(b) Approximate solution derived from equation (7)

m 1 2 P 3 4
@ @ @ @
) 1.56 1.65 1.78 193
heave surge, pitch  heave surge, pitch
5 2.00 2.05

sway, roll  yaw

sector of a circular tank and a horizontal triangular
prism, respectively. These results are obtained from analy-
tical solutions® and from the equivalent box approximation
given in equation (7). In all the Tables the non-dimensional
frequency @ = w+/B/2g, where B denotes the beam of the
original structure.

For the circular tank of radius ro (i.e. L = B = 2rg),
three drafts are considered, i.e. h/2ro = 1.0, 0.5 and 0.25,
and Table 2 displays the first four irregular frequencies
determined from equation (A2) (see analytical solution in
the Appendix) and equation (7). The generally good agree-
ment between the two sets of results implies the validity
of the equivalent box formulation over a wide range of
body drafts.

Table 3 shows the predicted irregular frequencies for a
sector of a circular tank of radius 7o = 10 m, angle 2a = 7/3
and draft A =0.5m. The exact solutions are obtained

Applied Ocean Research, 1986, Vol. 8, No. 4 225
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Figure 2. Non-dimensional hydrodynamic coefficients for the sway, heave and roll motions of a hemispheroid with
ro =10 m and the gravity centre located at (0, 0, — 2.5 m) (A = added mass or moment, B = damping).

from equation (A4) whereas the equivalent box results
derived from equation (7) assume a characteristic length
L = 10 m and beam B = 5.774 m. Again from a comparison
of these findings the error present is small and this suggests
that the equivalent box formula is valid for structures of
rapid varying cross-sectional area along the longitudinal
axis.

For the horizontal triangular prism of length L = 40 m,
beam B =20m and draft A = 10 m, analytical (equation
(A9)) and approximate solutions (equation (7)) are given
in Table 4 together with the rigid body oscillatory modes
affected by an irregular frequency. These latter predictions
are derived from an assessment of the supplementary
condition described in the previous section.’ Again very
good agreement occurs between the two sets of results. To
further support these findings, Fig. 1 illustrates the
humerical results for the triangular prism’s hydrodynamic
coefficients determined from a mixed source-dipole dis-
tribution computer program based on the Green’s function
integral equation (i.e. equation (2)). The predicted irregular
frequencies and influenced modes as listed in Table 4 can
be found precisely in Fig. 1. For example, Table 4 gives the
first irregular frequency at @ = 1.58, having an effect on
heave motion only. At this frequency singular changes
occur in the heave added mass 433 and damping Bjj illu-
strated in Fig. 1. This case study provides additional
tvidence of the accuracy of the predicted values of the
regular frequency by the equivalent box approximation
and the validity of the predicted occurrence rule of
the irregular frequency defined by the supplementary

Condition.

Numerical examples

Three additional body geometries were chosen for the
numerical verification of the equivalent box approach. The
mixed source-dipole distribution program is used in these
numerical computations.

Firstly a hemispheroid of radius ro= 10 m (i.e. L=B =
2ro and h = rg) is adopted. Figure 2 shows the calculated
hydrodynamic coefficients for sway, heave and roll modes
of this hemispheroid. The non-dimensional values of the
irregular frequencies resulted from the equivalent box
formula are listed in Table S.

According to the supplementary condition,’ irregular
frequencies @;; = 1.656 and @j; = 2.384 have influence
on heave coefficients whilst frequencies @z = 2.015 and
W4 = 2721 affect the calculated coefficients of sway and
roll motions. These predicted irregular frequencies together
with the affected modes coincide with the singular be-
haviour appearing in the calculated hydrodynamic coef-
ficients as shown in Fig. 2.

Table 5. Irregular frequencies for a hemispheroid predicted by
equation (7)

P
m 1 2 3 -+
@ @ @ @
1 1.656 2,015 2.384 2.721
2 2015 2.257 2.545 2.834
3 2,384 2.545 2.760 2.996
4 € 2.834 2,996 3.187
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Figure 3. Non-dimensional hydrodynamic coefficients for the six rigid body modes of motions of a horizontal circular
cylinder with L =20m, B = 2ro=20 mand h = ro = 10 m. The gravity centre is located at (0, 0, — 5 m) (A =added mass or
moment, B = damping).
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Secondly a horizontal circular cylinder of length
L =20m, beam B = 2ro=20m and draft A=ro=10m
is chosen for numerical investigation. The computational
added mass and damping coefficients are given in Fig. 3.
The predictions of the non-dimensional values of the
irregular frequency by the equivalent box approximation
are presented in Table 6.

The rigid body modes of motion affected by the irregular
frequencies are:

heave influenced at ¢ = 1.546 and @3, = 2.233,
sway and roll at wy; = 1.906,

surge and pitch by w,; = 1.888,

yaw by (:)zz =2.127¢

Except for the yaw coefficients, in which there is no
singular change in the frequency range computed, all the
other irregular frequencies and influenced modes predicted

Table 6. Irregular frequencies for a horizontal circular cylinder
predicted by equation (7)

Table 7. Irregular frequencies for a half-ellipsoid predicted by
equation (7)

14
m ¥ 2 3 -+ 5
@ @ & @ @
1 1.487 1.512 1.591 1.707 1.843
2 1.943 1.967 2.016 2.084 2.169
3 2.435 2.450 2.476 2515 2.566

by the present method are confirmed by the observed
singular phenomena in the calculated hydrodynamic coef-
ficients as shown in Fig. 3.

Thirdly a half-ellipsoid of length L = 100 m, beam
B=25m and draft h=12.5 is chosen for numerical
study. The computational results for added mass and
damping coefficients of surge, heave and pitch for the
half-ellipsoid are shown in Fig. 4. Non-dimensional values
of the irregular frequencies predicted by the present
method are listed in Table 7.

The modes influenced by the irregular frequencies which
are determined by the supplementary condition are:

m 1 2 3 & heave by @;; = 1.487, @3, = 1.591 and (s; = 1.843
'y 3 R F surge and pitch by ¢,y = 1.512 and @4y = 1.707
w w w w
1 1.546 1.888 2.233 2.548 The predicted values and the occurrence of the irregular
§ iggg ;-.igg %2(9)2 %-ggg frequencies again coincide with the abrupt variations
3 2585 2686 2833 3.006 ;x;;ergmg in the hydrodynamic coefficients presented in
5] =3 0.4] 4 , 7]
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re 4. Non-dimensional hydrodynamic coefficients for the surge, heave and pitch motions of a half-ellipsoid with

&= 100m, B=25mand h=12.5 m(A =added mass or moment, B = damping).
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FURTHER DISCUSSION AND CONCLUSIONS

An ‘equivalent box formula' is presented to predict the
irregular frequencies associated with a source or mixed
source-dipole distribution method analysis ot a 3D mono-
hull marine structure. The calculated hydrodynamic coef-
ficients of oscillatory modes of the body motion influenced
by an irregular frequency are further determined by the
proposed supplementary condition.® Both analytical and
numerical examples appear to confirm the validity and
accuracy of the equivalent box approach for the examples
considered.

For a twin or multi-hull offshore structure irregular
frequencies encountered in numerical computations are the
sum of those of each individual sub-hull. Hence the equiva-
lent box formulation is still valid.

Since the principal irregular frequencies wp, (p =1, 2,
...)and wy, (M=1,2,...) have a significant influence
on the hydrodynamic coefficients, the density of the
occurrence of the irregular frequency may be easily deter-
mined from equation (7). Apparently, this density dis-
tribution will be high when the aspect ratio of the length
to the beam of the body (i.e. L/B), is large. This may imply
serious irregular frequency problems for a slender ship or
offshore structure at high frequencies commencing from
the first irregular frequency w;;. Therefore, the hydro-
dynamic coefficients at high frequencies produced by a
singularity  distribution method may be somewhat
questionable.

However, the longest irregular wave length must be the
same order of the body beam and therefore the 2D strip
approximation may be used instead of the 3D computation.
In the 2D case, irregular frequencies can be removed by
Ogilvie and Shin’s method for a mono-hull and by a new
proposed formulation derived recently by the authors for a
twin or multi-hull.

By using the equivalent box formulation, the values of
the irregular frequencies become known a priori to the
numerical computation and one can either avoid calcula-
tions around these discrete frequencies or distinguish
whether or not a peculiar variation in the calculated
hydrodynamic coefficients is caused by mathematical
failure (irregular frequency) or by physical reasons such as
resonant waves.
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APPENDIX

Analytical solution of the interior eigenvalue problem
(ie. equation (4)) are available for a circular tank}? a
sector of a circular tank and a horizontal triangular
prism.}

A circular tank
For a circular tank of radius rq, i.e. L = B = 2r,, and

draft h the interior eigen solution® of equation (4) is given
by

cos(pB)
sin (p6)
for r<ry, 0<0<2m, —h<z<0, p=0, 1, ...and

m=1,2,....
The irregular frequencies occur at

bpm =Jp (kr)[ ] sinh [k(z + h)] A1

Wpm = [gk coth (kh)] /2 (A2)
X
with k = -2 ,
ro

where x,, is the mth zero of J, (x) (p=0, 1, ...), the
Bessel function of the first kind of order p.

A sector of a circular tank

For a sector of a circular tank with radius r,, angle 2
and draft A, the solution of the interior velocity potential
satisfying equation (4) can be derived as®

. cos(p) 7 .
bom =Jp (k1) [sin(p&)]smh [k (z + h)],
_ _ (A3)
for [p = (mn 1:/2)/0:] ’
P =mnfa

r<ro,—a<0<aq-h<z<0andm=1,2,...

The irregular frequencies occur at

Wpm = {gk coth (kh)}'? (A4)
X
withk =——,
ro

where X, is the mth zero of J, (x) with p = (mn — #/2)/
aorp =mnfa.

A horizontal triangular prism

Analytical solutions of the interior eigenvalue problem,
equation (4), for a horizontal triangular prism of length
L,sbeam B and draft h = B/2 (see Fig. 1) may be expressed
as

- [ cosh (e) cos (Bz") — cos (fy) cosh (az”) ]
" L sinh (o) sin (82") - sin () sinh (oz")
y-symmetric (AS)

sin [k(x — le)]'y-anﬂsynunetric

for —L2<x<L[2, —2'< y<z' and 0<z'<h with
z' =z + h, where y-symmetric (anitsymmetric) means that
¢ is symmetric (antisymmetric) about the x-axis, ie.
#x,—»,2") = cd(x,y,2") with ¢ = 1 (-1).

To satisfy the boundary conditions in equation (4) the
solution requires
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_ pr forp=1,2,..., (A6) « coth (ah) — B cotan (Bh) = 0, y-antisymmetric. (A8)
L The irregular frequencies appear at
2 _ 12
- =K, (a7 [—gB tan (Br)] /2, y-symmetric, (A9)
w=
and [28 cotan (k)] V2, y-antisymmetric,
a tanh (ah) + B tan (Bh) = 0, y-symmetric, where § is obtained by solving equations (A6)~(A8).
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A multiple Green’s function expression for the
hydrodynamic analysis of multi-hull structures
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of Mechanical Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

W. G. PRICE

Department of Mechanical Engineering, Brunel Universitv, Uxbridge, Middlesex, UB8 3PH, UK

A modified Green’s function expression in a multiple function form is developed to evaluate the
hydrodynamic coefficients of two-dimensional multi-hull structures floating or fixed in a seaway.
Regrettably in conventional singularity methods applied to mono-hulls, twin-hulls, etc., irregular
frequencies arise in the numerical analysis. It is shown that when the modified Green’s function is
used, the numerical analysis is free of irregular frequencies, the numerical accuracy of the results
below the lowest irregular frequency is the same as derived from the conventional approach and the
physical phenomenon of resonant surface wave interaction is retained in the theory. Resuits are
presented for symmetric and asymmetric twin hull configurations as well as a rectangular mono-hull
section heeled to an angle of 15°. A comparison between results evaluated from conventional and

modified singularity approaches is also included.

INTRODUCTION

During these recent years interest has been sustained
in multi-hull surface piercing floating structures (i.e.
catamarans and SWATHSs, trimarans, multi-hull semi-
submersibles, side wall hovercraft, etc). This has culminated
in the building of a large 3500 ton displacement SWATH
vessel' though several smaller prototypes have been con-
structed worldwide.! Such developments have encouraged
extensive research activities, seeking a better understanding
and prediction of the behaviour of these multi-hull vessels
travelling in a seaway. To do this many hydrodynamic,

structural and hydroelastic theories have been proposed,!

involving both two and three dimensional (2D and 3D)
idealisations of the body. This paper however, focusses
attention on a method to evaluate fluid-structure inter-
actions arising in multi-hull structures, especially of a
twin-hull configuration.

Many different hydrodynamic theories have been
developed (for example, the multipole expansions,? singu-
larity distributions,>™ and null field equations,” etc.)
to determine the fluid loading on marine structures.
Mathematically many of these methods appear effective
when discussing simple idealised structures. Recently, a
comprehensive numerical investigation was conducted by
Takagi et al.® into the applicability of these theories to
more complicated geometric contours associated with
realistically shaped marine structures. This study revealed
that some approaches produce very poor numerical results.
This suggests that some elegantly derived mathematical

models may be

Accepted January 1986. Discussion closes June 1987.
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(i) accurate mathematically but not necessarily accurate
numerically;

(ii) limited in application to well defined idealised
shapes (i.e. circular or near circular geometries)
rather than general geometric bodies; or

(iif) theoretically incorrect.

It is not the intention of this paper to reiterate such an
investigation but to develop a mathematical model which
has a practical application.

The multipole expansion approach first developed for
mono-hulls by Ursell? has been applied by Wang and Wahab®
to a twin circular cylinder structure oscillating vertically
in calm water. Ohkusu®® developed a large distance approxi-
mation applicable to more general twin hull structures even
if the distance between the two sub-hulls is small, whereas
Lee!! and Pien and Lee'? concentrated their efforts on the
theoretical predictions and experimental verification of the
fluid actions arising in SWATH type hulls. In fact, using a
source distribution method,%!? they observed two types of
singular solutions occurring at certain frequencies. That is

(i) irregular frequencies’*™!* due to an inherent mathe-
matical failure in the formulation arising in the
singularity distribution procedure, and

(i) resonant wave frequencies'®!” due to standing
waves existing between the two hulls,

Both these two kinds of singular solutions cause abrupt
variations in the calculated hydrodynamic coefficients
and when the two singular phenomena occur at closely
spaced frequencies, immediate difficulties are experienced
in attempting to distinguish between a real physical
phenomenon (ii) and a mathematical abstraction (i).

0141-1187/87/020058-09 $2.00
© 1987 Computational Mechanics Publications
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To remove the troublesome irregular frequency, Pien
and Lee!? imposed an ‘artificial lid boundary condition’ on
the interior free surface of the two hull forms. Their
example calculations showed success in eliminating the
irregular frequency effect in a mono-hull but the intro-
duction of the lid produced deviations from the results
obtained by the original approach in the frequency range
below the first irregular frequency value (see Fig. 3d,
ref. 12).

For mono-hulls, other methods have been proposed
to remove the irregular frequency phenomenon, such as the
combined integral equation methods,'®!° but the approach
of Ogilvie and Shin? to 2D single hull bodies is of particu-
lar relevance to this paper. They overcome this problem by
adopting two modified Green’s functions, i.e. a symmetric
form and an asymmetric form. The symmetric expression
only removes difficulties occurring at the irregular frequen-
cies found in the calculation of the hydrodynamic coeffi-
cients of symmetric modes of motion of a 2D body with
port-starboard symmetry. Their asymmetric expression has
been found® ** numerically to be a more effective approach
to eliminate irregular frequencies in an arbitrarily-shaped
2D mono-hull body.

Ogilvie and Shin’s symmetric Green’s function was ex-
tended by Sayer® to the case of finite water depth, and
then by Ursell*? who derived a modified Green’s function in
a multipole expansion form. By means of this expression
Martin’ introduced the null field equation method from
acoustics and this was further extended to a twin-hull prob-
lem.? In example calculations of simple ellipses, however,
Martin found that the null field equation method does not
converge for ellipses of beam (B) to draft (k) ratio of
orders B/h < 0.8 and B/h > 6.0. Furthermore, when calcu-
lating more realistic geometries Takagi et al.® reported very
poor numerical data by using this approach. Although the
null field equation method has the advantage of eliminating
the problem of irregular frequency it unfortunately intro-
duces a serious disadvantage of producing non-convergent
or incorrect solutions. For realistic marine structures, it is
most likely that B/h may be beyond the range 0.8 to 6.0.
For example, B/h <0.8 usually holds in a SWATH (cata-
maran) ship,%'*1+1%:1¢ in general in the bow and stern regions
of a vessel, etc. whereas a sea-going barge,?* a jack-up
rig,2%!7 and a dry dock® etc., may have B/h > 6.0. There-
fore, at present, the practical application of the null field
equation method magr be open to question but this will be
discussed elsewhere 2

In parallel to these developments, by directly extending
Ogilvie and Shin’s asymmetric expression, a multiple
Green’s function expression i3 proposed for the hydro-
dynamic analysis of a marine structure with a mono-hull,
twin-hull, multi-hull, or to adjacent bodies of differing
geometric contours. The method developed and discussed
in this paper is shown to eliminate irregular frequencies
and to retain numerical accuracy of the calculated hydro-
dynamic coefficients of multi-hull floating bodies, especially
in the frequency range below the first irregular frequency.

THE GREEN'S FUNCTION INTEGRAL EQUATION

When a 2D free-surface piercing marine structure oscillates
with frequency w in calm water or is excited by incident
waves of similar frequency, the relationships® governing
the fluid-structure problem may be expressed as

V=0 in the fluid domain ¥
¢
a_z —v$p=0 on the calm water surface z=0
0¢
—= on the seabed
0z
09
—=uy, on the mean body sectional contour { M
on C
w
together with the radiation condition
)
lim {—¢ F imp}: 0
y—>too ay

In these equations, ¢ denotes the time independent ampli-
tude of the velocity potential ¢ '*", v, is the normal
velocity component on the sectional contour, n is a unit
normal pointing into the fluid and v = w?/g is the wave
number. Figure 1 illustrates the chosen Cartesian co-
ordinates Qyz with axis Qy fixed in the calm water surface
and axis Oz is positive upwards.

From an application of Green’s theorem, it can be
shown that the integral equation in a source-dipole distri-
bution approach may be cast into the form?®

0
7¢(p) + J ¢(q) —Go(p.q) dI
5 on,

- j' Go(p,2) on(@) dI @

Cw

for 2D modelling of the wetted body sectional contour
C,, in which the two points p(y, z) and q(n, {) are sited,
ie. p, q€C,. The complementary problem for point
P interior to C,, ie. in V, is described by the integral
equation

d
J. ¢(q) g—Go(p, q)dl= J. Go(P, ) va(q) dI 3)
Cw " Cw

for g €C,, and pE V. In these expressions Go( ) denotes
the classical Green's function'® satisfying Laplace's equa-
tion, the free surface condition, the seabed condition and
the radiation condition.

In equations (2) and (3) the operator 3/0n, signifies an
operation on the variable ¢ with parameters p and p treated
as constants. Therefore if Lp{ } denotes an operator acting
only on the variable p and F(p, p) is a suitable but as yet
unspecified function, it follows from equation (3) that

ply,0)

(a) (b)

Figure 1. Cartesian co-ordinate system and symbol defini-
tions: (a) a mono-hull section; (b) a twin-hull section
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0
f @) —[F(p,B) Lp (Go(B,a)}] dI
anq
Cw

= J. F(p,p) Ly {Go(B,q) }va(q) dl
Cw
or defining an additional Green's function
G(p.q.p) = F(p, ) L, {Go(P,4)} Q)
then
2 - .
f ¢@) aTqG(p,q,i') d7= f G@:q,P)va(@) dl (5)
Cw Cw
Multiplying equation (5) by a chosen constant C and
adding it to equation (2) gives

' a
ro(p) + J' @) —— G*(p,q. 5) di
Bnq
Cw

- f G*(p,9,B) onl@) dI
Cw

where the modified Green’s function G*( ) is defined as

G*(p,4,P) = Go(p,q) + CG(p,q,P) (6)

Now equation (3) is valid for any point 5 € V. In particular,
for a structure of M free-surface piercing sub-hulls with
individual interior regions Vi, Vayours VM, each of the
Mpoints ;€ V;EV(i=1,2,..., M)satisfies the equation

q

0
J' o@) ——C(p,q, ;) dl = J' (0.0, 52) vn(@) di
on g
Cw w

for i=1,2,..., M, and the continuation of these M inte-
gral equations may be written as

]

J’ ¢(q)—G(p’q’plap21 cee vﬁM) dl
ang

Cw

- f G(2,4,B1,P2, - - » Pag) (@) I
Cw

where the multiple additional function is given by

M
G.(psq’pl:pZ’ oo :pM) = iZ] CiG(P,q’ pi)

It now follows that the previous result in equation (6) may
be generalised into the form

G"(P,q,f?upz.--an)

M
=Go(p, @) + 12 CG(p,q,P)
=1

=Go(p.q) + ‘:{ CiF(p. b)) Lp{Go(P1, )} ™
i=1

where again this modified Green’s function satisfies the -

equation
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k]
no(p) + f 6@) 2 CH 0,0, BB B O
q
Cw

= f G*(p,4,P1,D2, - Py) valq) dI (8)
Cw

The modified Green’s function in equation (7) is the
summation of a classical Green’s function and multiple
operated Green’s functions and therefore it may be termed
as a multiple Green’s function expression,

The multiple Green’s function integral equation, equa-
tion (8), represents an ordinary source-dipole distribution
on the mean body sectional contour C,, together with M
additional singularities located inside the M free-surface
piercing sub-hulls. By suitably choosing the form of singu-
larity, the role of these additional singularity terms is to
absorb or cancel the interior resonant wave modes due to
irregular frequencies. This has been proved by Ogilvie and
Shin® in the special case of a mono-hull.

MULTIPLE GREEN’S FUNCTION EXPRESSION

For a body floating in deep water, the classical Green’s
function Go(p,q) relating to the potential at point p =
(y,2) to a source at g =(n,¢) on the body contour is
given by

L=+ (=)
oo =3y

5 } +1,+il, ©)
where the principal value integral

uzt$)
,1=23[ ©— cosp(y ~m) du

v—u
0
and

L=—2ne"*9 cosp(y — 1)

To each hull is allocated an interior point 5; = (7;, 0),
ie. p;E€F; with F; being the interior free surface of
the ith hull, so that for a mono-hull structure (M = 1)
the modified Green’s function in equation (7) becomes

G*(P: q’f)l)E G‘(yr ZM g.;yh 0)
=Go(p,q) + C1G(p,4,P1) (10)

whereas for a twin-hull vessel (M = 2) with interior point
p1 =(91,0) in one hull and p, =(J;,0) in the other it
follows that

G*(p,4,P1,D2) = Go(p,q) + C1G(P, 4, Py)
+ C6(p,q,P2) (11)

and so on for a multi-hull marine structure with M indi-
vidual hulls.

The asymmetric modified Green’s function expression
proposed by Ogilvie and Shin® is effective in removing
difficulties associated with irregular frequencies in general
mono-hull cases as has been successfully used by Takagi
et al.® and Wu and Price’® in the evaluation of the hydro-
dynamic coefficients of a variety of single body marine
structures with realistic 2D contours. A possible form of
the additional Green’s function for the present multi-
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hull cases may be obtained straightforwardly by modifying
and extending Ogilvie and Shin’s asymmetric form. That is

. 0
G(p.q,B;) = F(p, by {Cu sgn(y —J’i)[a—y'Go(p"I)]y =y
z=0

+ C:z[a—z Go(p, q)] {_:(,;,} (12)

for i=1,2,...,M. For generality, C;;, Cj, include the
constant C; and are treated as complex constants and sgn( )
denotes the sign function defined as

1 fora>0
sgn(a) =¢ 0 fora=0
—1 fora<0

and the function F(p, p;) can be chosen as

F(p, B;)) = Go(p, By) or exp(vz —ivly — p;)

Strictly speaking, the sign function, sgn(y — 9;), in equation
(12) should be regarded as part of the function F(p, p;).

The present multiple Green’s function expression, equa-
tions (7) and (12), represents a further generalisation of
Ogilvie and Shin’s?® asymmetric modified Green’s func-
tion relating to mono-hulls. That is, for i = 1 and the point
P, = 0(0, 0) positioned at the origin, equation (12) reduces
to

G(p,q.0)

9
= exp(vz—iviy|) {Cu sgn(y)[—Go(y, z;m, §)] y=0
oy z=0
d
+Cn[a_Go(}’,2;n: f)]y=o} (13)
¥4 z=0

When exchanging the positions of p( ¥, z) and q(n, {) equa-
tion (13) is the same as that proposed by Ogilvie and Shin®
in a source distribution integral equation.

In the case of a twin-hull vessel the multiple Green’s
function is given in equation (11), whereas the individual
terms are of the form

GO, z;n,¢:91,0)

0
= exp(vz—inly —m){cu Sgn(y—yl)[;TyGo(J’:Z ;n,;)]yq
z2=0

+ Clz[sgco(y»zmx ")]yfy.} (14)

z=0
for position p; =(#,, 0) in hull I and

Gr,z;n,¢:92,0)

3
= exp(vz—ivly—?zl){cn n(y—9,) —y—Go(y, z;m, §)] Y=t

z=0

9
+ Cul 2o, 7570 e} as
0z =0
for position p; = (93, 0) in hull IL.

By a similar procedure for M interior points Bi(5:,0)
(i=1,2,...,M) the expressions can be easily obtained to
account for any number of hulls.

In numerical computations, however, all these individual
constants involved in the multiple Green’s function expres-
sion may simply take an equal complex value, for example,

C=—(1-N.

As pointed out by the authors,!® irregular frequencies
encountered in numerical calculations of a twin or muiti-
hull structure are the sum of those of each individual
sub-hull. Since Ogilvie and Shin demonstrated that a
similar additional Green’s function can suppress irregular
frequencies in a mono-hull structure, the present multiple
Green’s function with M additional Green’s functions
related to the M free-surface piercing sub-hulls may sup-
press all the irregular frequencies.

NUMERICAL TECHNIQUES

Although the problem is theoretically formulated, to
determine the fluid actions on realistic marine structure
geometries emphasis must be placed on computational
techniques and detailed numerical treatment to provide
a reasonable solution. Some of the numerical procedures
introduced to evaluate the 2D Green’s function integral
equation together with the present multiple Green’s
function expression in the solution of the fluid-structure
interaction problem in multi-hull structures are now
discussed.

Analogous to the discretisation procedure developed
by Hess and Smith,?® the sectional contour C,, is dis-
cretised into V elemental lengths, Al, and correspondingly,
the integral equation (8) transforms into a set of N linear
equations taking the form

N

Y ayty=V;
j=1

(16)

fori=1,2,...,N. The terms appearing in this set of
equations are given by

) ¢ 0
ay = 11’8” + (1 - 6,;) J‘ a_n‘, dl+'a;I(Gﬂ—Xll) Alf

]
4 a7
N
V; = Z v,,,['[ Xij dl + (G{] _Xu) AI]:I
i=1
AI]
where
Xy=In{Ry}=In{(3;—y)*+(z—2)* }'*
1 fori=j
by = .
0 fori#j

and vy, is the normal velocity on the jth line element.

In the present study the two elemental integrals in
equation (17) are analytically computed for neigh-
bouring elements satisfying the imposed geometric con-
dition Ry <2Al, otherwise (i.e. Ry > 24l) these inte-
grals may be approximated simply by the terms (3X;,/
an,)AI, and XilAl/’

The remaining integrals involved in the evaluation
of G} and 3Gf}/dn; may be expressed as

J‘ e+ {cos u(y;-y)} du

: sin u(y;—y)

(18)

- 1 J—(ZI + Z)}
=P+ + 22y —»)
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and
[ eHi* 9 ( cos u(y;— ) _[Re(D)
oJ( y—u {—sinu(y,—y)}d“_{lm(l)} (19)

where Re( ) and Im( ) denote the real and imaginary
components respectively of the principal value integral®

e-iu(oz,-—d)
=f
v—u
]

= g-iV(@j-®) {in—E, [—iV(Oli -®)]} (20)

where oy =y; +iz;, & =y —iz. E\( ) is the exponential
integral which can be written in a series form.® In fact,
in equations (18)~(20) the coordinate (y,z) can repre-
sent the ith point (y;, z;) or the M interior positions (y;, 0)
(i=1,2,..., M).

There now exists sufficient information for g;; and ¥;
in equation (16) or (17) to be defined and the determina-
tion of ¢(j=1,2,...,N) may be completed. This
allows the hydrodynamic added mass coefficients A4,
and damping coefficients B, due to radiation waves and
wave exciting forces F, due to the combination of inci-
dent and diffracted waves to be determined for a 2D
multi-hull body from the relationships

Ag= L fIm(¢*) n,dl 1
wC

By =—p fRe(qs")n,dI | (21
Cw

F,=—iwp f(¢° +¢)n,dl
Cw

for r=2—4, k=2 —4. In this equation, r = 2 denotes a
sway motion, r=3 a heave motion,and r=4a roll motion;
¢° is the incident wave potential, ¢” is the corresponding
diffraction wave potential and o* (k = 2 — 4) are the radia-
tion potentials of sway, heave and roll modes respectively.

TWIN-HULL COMPUTATIONS

The applicability of any theory relies heavily on its
accuracy and practical usage. Takagi er al.® assessed a
variety of mathematical approaches and the evidence
presented shows that some theoretical methods produce
very poor numerical results when applied to some realisti-
cally shaped marine structures. In this paper the proposed
mathematical model and the accuracy of the numerical
method are judged on two self imposed conditions, namely,

(i) irregular frequencies are eliminated in the frequency
range of interest,

(ii) the same numerical accuracy of prediction is achieved
as derived from a conventional singularity method
(for example, a combination of equations (2) and
(9)), especially in the frequency range below the
first irregular frequency value since the original
method provides accurate solutions in the lower
frequency range.

If these two conditions are satisfied, then the proposed
method and analysis has a wide range of application.
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Twin rectangular cylinders (symmetric)

A sketch of this twin rectangular hull configuration is
shown in Figure 2 and represents an idealisation of a drilling
platform in transit !’

Also illustrated are the sway, heave and roll coefficients
calculated by a conventional source-dipole method.! Rapid
and abrupt variations occur in all the curves describing the
coefficients at a number of frequencies and the conclusions
deduced in previous studies'®!**® are again proved valid.
That is, the irregular frequencies occurring in a twin hull
structure are the sum of those of each individual hull
section. In the present example, the first irregular frequency
is predicted'®"® at w?B/2g = 1.715, confirming the exis-
tence of an irregular frequency and not a wave resonance
at this frequency. Such a phenomenon is clearly seen in the
sway and heave curves but barely visible in the roll curves.
However, by the approximation proposed by Wu and
Price,'® the first resonant wave frequency is predicted at
w?B/2g = 1.57 (i.e. the wave length \ =~ 2B), at which
large changes in the sway and roll fluid actions are clearly
visible. It is interesting to note that at this frequency, no
resonant wave effect in heave motion is evident but this
result should be compared with those found in the next
example. An additional condition governing the appearance
of the resonant wave influence has been formulated by the
authors and interested readers should refer to Ref. 16 for
details.

Figure 3 illustrates the same set of hydrodynamic coeffi-
cients but now the results are computed from the modified
source-dipole integral equation with a multiple Green’s
function as described previously. On comparing these
results with those in Figure 2, the singular phenomenon
at the irregular frequency w?B/2g=1.715 has been removed
but the resonant wave phenomenon remains although there
is a slight shift in frequency to w?B/2g = 1.59. Apart from
the vicinities of these two frequency values, the computa-
tional results in all coefficients are exactly the same as
those determined by the conventional source-dipole
method and can be compared with the predictions pre-
sented in Figures 2 and 3.

This example proves to show that for symmetric twin
hull cross-sections the present method is successful, satisfy-
ing the two imposed conditions introduced prior to the
commencement of the computations.

Two different hull sections {asymmetric)

Figure 4 illustrates a two dimensional cross-section con.
sisting of triangular and rectangular hulls. For this con-
figuration, irregular frequencies are predicted'®® to occur
at w?B/2g =1.715 and 2.34, corresponding respectively to
the irregular frequencies occurring in a mono-hull rectangu-
lar section and a triangular section,

The sway, heave and roll hydrodynamic coefficients
determined from a conventional source-dipole method are
shown in Figure 4. Variations in the curves are observed
at frequencies w?B/2g =1.66, 1.785 and 2.34 indicating
one resonant wave frequency and two irregular frequencies.
The last frequency value coincides exactly with the second
predicted irregular frequency value but the first two are
slightly different from the first predicted irregular fre-
quency value. It is believed that this is due to overlap in
these two ill-conditioning bandwidths occurring in the
numerical computations and therefore an interaction effect
may cause the deviation.

When the modified approach is used, the irregular fre-
quency phenomenon disappears as shown by the results
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given in Figure 5. The resonant wave frequency phenome-
non remains, i.e. at w*B/2g = 1.66, and all the conditions
defining ‘“numerical accuracy” of the method are again
satisfied.

MONO-HULL COMPUTATION

The modified approach described in this paper has been
shown numerically applicable to both symmetric and
asymmetric twin hull sections. In the case of a mono-hull,
the expressions derived in the present source-dipole method
have corresponding forms in the source distribution method
of Ogilvie and Shin,?®

Figure 6 illustrates the results derived for a rectangular
section at a heel angle of 15° representing a damaged
caisson. Again the numerical trends and findings observed
in the computations of the twin-hull sections remain valid
for this 2D mono-hull section.

CONCLUDING REMARKS

A multiple Green’s function expression is represented by
a combination of a classical Green’s function (i.e. equation
(9)) and M additional terms (i.e. equation (12)) derived
by a succession of linear operations (that is, derivatives,
multiplications, etc.) on the classical Green’s function.
In the latter, it can be seen that these M additional func-
tions correspond to the M interior free-surface points
located in each of the M free-surface piercing individual
hulls of the multi-hull structure. If an individual hull is
totally submerged no additional term is required for this
hull. For example, if a multi-hull body consists of M

individual hulls of which two are completely submerged
then only (M —2) additional functions are necessarily
included in the multiple Green’s function expression.

In this paper this formulation is applied in conjunc-
tion with a modified Green’s function integral equation
based on a source-dipole distribution, i.e. equation (8).
However, it can also be used with a source distribution
integral equation.

The multiple Green’s function technique clearly elimi-
nates the problem of irregular frequencies associated with
conventional singularity methods but retains the physical
phenomenon of surface wave resonance caused by fluid-
structure interaction between sub-hulls of the multi-hull
structure. This approach possesses the same numerical
accuracy as conventional methods especially at frequen-
cies below the first irregular frequency.

The computing time increase due to the inclusion of the
multiple Green’s function in the present method is rather
small. It is approximately equal to M/2N of that required
for a computation using a conventional singularity method
involving NV discretised line elements to describe the wetted
sectional contour of the multi-hull with M free-surface
piercing sub-hulls.

The present formulation is readily implemented in any
existing computational program adopting a 2D singularity
distribution method by simply substituting the conven-
tional Green’s function calculation subroutine with the
present multiple Green’s function method subroutine.

In the present paper a program including the proposed
approach and numerical procedures is used successfully
to study symmetric and asymmetric twin-hull structures
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Figure 6. Comparisons between the results by the conventiongl method (the solid lines) and the present multiple Green’s
function method (the circular points) for a rectangular hull in 15 of heel
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as well as an asymmetric mono-hull body. This technique
is easily applied to a multi-hull structure of arbitrarily-
shaped 2D cross section and to a problem involving multiple
2D bodies. Detailed results for these two cases will be
published elsewhere.
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WATER WAVE RADIATION AND DIFFRACTION PROBLEMS

by
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Ship Hydrodynamics Laboratory, Shanghai Jiao-Tong University,China;
preseritly at Rrunel, The University of West London, Uxbridge, Middlesex
UB8 3PH, U.K.

1. INTRODUCTION

The Green function integral equation governing the water wave-structure
interaction problem can be expressed in an exterior, surface or interior
integral equation form. Conventionally, in the field of marine hydrodynamics
the surface integral equation is always employed in numerical computation
because of the diagonally dominant property of the resultant matrix equation
and sufficient experiences gained in practical applications. When an interior
integral equation is adopted, the kernal function is never singular.

(1)

However, according to Mei the interior integral equation has not

been used in water wave problems perhaps due to the following reasons:

(1) the resultant matrix equation would no longer be diagonally dominant,
(ii) the choice of the interior field points could be too arbitrary.

An effort to apply the interior integral equation has been made by

Martin(z) who introduced from acoustics a null field equation method based on

the original interior integral equation. Unfortunately, divergent solutions
were found for both thin and wide elliptical sections. It seems that the
derived null field equation may be valid only for circular sections and
slightly perturbed geometries based on a semi-circle or some other simple
geometries corresponding to the chosen basis of series functions. These
limitations of the null field equation approach have been well discussed
in electromagnetics, optics and acoustics (for example, by Bates et al,
Phil. Trans. Royal Soc., 1977; van den Berg et al, J. Opt. Soc. Am., 1979;

etc.).

In the present paper theoretical basis and numerical techniques to apply the
interior integral equation to general geometric forms of ships and offshore

structures are described.



2. INTEGRAL EQUATION AND DIAGONAL DOMINANT PROPERTY

The Green function integral equation governing the radiation or diffraction

. -iwt
wave potential ¢e can be expressed as

4 3G (P D
2{mo@ =[O0 = SR, gg - - s V,(@ G(R,Q)as  for P(x,y,2)els, (1)
0 w Q W . ’

D
These three forms in eq. (l) may be referred to as the exterior, the surface
and the interior integral equations corresponding to the locations of the
field point P outside the body mean wetted surface Sw (i.e. in the exterior
fluid domain D), on S, and inside S (i.e. in the interior domain D). The

Green function has the form (Wehausen & Laitone, 1960):
G(P,Q) = L/ry, + H(P,Qik) = 1/{ (x=£) 2+(y-n) 2+(z-0) 2}’ 2 + H(P,Q:k) (2)

As far as the surface integral equation is concerned the Green function

possesses a l/r singularity for the case (x,y,z) = (§,n,%).

Rewrite eq. (l) approximately in a discretised form for i = 1,2,...N)as’

N N
ap(Q,) - jgl Q. )_/;s 3n (Gtp, 'Q ) - éij/rP 0 ) ds = 'j-§1 vn(Qj)fs G(Pi,Qj)ds (3)

with _J1 i=3
Gij {O for i # S

and define the SELF-INDUCED CONTRIBUTIOM FACTOR

4T 3 D (neighbourhood of.sw)
§ = s (1/r )ds for Pi e%_ . (4)

0 anQ P19 D (any positions)

Q=

Qi @i iTi

For = - Ot, that is, %.tends to Q. from the exterior or the interior
domain, & becomes 2T which is identlcal with the second form of eq. (l).
For simplicity, a circular flat pagel ASQi is chosen together with a field
point Pi of local coordinats (0,0,2z) as illustrated in Fig. 1. It can be
readily derived that

4 l-‘ D (neighbourhood of Sw)
- 2
o ={2m} - 27 sign(z) (1 - ) for P .€{S, (5)
0 Ya%+ z? 1

D (any positions)

values of & versus the non-dimensional distance z/a are shown in Fig. 2. It
is apparent that the self-induced contribution factor a varies continously
and smoothly from O+2T+y < 47 as the field point Pi moves from a far interior
location, via the body surface S,, to the exterior region neighbouring to the

body surface. This conclusion holds for any arbitrary polygonal panels.

This discussion implies that if all the interior field points are chosen
such that |;| is small the resultant matrix equation of the interior integral
equation retains a similar diagonally dominant property to the surface
integral equation app#oach.

+ For P; located in the exterior region not close to the body surface s”, the
first term in eq. (3) should be written as a¢(Qy) + 4ﬂ{¢(pi) - ¢(Qi’

2.



3. CHOICE OF THE INTERIOR FIELD POINTS

As long as all the interior field points are located close to the body
mean wetted surface S, the resultant matrix equation of the interior
integral formulation has the numerical advantage of diagonal domination.
In practical numerical computation, all chosen interior control points

make up an interior surface S which is parallel to the body surface Sw and
with a scale reduction factor Cg slightly less than 1.0 (i.e. Cg = 1.0 - €
for € being a small positive value). In the two-dimensional case, a scale
reduction factor value Cg = 0.95 implies that the area enclosed by the

interior contour is about 90% of the cross-sectional area.

In such a manner all these interior points can be automatically produced
by a computational programme suite ("HYDROINT") in terms of the same input
data file for the computer package based on the surface integral equation

technique.

4. NUMERICAL EXAMPLES

Extensive numerical applications of the present interior integral equation
method to various ship forms and complicated offsnore structuras have been
conducted to verify the proposed approach. Two examples are displyed in
the present paper. Fig. 3 shows the calculated sway, heave and roll adcded
mass and damping coefficients for a ship section. The two setsof data
obtained from the surface and the interior integral equation techniques
coincide very well. Since the ordinary Green function is used irregular
frequencies occur when these computed hydrodynamic coefficients exhibit
abrupt variations due to mathematical failures (cf Wu and Price, First
Workshop, 1986 and J. Applied Ocean Res., Oct. 1986). The irregular
frequencies appearing in the interior integral equation calculation are
higher than those related to the surface integral equation formulation
because of a reduced area of the interior free-surface bounded by th?3§hosen
is

adopted there exist no irregular frequency effects. This may be confirmed

artificial interior surface. However, when a modified Green function

by data given in Fig. 4. In Fig. 4 hydrodynamic coefficients for a rectangu-
lar section derived fromthe surface and the interior integral equations

by means of the modified Green function are presented. Excellent agreement
between the two formulation calculations can be observed and there is no
mathematical failure due to irregular frequency problem. In addition to

the similar numerical solution stability and accuracy the computing time
required for the surface and the interior integreal equations is nearly the

same.



5. CONCLUSIONS

(i) The resultant matrix equation of the interior integral equation can
retain diagonal dominant feature if all the interior field pointsare

arranged close to the body wetted surface.

{ii) It is proposed to locate these interior control points on an

artificial interior surface which is close and parallel-to the bedy

surface.

(iii) In contrast with the null field equation method which seems free of
irreéular frequency effect but may have divergent solutions for
more complicated geometries in practical applications, the interiox
integral equation itself can not eliminate difficulties associated
with irregular frequency problem in a higher frequency range but

it may be applicable to arbitrary ship forms and offshore structure

geometries.

(iv) In combination with the modified Green function the present interior
integral equation approach can remove irregular frequency influenca

and thus may be applied to a wider range of wave frequencies as well

as body geometries.

(v) Numerical example studies confirm that the present method can be
performed in a totally same manner as the conventional surface integral
equation with the same input data, similar numerical stability
indicated by associated values of a condition number, a similar degree of

numerical accuracy achieved in nearly the same computer time.

REFERENCE. S

1. Mei, C.C. "Numerical methods in water-wave diffraction and radiation”,
Ann. Rev. Fluid Mech., Vol. 10, 1978, pp. 393-416.

2. Martin, P.A. "On the null-field equations for water wave radiation
problems", J. Fluid Mech., Vol. 113, 1981, pp.315-332.

3. Wu, X.J. and Price, W.G. "A multiple Green function expression for the
hydrodynamic analysis of multi-hull structures"”, J. Applied Ocean Res.,
Vol. 9, No.2, 1987, pp. 58-66.



1_>i(o,o,2)
z <0

Fig. 1 A circular flat panel on the bodv wetted surface S together
with a field voint P, (0,0,Z) exterior (i.e. Z > 0) Yor irnterior
(i.e. z < 0) to the Sody surface. a is the radius of the panel.
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Fig. 2 Values of the self-induced contribution factor versus the
distance between the field point P i and a circular panel AS
radius a calculated from eq. (5).
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MOTIONS OF FULL-BODIED SLENDER OR SHALLOW DRAFT
MARINE STRUCTURES

Xiong-Jian Wu*),**) and W.G. Price**)

*) Ship Hydrodynamics Laboratory,
Shanghai Jiao-Tong University, China
**) Department of Mechanical Engineering,
Brunel, The Univ. of West London, United Kingdom

Int. Shipbuild. Progr., 36, no. 407 (1989) pp. 237-282

Received : June 1988
Accepted : June 1988

On the basis of an order estimate analysis [1,2] approximate solu-
tions to the horizontal plane motions (ie. surge, sway, yaw) are
derived for full-bodied slender and/or shallow draft floating marine
structures excited by sinusoidal waves of long wavelength. These solu-
tions are intended for use in the early stages of design and are
obtained from analytical expressions (when the body is of a simple
geometric form) or by computing simple expressions requiring only
modest computing resources.

For the structures and wave conditions investigated it is shown that
the contributions of the radiation forces and diffraction forces asso-
ciated with the surge motion are higher order smaller gquantities than
the Froude-Krylov force and for sway and yaw motions these forces
partially cancel one another leaving a residue of order smaller than
the now dominant Froude-Krylov force component. The resulting
approximate solutions of the motion predictions of a wide range of
typical offshore structures are compared with experimental data and
more traditional theoretical approaches incorporating contributions
from radiation and diffraction force components. Satisfactory agree-
ment is found not only at long wavelengths but also in shorter waves,
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confirming the practical applicability of the approximations to describe
the responses of full-shaped slender bodies, submerged slender bodies,
shallow draft slender bodies and three-dimensional shallow draft
structures such as a triangular deck of a jack-up rig.

1. Introduction

Many structures and vessels used in offshore operations, marine trans-
port and in the servicing of offshore platforms, etc., possess forms
described as

(a) slender, defined by the ratios of length L and beam B (i.e.
L/B >> 1) and length to draft h, (L/h >> 1);
(b) shallow draft (B/h >> 1).

An additional feature to (a) and/or (b) is the fullness of the cross-
sectional shape of the body. That is the structure has a relatively long
parallel midbody with a midsection coefficient of order 1.0. The block
coefficient Cp (= V/L Bh, V represents the volume displacement) is
large and the hull is referred to as "full-bodied".

On the basis of the slenderness of the body, slender body theory [1,2]
and strip method techniques [3] have been developed to evaluate the
fluid actions (i.e. hydrodynamic coefficients, wave loads, etc.) associated
with ship-like bodies travelling in waves. For barges, which are a
typical group of "full-bodied slender structure", several practical,
theoretical and experimental investigations into the hydrodynamic
characteristics, motion behaviour and structural responses have been
reported [4-9]. In particular, Wu and Price [8,9] find that it is sur-
prisingly effective to derive approximate solutions of the horizontal
plane motions (ie. surge, sway and yaw) of the structures by including
only the Froude-Krylov force contributions in the analysis, ignoring
the radiation and wave exciting diffraction forces. It was shown that
this approach greatly reduces computational effort without significantly
decreasing the accuracy of the solution. Furthermore, this type of
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approximation appears valid for a variety of three-dimensional shallow
draft of fshore structures of various waterplane geometries such as a cir-
cular dock [10], a triangular jack-up rig [9] and a square platform [10],
etc. In these cases, comparisons between predictions and experimental data
show good agreement confirming the intuitive approach, but a theoretical
basis for the proposed approximate solutions has not been fully justified.

In a study of the surge motion of slender ships, Grim [11] introduced
a similar simplification to the surge exciting force, representing it by a
Froude-Krylov contribution only. However, in the present study, based
on the slenderness parameter [1,2] or shallow draft parameter [9], a
method is developed providing rational approximations to the solutions
of all the horizontal plane motions for a full-bodied slender vessel or
shallow draft structure excited by sinusoidal waves of long wavelength.
If further the vessel is both slender and of shallow draft, the proposed
approximate solutions may be of a higher degree of accuracy.

It is shown that for long wavelengths, the diffraction force due to the
incident sinusoidal wave acting on a restrained full-bodied slender
vessel and the radiation force arising from the body oscillatory sway or
yaw motion are of the same order of magnitude as the Froude-Krylov
force. The firgt two components are of a form which nearly cancel one
another out, contributing a combined influence of much smaller magni-
tude than the now dominant Froude-Krylov component to the wave
forces exciting the sway and yaw motions (as well as surge motion).

Comparisons of predictions from the proposed approach, two- and
three-dimensional methods and experimental data illustrate the validity
of the-approximate solutions. The latter are demonstrated to be appli-
cable and accurate in waves of long wavelength and retain considerable
accuracy even when applied to waves of shorter length.

2. General mathematical formulation

For an arbitrary shaped three-dimensional rigid structure excited by
sinusoidal waves of amplitude ¢,, frequency w, wave number k and
heading angle B (= 1809, head waves), the total linear velocity potential
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® describing the structure-wave interaction may be represented by a
summation of all the potential components ¢j. These are associated with
the bodily motions of surge, sway, heave, roll, pitch, yaw (i.e.
Xj= Xja e‘i“’t, j = 1,2,..,6 respectively), the diffraction potential ¢7,
and the incident wave potential ¢0. That is

sxyz)=de = (404474 ,gl X, ¢) e (1)
j=
with
¢0 - i gwga W(z) eik(xcos}9+ysin,19) )
where
ekz for infinite water depth, d = co
V@ = csh K219 for finite water depth, d

and k satisfies the relationship

k tanh kd ) d # oo,

The unknown velocity potentials ¢J (= 1,2,..,7) can be solved using
the Green’s function integral equation (cf. [12]).

27 §(P) - G(RQ) 45 _ G(P,Q) dS
roP) - [ 5, 4@ %ane sz v (Q G(P.Q) 3)

where G(P,Q) denotes the appropriate Green’s function, P(x,y,z) and
Q(¢,m,¢) are two points on the wetted body surface Sy,, and the normal
velocity
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-lw nj for j=1,2,..,6

-9¢%/0n for j = 7.
Here the unit normal vector

ﬁ_t = (nl,nz,n3)

n x(x - XY " VYgr 2 - zG) = (n4,n5,n6)

and coordinates (xG,yG,%a) denote the centre of gravity G defined in a
suitable right-hand axis system with origin placed at amidships.

Let us assume that the velocity potential solutions ¢j exist and can be
determined. This allows the added mass coefficient A.; (j,r = 1,2,...,6)
damping coefficient B,; and diffraction wave force Fr7J to be evaluated
from the expressions [2]

2 3 = - . j
w Arj+1wBrj— .[S iwpé nrdS (4)
w
or
=L j
Arj_sz Im(¢) n_ds
v (5)
-- j
Brj- pIS Re(¢)nrdS
W
and
Fl=-iw I o s 472 g 6)
r P g r®=’ S an )
w w

The Froude-Krylov force is given by

0o_ . 0
Fr =-iwp IS é n ds. (M
w
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In these equations, p denotes the fluid density and the real and imagi-
nary parts of the complex potential amplitude ¢j are denoted by Re(s),
Im(+) respectively.

The equation of motion describing the behaviour of the vessel in the
sinusoidal seaway may be expressed in the form (cf. [9])

™Mo

M.+A)X.+(B.+B )X.+C .X.]=
2 M+ A X+ (B + B ) X+ G X

J
0 7, -iwt

= (Fr + Fr )e (8)
for r = 1,2,...,6. In this expression Mrj is the generalised mass, C,j is
the hydrostatic coefficient and By is a term introduced to describe the
damping contribution due to viscosity, eddy making etc. The latter
plays a significant role in depressing the magnitudes of the motions at
the resonance frequencies.

Equation (8) may be rewritten in the form

2 H
L (0" M X)) - (F 7 + FrS)=(Fr0 + Fr7) )

J

Mo

where the term

H S
Fr = 55 [w Arj +iw (Brj + Bvrj)] xja (10)
represents the radiation force amplitude and the term
S 6
Fr = - j§1 er Xja (1D

describes the hydrostatic restoring force amplitude. As a simplification
to the subsequent analysis for the horizontal plane motions, but with no
loss of generality, it is assumed that the viscous damping term Byrj=0
in Equations (8) and (10).
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For simplicity, let us assume that a single mode of motion X(t) can
exist, uncoupled from the remaining five motions. Thus from Equation
(9) the motion amplitude can be expressed in the simplified form

0 7 H S 2 _
Xra = (Fr + Fr + Fr + Fr )/ (~w M”) =

=€ E P M)+ F PP M) (12)

with the body induced force FrB = FrH + Fr7, foreachr = 1,2,...,6.

Here the absolute value of the real motion amplitude is denoted by

r Xa for r = 1, surge amplitude
Ya for r = 2, sway amplitude
Za for r = 3, heave amplitude
éa for r = 4, roll amplitude

ea for r = §, pitch amplitude

L ‘ba for r = 6, yaw amplitude

and if the study is restricted to surge, sway and yaw motions, the
hydrostatic restoring forces Fjs =0(=1,2,6)

For the typical full-bodied slender structures under investigation, a
two-dimensional strip theory formulation provides a more practical
approach to evaluate the potentials than the three-dimensional version
represented by Equation (3). That is, Equation (3) can be replaced by
the equation [12]

i+ [ o0 - [ v @ G a (13)
w q w

C
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where G(p,q) is the appropriate two-dimensional Green’s function,
p(y,z) and q(n,{) are two points on the sectional contour Cy,(x) located
at the longitudinal coordinate x. Thus the surface integral over the
wetted surface Sy, in Equations (4-7) can be substituted by integration
of the sectional quantities over the longitudinal length, i.e.

fs (t)ds = J.LL/; XJ.C w4 Z [.fc LX) () de] AX
" (14)

where N denotes the number of longitudinal divisions of the body.

3. Solution approximation based on slenderness
3.1. The slenderness parameter

The theory developed to describe the hydrodynamic analysis and the
motions of slender, rigid, ship-like bodies in waves is well established
[1,2,13,14). The body has port and starboard symmetry and the theory
is based on a small parameter ¢ = B/L << 1, denoting the slenderness of
the body. The draft h is of the same order of magnitude as the beam
such that h/B = O(1) or h/L = O(¢). In general the non-dimensional
coordinates of the centre of gravity and centre of buoyancy, i.e.
(xg/L,yg/L,zg/L) and (xp/L,yp/L,zp/L) respectively are of order e.
The generalised normal components nj and ng4 are of similar order, i.e.
O(e), whilst the remaining normal components are treated as of order
O(1).

For wavelengths A comparable to the body length L, i.e. L/X = O(1)
or kL = O(1), the orders of magnitudes of the geometric quantities used
to describe a slender marine structure are summarised in Table 1.

In the present paper, the water depth is assumed to be of order
d/Xx = O(1) and this implies a "deep water" case, i.e. d = oo and k = v,
However, the body draft related dimensions always remain an order ¢
or smaller such that kh = 2x(h/L)/(A/L) =~ O(¢) or smaller and the free
surface condition
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TABLE 1. Orders of main dimensions of a slender body

?:;e- L/2 B/A h/)\ Area n, n, n; n, ngng (zb—zG)/L

S 1 € € € 61 1 1 ¢ 1 1 €
w

*) Applicable to the body with flat or blunt ends.

8¢ —0=—2¢_
3r ~V$=0="30py - (kh) ¢.

(15)
In the inner region this result can be replaced by a first approximation
with respect to ¢ and Equation (15) is replaced by the rigid boundary
condition
%f - 0. (16)
Thus, orders of magnitude of various potential components in Equation
(1) and force components given by expressions (6,7,10,11) can be esti-
mated based on Newman’s analysis for a slender body in waves [1,2].
Table 2 provides estimates of the orders of magnitudes of each force
component; that is, the inertia or body mass force FjM, the hydrostatic
restoring force F:S, the Froude-Krylov force Fjo, the radiation force
FjH and the diffraction force Fj7 acting on the structure. In the last
column the total body induced force FjB = FjH + Fj7 is listed and this
information is deduced from the data given in the table as will be subse-

quently explained. Thus, under the specified conditions L/X = O(1),
B/ = O(¢) and h/X = O(e) it is observed that

(i) In an analysis of surge motion, the hydrostatic restoring force F IS
is zero; the radiation and diffraction forces are both of order
¢4 Ine (or €3 if the slender body has flat or blunt ends), whilst the
inertia force F|M and the Froude-Krylov force F;0 are of order
€2. The latter two components provide the dominant contributions to
the total surge force.
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TABLE 2. Orders of various forces on a slender body at wave
length L/ = O(1)

Mode Mass Rest. F-K Radiation Diffraction FjH+Fj7= FJ-B

j FJ.M FjS FjO FjH Fj7 )
Surge 1 €2 0 2 e4lne,e3*) e4lne,e3*) e4lne,e3*)
Sway 2 €2 0 2 2 €2 €3
Heave 3 €2 € € 2lne €2lne €2lne
Roll 4 &4 3 3 4 4 4
Pitch 5 €2 € € €2lne e2lne e21ne
Yaw 6 €2 0 2 2 €2 €3

*) See the note in Table 1.
***) Results in this column are derived in Section 3.

(ii) For sway and yaw motions, all the forces are of order €2 except
the hydrostatic forces when F5S = 0 = FgS.

(iii) In the heave (j = 3), roll (j = 4) and pitch (j = 5) modes the con-
tributions from Fjo and Fjs dominate all other force components.
However, due to the resonance behaviour inherent in these
motions, at or near a resonance frequency the contributions from
FjM, FjH and Fj7 can play an important role.

On the basis of Table 2 we shall assess the influence and the contri-
butions of the various loading components in the determination of the
surge, sway and yaw responses described by the simple, uncoupled
expressions assumed in Equation (12).
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3.2. Surge motion

From Equation (12) and Table 2, the surge motion amplitude (r = 1) is
given by

2
X,, = F, 20" m) + £, % /-0 m) = F O-0® m) + 0 (€ 1)

where m = M) = Mjpy = M33 is the mass of the body. Since
Flo/(-w2 m) is of order 1 and the remaining term is of order ¢ or
smaller, the first approximation of the surge motion of a slender marine
structure can be expressed as

X1a=Fno(""2 m) ~ O(1). (17)

Thus it can be concluded that to the first approximation in ¢, the
surge motion of a slender body is solely determined by the inertia and
the Froude-Krylov forces as given in Equation (17).

It may be further shown that the coupling effect due to the pitch
motion on the surge motion is of order ¢ provided that the pitch motion
amplitude is of O(l). Therefore, to a first approximation this may be
neglected and the previous conclusion resulting from Equation (17)
remains valid for these coupled motions.

3.3. Sway motion

From Equation (12), the sway motion amplitude may be written as

X,, = 1=2°/(-¢.;2 m) + FZB/(-w2 m) =

* B 2
= X2a + F2 /(-w” m) =

= O(1) + {O(1) or smaller). (18)

To simplify the analysis, it is assumed that the full-bodied structure
has a uniform cross-sectional shape of area A along its length and a
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volume displacement V. Thus it follows from Equations (2) and (7) that

*

X2

a= on/(-w2 m) = {-i wp Js ¢O n, ds}/(—w2 pV)=
w
. . Tt kz . .
=i g‘a sin (L)/L IC e  sin (ky sin 8) n2 dé/kA =
w

=i ¢, sin A sin (L)/L [1 + O(e)] =
= O(1) (19)

since ky, kz, ny are of order ¢, ny is O(1) and I-, = (kL cos B)/2.
From Equations (6), (2) and (4) the diffraction force

0
T _ 209" o _
Fy "”J‘s ¢ "ap 95 =

=iwp§ajs ¢2(n3+isinﬁn2+icosﬂnl)ekzelkzc°s’3x
w

» e1kysm,9 dS =

L/2
e

-L/2
L/2

= ig‘asinﬂ J ikx cos § dx IC (x) (wpi ¢2 n2) def[ 1+ 0O(e)] =
w

=i, sin g I-L/z [-w2 2,5(X) = i @ by, (X)] e KXC%B 4y 11 + O(e)] =

= -i ¢ sin fsin (L)/L @ A +iw B,,) [1 + O(¢)] =

22

-~ W’ A, +iwB, )X, [1+0()]=
22 22) %22

= - (F,/%, )X, [1+ 0] =

- 0(%) O(1) [1 + Oe)] =

= O(e3)
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and the radiation force

H 2 .
F2 = (w A22 +1w B22) X2a=

2 . B 2
= (w A22 +iw B22) {X;a + F2 /(-w” m)} =

= O().

The combination of the radiation and the diffraction forces yields

B H 7 2 .
Fy =F, +F, =-( A22+1w322)x‘2‘a0(e)+
B,6 2 . 2
+ F2 (w A22 +iw B22)/(-w m)
or
B 2 . 2 . 2
F2 = - (w A?_2 + 1w322) X;a O(e)/{! + (w A22 + leZZ)/(w m)) =
- 0() (20)
and

F,B/(-o? m) = 0)/0) = 0(e),

since X’Ea = O(1) and both (w? Aj2 + iwBjjy)and (w2 m) are of order
2
€<,

Consequently, the sway motion amplitude given in Equation (18), can
be rewritten as

* B 2 *
x2a = X2a + F2 /(-w” m) = X2a + O(e) 21)

and the results from this analysis imply that:
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(i) Although the individual radiation and diffraction rorce compo-
nents are each of order €2 (see Table 2), these largely cancel one
another and their combination is of a higher order, i.e. e3, as
given in Equation (20).

(i) To the first approximation in ¢, the sway motion of a full-bodied
slender vessel given in Equation (21) can be expressed by

0 2
X2a = F2 /(-w” m) (22)
provided that the coupling effect due to the roll motion can be
ignored.

(iii) It can be shown that the coupling effect due to the roll motion on
the sway motion amplitude is a higher order small quantity
provided that the roll motion amplitude is of order | and there-
fore its influence may be neglected. Thus, the first approximation
given in Equation (22) is valid for the roll-coupled sway motion
of a full-shaped slender structure in long wavelengths.

3.4. Yaw motion

Before extending the previous arguments to a discussion of the evalua-
tion of the yaw motion, it is worthwhile to estimate the likely magni-
tude of the moment of inertia coefficient required in such a calculation.
For simplicity, the moment of inertia about an axis perpendicular to the
longitudinal axis of a uniform slender cylindrical body of length L and
cross-sectional area A is given by

3
_pL A L y2 2
M =5 -m[2 ,_3] =m(K_) (23)

where the yaw radius of gyration is

K, = L/2V3. (24)
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For a more realistic full-bodied slender marine structure, the value of

the yaw radius of gyration K, is probably of a similar magnitude such
that

(K, - 55 /L=00 25)

and the longitudinal coordinate of the centre of gravity measured from
amidships satisfies the condition

xG/L = O(e). (26)
In fact, for a cylindrical body of uniform cross-section with no trim
the centre of gravity is at amidships so that xg = 0.

The Froude-Krylov force associated with the yaw motion is

F6°=-iwpfs ¢% g ds =
w

-inIS #°((x-x5)ny - yn)ds=
W

il ¢, mIsin B {1 + O(©)) =

= O(1) (27)
where
L/2 (x-x.) .
_ G’ ikxcospB
I= I-L/Z —I ¢ dx. (28)

Following the previous arguments together with a strip method approx-
imation it may be shown that
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*

X6

0, 2
a=Fg /(0" Mgg) =

.0, 2 2,
=Fo /(-v"mK_°%)=

=i§asinﬂ;(l—2[l + 0] = O(1) (29)

zZ

7 . 7
F6 -—1wpfs ¢ n6dS—
w

L2 5 240
- - 9¢" -
p J—L/Z (x - x5) dx j 0 4% 2 a1 + o)

= -ig, Tsin B (W’ Ay, +iu B,,) [1 + O] =
R Ay +iwBy,) X5 Kzzz [l +0()] =
= 0() (30)

and

H 2 .
F6 = (w A66+1wB66) X6a=

2 .
= (w A22 +iw B22) Il X6a [1+ O(e)] =

2 % 2

2 . B 2
= (w A22 +iw BZZ) KZz {X6a + F6 /(-w” m Kzz )} x

x [1 + O(e)] =

= 0(62) (31)

since from Equations (25) and (26)

2
Kzz /Il =1+ O(¢)
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where
L/2 (x- xG)2
I = I—L/2 B
X
-2 (%~ (2) 2}. (32)

A combination of Equations (30) and (31) results in the following
expressions:

Fs =F¢ +Fg =
" Ay, +iwB,,) {Kzz"' X, 00 + F6B [1+ O(&))/(-w® m))
or
Foo=- (" Ayy+iwB, ) K_2X% 0@/(1+(W* Ay, +iwB,,)/
/(@* m)) =
- 0() (33)

*
since K,z and Xga are O(1) whilst (w2 A32 +iwBjy)and (w2 m) are
0(62).

Thus for the yaw motion, Equation (12) can be rewritten as

*

X a=X6

6 a+O(e)=

0 2
= F6 /(~w M66) + O(e) =
= O(1). (34)
Therefore, in line with the conclusions for the sway motion, the yaw

motion of a slender structure of a full-bodied form or of nearly uni-
form cross-section can be predicted by the following first approximation
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0 2 2
X6a = F6 /(-w” m Kzz ) (35)

with contributions of order ¢ neglected.

3.5. Analytical formulations

On the basis of the approximation derived for the surge, sway and yaw
motions of a full-bodied slender structure, analytical expressions
describing these motions may be deduced for vessels of simple geo-
metries.

3.5.1. Rectangular barge

For this case, the amplitude of surge (r = 1), sway (r = 2) and yaw
(r = 6) motions are respectively described by the expressions

X - -
12’%a ) cos ;sinL sinB 1l - e-kh) (36)
X, /t sin B8 I: 1-3 kh
2a’°a
X -kh . T
6a= 1 (l-e ] (L] [(cosl-.-sml‘]l-.+
k ga (k Kzzz) kh { B L

- 2ix—S Sme] sin B - (%] sin L (cosl-3 - s_xp__B]/l';}
L B
_ 37
where B = (kB sin 8)/2.

Although the previous results are derived from the condition
L/A = O(1) and the data given in Table 2, nevertheless, it is interesting
to speculate on the asymptotic behaviour of these analytical expressions,
This is not strictly valid, but from the results presented it may be
deduced that
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(i) At very long wavelengths, the magnitudes of the amplitude of
surge and sway responses tend to cos § and sin 8 respectively since
both the limits of &_L and M are 1.0. These amplitudes

L B
decrease as the wavelength decreases, reaching zero values when

kL L . L
2cos/B—)\1rcos;9-1r(1.e.)‘cosﬁ=l.0)
or

kB . B_. . . B _
2smﬂ-/\wsmﬂ—w(l.e.’\cosﬂ-l.O).

For smaller wavelengths, the amplitudes of the motion exhibit
fluctuations of reducing magnitude.

(ii) The phases of these motions remain nearly constant, although
changes of sign occur at short wavelengths.

3.5.2. Circular cylinder

For a long circular cylinder of uniform semi-cylinder underwater
cross-section of radius R and length L, the amplitudes of surge and
sway motions are given by

X, /¢, = i cos # 8LE (4 sin (kR sin A)/[x(kR )° sin B] - C,} (38)
L
. sin i,
XpalSa =177 © (39)
with
Cl 4 w/2 cos 8 cos -kRocoso
= (kR, sin 8sind) e de
C 7rkR0 0 sin 6 sin 0
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and the amplitude of yaw motion is

X
6a |
= C (40)
kg‘a KK 2 72
7

with I given in Equation (28).

4. Submerged full-bodied slender structure

As an extension of the analysis described in the previous section, a
study of the motions of submerged slender structures excited by waves
is now considered. The body of length L, width B, height h is at an
intermediate average submergence T = (H} + Hj)/2 where H is the
depth of the uppermost surface and Hy = H; + h. This submergence
depth is chosen such that the effects of wave resonance occurring in the
water region above the body are negligible. The orders of magnitude of
the main geometric features are the same as those given in Table 1 and
the order of kT is assumed to be of O(¢) but this is not strictly defined
and has some degree of arbitrariness.

4.1. The orders of various forces

Based on the reasoning given in Section 3.1, orders of magnitudes of the
force components can be estimated for a typical submerged slender body.
These are displayed in Table 3 and are defined with respect to the
slenderness parameter ¢ = B/L.

For the three horizontal motions of surge, sway and yaw, the estimates
of these force components are the same as those for the free surface
piercing slender body shown in Table 2. Therefore, the derived formu-
lae, approximation solutions and conclusions deduced in Section 3 are
valid for the submerged slender body. Moreover, by employing a simi-
lar agreement to the one used in the derivation for the sway modes in
Section 3.3, it can be shown that a large cancellation effect also takes
place in the evaluation of the heave motion for the submerged slender
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TABLE 3. Orders of various forces on a submerged slender body of
submergence T at wavelength L/) = O(1)

Mode Mass Rest. F-K Radiation Diffraction FjH+Fj7=

i FM O FS  F F;H F;7  =FB*™
Surge 1 2 0 €2 e4lne,e3*) e4lne,e3*) e4lne,e3*)
Sway 2 €2 0 €2 €2 €2 €3
Heave 3 €2 0 €2 €21ne e2lne 3
Roll 4 ¢4 63,64“) 63,64**) ¢4 ¢4 ¢4
Pitch 5 €2 63,54") €2 €2lne e2Ine 3
Yaw 6 €2 0 €2 €2 €2 3

*) See the note in Table 1.
**) Applicable when (zp, - zG)/L = O(e2).
**¥) Results in this column are derived in Section 4.

body. This reduces the combined contribution of the radiation and dif -
fraction forces (each of order €2 In €) to order 3 and the dominant
forces in the heave motion are the inertia and the Froude-Krylov
components, both of order €2. This implies that to a first approximation
in € the heave motions may be expressed as:

X,, = 1=3°/(-¢.;2 M, ) + O =

= O(1). 41)

3

In the determination of the heave an pitch motions of a slender body
using strip theory, the pitch related hydrodynamic quantities are pre-
dicted from information associated with the heave motion. For the sub-
merged body case, the pitch restoring force is given by
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N _
Fg'=-Cs5 X5, =

=-pgVi(z -25) X, =

- O(€2+n)
for (zp - zg)/L = O(en). Assuming (zy, - zG)/L = O(e) or smaller it fol-
lows that, FSS is of order €3 or smaller and is a higher order small
quantity than the other force components. Again, because of the large
cancellation between the radiation and the diffraction forces, their
combination is of order €3. Thus, the inertia and the Froude-Krylov
force components of order ¢2 dominate the other components permitting
a first approximation for the pitch motion to be expressed as

0, 2 2 _
Xg, = Fs /(-w"mK %)+ 0) =

= O(1). (42)
Finally, in the roll mode, the hydrostatic restoring force

s
Fo=-CagXgy~

=-p8 V(g -25) Xy, =
_ o(62+n)

for (zp - zg)/L = O(e). Adopting the previous assumption for
(zp - 2G)/L = O(e) and F4S = O(e3) it follows that F4S and F40 domi-
nate the other force components, all of order 3.

If (zp - zg)/L is assumed of O(e2), F4S = O(e4) and it can be shown
that F4° becomes of 0(64) as well. Thus all the force components for
the roll modes are of the same order, ¢4, and therefore no simplified
solution to the roll motion can be deduced.

The theoretical proof for the heave and pitch modes is similar to those
presented in Sections 3.3 and 3.4 for the sway and yaw motions of 3
free surface piercing slender body and therefore are not repeated. As
an example of a typical submerged structure used in offshore engineer-
ing, a long rectangular cylinder is considered and the heave and pitch
motions solution approximations are now discussed.
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4.2. Heave motion

Starting from Equation (7), it can be shown that for a long, submerged
rectangular cylinder the Froude-Krylov force is defined by

0_ -KT sinh (kh/2) sinL sinB _ . 2
F, =-¢,8k(pL Bh)e 5 L~ SIMD o) (43)

L B

and the heave amplitude, given by Equation (12), may be expressed in
the form

B, 2
X, = x’;a + Fy /(-w” m) = O(1) (44)
where
* 0 2
X3a = F3 /(-w” m) =
¢ e—kT sinh (kh/2) sinL sin B -
T T
-k 1
=g e THL ) 4 0@ -
L
= O(1). (45)

From Equations (6), (2) and (4), the diffraction force can be written as
F, =- ¢ 2° .
3 ~ 7P S dn B
w

e-kT%J. wpi¢3 n3dt[1+0(e)]=
L “C,

.
33 tiw B33) X3a [1 + O(€)] =

= ga
= - (w2 A
- O(® In ¢) (46)

whilst the radiation force is given by
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H 2 .
F3 = (w A33 + 1wB33) X3a-

2 . * B 2
=(w Ay, +1w B33) [XBa + F3 /(-w” m)] =

33
~O0E Ine). (47)

A combination of Equations (46) and (47) yields

F3B = - ((1)2 A33 +1 (UB33) X;a O(C)/[l + (wz A33 +iw B33)/(w2 m)] =
= 0(63) (48)
since
X}, = O(D), (" m) = O(%) and (w” Ayy +iwByy) = O 1n ).

From Equation (44) the heave amplitude is expressible in the form

*

Xy, = X3, + 06 (49)

3

or to the first approximation in ¢ as

X,, = 1:30/(-<,;2 m)

3
giving
__-KT sinh (kh/2) sinL sin B
X3a/6a = ¢ (kh/2) - g (50)

4.3. Pitch motion

In pitch motion, the submerged rectangular cylinder is excited by a
Froude-Krylov force component given from Equation (7) in the form
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0 . 0
F5 --1wpIS ¢ nst—

w - -
= -igg, (LB T ILR {voop UL iy S}
B L

= w? ¢, mI[1 + O] =

- 0(%) (51)

where

ekh/2 -kh/2

V ={ [k(-Hl -z )-1]+e [k (H2+ zG)+ 11}/(kh)

G

and I is given in Equation (28).
The hydrodynamic restoring force is given by

S

Fg

=-Cys5 X5, =

P8V (z -25) Xg, =

- 0() (52)

and corresponding to Equation (12), we may define a modification
pitch amplitude

* 0 S 2
Xgq=(F5 + F5)/(-w” Mgs) =

= 0 2 2,

= F5 [1+ O(e)l/( w  m Kyy )-

_ ig‘ae'kT sm_BB {V coiﬁ su;:L il sm(}}dgl;g{Z) } [1 + O(e)] =

-kT 1
=, < 2 [1+ O] =
yy
= 0(1). (53)

The adoption of a similar reasoning to the one discussed in Section 3.4,
i.e. Equations (23-26) assumes the radius of gyration for pitch Kyy to
satisfy the relationship
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(x

giving

—L —-—
w3 ﬁ) /L = O(e) (54)

2
Kyy /Il =1+ O(e¢)

where 1) is defined in Equation (32) with xg = 0.
In terms of a strip method, Equation (6) for the pitch diffraction
force can be rewritten as

7 . 7
F5 =—1wpfs ¢ n6dS=

L/2 3 540
= - ¢ -
) f_L/z (x - xg) dx ch(x)¢ 2 de(1 + 0)

-kT .
=—§‘ae ILJC wp1¢3n3d£[l+0(e)]=
w

2 . -kT
= (w A33 +iw B33) g‘a e I[1 + O()] (55)
whilst the radiation force is
H 2 .
F5 = (w A55+1wB55) X5a=
2 .
= (w A33+1wB33) Il XSa[l + O(¢)] =

2
yy M*

x [1 + O(€)]. (56)

2 . 2 " B 2
= (w A33+1wB33)Kyy {XSa+F6 /(o mK

The addition of Equations (55) and (56) gives

B H 7
F5 = F5 + FS =
2 . 2 % 2 . 2
= (w A33+1(‘)B33)Kyy XSaO(e)/{l+(w A33+1wB33)/(w m)

= 0()
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since Xga and Ky are of order 1 and (@2 A33 +iwBj3)and (w2 m)
are of order €2,
Thus, the pitch motion is given by
*
XSa = X5a + O(e) =
= O(1). (57)

Therefore, it follows that to the first approximation a long, submerged
rectangular cylinder excited in pitch motion by sinusoidal waves of
long wavelength is described by the expression

0 2 2
XSa/k ga = F5 /(~w” m Kyy K ga) =
-1 -kT sin f! sinh (kh/2) ., cos B sin I-.
=—7F ¢ - I -iV = }.(58)
(k Kyy)z B { (kh/2) K L }

5. Shallow draft slender body

A shallow draft slender marine structure [9] is categorised by its
dimensions of length L, maximum lateral beam B and draft h. Again
the slenderness of the body is denoted by the parameter ¢ = B/L whilst
the shallow draft feature is expressed by the relationship h/B = O(e).
That is, the magnitude of the draft is an order ¢ smaller than the beam
and an order €2 smaller than the length.

Figure la illustrates a general shallow draft structure of wetted sur-
face Sy,. The orders of magnitude of the dimensions and generalised
normal components n, (r = 1,2,..,6) are given in Table 4. Figure 1b
shows a more specific shallow draft structure (e.g. a barge) which is
dominated by a large flat or nearly flat bottom surface Sy and has
vertical or nearly vertical end surfaces Sy and side walls Sg. The orders
of magnitude of its dimensions and generalised normal components are
listed in Table 5. For these shallow draft structures in waves of wave-
length comparable to their body length L, ie. L/A = O(1), it follows
that B/A = O(¢) and h/) = O(e2).
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(a) {b)
Figure 1. Schematic illustration of a shallow draft slender body :
(a) with a smooth wetted surface S,
(b) with a nearly flat bottom surface Sy and nearly
vertical end surfaces S, and side walls Sg.

TABLE 4. Orders of main dimensions of a shallow draft slender body
of smooth wetted surface

Sur- L/ B/ h/A Area nl n2 n3 n4 n5 n6
face
S 1 € 62 € 52 € 1 € 1 €
w

TABLE 5. Orders of main dimensions of a shallow draft slender body
of a flat bottom S, nearly vertical end surfaces Sy and side

walls Sg
Sur- L/A B/A h/A Area n, n, nyg n, ng n6
face

1 € € e3 1 € 62 62 € €
© 2
S 1 € € € € 1 € € € 1
§ 2
Sb 1 € € € € € 1 € 1 €
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TABLE 6. Orders of magnitudes of various forces on a shallow draft
slender body

Mode Mass Rest. F-K  Radiation Diffraction FjH+Fj7=

J FjM Fjs Fjo FjH Fj7 = FjB***)
Surge 1 3 0 3 e6lne,59/2f) e6lne,59/2T) 561ne,e9/21)
Sway 2 €3 0 €3 4 4 €
Heave 3 €3 € € €21ne €2Ine €“Ine
Roll 4 ¢ €3 €3 4 4 4
Pitch 5§ €3 € € €2lne €2lne €“Ine
Yaw 6 €3 0 3 4 4 €

1) Applicable to bodies of geometric properties listed in Table 5.
**+¥) Results in this column are derived in Section 5.

By analogy to the order analysis described in Section 3, Table 6
illustrates the estimated orders of magnitudes of the individual force
components associated with the six rigid body motions of a slender,
shallow draft structure. In comparison with the data presented in Table
2 for a slender body it is seen that

(i) for a slender, shallow draft body the inertia force components are
an order smaller;

(ii) the additional restriction of shallow draft does not alter the orders
of the fluid force components for heave, pitch and roll motions

since these are strongly dependent on the bottom surface area or
the waterplane area;

(iii) changes in the fluid force components for surge, sway and yaw
motions arise because these horizontal modes depend on the
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projected area of the wetted body surface onto the vertical plane.
(For the types of bodies under consideration this is dominated by
the contributions from the side walls and ends).

For the surge mode, both the inertia and the Froude-Krylov force
components are of order e3 and the radiation and diffraction components
are much smaller, of order O In e Hence, the latter two force compo-
nents are an order €3 In ¢ (or €3/2 for a body with flat vertical ends)
smaller than the former two components and, to the first approximation,
the surge motion expression given in Equation (17) remains valid, i.e.

3
0 2 e Ine
X = F /0" m)+0(3 ) =~

= O(1). (59)

For the sway or yaw mode, both the radiation and diffraction forces
are of order ¢4 and these are an order ¢ smaller than the inertia and
Froude-Krylov components. Moreover, since the shallow draft body is
assumed slender, the cancellation process described in Section 3 between
the radiation and the diffraction forces remains and the combination of
these two components produces an overall contribution of O(e5) which is
of O(ez) smaller than the Froude-Krylov force. Hence, the neglect of
these contributions to the wave forces leads to errors of order €2 in the
predictions of the sway or yaw motions of a shallow draft slender body,
namely,

_g0, 2 2, _
= Fj /(-w ij) + O(¢™)
= O(1) for j =2 or 6. (60)

ja

Thus, it may be concluded that when a slender body is of shallow draft,
the motion approximations for the surge, sway and yaw motions using
only the Froude-Krylov force components will provide satisfactory
estimates.
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6. Three-dimensional shallow draft body

In addition to the three kinds of slender marine structures, discussed in
Sections 3-5, a three-dimensional shallow draft body is now investigated.
For this structure the length and beam (maximum width) are of the
same order, i.e. L/A = O(1) = B/X and the draft h to length ratio is
defined by the small parameter ¢ = h/L. Orders of magnitude of the
main geometric particulars of these structures are displayed in Table 7.

TABLE 7. Orders of main dimensions of a three-dimensional shallow

draft body
Sur- L/A | B/A | h/A | Area n | ny|ng|n,fng|ng
face
SW 1 1 € 1 € € 1 1 1 €

6.1. Motion approximation

Because the draft of the structure is small, in long waves the replace-
ment of the free surface condition (Equation (15)) by the rigid bound-
ary condition (Equation (16)) in the inner region is valid. The applica-
tion of the three-dimensional formulae in Equations (2-12) allows esti-
mates of the orders of magnitudes of the various force components acting
on the three-dimensional body to be determined. These are listed in
Table 8. It can be seen that for the six rigid body modes the inertia
forces are of order € and the hydrostatic restoring forces are either zero
(surge, sway, yaw) or O(l1) (heave, roll, pitch). For surge, sway and
yaw modes the Froude-Krylov forces are of order ¢ and these together
with the inertia forces dominate the radiation and diffraction forces
which are estimated to be of order €2,

Thus, the uncoupled motion Equation (12) may be written in the form
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TABLE 8. Orders of magnitudes of various forces on a three-
dimensional shallow draft body

Mode Mass Restoring F-K Radiation Diffraction FjH+Fj7=

] FjM Fjs Fjo FjH Fj7 = FjB*“)
Surge 1 ¢ 0 € €2 €2 €2
Sway 2 ¢ 0 € 2 €2 2
Heave 3 ¢ 1 | 1 1 1
Roll 4 ¢ 1 1 1 1 1
Pitch 5 ¢ 1 1 1 1 1
Yaw 6 € 0 € €2 €2 €2

**+%) Results in this column are derived in Section 6.

0 2 .
Xja = Fj /(~w ij) + O(¢) for j=1,2,6 61)

and to first approximation in ¢ reduces to

0 2 .
X. =F. /(-w” M.. =1,2,6.
ia f /(-w JJ) for j=1,2,6 (62)

6.2. Analytical formulation

On the basis of the simple, uncoupled approximation given in Equation
(62), analytic formulae are available for three-dimensional shallow
draft structures of simple waterplane geometry. Some of these have been
derived and applied by the authors based on previous intuitive findings
rather than on the theoretical evidence given in the present paper.
Here, only results are quoted for the following four simple geometries,
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6.2.1. A circular dock
The surge (or sway) motion of a shallow draft dock of radius R and
draft h can be formulated from Equation (62) in the form [10]

-kh 21, (kR,)
. (1 -e 1 0
X1a/Sa =1 ( kh ) kR, (63)

where J l(-) is the Bessel function of the first kind of order 1.
6.2.2. An elliptic dock

The surge and sway motions of an elliptic dock of major and minor axes
a and b respectively, i.e. L = 2a and B = 2b, and a shallow draft h, can
be expressed as [15]

0 kh

X. - 00
Bl )2 ¥ ("«
g-a n=0

2 kh kab
-w m

(2n+1) (@)
b Al Ce2n+l(ﬂ’Q) Mc2n+1 (EO’Q) . 1
for j = {2 (64)

(2n+1) (n
a B, Seone1(F@) Msy 1y (€4.0)

2 2
withq=k4c ,c2=a2-b2and£0=—;lna+b

a-b’

Here Cep(+) and Sep(+) are the even and odd Mathieu functions of the
first kind of integral order of period = (for m = 2n) or 27 (for
m = 2n+1) whilst Mcp,(1)(+) and Ms,(i)(+) are the even and odd modified
Mathieu functions of the j-th kind of integral order of period =i (for
m = 2n) of 27i (for m = 2n+1). The terms A |(20+1)(q) and B{(20+1)(q)
are the coefficients of the first term in the expansion forms of
Ceon4+1(v,q) and Seppn,i(v,q) relating to the characteristic numbers
aon+] and bpp, ) (see for example Abramowitz and Stegun [16]).
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6.2.3. A triangular platform

A floating jack-up rig may be idealised as a shallow draft equilateral
triangular platform [9,17]. For this body with side length B, the first
order approximations describing the surge and sway motions deduced
from Equation (62) are given by [9]

X1a/%a i 4 1. kh 1/2 sina) - i(l-cosa)) \
- kh a
Xza/fa \/3 kB ,/3/2 1
(1/2 ; - (1 -
sin a, 1(l - cos a2)
+ 4 o +
V372 2
(-1 (cosa, - i sina,)sina
‘. 3 _ 3 4 (65)
0 4
where
a
1 -
= —\/Z—ERB (cosﬂ+sinﬂ/\/§)
[0
2
V3
az=— kB cos S
1 .
a, = 2 kB sin 8.

6.2.4. A rectangular platform

For a three-dimensional shallow draft rectangular platform [10] the
analytical formulations for the surge, sway and yaw motions are the
same as those for a slender rectangular cylinder given in Equations (36)
and (37).
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7. Numerical studies

To verify the previous theoretical findings several numerical studies on
full-bodied slender structures and shallow draft structures were per-
formed. Where appropriate the derived analytic formulae for the surge,
sway and yaw motions were compared with results derived from more
sophisticated two-dimensional and three-dimensional numerical
approaches as well as experimental data.

7.1. Full-bodied slender structures

A rectangular cylinder of length L = 100 m, beam B = 20 m and draft
h = 10 m was adopted in this study. These dimensions denote a structure
of block coefficient Cy = 1.0, L/B = 5.0 and h/B = 0.5, satisfying the
assumptions adopted in the theory described in Section 3.

A comparison of predictions was performed based on the following
three numerical approaches (Figures 2-4):

(i) A two-dimensional Green’s function method using a modified
Green’s function which is free of irregular frequencies when
applied to mono, twin and multi-hulled bodies [18,19]. In the
computation the cross-sectional contour of the body (see Figure 2)
is subdivided into 16 segments. Calculated results are denoted by
hollow circular points.

(ii) A fully three-dimensional Green's function method [9,19] is used
and the mesh arrangement in these comnputations involves 96 panels
as shown in Figure 3. These predictions are represented by solid
circular points.

(iii) The present approximate solutions given in Equations (36) and
(37) are denoted by solid lines.

The calculated sway motion responses excited by unit amplitude
regular waves approaching from the direction of beam seas (8 = 909) to
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Figure 2. Sway responses of a rectangular cylinder of dimensions
h=B/2 and L = 5B for comparison between the 2D and
3D Green’s function integral equation method calculations
and the present analytical arproximation.
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Figure 3. Surge responses of a rectangular cytinder of dimensions
h=B/2 and L = 5B for comparison between the 3D Green’s
function integral equation method calculations and the
present analytical approximation.
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YAW RESPONSE
B = 120°

A RECTANGULAR CYLINDER
h =B/2 and L = 5B

present approximation
2D calculation
3D calculation

1.5

v/

YAW RESPONSE
B = 135°
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h=8/2 and L = 58

& kd L.
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/L

i R

YAW RESPONSE

B = 150°

A RECTNAGULAR CYLINDER
h =B/2 and L = S8

Figure 4. Yaw responses of a rectangular cylinder of dimensions

h=B/2 and L = 5B for comparison between the 2D and
3D Green’s function integral equation method calculations
and the present analytical approximation.
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bow seas (B = 1200, 1359 and 150°) are shown in Figure 2. The data
derived from the three approaches show good correlation at each head-
ing. In Figure 3, the surge responses are displayed together with the
results from the three-dimensional calculation. Good correlation can be
observed for wave lengths A/L < 2 and A/L > 5. At wavelengths around
M/L =~ 3.0, a deviation of approximately 10% exists.

Figure 4 illustrates the yaw motion responses in bow seas. Excellent
agreement exists between the three numerical methods for wavelengths
less than 2L whilst at longer wavelengths a small but constant deviation
exists between approaches (i), (ii) and (iii).

To further verify the present method and to illustrate its range of
applicability, a second example involving a barge model of dimensions
L=248 m, B=5 mand h = 2 m was considered. The predictions of
the sway motion in beam seas by the analytical expression of Equation
(36) are displayed in Figure 5 together with the experimental and
theoretical data accumulated by Yamashita [6]. This comparison illus-
trates the practically acceptable agreement existing between the results
derived from the present approximate solutions and the experimental
data measured over a wide range of (shorter) wavelengths, i.e.
/Bl <100 D2 < Ao ]

SWAY RESPONSE IN BEAM SEAS
A RECTANGULAR BARGE 24.8x5x2m

Yﬂ/ ;d

[ ® ©XP- yamashita
--- cal,

— present approximation

0.0 2 4 6 8 A/ 1

Figure 5. Sway response of a rectangular barge 24.8 x 5 x 2 m in
beam seas.
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X /¢ SURGE MOTION IN HEAD SEAS

0.8 - )
—— rounded keel-edge ) oxp
0.6 - o] --=- sharp keel-edge '}Bmwn et al
* gharp keel-edge, 3D cal.
(o] @ Ppresent approximation

04 - o
0l3= \ ©
\ ¥ i
e CW’&OM
e = i w rad/sec 12
(a)
1.4
Ya/ca. SWAY MOTION IN BEAM SEAS

w rad/sec

(b)
Figure 6. Surge and sway responses of a barge model of length
L = 2.4 m, width B= 0.8 m and draft h = 0.105 m.

7.2. Shallow draft slender bodies

For a barge model of length L = 2.4 m, beam B = 0.8 m and draft
h=0.105 m (ie. B/L = 0.33, h/B = 0.125, see Section 4), Brown et al.
[7] present wave tank experimental data and theoretical results derived
from a three-dimensional source method involving a large number of
panel elements to discretise the wetted surface area of the barge. Figure
6a shows the data for the surge response in head waves as well as the
present analytical solution predictions. As can be seen the agreement
between the theoretical results is very satisfactory and this conclusion is
extended to the sway motion comparison illustrated in Figure 6b.
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Figure 7. Yaw response at wave heading 150° of a shallow draft
barge with dimensions 3.0 x 0.75 x 0.015 m for comparison
between the present analytical approximation and the
theoretical and experimental data given by Nojiri.

To complement this comparative study, the amplitude of yaw motion
for ashallow draft barge is shown in Figure 7. The barge of dimensions
L=230m,B=0.75mand h=0.015 m is excited by regular sinusoidal
waves at a heading # = 1500, Figure 7 includes results from the analyt-
ical expressions and those presented by Nojiri [20]. Good agreement is
again seen between the present predictions, experimental data and
theoretical predictions [20].

7.3. Three-dimensional shallow draft bodies

A triangular rig of length L = 108 m, maximum width B = 124 m and
draft h = 3.05 m may be categorised as a three-dimensional shallow
draft body, i.e. B/L ~ O(1) and h/L or h/B ~ O(¢). The behaviour of
this rig in transit in waves has been studied previously [17] and from
the comparison shown in Figure 8, the present analytical predictions of
the surge motion derived from Equation (65) correlate very well with
Chakrabarti’s three-dimensional diffraction theory calculations and
experimental data [17] in the range of wavelengths 0.70 < A/L < 6.4.
This agreement provides preliminary confirmation of the accuracy of
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Figure 8. Surge response of a triangular platform of length
L =108 m, width B = 124.6 m and draft h = 3.05 m.
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Figure 9. Surge response of a circular dock.

the proposed approximations to determine the horizontal motions of this
type of structure.

Another interesting example of a three-dimensional body is a circular
dock of radius R and draft h = Ry [10,20]. The analytical predictions
for the surge (or sway) motion obtained from Equation (63) are dis-
played in Figure 9. The data extend over the frequency range
0.3 <wv(Rp/g) < 3.0, ie. 0.09 < kRgp < 9.0 and agree favourably
with the experimental data but show no abrupt variation in the vicinity
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w v (Rp/g) = 0.64 as occurs in Nojiri’s three-dimensional source method
calculation [20].

8. Conclusions and discussion

For full-shaped slender bodies, submerged slender bodies, shallow
draft slender bodies and three-dimensional full-shaped shallow draft
structures, practically acceptable predictions of the horizontal plane
motions excited by long wavelength, sinusoidal waves can be determined
from simplified approximate solutions. These are derived from an
analysis based on an extension of existing order estimate theory [1,2].
The study shows that

1.

To a first order approximation only the Froude-Krylov forces need
be considered when determining the surge, sway and yaw motions
of the structures considered because

(a) each of the radiation and diffraction force components is of a
higher order small quantity than the Froude-Krylov force
component and/or

(b) the combination of the radiation and diffraction force compo-
nents partially cancel one another leaving a higher order small
quantity force component.

The previous statements are found valid

(i) for full-shaped slender bodies in surge motion because of (a)
and in sway and yaw motions because of (b);

(ii) for slender bodies in surge motion because of (a);

(ii1) for full-shaped submerged slender bodies in heave and pitch
because of (b) — but these motions are not the main focus of
this study;

(iv) for full-shaped shallow draft slender bodies in surge motion
because of (a) and in sway and yaw motions because of (a) and

(b);
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(v) for three-dimensional full-bodied shallow draft structures in
surge, sway and yaw motions because of (a).

The restriction to structures described as "full-bodied" or "full-
shaped" is imposed to ensure the exemption of strong coupling
effects from resonant heave, roll and pitch motions. This restriction
may not be as severe as assumed in the paper.

For some full-bodied structures of simple geometry, analytical
formulae are presented to describe the horizontal motions.

The applicability and accuracy of the proposed analytical formula-
tions are confirmed by comparisons with experimental data and
results derived from sophisticated two- and three-dimensional
mathematical models. The latter require fine descriptions of the
wetted surface area of the structure and involve a significant
amount of computer usage. From the limited evidence presented,
the approximate solutions are shown to produce results in good
agreement with the other sources of comparable data, but at a
greatly reduced cost and effort.

Some of the conclusions reached in this study confirm those deduced
by the authors when investigating the predictions of the horizontal
motions of two- and three-dimensional shallow draft marine struc-
tures [9,10]. The assumptions adopted previously appear very
reasonable and valid in the light of the findings of this study.

Although the analysis is based on the assumption of long wave-
lengths, from the evidence of the numerical examples its application
may possibly extend over a wider range of frequencies than
considered, allowing more probable wave conditions to be assessed.

The four types of full-bodied structures investigated are idealisa-
tions of typical marine structures used in offshore operations and
services. Therefore, the findings of this paper should be of practical
use especially in the early stages of design.
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A NEW SHALLOW DRAFT APPROACH :

I. THE THREE DIMENSIONAL THEORY AND ITS COMPUTATIONAL APPLICATIONS

Xiong-Jdian Wu

Ship Hydrodynamics Laboratory, Shanghai Jiao-Tong University, China;
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SUMMARY This paper summarises a new shallow draft theory incorporated
with an efficient computer algorithm for the hydrodynamic analysis and
motion and loads predictions of mono-, twin- and multi-hulled shallow draft
offshore structures excited by sea waves. This method provides a consider-
able saveing in computing time but still remains a high degree of numerical
accuracy.

The applicability of this approach to structures of finite volume of
displacement is illustrated by studies on both mono-hull structures and
a semi-submersible in transit. These complement previous investigations
on mono-hull structures'’?. From these extensive investigations, the
advantades arising from the approach are clearly shown and the predicted
responses agree favourably with the available experimental data, thus
providing a measure of validity of the proposed shallow draft theory.

1. INTRODUCTION

A jack-up rig in transit, an ocean plant or floating port, an OTEC barge,
crane ané transportation barges, dredger vessels, semi submersible and
TLP platform in transit, etc., all have the common geometric features of
shallow draft. That is, '

(i) the aspect ratio of beam B to draft h is large, i.e. B/h >> 1,

(1i) the bottom surface of the vessel is nearly flat and provides the
dominant contribution to the total wetted body surface area,

(iii) in addition, a large number of these structures may have small or
intermediate aspect ratio of length L to beam B.

Because of these characteristics, in general, the hydrodynamic analysis
and evaluations of motions and wave loadings necessitate the use of

large computer programs based on three dimensional (3D) mathematical
models and a large number of panel discritisation to obtain convergent

or accurate numerical solutions. These require much computing effort

and time. Alternatively, 2D mathematical models may be adopted incorporat-
ing suitable 3D corrections®. Furthermore, for both 2p%and 3D cases an
empirical viscous damping term is usually introduced into the analysis

so that reasonable predictions of roll response at resonance may be
achieved but this is not the focus of the present study.

1.



For a shallow draft structure the draft value may be the same order of the
wave height. Therefore, the linear wave theory calculation over an idealised
mean wetted body surface is not strictly applicable and the nonlinearity is
obviously of certain importance, especially for the oscillatory modes in the
horizontal plane, i.e. surge, sway and yaw motions. Moreover,considerable
dlscrepenCLes of predicted hydrodynamic coefficients have been reported

by Berhault® for a shallow draft rectangular barge of dimensions 120x40x2.43m
when applying various theoretical models or different programs based on the
same theoretical method. Since more complicated or sophisticated theoretical
approaches are not necessarily more accurate, why not devise a simplified
practical model of less complexity, similar accuracy, higher efficiency and
better applicability with which individually developed software packages can
be more identical and errors of resultant solutions may be readily estimated.

From the point of view of structural strength, wave loads

of a shallow draft vessel in the vertical plane, i.e. those related to the
heave, roll and pitch motions and vertical distortion modes, are of ultimate
importance.

These require that an applicable new approach is able to describe necessary
details of the vertical motion modes in a high degree of accuracy and provide
general information of the horizontal motion modes with an acceptable accuracy.
Some twenty years ago MacCamyG proposed a shallow draft method appropriate

to analyse the heave motion of a 2D flat plate. This zero-draft or flat ship
theory was extended by Kim’ to an elliptica‘ vlate heaving and pitching in
calm water of infinite depth, whilst Maeda® analysed the behaviour of

square and circular plates heaving and pitching in finite water depth.
Unfortunately, due to the inbuilt assumptions in thses methods, relative
analyses were not strictly applicable to realistic floating shallow draft
marine structures of finite displacement volume and were unable to predict
motion responses of surge, sway and yaw. To overcome

these disadvantages a new shallow draft approach has been proposed

by Wu and Price!’? based on a simple modified assumption drawn from
considerations of the realistic physical phenomena. It is capable of
predicting six rigid body modes of a mono-hull shallow draft structure or
more if flexible modes analysis is required. These progressive developments
are shown in Figure 1.

This paper summarises the brief theoretical approach of the proposed 3D
shallow draft theory and describes the related numerical procedure adopted,
the efficient computer algorithm and program suite developed to takle
problems associated with various shallow draft structures and contains
further extended applications to a semi-submersible in transit.



2. GENERAL 3D LINEAR WAVE THEORY FORMULATION

Based on linear wave theory, the radiation velocity potential ¢j
associated with a marine structure performing oscillatory motion
in the modes j = 1 (surge), j = 2 (sway), j = 3 (heave), 3 = 4
(roll), j = 5 (pitch), j = 6 (yaw) and the diffracted wave poten-
tial ¢7, related to the incident sinusoidal wave potential ¢°,
may be shown!’? to satisfy the Green's function integral equation

3 3 BGO(P,Q) j
2w (P)ij; ¢ (Q) 5;—-—-—-'d5 = -./; vn(Q) GO(P,Q) as (1)
w Q w

for 3 = 1,2,...,7. In this expression P(x,y,2), Q(§,n,l) repre-
.sent two points on the mean wetted body surface s , n =(nl,n2,n3)
dgnotes the outward unit nomil to the wetted sur‘face and

(r - r)xn =(n,,n_,n_) where r =(x,y,2) and the subscript G
indicages the cenfre of gravity. The normal velocity

J _ -
-3¢°/3n for j = 7

where w denotes the frequency of oscillation and the Green's
function may be expressed in the form
G = Io + Il + 112
with
I =1/r +1/r
° 1 V(z4) s

L V(z+D) —= 2
I, = -ve {m [Ho(\)R) +Y°(\)R)]+2j; (s2+v2R%)1/2
I, = 2mve” %) (umy 3)

for infinite water depth9 and

I =CY (kR)

° a uie?

I, =4 L ———— cos U (z+d) cos U (T+d) K (u R)

1 m=1 (u;+v2)d-v m m o'm

I2 = =C Jg(kl:)

c = 2MOVTKT)  osh k(z+d) cosh k(Z+d) (4)
(x2-v?)a+v

for finite water depth % d,as R # O.

In these expressions Yo' Jo' K. denote the appropriate Bessel func-
tions, Hy, denotes th7 Struve founction of /order zero,
R ={(x -£)2Hy -m2}/2, r = {R¥M(2-5)*}'/2, z = (R®+(2+0)

k satisfies the equation
k tanh(kd) = v = w?/g (5)
and um is the mth positive root of the equation

z}x/z'

um tan(l.lmd) +Vv=0 (6)



3. 3D SHALLOW DRAFT THEORY

To deal with realistic shallow draft marine structures with finite
volume of displacement as shown in Figure 2, the present shallow draft
approachl'2 represents an extended and modified version of the previous
flat ship theories® 8 capable of analysing real shallow draft bodies
rather than flat plates and predicting horizontal motions as well as
vertical oscillatory modes. To achieve thses improvements, the present
new shallow draft method adopts a simple but self-consistent assumption
that:

The radiation and diffraction wave potentials are evaluated on a flat
surface S, with realistic values of the normal velocity components in
the vertical direction. The resultant radiation and diffraction wave
forces are cooperated with the Froude-Krylov forces exerted by an

tneident wave upon the mean wetted body surface 5,y

The surface S_ located on the still water surface z = O is an approximation
to the total mean wetted body surface S of the shallow draft structure.

In other words, the vertical side wall :area is ignored when calculating
radiation and diffraction wave potentials but the effect of a small finite
value of draft is taken into account.

on the surface s, (2 = O, L = 0) it follows that

9G/dn = 9G/dz n, = -3G/9%2 on s, (&)
which together with the free surface condition
9G/3z = VG on z=0 (8)

gives the result
9G/on = -VG on s, ' (9

Substituting this expression into eq.(l), the shallow draft
Green's function integral equation describing the modes j=1,2,

..+, 7 reduces to

4m1>j(1=) + vfs ¢'j (Q) G(P,Q) dS = -fs vg(Q) G(p,Q) ds (10)
o (o)

with

v’
n

3

3-1(.011 for j =1,2,...,6
-3¢°/an|

z=-h for j = 7

The change of the constant coefficient of the firsc term on the
left-hand side from 2T in eq. (1) to 4T in eq. (10) is due to
the contribution of the term l/r, included in the Green's func-
tion since on s, (where z = 0) tﬁe elemental surface integral

of 3(1/xy)/9n at a point Q = P is equal to -2mT.
Eq. (10) requires no derivative evaluation of the Green's function, G,

and the shallow draft Green's function can be expressed in much simpler

forms with components



I, = 2/R
I, = —\m’{Ho(\)R) + Yo(\)R)}

1 (11)
I, =2mv J (VR)
2 o
for infinite water depth and
I° =C Yo(kR)
- u;+v2 ,
I, =4 L ———— cos“(u 4) Ko (M R)
1 =L (2 +v?) a-v B m (12)
I2 = -C Jo(kR)
2_,2
C = .M_.]E)_ coshz (kd)
(k2-v?)d+v
for finite water depth.
Solving for the unknown velocity potentials ¢j (j =1,2,...,7)
allows the added mass coefficients (A ,), damping coefficients
(Brj) and wave exciting forces (F,) EA be determined from the
expressions
= P 3 |
Arj o JZOIm(¢ ) nr as ‘ (13)
- - ]
Bry = pfsﬁ”‘” ), ds | (14)
forr=s1,2,...,6 and j = 1,2,...,6, and
. o 7 .
Fr -1wpfsw¢ n das -iwpfsocp nr das ' (15) |
forr=1,2,...,6.In eq. (15) the first term represents the Froude
-Krylov force contribution and the other term the contribution
from the diffraction potential.
Since these hydrodynamic actions are now theoretically known, it
can be shown that the equation of motion representing the jth
displacement
' ~-iwt '
X, (t) =X, e (16)
J ja
may be expressed in the form
6 .o . -1wt
M_+A_ )X, + (B_,+B__ )X, +C X} =F_e
sE (MR DXy + (By¥B )Xy + CXg) = F, (17)
where M,. denotes the generaliseimass, B, 4 represents a viscous
damping contribution®’* which is set to zero in the present
study, and crj is the restoring coefficient. It is nowa straight-
forward procedure to determine the amplitudes Xja and the pressure
distribution
p--p3¢/at=-imp(¢°+¢7+ g X ¢j)
3%1 “ga
= 10p(¢° + ¢ + : x 9 (18)
j=3 Ja

and if required the bending moments and shearing forces!?’ experienced
by the shallow draft marine structure.

5.



4. NUMERICAL FORMULATION

By discretising the wetted surface s by N panels of elemental
area As, eq. (10) may be replaced by N simultaneous linear equa-
tions of the form

N3 26 N
m£l¢m{4n 6rxn * Yj;s (6 -E-rm ) as} = -mglvnm As Grm ds (19)
m rm m
for r=1,2,...,N, and
s = { 1l forr =nm
rm (o} for r # m

To solve eq. (19} requires the evaluation of the elemental inte-
gral of the Green's function which may be approximated by

~ - ds
fAs Grm ds {Grm + 2k Zn(kam)} Asm+ 2_[As =
m rm m xm

- 2k[Asm ln(kRm)ds (20)

IN

On the right-hand side the first term is reqular everywhere in
the fluid domain and is easily calculated using polynomial
expansions for the special functions. To retain high numerical
accuracy and to reduce as far as possible the total number of
panel elements N, the first integral term on the right-hand side
is computed by an analytical expression relating two nearby
points. Namely,

N 2 0
L1 (——E— an F @)} for »_<ovim
=L k2 + y3) /2 X rm m
a$s _ %t (21)
As er
n As /R elsewhere
m’ rm
where 2 .2.1/2 8
(X24+Y2) - (X cosf +Y, sinf)
£(@) = | X t¥y Xy X

xk sinf - Yk cosf

and as shown in Fig.3 , N, is the total number of apices in the
mth elemental panel with parameters

Xe ™ S & YT M M

and § . The local coordinates of the kth apex

RS UL O R
with respect to the local origin Cp(Xp,¥p.0) are Ay (€, ,ny) whilst
(o (x,y,o) is the local coordinates of C; with respect to C. 0y

is the angular position of the kth apex as shown in Figure 3.

Finally the remaining integral can be evaluated from the expression

= { m (22)

As (n k¥As /7 - 1/2) for R = O
./; Sn(kR ) ds m m
m As  2n(kR_ ) for R # 0
m m rm



S. HORIZONTAL MOTIONS

Because of the assumptions introduced into the present shallow
draft theory, the equatiorsof motion describing surge (j = 1),
sway (j = 2) and yaw (j = 6) reduce from the general expressions
given in equations (13-17) to

z 'F/(-mb&r)'ip_/‘s ¢ n:ds/(er) (23)
giving a response amplitude operagor
%0172, = 0l [, 4° n, esl/tan, e (20

where Ca denotes the amplitude of the sinusoidal incident wave.

Further simplifications to eq. (24) may be achieved for struc-
tures with simple side walls which can be modelled by a series
of flat plates or if the geometry of the structure can be descri-
bed by analytical expressions, i.e. circular cylinders, rectan-

gular barges , etc.

For a circular cylinder of radius R_and not large draft h floating
in deep water, the complex surge amplitude can be given by?

T/2

“ g Jr meiT2 40 - eV f°
1a” "a Vvh ﬂvRO

sin(vnocose)cose 4ae

o, L- eVh 23, (VR) _

where Jl denotes the Bessel function of the first kind of order one.
For a rectangular barge of length L, beam B and draft h (Figure 2) floating in
deep water, the respective surge, sway and yaw motion responses can be
expressed as

X -
la/ca - ein/2 1/8in8 l-e vh sin(L cosR)
xza/ca 1/cosg Vh %
.. sin(b sinB) ' (26)
b
-vh
im -
xsa/vca' e l1-e 32sin(2 cosB)
v} k_?LBh
zz
I B cos(b sinB) _ 2sin(b sinB)
v sing (v sinB) 2
- L cos({ cosf)
2 sin(b sinB) [ v CosB
_ 2 sin(2 cosB) i (27)

(v cosB)?



where £ = L/2, b = B/2 and X 2 denotes the radius of gyration of yaw
about the vertical axis oz, and B is the heading angle between the Cx-axis
of the structure and the incoming sinusoidal waves (B = 180°, head seas).

Further analytical expressions for a triangular platform of length L,
beam B and draft h in surge, sway and yaw motions can also be derived.
For example, in deep water the surge and sway motion amplitudes are
given by the complex forms

xla —vh 1/2 sinal - i(1 - cosal)
- g l -e
o
X0 Y3 (vB) (vh)\(¥3/2 1
X 1/2 sin02 - i(1 - cosaz)
-v3/2 %2
-1 (cosa., - i sina,) sina
+ 3 3 4 (28)
o %4
where
a
1 = {% VB (cosB + sinB /V3)
o
2
o, = 3 VB cosf
3 2
1
a, = 3 VB sinB

Applications of these derived analytical formulas will be discussed
in Section 7.



6. COMPUTATIONAL PACKAGE

The numerical examples to be presently discussed were calculated
using a 3D shallow draft diffraction suite of programs (X.J. Wu,
1984) which were derived by modifying a general 3D diffraction
suite of programs (X.J. Wu, 1983). The computational programs
include the following features:

(1)

(11)

(1ii)

(iv)

an automatic mesh generator to provide the input data
file describing the discretised body surface;

the analytical evaluation of the simple source terms
together with the generation of the gecmetric and hydro-
static information;

producing information on velocity potentials, hydrodyna-
mic coefficients, wave exciting forces, etc for chosen
wave headings and each required wave frequency;

all data are stoxed in link files to ease manipulation,
enabling predictions of responses, wave loads etc to be
quickly performed.

By suitably structuring the suite of programs, a highly efficient
and time saving procedure was constructed which greatly benefits
the user to perform complicated computations.



7. APPLICATIONS TO SHALLOW DRAFT STRUCTURES

An extensive series of calculations have been undertaken to

verify the practical applicability of the present shallow draft
theory and some examples are presented. Motion response amplitudes
for surge, sway, heave, roll, pitch and yaw, i.e. xjal for j = 1-6,
are denoted by X5, Y, 23, Ga, ¢, and wa respectively whilst the wave
length by A.

7.1 A jack-up rig in transit

Matsumoto et all? investigated the behaviour of a rectangular
rig model in transit in regular waves rFigure4 illustrates the
structure having dimensions
L=1.5m, B=1.5m, h=0.1075m, KG = 0.17n,
= 0.447m, Kyy = 0.433m, Kz, = 0.615m
where Ky etc denote radii of gyration and KG the distance
between keel and centre of gravity.

Preliminary calculations have been presented elsewhere? and im-
proved motion predictions are shown in Figure 5. Matsumoto et al's
experimental and 3D calculation data'? are compared with those
determined by the proposed shallow draft theory. Satisfactory
agreement 1s shown to exist between the sway motion data for
beam seas (B = 90°) and bow seas (B = 150°) but large deviations
in the yaw predictions arise . However, the latter motion ampli-
tude is very small and the differences are therefore of only
minor importance. Excellent agreement exists between the expe-
rimental data and the heave and pitch predictions .

and " reasonable agreement occurs in the roll motion responsés
excited by beam waves. It is seen that the orxdinary 3D method!?
slightly over estimates the resonant roll response whereas the
present calculation slightly under estimates the experimental
values.

7.2 Barge of intermediate length

Brown et all? performed model experiments on a rectangular barge
of dimensions

L=2.4m, B = 0.8m, h = 0.105m
and calculated the motion responses by a 3D source method
utilizing the panel description of the wetted body surface shown
in Figure 6a. Since side walls of small area are involved a rather
fine discretisation using a large number of panels becomes necessary.
However, applying the present shallow draft theory to evaluate the
radiation and diffraction potentials no side walls are included
and therefore a much coarser panel mesh as shown in Figure 6b may be
sufficient to achieve the required numerical accuracy.

As illustrated in Figure 7, good agreement is observed between the
present method computation(by analytical solutions for the surge and
sway motions and numerical predictions for the heave, roll and pitch
motions) and Brown et al's 3D source method calculation and experimental
data (the solid line for the rounded keel-edge barge and the dash

line for the sharp keel-edge model).

This study using a simpler mathematical model has produced
results of equivalent accuracy to those obtained from a much more
complicated model, but the demands on computing effort have been
greatly reduced.

lo.



In this example study no yaw motion prediction is presented for lack
of relative experimental data ~. Therefore, an additional comparison
between the present prediction and available model testing data for

a similar rectangular barge (L = 3.0m, B = 0.75m and h = 0.015m)}

is shown in Figure 8. Again, reasonable agreement is confirmed
between the present analytical results from eq. (27) and the published
3D source method calculation and experimental data'".

7.3 A circular dock

To verify the validity of the present approach to predict the horizontal
motion of circular platforms as given by eq. (25), a circular dock

of radius R, (i.e. B = 2R,) and draft h = R, is chosen. Analytical
prediction of the surge motion of the dock is given in Figure 9 by the
dash line whereas the 3D source method results and experimental
measurements'® by the solid line and circular points respectively.

The present predictions take very little computer time and these seem
to agree favourably with the experimental data.

7.4 A triangular platform

Recently Chakrabartil® reported model experimental data and theoretical
computations for a triangular platform modelling a triangular jack-up
rig or deck in a wet tow. This provides another typical shallow draft
structure configuration to check the proposed shallow draft theory.

A theoretical study applying the present method to such a model of
dimenSions of length L = 118m, B = 124.6m and h = 3.05m as illustrated
in Figure 10 has been performed‘l and main results are quoted here.

The analytical results for the surge motion amplitude of the structure
from eq. (28) are denoted by solid circular points in Figure 11l. It can
be seen that the present analytical predictions correlate well with the
experimental data and retain the same degree of accuracy as a 3D
diffraction theory calculation!®. This further verifies the validity

of the present horizontal motion predictions for mono-hull shallow
draft marine structures.

Furthermore, the numerically computed heave motion response in head

seas is given in Figure 12. In this calculation, the flat plate S,
approximating the real wetted body surface S,, is subdivided into a total
of 22 panels (i.e. 1l panels for the port half of So). Figure 12
‘apparently indicates the excellent correlation of the present heave
motion prediction with Chakrabarti's data.

These example studies including various waterplane geometries of shallow
draft structures, i.e. rectangular (aspect ratio ranging from 1 - 4),
circular and triangular areas, may imply the thecretical validity,
numerical accuracy and computational efficiency of the proposed shallow
draft theory in analysing mono-hull shallow draft marine structures.

1l.



7.5 A semi-submersible in transit

Previous applications of the shallow draft theory have been restricted
to mono-hull structures. To assess the possible extended applicability
of the method to multi-hulled offshore structures in transit, further
study on a twin-hull semi-submersible in transit is now presented.

The semi~-submersible model adogted was the subject of a previous
investigation by Takaki et all® and its main particulars are as follows

L =2.23m, h = 0.0ém, pontoon beam B = 0,24m,
pontoon central distance Bg = 0.74m,
displacement W = 59.76kg,

KG = 0.133m, Ko™ 0.42m, Koy = 0.622m.

The general configuration of this semi-submersible model is illustrated
in Figure 13. To determine the radiation and diffraction forces, the
mean wetted body surface of the semi-submersible is approximated by

a pair of parallel flat plates 2.23x0.24m. Computed heave, roll and .
pitch responses of the structure excited by regular waves are given in
Figure 14 and these seem to agree reasonably with the experimental
evidence'®. This limited study suggests that the shallow draft theory
may be extended to predict heave, roll and pitch motions of multi-hulled
offshore structures in a wet tow or transit operation.

12.



8. CONCLUSIONS

Existence of a large group of shallow draft vessels and offshore
structures necessitates the development of a shallow draft theory
for motion and wave loading predictions of these realistic marine
structures. By further extension of the previous flat ship approach
a new shallow draft theory has been derived and applied to various
shallow draft structures.

The present study reveals that

(i) The proposed shallow draft method enables realistic motion
predictions to be determined with confidence for mono-hull
shallow draft marine structures with finite volume of
displacement.

(ii) According to the basic assumption for the evaluation of
the radiation and diffraction forces the wetted surface
contribution from the small side walls is neglected and the
total mean wetted body surface is restricted to an
approximate flat surface S, without any curvature.
Consequently, no small area panels exist in the discretisation
and this is useful to obtain stable numerical solution of the
matrix formulation reguired in the numerical procednre.
Thus a much coarser mesh arrangement of the wetted body
surface may achieve necessary convergence and accuracy of
the solution but produce a great saving in computational effort.
In addition, both the shallow draft integral equation and
Green's function become much simpler, emabling a further reduction of
required computing time.
Therefore, the shallow draft approach achieves the same numerical
accuracy as the more complicated conventional 3D methods but
with a significant reduction in coputing time.

(iii) The simple expression or possible analytical formulas for the
prediction of horizontal motions are easily understood, redily
usable and reliable to apply. In fact, it implies that due to
the mutual cancellation effect of multiple factors existing in
shallow draft body motions, a simple formulation may reasonably
predict horizontal motions of shallow draft marine structures.

(iv) The efficient computer algorithm developed from the shallow
draft theory is of practical use in the analysis of motions and
sea loads, etc, and in the preliminary design of shallow draft
ships and offshore structures.

(v) Limited application indicates the possible extension of the
proposed shallow draft theory to predict the heave, roll and
pitch motions of multi-hulled offshore structures in transit.

This paper is the revised and enhanced version of the paper titled

"A shallow draft theory and its applications in computing motions and
wave loads of shallow draft marine structures" read in the CADMO '86
Conference (International Conference on Computer Aided Design,
Manufacture and Operation in the Marine and Offshore Industries),
Washington DC, September 1986, by inclusion of various example
applications of the proposed shallow draft theory.
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Fig. 1 The development chart of the shallow

draft theory.



Fig. 2 A shallow draft structure.
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Fig. 4 A rectangular jack-up rig model.
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Fig. 5

Motion responses of the rectangular jack-up rig model in

transit with Length L = 1.5m, beam B = 1.5m and draft

h = 0.1075m.




Fig. 6

(a)

(b)

Discretisation of a quadrant of the barge wetted
surface (2.4x0.8x0.105m) :

(a) the 3D source method used by Brown et al;
(b) the present method.
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Fig. 8 Yaw motion response of a barge (3.0x0.75x0.015m).
e denotes the present shallow draft theory
calculation (analytical, egq. (27)); denotes
Nojiri's 3D computation; o denotes the experimental
data used by Nojiri.
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Fig.9 Surge response of a dock.
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Fig. 11 Surge response of a triangular platform of
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Fig. 12 Heave response of a triangular platform of length
L = 108m, width B = 124.6m and draft h = 3.05m.
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Fig. 13 A twin-hull semi-submersible in transit.
=
o 3 /G  HEAVE

a ‘a
in beam seas
° ® exp., Ref..1l2
1.0f g —a— present method W P
$,/%C_ Xa.r’*.

0.5 = 0.5 -
® exp., Ref. 12
—a— present method
1 1 2 1 1 L
° ) AT R G TR ngh
\/Bg

0.6} ea/kca PITCH

in head seas
® exp., Ref.l2
0.4 —d— present method

002 o

0.0 0.4 0.8 1.2 1.6
A/L

Fig. 14 Heave, roll and pitch responses of the semi-submersible in transit.



