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Abstract 

Controlled Auto-Ignition (CAI) also known as Homogeneous Charge Compression 

Ignition (HCCI) is increasingly seen as a very effective way of lowering both fuel 

consumption and emissions. Hence, it is regarded as one of the best ways to meet 

stringent future emissions legislation. It has however, still many problems to overcome, 

such as limited operating range. 

This combustion concept was achieved in a production type, 4-cylinder gasoline engine, 
in two separated tests: naturally aspirated and turbocharged. Very few modifications to 

the original engine were needed. These consisted basically of a new set of camshafts for 

the naturally aspirated test and new camshafts plus turbocharger for the boosted test. 

The first part of investigation shows that naturally aspirated CAI could be readily 

achieved from 1000 to 3500rpm. The load range, however, decreased noticeably with 

engine speed due to flow restrictions imposed by the low lift camshafts. Ultra-low levels 

of NO,, emissions and reduced fuel consumption were observed. 

After baseline experiments with naturally aspirated operation, the capability of 

turbocharging for extended CAI operation was investigated. The results show that the 

CAI range could achieve higher load and speed with the addition of the turbocharger. 

The engine showed increased fuel consumption due to excessive pumping losses. 

Emissions, however, have been reduced substantially in comparison to the original 

engine. NO,, levels could be reduced by up to 98% when compared to a standard SI 

production engine. 
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Nomenclature 

General Abbreviations 

AC Alternate Current 

ACEA European Automobile Manufacturers' Association 

AFR Air/Fuel Ratio 

AFRS Stoichiometric Air/Fuel Ratio 

ARC Active Radical Combustion 

ATAC Active Thermo Atmosphere Combustion 

ATDC After Top Dead Center 

BDC Bottom Dead Center 

BMEP Brake Mean Effective Pressure 

BSCO Brake Specific Carbon Monoxide 

BSFC Brake Specific Fuel Consumption 

BSHC Brake Specific Hydro-Carbons 

BSNO Brake Specific Nitrogen Oxides 

BTDC Before Top Dead Center 

CA Crank Angle 

CA Crank Angle 

CAAA Clean Air Act Amendments 

CAI Controlled Auto-Ignition 

CARB Californian Air Resource Board 

CI Compression Ignition 

CR Compression Ratio 

DAQ Data Acquisition Board 

DI Direct Injection 

ECU Electronic Control Unit 

EGR Exhaust Gas Re-circulation 

EPA Environmental Protection Agency-USA 

EVC Exhaust Valve Closing 

EVO Exhaust Valve Opening 

FID Flame Ionization Detection 

FTP Federal Test Procedure 

GDI Gasoline Direct Injection 

HCCI Homogeneous Charge Compression Ignition 



HEV Hybrid Electric Vehicle 

IC Internal Combustion 

IMEP Indicated Mean Effective Pressure 

ISCO Indicated Specific Carbon Monoxide 

ISFC Indicated Specific Fuel Consumption 

ISHC Indicated Specific Hydro-carbons 

ISNO Indicated Specific Nitrogen Oxides 

IVC Intake Valve Closing 

IVO Intake Valve Opening 

JAMA Japan Automobile Manufacturers' Association 

KAMA Korean Automobile Manufacturers' Association 

LEV Low Emission Vehicle 

MBT Minimum Spark Advance for Best Torque 

MFB Mass Fraction Bum 

MHI Mitsubishi Heavy Industries 

MPD Magneto-Pneumatic Detection 

NDIR Non-Dispersive Infrared 

NIMEP Net Indicated Mean Effective Pressure 

NOx Nitrogen Oxides 

NVO Negative Valve Overlap 

NVO Negative Valve Overlap 

PC Personal Computer 

PM Particulate Matter 

PMEP Pumping Mean Effective Pressure 

ppm Parts per Million 

PRF Primary Reference Fuel 

PZEV Partial Zero Emissions Vehicle 

RESS Rechargeable Energy Storage System 

RON Research Octane Number 

rpm Revolutions per Minute 

SAE Society of Automotive Engineers 

SCR Selective Catalyst Reduction 

SI Spark Ignition 

SULEV Super Low Emissions Vehicle 

TDC Top Dead Center 



TLEV Transitional Low Emissions Vehicle 

TPS Throttle Position Sensor 

uHC Unburned Hydrocarbons 

ULEV Ultra Low Emissions Vehicle 

VBA Visual Basic for Applications 

VCT Variable Compression Ratio 

VCT Variable Cam Timing 

VGT Variable Geometry Turbocharger 

VOC Variable Organic Compounds 

VR Variable Reluctance 

VVA Variable Valve Actuation 

WOT Wide Open Throttle 

ZEV Zero Emission Vehicle 
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1. Introduction 

Mobility has always played a crucial role for humanity. In all eras, man is always trying 

to find ways to transport people and goods for long distances and at the highest possible 

speeds. The advent of the motorcar has transformed the way man interacts with the 

world. It is actually hard to imagine the world without it. This invention, however, would 
not have been possible without the contribution of the internal combustion engine, which 
dates back to 1870 when Nicholaus Otto built the first four-stroke internal combustion 

engine. 

Once applied to the automobile, the internal combustion engine has changed the way 

people travel and move goods in a revolutionary way. Just as the steam engine had made 

railroads possible, the internal combustion engine has made moving heavy loads without 

rails much easier and more practical. This is a transportation technology acting as a 

catalyst to modern consumer culture whose importance cannot be overstated. 

The technology of IC engine has been continuously evolving ever since it was first 

developed. Cleaner and more fuel efficient engines have been built. Environmental 

awareness has led to the development of legislation to limit emissions. At the same time, 

global warming and the need to reduce fossil fuel burn has become a major concern, 

requiring further developments in fuel efficiency and taking the emissions legislation to 

much stricter levels. 

New technologies and alternatives for IC engines have been proposed and researched for 

the last century. Concepts such as electric and hybrid vehicles, fuel cell powered cars, 
hydrogen fuel, etc. are considered possible solutions. 

However, until now there is no readily available replacement for the internal combustion 

engine. All other alternatives suffer from high cost, efficiency issues, low power density, 

energy storage difficulties, lack of infrastructure, etc. 

Thus, measures that could make the current IC engine more environmentally friendly 

would certainly be very welcome. In this sense, new after-treatment systems have been 
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developed and even more efficient engines have been produced. Concepts such as 
downsizing, variable valve operation, turbocharging, cylinder deactivation, etc. have 

become more common. 

A new technology that has proved to be very effective in achieving both low emissions 

and fuel consumption is an alternative combustion technology known as Controlled 

Auto-Ignition (CAI) or Homogeneous Charge Compression Ignition (HCCI). This 

combustion method produces very low levels of NO,, and has been seen as a way forward 

in engines technology. It is able to achieve the emissions levels determined by future 

legislation without the need for expensive and complicated exhaust after-treatment. 

CAI combustion is a concept that relies on controlling the temperature, pressure and 

composition of the intake charge so the mixture auto-ignites. Up to now, researchers have 

been using various methods for achieving CAI combustion. One of the most feasible 

ways seems to be the use of variable valve timing systems to trap large amount of 

exhaust residuals and provide the energy needed for auto-ignition. This also has the 

advantage of controlling the heat release. However the use of trapped residuals to 

promote CAI and the changes needed in the valve train end up limiting the achievable 

power range. In order to have an engine suitable for automotive applications, any way to 

extend the power range is very desirable. 

Thus, it is envisaged that forced induction through a turbocharger would extend the 

operating range to higher loads and produce an engine closer to the expected automotive 

applications. 

Initially, baseline research will be carried out in a naturally aspirated engine running on 

CAI. The engine has custom built camshafts for running in a negative valve overlap 

configuration. It will be tested to establish its operating range, and to analyze its 

performance, emissions and fuel consumption. After that, the engine will be equipped 

with a turbocharger and a new intake camshaft for the turbocharged operation. The 

impacts of boost and several other variables over the SI and CAI operation will be 

investigated. 
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1.1 Objectives of the Project 

The objectives of the project are: 

(i) To improve the understanding of CAI combustion operation in a multi-cylinder 

engine with residual gas trapping via negative valve overlap and to determine its 

operating range. 

(ii) To carry out a detailed analysis of the NA CAI engine performance, emissions 

and combustion to generate baseline parameters for comparing with the 

turbocharged part of the experiment and to identify areas of improvement. 

(iii) To investigate CAI combustion under forced induction via turbocharging and to 

determine the possible CAI range increase that can be achieved with boosting, as 

well as to analyze performance, emissions, fuel consumption and combustion. 

(iv) To study the variables affecting the Turbocharged CAI operation, to investigate 

the problems and pitfalls of, and to propose measures for improvement and future 

work routes. 

1.2 Outline of Thesis 

Following introduction, Chapter 2 provides a review of relevant literature relating to the 

project. Its first part is an overview of global warming and climate change, together with 

a description on how emissions legislation begun and evolved with time. The second part 

gives information about the state-of-the art engine technology. The third part introduces a 

novel combustion system called Controlled Auto-Ignition (CAI/HCCI) and explains the 

basics of it. The final part shows its limits and potential problems to overcome before the 

technology goes to road and summarizes this section. 

Chapter 3 describes the general set-up of the test facility. The details of dynamometer are 

presented. The two different set-ups (naturally aspirated and turbocharged) are explained. 
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The ECU is described, as well as the variable camshaft timing mechanism. The 

equipment and sensors used for monitoring the engine data acquisition system are listed. 

Chapter 4 describes the data acquisition system used to obtain pressure data, its operating 

principle, and methods used to validate acquired data. In addition, load, specific fuel 

consumption as well as specific emission calculations are listed. Finally, the method used 

to obtain the heat release rate and the 10%, 50% and 90% MFB is also detailed. 

Chapter 5 describes the naturally aspirated CAI experiments. The concept of negative 

valve overlap is introduced and the way to obtain it is explained. The operation and test 

procedure for the NA CAI engine is explained. Data of performance and emissions is 

analyzed and compared to data from a standard SI engine. Detailed in-cylinder conditions 

and combustion analysis are carried out to provide a baseline for the turbocharged 

operation. 

Chapter 6 investigates the potential of turbocharging for enlarging the CAI operational 

range. It describes the methodology used during the Turbocharged CAI test. 

Turbocharged operation with NVO is explained. The engine operation and test procedure 

are described. A performance and emissions overview is carried out, followed by a 

comparative analysis with the NA CAI engine and the standard SI engine. The effects of 

boost and trapped residuals on engine performance and economy are explored, as well as 

the effects of spark timing and air/fuel ratio. Operating variables for best fuel economy 

are outlined. In-cylinder conditions and combustion analysis are presented and discussed. 

Chapter 7 presents the conclusions obtained from the experimental work during this 

project. It describes the potential, drawbacks and areas of possible improvement for 

Turbocharged CAI. This chapter also contains some guidelines and recommendations for 

future work. 
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2. Literature Review 

2.1 Introduction 

By the year 2000, the 1990s was considered the warmest decade in the warmest century 

of the last millennium [1]. Most scientists agree that human activities such as burning 

fossil fuels are the main source of greenhouse gas emissions and hence climate change. 

Moreover, since instrumental records began in 1861, the ten warmest years have all 

occurred since 1994.1998 was the warmest year and 2005 reached almost the same level. 

If no action is taken to reduce greenhouse gas emissions, global temperatures are 

expected to rise from 1.4 to 5.8°C by 2100 and sea level could also rise by between 9 and 

88 centimetres compared to 1990 levels [2]. 

In the UK, the greenhouse emissions from the transport sector, which are Carbon Dioxide 

(CO2), Volatile Organic Compounds (VOC), and Oxides of Nitrogen (NOX) are currently 

25% of the total. The increase in people's prosperity tends to make them travel in ways 

that use more carbon. For this reason, road transport CO2 emissions grew by 8% between 

1990 and 2000 even though average new car fuel efficiency has improved around 10% 

since 1997. Although the link between traffic growth and economic growth has 

weakened in the past few years, forecasts still indicate an emissions growth of 8% 

between 2000 and 2010 [2,3]. 

Reflecting the concern about the steep growth in CO2 emissions levels, the Kyoto 

Protocol was open to signature and signed by many nations since 1997, setting up 

individual targets for emissions reduction. Under this protocol, the UK has agreed to a 

reduction of 12% in total CO2 emissions by 2010. The protocol came into force in 2005. 

[4]. In addition, the European Union, under the European Community Strategy to reduce 

CO2 emissions from cars, has negotiated voluntary agreements to reduce CO2 emissions 

with car manufacturers. Commitments have been concluded with the European 

(European Automobile Manufacturers' Association - ACEA), the Japanese (Japan 

Automobile Manufacturers' Association - JAMA) and Korean (Korean Automobile 

Manufacturers' Association - KAMA) automobile industries. 

All three commitments are equivalent and have as objective to reduce average new car 

CO2 emissions to 140g/km by 2008-9, mainly through technological development. The 
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other two pillars are to improve consumer information on the fuel-economy of 
automobiles and to develop marketing strategies to influence motorists' choice towards 

more fuel efficient vehicles [5]. 

In UK, further measure to deliver savings by 2010 include the Renewable Transport Fuel 

Obligation which will require 5% of all UK fuel sales to come from renewable sources 
by 2010-11 and further improving the efficiency of new vehicles through fiscal 

incentives and by working to develop options on how to move forward beyond the first 

phase of the EU voluntary agreements with automotive manufacturers after 2008 [6]. 

The above mentioned protocols and agreements are, therefore, putting enormous pressure 

over the automotive industry, which is trying to comply with them by using several 

alternatives. Its main goal, when it comes to IC engines, is to make them more fuel- 

efficient and less pollutant, in an effort to reduce their environmental impact. 

Burning fossil fuels has predominantly two types of emissions: global effect and local 

effect emissions. CO2 has mainly global effects. The main impact of carbon dioxide on 

the environment is as a greenhouse gas, leading to global warming. The concentration of 

carbon dioxide in the atmosphere has increased by around 30% since the industrial 

revolution, mainly as a result of the combustion of fossil fuels. Carbon dioxide represents 

almost 80% of the total UK global warming emissions contribution, the other major 

contributions being from methane and nitrous oxide. 

The local effect emissions are the ground level generated NO,, and VOC, which react 

with oxygen in the presence of sunlight to produce ozone and photochemical smog, 

potential causes of respiratory problems, as well as acid rain. CO resulting from 

incomplete carbon oxidation can cause minor headaches and dizziness up to 

unconsciousness and respiratory failure, if inhaled in concentrations sufficiently high. In 

addition, the production of particulate matter (PM) in fuel rich combustion can cause 
lung problems and has carcinogenic effects. 

Vehicle emissions have fallen dramatically over the past decades, largely through the use 

of exhaust gas after treatment, such as catalytic converters and developments in engine 

control systems. This has been motivated by increasingly tight emissions regulations all 

6 



over the world. Emissions legislation came in force in United States, European Union, 
Japan and several other countries to set-up targets leading to less pollutant vehicles. 

Although having local specific legislation, many countries have their regulations inspired 
by USA and European standards. 

European emissions regulation first appeared in the 1970s. Nowadays, regulation covers 
CO (carbon monoxide), HC (hydrocarbons), NOx (nitrogen oxides) and PM (particulate 

matter). Five steps of legislative emissions reduction took place before the 1990s, when 
the first of the Euro standards was adopted. Euro IV came into force on 1 s` of January 

2006 for new types and 1st of January 2007 for all new registrations, leading to an 
additional 50% cut in emissions compared to Euro III (Table 2.1). It can be noticed the 

significant reduction in emissions limits from EURO Ito EURO IV and, moreover, from 

the present EURO IV to the 2009 coming EURO V and proposed EURO VI in 2014. 

In the United States, under the Clean Air Act Amendments (CAAA) of 1990 and on 

enforcement by EPA, two sets of standards have been defined for light-duty vehicles: 
Tier 1 standards, which were published as a final rule on June 5,1991 and implemented 

progressively between 1994 and 1997; Tier 2 standards, which were adopted on 
December 21,1999, with a implementation schedule from 2004 to 2009. Tier 2 

emissions can be from 50 to 95% lower than Tier 1, depending on vehicle class [7]. 

In California, the Californian Air Research Board (CARB) has specified additional 

standards to Tier 1 regulations. Although been traditionally more stringent than the EPA 

requirements, CARB legislation is similar in structure to that of the federal legislation: 

Tier 1/LEV California emission standards extended through the year 2003 and LEV II 

California regulations became effective in 2004 (Table 2.1). 

Hence, in order to comply with the upcoming very stringent emissions legislations, it is 

necessary to drastically change the current SI and Cl engines, finding alternatives leading 

to lower emissions, especially of NOR. 
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Table 2.1 Current and future EU and CARB leeislated emissions I 

Euro 
Standard 

Year of 
Durability 

Approval 
Vehicle 
Basis 

Engine 
type 

CO 
(g/km) 

HC/NMOG 
(g/km) 

NOx 
(g/km) 

HC+NOx 
(g/km) 

PM 
(g/km) 

Euro I 1992 SI 2.72 - - 0.97 
Cl 2.72 - - 0.97 0.14 

Euro If 

R 

1996 
SI 2.20 - - 0.50 
CI 1.00 - - 0.70 0.08 

Euro III 2000 SI 2.30 0.2 0.15 
CI 0.64 - 0.50 0.56 0.05 

Euro I V 2005 SI 1.00 0.1 0.08 - - 
CI 0.50 - 0.25 0.30 0.03 

Euro V 2009 SI 1.00 0.10a 0.06 - 0.005 "c 

CI 0.50 0.05 0.18 - 0.005` 
Euro VI 

201 
SI 1.0 0.10, 0.06 - 0.005 'c 

(proposed) 4 
CI 0.50 - 0.08 0.17 0.005` 

CARB (Tier 
I-LEV 1) 

TLEV 2001-03 100,000mi Any 2.61 0.097 0.37 0.00 0.05 

LEV Any 2.61 0.056 0.19 0.00 0.05 
ULEV Any 1.30 0.034 0.19 0.00 0.02 

CARB 
(LEV II) 

LEV Any 2.61 0.056 0.04 0.00 0.01 

ULEV 
2004-10 120,000mi 

Any 1.30 0.034 0.04 0.00 0.01 

SULEV Any 0.06 0.006 0.01 0.00 0.01 
a- and NMHC = 0.068 g/km 
b- applicable only to vehicles using DI engines 
c- proposed to be changed to 0.003 g/km using the PMP measurement procedure 

The final goal of emissions legislation would be to lead to the development of affordable 

and practical zero emission vehicles (ZEV), with good performance levels. Although still 

very much at a conceptual level, there are technologies already available for such vehicle 

like the fuel cell technology. However, this vehicle will only by a ZEV if the hydrogen is 

obtained using energy coming from renewable sources (such as sunlight) or through 

"reforming" methanol or other hydrogen-containing substance. There are, however, 

many obstacles still for the use of fuel cell in mass transportation, such as hydrogen on- 

board storage at very high pressure, putting safety concerns, mass production of 

hydrogen, fuel supply infra-structure, etc. All these make hydrogen fuel cells an unlikely 

option for mass transportation in short to medium term. 

8 



A more feasible option at the present time seems to be the Hybrid Electric Vehicle 

(HEV), which combines a battery-driven electric motor and an IC engine. The electric 

motor is powered by electric batteries or other rechargeable energy storage system 

(RESS) whose charge is primarily produced by an engine-driven generator. This system, 

rather than changing the concept of the IC engine, relies on the possibility of making a 

more efficient use of it, by preventing long idling times and improving the vehicle's start- 

and-stop capability since the electric motor is much more efficient in this range. Also, 

regenerative braking can be used by having generators installed in the wheels, since the 

battery can store the energy recovered during braking. At the present time, there are 

already such vehicles being mass produced by Toyota and Honda. 

Although being advantageous from exhaust emissions point of view, HEV's efficiency as 

a whole is still uncertain. There are still many issues that need to be addressed, such as 

battery technology. The current batteries employ many substances that have a big 

environmental impact, such as heavy metals. Their power density is still low and their 

weight is too high. There are also questions concerning their reliability, life cycle, hot 

and cold temperature performance, safety, recycling, etc. Also, the extra weight added by 

batteries and electric motor to the whole car contributes to the production of extra C02, 

which might offset the other emissions related advantages. And finally, their price is still 

not competitive in comparison to regular IC engine vehicles. 

2.2 Internal Combustion Engines Technology- State of the art 

Recent advances in engine technology have enabled substantial improvements in fuel 

consumption and exhaust emissions reduction. The use of 3-way catalysts enables the 

reduction of CO, HC and NO., by more than 90%. However, the 3-way catalysts are only 

efficient provided the AFR is kept very close to stoichiometric operation. 

In SI engines load is controlled by throttling the intake air, thus controlling air flow, and 

metering the fuel accordingly to keep stoichiometric combustion for high efficiency 

catalyst operation. Intake throttling however contributes to the reduction of the engine's 

efficiency by over 20%, increasing fuel consumption and CO2 emissions. Conversely, in 

Diesel engines the main parameter for load control is fuel flow rate. This permits air and 

fuel flow to vary independently, enabling lean-bum and unthrottled operation and hence 
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significant reductions in fuel consumption, particularly at part load. However, their 

operation away from stoichiometric prevents the use of a 3-way catalyst for effectively 

reducing their higher levels of NO,, emissions. 

Diesel engines also have the tendency to produce high levels of particulate matter (PM). 

The present and coming emissions legislations can only be achieved with the use of 

exhaust particulate filters that require periodic purging events by fuel post-injection, in 

order to raise their temperature to around 550°C and oxidize the carbon particles into 

CO2. Besides being expensive, these systems also have a fuel consumption penalty of 3- 

4% that might offset the lean-bum advantages [10]. 

In addition, the technology for NOX emissions aftertreatment is available but still very 

expensive and not durable enough. With devices such as De-NOx lean traps, the major 

challenge would be durability, as required "de-SOX events" involve raising the 

temperature to levels (about 600 °C) that are critical for the catalyst coating. For SCR 

(selective catalytic reduction), which is a technology for heavy-duty vehicles that is 

under investigation for different and more transient application on passenger cars, 

technical difficulties would include packaging (e. g. urea tank system, dosing unit, 

catalyst), control of fast transient behaviour (dosing of urea and mixing), and the need for 

a supporting network [I I]. 

A different technological approach that allows substantial reduction in NO. emissions 

and improved efficiency is Controlled Auto-Ignition (CAI), also called Homogeneous 

Charge Compression Ignition (HCCI). CAI combustion is a process that combines 

characteristics of both SI and CI engines. It relies on the compression to promote auto- 

ignition of a premixed charge and a subsequent homogeneous combustion. Controlling 

temperature and composition of the charge enables the auto-ignition of very lean or 

highly diluted mixtures, at low combustion temperatures, substantially reducing NOx 

emissions. Since the engine operates at WOT, no throttling losses are present and the fuel 

economy of a gasoline engine at part load can have significant improvement. 

10 



2.3 Controlled Auto-Ignition Combustion (CAI) 

The CAI combustion method was first studied in the late 1970s by Onishi et al [12] and 
Nogushi et al [13] working on 2-stroke gasoline engines. The researchers found out a 
different combustion process that allowed remarkable improvements in both fuel 

consumption and exhaust emissions on a 2-stroke engine. Onishi et al [12] called it 

Active Thermo-Atmosphere Combustion (ATAC). ATAC is different from a 

conventional SI combustion in the sense that ignition happens simultaneously in many 
locations within the combustion chamber. It was noticed that no flame propagation was 

present, unlike what happens in SI engines. They also found that it was different from 

Diesel combustion since fuel and air were uniformly mixed. They concluded therefore 

that ATAC was a third combustion process of the internal combustion engine. They 

noticed as well that stable lean combustion could be achieved at part-throttle operation. 
This culminated with the first automotive production CAI engine, the two-stroke 

ARC250 introduced by Honda [14], who claims it reduces fuel consumption by up to 

29% and significantly reduces HC emissions. 

Even with the apparent advantages of this engine, it suffers from problems common to 

two-stroke engines that make them unsuitable for current automotive applications. The 

first problem is the need of the fresh charge to be pumped into the cylinder due to the 

absence of low intake pressure, which can be overcome by the traditional two-stroke 

crankcase induction. This configuration prevents the existence of a closed lubrication 

system, and the oil has to be mixed (and burned) with the fuel, greatly increasing the 

emissions. Alternatively, an external pump could be used, which in turn would increase 

parasite losses and weight, therefore affecting fuel consumption, and would add 

complexity and cost to the vehicle. Moreover, the strong influence of gas flow dynamics 

on the gas exchange process makes the torque very dependent on engine speed. Also, 

having intake and exhaust ports open simultaneously, during high load operations, 

permits some fuel to cross over unburned, elevating HC emissions to extremely high and 

unacceptable levels. 

After noticing the improvements in fuel consumption and emissions on two-stroke 

engines, researchers started to investigate CAI possibility for four-stroke engines. The 

first reported experiment on a 4-stroke gasoline engine was carried out by Najt and 

Foster [15]. CAI was achieved by means of intake charge heating. The heat release was 
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controlled (to avoid knock) using highly diluted charge. Many fundamental studies were 

performed and characteristics of CAI were studied. However, this approach was very 
limited due to the small speeds and load range achievable. Moreover, the need for intake 

heating and its large thermal inertia makes it very unsuitable for the very transient 

characteristics of automotive applications. Also, if the energy needed for the intake 

heating is not taken from the engine's wasted energy into the exhaust, extra energy would 

need to be added to the system, which would increase the fuel consumption. 
Nevertheless, despite the difficulties found, Najt and Foster [15] proved the potential of 

the CAI combustion. 

Christensen et at [16] tested CAI with various fuels with different compression ratios and 
intake temperatures. Contrary to what should be expected, increased compression ratio 

was found to adversely affect combustion efficiency, lowering the engine's indicated 

efficiency. They also showed that almost any liquid fuel could be used in a CAI engine 

and that NOX emissions were generally very low. 

Thring [17] was the pioneer of using external exhaust gas recirculation (EGR) as one of 

the means to achieve CAI, together with intake heating. The effects of A/F ratio, EGR 

rate, fuel type, and compression ratio on emissions and the attainable CAI range were 

studied. It was found that CAI needs a high amount of EGR in order to control the heat 

release rate. He proposed that a possible application for CAI would be a passenger car 

engine using CAI at idle and light load and switching to conventional SI combustion at 

full load. He stated that this would offer fuel economy similar to a Diesel engine at idle 

and light load, alongside very smooth operation. In addition, specific power output 

significantly better than Diesel could be achieved. 

Pucher et al [18] has successfully achieved CAI by increasing compression ratio to the 

point where the required temperature for ignition could be achieved through compression 

only. This method, however, has the disadvantage of producing a very narrow CAI 

operational range. Ultra-lean mixtures had to be used hence limiting the load range. 

Another drawback of this concept is that it could not be used in a switching SI/CAI 

mode, as the compression ratio is too high to allow safe SI operation. 

Lavy et al [19] presented results about the first 4-stroke engine that was able to achieve 

CAI, over a limited load and speed range, solely by means of exhaust gas trapping via a 
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negative valve overlap strategy (NVO). This strategy consists in closing the exhaust 

valve early to trap a certain amount of exhaust gas and a late intake valve opening to 

avoid back flow to the intake ports. To enable this strategy, they used an engine supplied 

with a set of camshafts with reduced cam profiles. In such a strategy, the more advanced 

EVC is, the larger the amount of trapped residuals. 

The advent of FVVT systems in research engines made possible a much greater degree of 
freedom when studying CAI, as demonstrated by Law et al. [20] and Milovanovic [211, 

who, besides other variables, studied the influence of valve timing events on controlling 

CAI combustion achieved via NVO. 

Despite not having the FVVT facility, production engines can also achieve CAI 

combustion via NVO, as showed by Li et al. [22] and Zhao et al. [23]. NVO was made 

possible by using bespoke camshafts with low lift and shorter duration, which would 

allow early EVC with EVO still in acceptable limits and late IVO without impacting too 

much IVC. It was realised in a production engine that had VCT (Variable Cam Timing) 

sprockets in each cam, enabling a greater degree of flexibility when investigating CAI 

and improved engine start. They also achieved NOX emissions 90-98% lower than a 

standard SI engine and up to 30% reduction in fuel consumption. 

The fact that CAI/HCCI combustion uses large amounts of charge dilutions enables a 

substantial reduction in peak cylinder temperatures, which, in turn, reduces the heat 

losses and increases the indicated thermal efficiency to levels close to the ones of Diesel 

engines, hence reducing fuel consumption [24]. 

Fuerhapter et al. [25] investigated CAI combustion control and transient response using 

the exhaust gas rebreathing method and confirmed the potential of CAI on reducing fuel 

consumption and emissions by having unthrottled operation and highly efficient 

combustion. 

With the increasingly flexible valve trains for both research and production engines, 

Internal EGR has become very popular among researchers in the past few years. It is seen 

as the most feasible way for achieving CAI in automotive applications. Also, this method 

requires the minimum amount of changes to the current production engines. 
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2.4 Limits and Challenges of CAI Combustion 

While it is a fact that CAI combustion offers a great potential in reducing emissions and 

fuel consumption of IC engines, it is also a fact that there are still many limitations and 

challenges to be overcome before it can be considered applicable in the automotive 

industry. Some of these challenges will be discussed in this section. 

2.4.1 Combustion Control 

Regarding combustion control, ignition timing and heat release are the chief concerns. 

With CAI operation, there is no direct control over ignition timing. While in SI and Cl 

engines there is either a spark or injection event to trigger ignition, CAI combustion is 

solely governed by chemical kinetics. CAI Combustion is "self-triggered" depending on 

temperature, pressure and mixture composition. In addition, there is no direct control 

either over the heat release after ignition. As exposed by Christensen et al [261, there are 

several potential parameters that determine CAI combustion autoignition timing: 

compression ratio, inlet mixture temperature, inlet manifold pressure, fuel type, AFR, 

EGR rate, engine speed and coolant temperature. If gasoline direct injection (GDI) is to 

be used, variable injection timing can also be included in this list. 

Some of these controlling parameters were investigated by Oakley [27], [28], who 

studied CAI for many different EGR rates and discovered that AFR had very little effect 

on ignition timing, except for EGR rates higher than 40% when reducing AFR would 

then significantly retard ignition timing. While testing different fuels, he also found that 

methanol outperforms gasoline in systems that rely on EGR to promote auto-ignition. 

The combinations of parameters that promote auto-ignition for gasoline are fewer than 

for methanol. 

As already mentioned, the preferred way to achieve CAI nowadays is through NVO with 

VCT (Variable Camshaft Timing) or VVT (Variable Valve Timing) systems. These 

systems, at the same time can be used to trap exhaust residuals and to change the 

engine's effective compression ratio. Therefore, together with other parameters, precisely 

controlling valve timing would therefore enable a greater degree of control over CAI 

ignition timing (29-32]. 
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2.4.2 Exhaust emissions 

From the emissions point of view, one of the drawbacks of CAI is that HC and 

sometimes CO emissions levels can be much higher than the ones from SI engines. These 

emissions are normally associated with incomplete combustion, low temperature bulk 

quenching and cycle-by-cycle variations [33]. According to Martinesz-Frias et al. [34] 

these conditions happen at the boundaries of the CAI range as a result from cold mass in 

crevices and boundary layers, which are too cold to burn completely. The higher HC and 

CO emissions of CAI combustion, however, do not constitute a major challenge, since a 

relatively cheap 3-way catalyst can convert them to acceptable levels. 

2.4.3 Operational Range 

Currently one of the major challenges of CAI combustion is its very limited operating 

range when compared to standard SI or Cl engines. With large amounts of trapped 

residuals, there comes a zone of highly diluted charge in which combustion is mainly 

determined by the EGR percentage and the AFR. A study done by Thring et al. [ 17] in a 

single cylinder engine at fixed speed identified 3 different regions that limit CAI 

combustion: the "misfire region", "the power-limited region" and "the knock region". In 

the misfire region, either the mixture is too rich or the EGR rate is too high for stable 

combustion. In the power limited region, either the mixture is too lean or the EGR rate is 

excessive to generate enough power to overcome friction losses. Finally, in the knock 

region, rich conditions and low EGR rate makes combustion extremely fast, allowing for 

high levels of combustion noise of knock to happen. 

The knock limit was further explored by Oakley et al. [35] and Yelvington et al. [36] who 

described that with low AFR and low EGR rates (therefore high loads) the in-cylinder 

pressure traces show very strong oscillations that are similar to the ones of knock in SI 

engines. They reason that CAI/HCCI knock originates due to local inter-pressure 

gradients resultant from very fast chemical heat release. It becomes evident that any 

measure to further control heat release and avoid knock could help expand the CAI 

range. 
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On a 4-cylinder engine at various speeds, Li et al. [22] described an operational range 
from 1000rpm up to 3500rpm and load ranging from 0.5 to 4bar BMEP, as shown in 
Figure 2.1. 
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Figure 2.1 CAI Load range at various speeds in a 4-cylinder engine 1221 

It identified only two main limits for stable operation: the gas exchange limit and the 

misfire limit. Knock was not present due to the high amounts of exhaust residuals. The 

maximum load is determined by the gas exchange limit, which is caused by restrictions 
in the air flow due to the use of low lift/duration camshafts for NVO configuration. The 

minimum load is determined by misfire since at this condition exhaust gas temperatures 

are too low to initiate CAI combustion. Since the CAI range achieved is much smaller 

than the ones of standard production engines, it becomes evident that measures to enlarge 
it are highly necessary. 

At the boundaries of the CAI range, cycle-by-cycle variations tend to increase 

substantially, eventually leading the engine to misfire. In such a critical situation, it has 

been shown by several researchers that spark assistance could help trigger CAI [37-40]. 

It has been found that spark assistance has a clear effect on CAI combustion initiation for 

lambda values up to 3. Also, it is reasoned that when the in-cylinder conditions alone are 

not able to initiate CAI combustion, an extra source of energy is needed, which can be 

provided by the spark. As a result, it was found that having the spark on is an effective 

way to enlarge the CAI range. 
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Another technique which has been shown to increase the CAI range is by actively 

controlling cooling water temperature, as demonstrated by Milovanovic et al. [41]. The 

coolant temperature was decreased from the nominal operational value of 90 °C to 65 °C 

to extend the upper operating range limit, while it was increased from 90 °C to 125°C to 

reduce the lower operating range limit. The results obtained indicate that with reducing 

the coolant temperature, the upper limit can be extended up to 14%, while with 

increasing the coolant temperature the lower limit can be extended up to 28% whilst 

keeping the combustion stability, the rate of pressure rise and peak cylinder pressure in 

acceptable levels. The fuel economy showed improvements for the upper limit with 

reduced coolant temperature, but it deteriorated for the lower limit with increased coolant 

temperature. NO, and HC emissions showed reduced levels for the lower limit when 

running at high temperature. 

Another challenge for CAI operation is to find ways to improve volumetric efficiency. 

The use of trapped residuals or external EGR to promote CAI has the disadvantage of 

reducing the volume available for the fresh charge to fill in the cylinder, severely 

impairing, therefore, the volumetric efficiency. This gives CAI engines very low power 

density. 

2.4.4 Boosted CAI 

A good way to tackle the low volumetric efficiency (low power density) problem issue 

could be the use of forced induction. Indeed, boosting is regarded as an effective way to 

increase the engine's load range while on CAI operation. It is, however, accompanied by 

high cylinder pressure which may limit its advantages. 

Stanglmaier, et al. [42] stated that highly boosted, fuel-lean HCCI engines appear to be a 

promising option for producing full power output in stationary and marine applications. 

Christensen et al. [43] showed that supercharging can dramatically increase the attainable 

IMEP for HCCI/CAI operation. The maximum IMEP achieved was 14bar with natural 

gas as fuel. The engine was running under 2 bar boost pressure with a compression ratio 

of 17: 1, when the maximum cylinder pressure was controlled to be lower than 250bar in 

order to avoid engine damage. With a lower compression ratio and higher boost pressure, 
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higher IMEP would be achieved, but this caused a reduction in thermal efficiency. HC 

emissions tended to decrease with an increase in boost pressure and load. CO emissions 
showed to be very dependent on AFR and pre-heating. If operated near the rich limit but 

with hot inlet air, CO emission is negligible. NO. emissions were overall extremely low. 

Christensen et al. [44] also studied supercharged HCCI in a single cylinder engine with 

variable compression ratio (VCR), modified from a truck engine. The engine was fuelled 

with natural gas and had pilot injection of iso-octane to improve ignition properties of the 

mixture at high loads. This setup also had cooled external EGR. It was found that 

supercharging in combination with cooled EGR extends the load limit while keeping 

maximum cylinder pressures at the same level as the original diesel engine. Substantial 

reductions of NOX were achieved at a gross IMEP of 16bar. 

Olson et al. [45] investigated CAI/HCCI performance of a 6-cylinder truck engine 

modified to use a turbocharger with dual-fuel HCCI operation. Two different fuels were 

used, ethanol and n-heptane, to better control auto-ignition timing. The main goals of this 

study were to demonstrate high load operation of a full-sized HCCI engine and to explore 

some of the typical constraints associated with turbocharged HCCI operation. The 

possibility of achieving high loads, up to 16 bar BMEP, as well as ultra low NOX 

emissions with turbocharging and dual fuel was proved. Despite the great potential 

shown by the system, the lack of inlet air pre-heating impaired the performance at low 

load, reducing the efficiency. At high loads, the low exhaust temperatures were found to 

provide little energy to the turbocharger, hence causing pumping losses higher than levels 

from a comparable conventional diesel engine. Even with these limitations, brake thermal 

efficiencies and power rating were close to those of the original diesel engine, but with 

significant reduction in NO,, emissions. The maximum efficiency was found to be 

slightly lower than for the original engine. It was concluded that turbocharger matching 

is a key issue for achieving high-load operation combined with high efficiency. 

In another study, Olson et al. [46} discussed the effects of cooled EGR on a turbocharged 

multi-cylinder HCCI engine modified from a 12 litre truck engine. The engine had port 

fuel injection of ethanol and n-heptane. The effects of EGR on boost, combustion 

duration and emissions were investigated. It was found that in all cases EGR improves 

combustion efficiency. It was found that in turbocharged mode the results are very much 

dependent on how the system is implemented. The presence of external EGR introduces 
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a pressure drop and exhaust mass flow loss after compression, which was found to 

negatively affect the performance of the turbocharger. NO,,, CO and HC emissions 

proved to be reduced in most cases. 

Olson et al. [47] also investigated forced induction over HCCI combustion on an ethanol 

and n-heptane fuelled engine by comparing the impacts of a mechanically driven 

compressor to a traditional turbocharger. Simulation and experimental results were 

matched to provide more reliable data. It was found that the best solution for boosting 

depends very much on the particular application. A mechanically driven compressor is 

shown to be beneficial only if it is of a positive displacement type and if brake thermal 

efficiency is not very important at peak load. A turbocharger with two stages of boosting 

and inter-stage cooling is found to be very attractive for HCCI applications, especially 

when high boost is required. Turbocharging efficiency is found to be of high importance, 

therefore the best match for the turbocharger needs to be found. For this reason, the use 

of a VGT turbocharger seems to be very advantageous. 

Yap, et al. [48], [49] investigated the effects of boost on a gasoline engine with residual 

gas trapping (iEGR). Boost was supplied from an external air compressor. A substantial 

increase in the upper limit of load range could be achieved without auxiliary intake 

heating, while NO,, emissions were characteristically low. It was found that there is a 

maximum amount of boost that can be applied without intake heating for any given 

amount of trapped residuals due to the limitations of their heating effect. It was 

concluded that increasing the trapped residuals amount together with a higher boost to 

maintain load can lower NOx further, but specific fuel consumption and CO emissions 

will increase due to increased pumping losses and lower combustion efficiency. It was 

also found that there is optimum intake valve timing for reducing NON. 

Wilhelmsson, et al. [51] studied an operational strategy suitable for HCCI operation in a 

heavy duty turbocharged duel fuelled port injected engine. The fuels used were n-heptane 

and natural gas and the engine was under feedback combustion control during the 

experiments. It is stated that the low exhaust temperature of HCCI engines limits the 

benefits of turbocharging by causing pumping losses, meaning that maximum boost does 

not necessarily mean maximum efficiency in HCCI engines. It is also said that an 
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optimization problem emerges when one considers the need for boost and at the same 
time avoiding excessive noise, emissions and pumping losses. It is concluded that 
turbocharging does come at a cost, which is increased pumping losses. It was found that 
the best strategy in terms of turbocharging is to apply as little boost as possible while still 
meeting the NO,, requirements. In addition, natural gas seemed to be an ill-suited fuel for 

pure HCCI operation due to its high ignition temperature and rapid combustion. 

With all the above, it is proved the potential for boosting to extend the CAI/HCCI load 

and speed range. There are still many drawbacks and pitfalls to overcome, and therefore, 
further research and development is needed. 

2.5 Summary 

Saving the environment against mankind's abuse is of paramount importance if we 
intend to have good living conditions in the future. In this sense, tackling global warming 
by changing the ways we use energy is one of the means forward. While other 
technologies still are not available, combustion of fossil fuels will still be a major source 

of energy, especially when it comes to the transport sector. Therefore, it is extremely 
important to improve the ways we burn fuels. We need to burn less and with lower 

emissions levels. 

There are many alternatives under study for the transport sector, which offer lower 

emissions. However, all of them have associate drawbacks that need to be overcome if 

they are to be used in automotive applications. 

One of the most promising technologies is CAI/HCCI combustion, which has been under 
intense investigation by engine researchers. This technology shows a great potential in 

lowering fuel consumption and emissions levels, while still retaining a substantially 

standard engine concept. In additions, by providing very low emissions levels, it does not 

need expensive and complicated exhaust after-treatment systems. 
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Despite of all the potential advantages, it still has several issues that must be tackled for 

this technology to be available on the road. One of the major challenges is to enlarge its 

operational range, which is still very limited and not suitable for automotive applications. 

Researchers have shown that the use of forced induction has proved to be very effective 

in increasing the load range of CAI/HCCI engines. However, it still needs investigation 

and there are many issues that have to be addressed to make it less of a laboratory 

concept and more of a road one. This research will concentrate on the study of a 

turbocharged CAI/HCCI engine with substantially standard components, where issues 

relating fuel consumption and emissions will be investigated with the help of in-cylinder 

conditions and combustion analysis. 
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3. Experimental Set-up and Test Facility 

3.1 Introduction 

The aim of this chapter is to provide a description of the engine test cell and all the 

measuring devices used to collect the data. Also, a full description of the engine and 

ancillaries, its management system (ECU) and all the sensors is given. The engine was 

set-up initially as a naturally aspirated unit, as supplied, and latter received a 
turbocharger for the boosted operation. 

3.2 Ford Duratec 1.6 L Ti-VCT Gasoline Engine 

In order to carry out the research a Ford Duratec 1.6 L Ti-VCT (Twin Independent 

Variable Cam Timing) Gasoline Engine has been used. This engine (Table 3.1) is 

designed for Ford road cars, such as FiestaTM and FocUSTM. Some modifications have 

been done in a standard engine in order to meet the requirements of each one of the tests 

done (naturally aspirated and turbocharged). 

Table 3.1 Ford Duratec 1.6L Ti-VCT En¢ine Specifications 
Engine Type Inline 4-cylinder 

Bore (mm) 79 

Stroke (mm) 81.4 

Displacement (cm) 1596 

Fuel Supply Port Injection 

Power @ RPM 85 kW @ 6000 

Compression Ratio 11: 1 

Fuel Gasoline 95 RON 
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Figure 3.1 Ford Duratec 1.6L Ti-VCT Engine 1531 

The cylinder head had to be modified to install the pressure transducers. This procedure 

proved to be very time consuming, since it had many pitfalls to overcome. For the 

transducers to be installed in the cylinder head, they need mounting sleeves since the 

water jacket has to be crossed to reach the combustion chamber. For the cylinder head to 

accommodate the mounting sleeves, it needs to be drilled through according to the 

sleeves' geometry. In addition, since the sleeves have to cross a water jacket plug, other 

plugs need to be machined to match the sleeves' geometry. 

The mounting sleeves are not commercially available and have to be custom made since 

for each engine the cylinder head will have a particular geometry. The first sleeves were 

designed with a tapered end to rest on the cylinder head wall. After many changes, this 

design was found inappropriate, since it would not seal against the cylinder head wall and 

could not succeed the leak test. It was decided to change the sleeves' design, in which it 

would have a treaded end. After passing the leak test, it was decided that this design was 

suitable for running the engine with. Since only one cylinder would be monitored at a 

time, "dummy" sensors were fabricated in order to close the sensor holes of the other 

cylinders. 
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Therefore, to install the pressure transducers in the engine, the cylinder head had to be 

drilled and tapped, whereas sleeves, plugs and dummy transducers had to be fabricated 

(Appendix A). 

3.3 Naturally Aspirated test set-up 

In order to suit the needs of the experiment, this set-up (Figure 3.1) required few 

modifications on the standard engine, which will be further described in this section. 

Figure 3.2 Naturally aspirated set-up 

3.3.1 Intake System 

The intake system had some changes in comparison to the original engine's arrangement. 

The original air filter was replaced by a simple conical unit, attached directly to the 

throttle body, in order to simplify installation. 

A mechanical throttle replaced the original electronic unit, so that it could be connected 

and controlled by a throttle that is part of the engine test facility. This device, however, 

apart from at engine start, was hardly used for the CAI engine experiments, as to be 

shown later. 
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3.3.2 Valve Train 

The engine is originally fitted with two hydraulically controlled VCT (Variable Cam 

Timing) units, which are able to shift the cams by a range of 52 °CA on the intake and 47 

°CA on the exhaust side. The phase shifting is controlled by the ECU (electronic control 

unit) by means of two solenoid valves (Figure 3.3) which regulate the oil flow (Figure 

3.4) to the VCT units. 

H igure 3.3 %(I units and oil control valves 

The two original camshafts were replaced by two other low lift camshafts, in order to 

meet the requirements of the experiment. Their details will be discussed in depth in the 

following chapters. 

When the engine is off, during the engine start and at idle the cam phasing units are 

blocked mechanically by a locking pin in a defined base position. This locking pin 

prevents the uncontrolled phasing of the VCT units while starting the engine. For a 

controlled cam phasing during engine operation, the locking pin is automatically released 
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when pressurizing the VCT units with engine oil. During engine shut down, the VCT unit 

on the intake side is depressurized and then moved into the base position by drag torque 

of the camshaft. A torsion spring is integrated into the exhaust cam-phasing unit moving 

the exhaust camshaft in the base position as soon as the VCT unit is depressurized. The 

torsion spring is strong enough to work against the drag moment even if the engine is 

running. 

Figure 3.4 Oil Flow to VCT's 1531 

3.3.3 Exhaust system 

The exhaust system retains the original manifold and the two close couple catalysts, 

being connected directly to the test cell down pipe, without any muffler [Figure 3.5]. 
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Figure 3.5 Exhaust Manifold 1531 

3.3.4 Cooling System 

The engine water cooling system that was used was the one belonging to the test cell and 

controlled by the dynamometer's control unit, allowing closed loop control over an 

adjustable target temperature, which was set to 90 °C throughout the whole test. Engine 

water cooling was achieved through a water/water heat exchanger, which comprised a 3- 

way valve to control the coolant water flow rate to the engine [Figure 3.6 and Figure 3.7]. 
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Figure 3.6 Cooling water schematic 
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Figure 3.7 Cooling Water Heat Exchanger 

3.3.5 Engine Lubrication 

This system was kept the same as the production engine [Figure 3.8], which was fed with 

SAE 5W30 oil, as recommended by the manufacturer. Oil temperature was kept on safe 

levels via the original oil/water heat exchanger, which has the function of enhancing oil 

warm up, in order to ensure good lubrication at the engine's cold start/warm-up phase 

and to keep it cool enough at normal engine operation. 

Figure 3.8 Engine Lubrication System 1531 
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3.3.6 Fuel System 

The engine had a port fuel injection system, whose fuel was supplied by means of an 

electrical fuel pump, delivering fuel through a non-return system (Figure 3.9). Unlike the 

original system which had an immersion type fuel pump and regulator, a standalone dry 

fuel pump and regulator was used (Figure 3.10). Fuel pressure was set via an adjustable 

fuel regulator to the levels of the original engine (3.25bar). 
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Figure 3.9 Standard non-return fuel pumping system schematic 1541 

Figure 3.10 Modified dry-pump non-return fuel pumping system 
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3.3.7 Ignition System 

The ignition system remained very similar to the original one. The original ignition coil 

remained the same and the only change was the addition of an external BoschTM ignition 

amplifier (Part. Number 0 227 100 200)(Figure 3.11). This was necessary once Motec 

ECU does not come with an internal one, as in the original ECU. 

This ignition amplifier as well as all the timing strategy is controlled by the Motec ECU. 

Figure 3.11 BoschTM Ignition Amplifier 

3.4 Turbocharged test set-up 

For the boosted operation set-up (Figure 3.12), several items had to be modified on the 

previous set-up and will be discussed in this section. All the items not listed below 

remained the same as for naturally aspirated set-up. 
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Figure 3.12 Turbocharged set-up 

3.4.1 Intake System 

The intake system had to be greatly modified for accommodating a turbocharger. The 

turbo unit was attached directly to the exhaust manifold, being located, therefore, on the 

left side of the engine, needing a long pipe to reach the intake manifold on the right. The 

intake sequence of devices was: air filter, compressor, compressor outlet pipe, throttle, 

and intake manifold (Figure 3.13). 

Figure 3.13 Turbocharged Intake System 
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3.4.2 Exhaust System 

Since the turbocharger used was a very small unit, not normally used in such an engine, 
there was no aftermarket turbocharging kit suitable for this set-up. Therefore, the only 

choice was to fabricate another manifold by using some parts from the original unit. 

3.4.3 Turbocharger 

The turbocharger selected to best suit the engine was a MHI TDO2 with an integrated 

waste-gate. This was found to be one of the few turbochargers available in the market for 

the power range of the engine. The manufacturers of turbochargers hardly disclose 

detailed information about efficiency and operating points, i. e. turbine and compressor 

maps. Hence, the turbocharger selection was based purely on power range, given that this 

information was the only available from the manufacturers. The MHI TDO2 

turbocharger is meant for engines ranging from 8-40bhp, which was the power range 

expected to be achieved in the turbocharged test. More details of MHI turbochargers can 
be found on Appendix B. 

3.4.4 Compression Ratio 

The compression ratio was reduced from the standard value of 11: 1 to 8.8: 1 through the 

use of a bespoke cylinder head spacer, consisting of a steel plate 1.6mm thick and one 

original cylinder head gasket on each side, yielding a total thickness of 2.4 mm. 

3.4.5 Cooling System 

The cooling system used in the naturally aspirated test showed some limitations when 

running the turbocharged test. The 3-way valve previously used was found to be too slow 

to react to the quick temperature rise that happens when the turbo is boosting, leading to 

either overheating or running the engine too cold. Therefore, based on experiment, it was 

found that the best way was to run with the 3-way valve fully open, to isolate it's by-pass 

flow and to put back an original thermostat on the engine's cooling circuit, which, in fact, 

provided coolant temperatures much more stable then before. 
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3.4.6 Engine Lubrication and Oil Cooling 

The engine's lubrication system was kept almost the same as in the previous set-up. The 

only difference was the turbocharger oil feed, introduced to the engine's lubrication 

circuit. The oil flow for the turbocharger was supplied from the engine's main oil gallery, 
by means of a T-piece installed in the oil pressure sensor connection hole (Figure 3.14). 

The oil return from the turbocharger was achieved gravity to the sump, by means of a 
flexible hose and a connector to the sump as shown in Figure 3.15. 

Figure 3.14 Oil feed to the turbocharger 

Figure 3.15 Oil return from turbocharger to engine 
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3.5 Engine Management System 

In order to allow engine operation and to control all systems related to SI combustion and 

CAI operation, a fully programmable ECU (Electronic Control Unit) was needed. 

Besides being able to manage engine basic operation, it was also necessary to have 

camshaft control capability, data logging and several inputs and outputs available for 

general use. Choice was made, therefore, for the Motec M880 Engine Management 

System as this would best suit the needs of the experiment. Appendix C provides further 

information about the Motec ECU. 

The MotecTM ECU can be accessed trough a PC running a Windows based tuning 

software (Motec ECU Manager) (Figure 3.16). The PC and ECU communicate to each 

other via a CAN (Controlled Area Network) cable, which allows real time data transfer 

between the two. Data can be displayed, read and written in real time, while the engine is 

operated. 
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3.5.1 Engine Sensors and Actuators 

For the engine to be able to run, several sensors need to send signals to the ECU which 

then commands some actuators and enable engine operation. 

To run the engine with the desired sequential fuelling strategy, at least three sensors are 

required: crankshaft sensor, camshaft sensor and throttle position sensor. Furthermore, it 

was decided to run the engine in closed loop lambda control, which then required also a 

lambda sensor to be permanently connected. All the other sensors (air temperature, map 

sensor, coolant temperature sensor, etc. ) acted as auxiliaries to monitor engine operation 

and parameters and will not be described. 

3.5.1.1 Crankshaft position sensor 

Also known as engine speed sensor, the crankshaft position sensor provides a signal from 

which the ECU calculates two vital informations: crankshaft rotational speed and 

position. 

The sensor is a Variable Reluctance (VR) Sensor, and is mounted directly opposite of a 

60-2 (sixty minus two) teeth flywheel. Every time the flywheel rotates and a tooth passes 

by the sensor, it changes its permanent magnet's flux, generating, therefore a current 

(pulse), providing the movement information to the ECU. The flywheel has 2 deliberate 

missing teeth, which provide the information of crankshaft/piston position (TDC) to the 

ECU (Figure 3.17). 

3 

4 
5 

-J LnJ 
Figure 3.17 Crankshaft Position Sensor 1541 
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3.5.1.2 Camshaft Position Sensor 

Also known as phase sensor, the camshaft position sensor provides the ECU with the 

information of camshaft position, therefore enabling the ECU to know at which stroke 

the engine is in, or, in other words, providing the phase information. 

The sensor used was a Hall Effect rod sensor (Figure 3.18), consisting of a Hall element 

with a semiconductor wafer through which current flows. This ferromagnetic Hall 

element responds to activation by a trigger wheel rotating in unison with the camshaft by 

generating voltage at right angles to the direction of the current passing through it. 
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Figure 3.18 Hall-effect Rod Sensor 1541 

The trigger wheel (Figure 3.19) has one tooth only and is bolted on the end of the 

camshaft. Since the engine has two VCT (variable cam timing) devices, each camshaft 

needs to have a position sensor, which, in conjunction with the signal from the crankshaft 

position sensor, enables the ECU to know accurately each camshaft position. 
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Figure 3.19 Camshaft Position Sensor and Trigger Wheel 

3.5.1.3 Throttle-valve Position Sensor 

The Throttle-valve Position Sensor (TPS) registers the angle of rotation of the throttle 

valve. It is necessary for the ECU to know accurately this information since it's the 

primary load signal required for fueling and ignition calculations. 

This sensor (Figure 3.20) consists of a potentiometer wiper arm, fastened to the throttle- 

valve shaft. The potentiometer wiper arm has one or two resistance tracks depending on 

model. A 5V supply is distributed between the resistance tracks; the ratio of distributed 

voltage determined the throttle angle. 

2 4 3 

Figure 3.20 Throttle-valve Position Sensor 1541 

789 
1. Bottom section of 
the central injection 
unit 
2. Throttle-valve shaft 
3. Wiper arm 
4. Wiper 
5. Resistance Track I 
6. Collector Track l 
7. Resistance Track 2 
8. Collector Track 2 
9. Toroidal seal ring 
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3.5.1.4 Wide Band Lambda Oxygen Sensor 

As the name implies, the wide-band oxygen sensor (also called Lambda sensor) is used to 
determine the oxygen concentration in the exhaust gas. It is capable to make precise 

measurements ranging from 0.7 < ?, < oo (= air with 21% 02). 

It was used during the experiment for measurement and to enable the ECU to perform 

air/fuel ratio closed loop control over the engine's operational range. 
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Figure 3.21 Wide-band Lambda Sensor 1541 

3.6 Engine Instrumentation and Measurement 

3.6.1 Dynamometer 
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In order to simulate load and measure engine power, the tests were done using a Froude 

Hoffmann AC Dynamometer (Figure 3.22), capable of absorbing 250 kW (335hp) at a 

maximum speed of 10,000 rpm and motoring up to 235 kW (315hp). The dynamometer's 

control system is capable of doing either manual or fully automatic test cycles. Due to its 

low inertia AC motor, it provides exceptional performance in control and torque 

measurement, being designed for steady state, transient and dynamic testing applications. 
When in power absorbing mode, the dynamometer acts as a generator, feeding the energy 

needed to load the engine back to the mains. When in motoring mode, however, the 

energy is consumed from the mains. 

The dynamometer operation and data-logging is performed on a PC based control and 

data acquisition system Froude Hoffmann Texcel V8TM (Figure 3.22). 
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Figure 3.22 Dynamometer and control system 

3.6.2 Fuel Flow Measurement 

Fuel mass flow rate was measured by means of an AVL 7030 gravimetric flow meter. It 

consists of a vessel attached to a load cell, forming a balance that indicates the weight of 
its contents. There is a set of solenoid valves that control the filling and emptying of the 

vessel. An electronic control computes the mass variation over a user defined time thus 

indicating the mass flow rate. The result can be displayed either in kg/h or g/s and is also 
delivered to an analog output for connection to external data acquisition systems. 

3.6.3 Temperature Measurements 

All temperature measurements were done using a standard RS K type thermocouple. 

Thermocouples consist of two wires of dissimilar metals joined near the measurement 

point. The output is a small voltage measured between the two wires (Figure 3.23). This 
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voltage can be converted to a calibrated temperature and displayed on a digital display or 

to be read by a Data Acquisition System. 

In the current tests all thermocouples were connected to the dynamometer's transducer 
box (Figure 3.24), which conditioned the signals sent to the computer for monitoring and 
data acquisition purposes. 

metal 1 

Junction 
-I 

small voltage 
metal 2 

The Thermocouple 

Figure 3.23 Schematic diagram of a standard bimetal thermocouple 

Temperature was measured at many different points depending on the test, as shown in 

the table below. 

Table 3.2 Temperature measurement points 
THERMOCOUPLE TYPE O F TEST 

LOCATION NATURALLY 
ASPIRATED 

TURBOCHARGED 

Intake Manifold x X 
Exhaust Manifold (at each port) X X 
Compressor Inlet X 
Compressor Outlet X 
Turbine Outlet X 
Coolant Inlet x X 
Coolant Outlet x X 
Coolant By-pass inlet x X 
Oil Temperature x X 

3.6.4 Pressure Measurement 

3.6.4.1 General Pressure Measurements 

Several pressure values needed to be monitored to ensure that the engine was running 

safe and at the required test condition. All of these were measured by Piezoresistive 

Pressure Transducers, which were part of the dynamometer's transducer box (Figure 

3.24). 
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This kind of sensor consists of an internal diaphragm and a silicon chip that changes its 

resistivity as the diaphragm deforms with pressure. The pickup points had hoses 

connecting them to the respective pressure sensors at the transducer box. 

Figure 3.24 Transducer Box 

3.6.4.2 In-cylinder Pressure Measurement 

A Kistler 6121 (Figure 3.25) piezoelectric transducer was installed in cylinder no. 4 to 

measure in-cylinder pressure. A piezoelectric pressure transducer consists of a pressure- 

sensing diaphragm that transmits the force to a stack of disks made of piezoelectric 

ceramics or crystalline quartz. Electrical charges are picked up from the faces of the stack 

and are proportional to the pressure. As the sensor is of high impedance, it requires a 

charge amplifier (Kistler type 501) for charge-to-voltage conversion. The measurement 

range was 0-100bar gauge with a sensitivity of -15PC/bar with in an operating 

temperature of-50 to 350°. 
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Figure 3.25 Kistler 6121 Pressure Transducer 

3.6.5 Trigger Wheel 

c 
wn 

In order to perform cycle related measurements, a bespoke toothed wheel was used to 

measure rotational speed and crankshaft position (therefore indicating TDC). The wheel 
had 360 teeth evenly spaced and one concentric extra tooth to indicate TDC related 

position, to serve as a reference for the Data Acquisition System. Both signals from the 

wheel were picked up by a Variable Reluctance (VR) sensor and the two correspondent 

sine waves were converted in to square waves by a custom-built circuit. The converting 

circuit also had a frequency divider applied to the reference (TDC) signal, in order to 

provide only one reference signal per engine cycle. 

After the converting circuit, two treated signals are available: the first (clock) is a train of 

pulses and the second (reference) is a single pulse per every 2 revolutions of the 

crankshaft. 

3.7 Exhaust Measurement 

Exhaust measurements were carried out by means of Horiba MEXA-7000 series 

analyzers. Emissions of Carbon Monoxide (CO), Carbon Dioxide (CO2), Oxygen (02), 

Unburned Hydrocarbons (uHC) and oxides of Nitrogen (NO, ) could be shown onscreen. 
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The analyzers employ a variety of techniques that exploit particular properties of the 

exhaust gas components. CO and CO2 are measured using nondispersive infra-red 

absorption (NDIR), 02 is measured via paramagnetism, uHC are measured via flame 

ionization (FID) and NO, by chemiluminescence (CLD). 

The following sections will discuss the individual setup and emissions measuring 

principles. 

3.7.1 Horiba AIA-72X Series: CO and CO2 measurement 

The AIA-72 analyzer is designed to measure the concentration of CO, CO2 and other 

gases using Non-Dispersive Infrared (NDIR). It is based on the fact that a molecule, 

consisting of different atoms, absorbs infrared energy at specific wavelengths and that the 

degree of absorption is proportional to the concentration at constant pressure. 

A typical NDIR analyzer configuration is shown in (Figure 3.26), consisting of a light 

source, sample cell, detector, and electrical system. The infrared beam from the light 

source passes through both the sample and comparison cells. The sample cell has the gas 

to be measured (sample gas) introduced continuously via the inlet port, whereas the 

comparison cell contains a gas that does not absorb infrared radiation (such as nitrogen). 

Comnarison cell 
sample cell 

Measurement gas o" 
4_ Chopper 

Figure 3.26 Example of NDIR configuration 
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The detector consists of two cells, either side of a movable membrane, in which the gas 
to be measured is sealed. The gas enclosed in each cell absorbs infrared radiation as heat 

and expands; the degree of expansion depends on the quantity of radiation received. As a 

result of the expansion, a differential pressure is generated between the two detector cells 

and the position of the movable membrane changes. The infrared radiation is transmitted 

intermittently by a light chopper, so the change of gas concentration in the sample cell 

can be detected as electrical output by the displacement of the movable membrane. 

3.7.2 Horiba MPA-720: 02 measurement 

Magneto-pneumatic detection (MPD) is the method used by the MPA-720 to measure the 

concentration of oxygen (02) in the sample gas. Magneto-pneumatic detection relies on 

the fact that oxygen has a much greater response to a magnetic field than other gases. 

The principle of a magneto-pneumatic oxygen analyzer is shown in Figure 3.27. AC 

current flows in the electromagnet so an alternating field appears between the poles of 

the electromagnet. When the sample gas flows into the magnetic field, the pressure 

around the poles changes according to the concentration of oxygen. This is because 

oxygen whose susceptibility is high is attracted by the magnetic poles. This pressure 

change is detected by a condenser microphone as an alternating signal as electric capacity 

changes. 

Figure 3.27 Schematic configuration of magneto-pneumatic oxygen analyzer 
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3.7.3 Horiba FIA-720: Unburnt Hydrocarbon measurement 

The Horiba FIA-720 analyser is designed to measure the concentration of total 

hydrocarbon (uHC) using hydrogen flame ionisation detection (FID). Hydrogen flame 

ionisation uses the phenomenon in which ions, generated by the heat energy when 

hydrocarbons are introduced into a hydrogen flame, are proportional to the number of 

carbon atoms in the sample. It is widely used for the measurement of exhaust gases from 

engines because it is sensitive to almost all HC compounds. 

The configuration of the FID is shown in Figure 3.28. H2 and air are supplied to the 

burner nozzle and a hydrogen flame is formed. Two electrodes are fitted on either side of 

the flame, and a DC voltage is applied. The sample gas is mixed with the fuel H2 and 

introduced to the hydrogen flame. It is thermally dissociated and generates ions in the 

high-temperature area. The ions generated migrate to the electrodes and are detected as 

current. The characteristic of this method is that the detector output is nearly in 

proportion to the number of carbon atoms and so is used for measurement of total 

hydrocarbons (uHC). 

Ignitor ...... _ ,..... 
Thsrmiator 

HV Power 
Supply 

Figure 3.28 Schematic of a Flame Ionization Detector (FID) 

3.7.4 Horiba CLA-720A: NO and NOx measurement 

The Horiba CLA-720A Analyser is designed to measure the concentration of NO and 

NOx using chemiluminescence detection (CLD). It is widely used as the measurement 

method of NO and NOx in exhaust gases from engines because it is highly sensitive to 

NO and is not interfered by other components easily. 
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When sample gas with NO and ozone gas (03) gas is mixed in a reactor, NO is oxidized 
and is transformed to NO2. 

NO +03-ºNO +02 

A part of NO2 that is generated here is in excited state, which means its energy is higher 

than normal. Excited NO2 molecules release excited energy as light when returning to the 

ground state. 

NO + 03 -+ NO2*+ OZ N02*: NO2 molecules in excited state 

N02* -> NO + by hv: photon's energy 

This phenomenon is called chemiluminescence and the degree of light is directly 

proportional to the quantity of NO molecules before the reaction. Thus, NO 

concentration in the sample can be acquired by measuring the amount of light emission. 

3.8 Summary 

This chapter presented the details of the engine and equipment used during all the 

experimental tests. It described the particularities of the naturally aspirated setup as well 

as the turbocharger setup. The operating principle of the variable valve timing 

mechanism and all the main sensors was explained. 
Operational details concerning the measurement and/or control systems such as 
dynamometer, ECU and gas analyzers were also explained. 
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4. Data Processing and Analysis 

After naturally aspirated and turbocharged operation described in chapter 3 were made 

operational, a large amount of data could to be collected. The data was acquired with the 

engine running at constant speed. For each test point, 3 groups of data were generated. 
The first group, consisted of pressure data collected using Brunet's Data Acquisition 

System based on Labview TM 6.0 software. Another group was acquired using the 
dynamometer's own data acquisition software (Froude Texcel TM V8) and consisted of 

the engine's main parameters (power, torque, temperatures and pressures). The third 

group consisted of manually recorded data, referring to the ECU parameters and Gas 

Analyser results. 

In addition, the manually recorded data also held information needed to synchronize the 

three groups for processing on in a MS Excel TM spreadsheet. This spreadsheet has a MS 

Visual Basic for Applications (VBA) TM macro which collects and synchronizes all the 

data and generates an output table with all the results needed, for every engine test point. 

The calculations performed in this spreadsheet are described in the following sections 

and they were used to analyse heat release, engine emissions and performance. All plots 

were made using MS Excel TM and, when isoline plots were needed, Uniplot for 

Windows V4.1.5 (using linear interpolation) was applied. 

4.1 Data Acquisition Software 

The pressure data is the core of the heat release analysis. Thus, it is essential that this data 

is properly obtained in order to ensure reliable results. 

Pressure data was acquired through a National Instruments PCIMIOI6-1 data 

acquisition board, installed in a dedicated Pentium IIITm desktop computer, running a 

LabviewTM program (Figure 4.1) specially written for the task by a former Brunel PhD 

student, John Williams. 

To provide useful information, the pressure data has to be referenced to the crankshaft 

position. Hence, a toothed wheel is installed on the crankshaft (section 3.6.5) and 
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provides a clock signal per every 1° CA and a TDC signal (reference tooth) per every 

crankshaft revolution. Since for a four-stroke cycle the relevant events only happen once 

every two revolutions, only one TDC event is required for referencing the pressure data 

and this is realized by a signal conditioner that incorporates an electronic divider (Figure 

4.2). 
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Figure 4.1 Front Panel of the custom built LabviewTM Program 

The TDC signal sent to the DAQ board should be the one at the beginning of the intake 

stroke. If by any chance the TDC signal is out of phase, a toggle switch on the box would 

shift the signal by 360 'CA. 

When installing on the engine, the reference tooth can be placed at any angle in relation 

to TDC, so long as this angle is typed in the Labview program for correct referencing. 

However, it should be avoided to place the TDC reference tooth at the engine's TDC, 

since this is the range in which the crankshaft accelerates the most, increasing the 

chances of inaccurate readings. Thus, the reference tooth is placed at 89°CA before TDC 

and this value is input in the "trigger position" field, in the Labview program. 

Hoat RNex, ('-l Englna I DatB Ae4lISItlm I 
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The signals generated by the toothed wheel are picked up by a Variable Reluctance (VR) 

sensor, which provides a sine-wave as a result. The two resultant sine-waves have their 

frequency divided and are converted into square-waves by the "Signal Conditioner Box" 

(Figure 4.2) and then fed into the "I/O Connector Block" box. The latter collects all the 

signals from the coaxial cables and supplies them to the PC's DAQ Card (NI 6070E) 

through a 68-pin connector cable. 

Signal 
Conditionei 

Toothed Wheel 

Figure 4.2 Pressure data acquisition set-up 

To obtain sufficiently accurate results, it is necessary that piston position and crank angle 

are phased correctly, i. e. the pressure data is properly phased with the TDC reference 

provided by the toothed wheel. Hence, it is of paramount importance that TDC is 

determined correctly. According to Zhao [55], peak cylinder pressures occur near 1°CA 

BTDC. Using the data acquisition program, the pressure trace is then checked and, if 

necessary, the phase can be fine-tuned for having the peak pressures at this point. The 

phasing can be further checked in the program by pressing a toggle button which 

switches from the p-V diagram to a log p-V diagram. 

Following the above procedure, the Labview program is able to calculate and display 

online pressure trace, P-V diagram and values of IMEP, 10%, 50% and 90% MFB. 
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4.2 Calculation of Engine performance Parameters 

This section describes the calculation procedure for gross and net IMEP, BMEP pumping 

and frictional losses. 

Figure 4.3 shows an example of a four stroke engine p-V diagram which will be used to 

explain the following calculation. 

we Compression BDC 

Voliune 

Figure 4.3 Example of a p-V diagram for a four-stroke engine 133 

Area A+ area C is the Gross Indicated Work per Cycle; work delivered to the piston 

over the compression and expansion strokes only. Area B+ area C is the pumping work, 

work transfer between the piston and the cylinder gases during inlet and exhaust strokes. 

The work delivered to the piston over the entire four-stroke cycle is defined as Net 

Indicated Work per cycle and is (area A+ area C) - (area B+ area C), which equals to 

(area A- area B). 

Hence, pumping work is given by 

Wp = 
fpdV 

(4.1) 
e+c 

50 



The Gross Indicated Work per cycle can be calculated by 

w;, 8 = cf PdV 
A+C 

In a similar fashion, one finds the Net Indicated Work per cycle: 

(4.2) 

W. 
n=f pdV (4.3) 

A-B 

Net IMEP is found by dividing the Net Indicated Work per cycle by the displaced 

volume, Vd: 

Net IMEP =' 
Vd 

(4.4) 

Likewise, Gross Indicated Mean Effective Pressure is calculated by dividing the Gross 

Indicated Work by the displaced volume: 

Gross IMEP =w Vd 
(4.5) 

After having found these two results, one can then calculate the Pumping Mean Effective 

Pressure (PMEP): 

Gross IMEP = Net IMEP + PMEP (4.6) 

Brake Mean Effective Pressure is calculated from the power output measured by the 

dynamometer: 

BMEP (kPa) =P 
(kW) x 10' x n. (4.7) 

Ye(dm' )N(rev / s) 
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Where: 

n1 =2 crank revolutions for each power stroke per cylinder 
Vd = displaced volume = 1596 cc 
P= Power (kW) delivered by the engine and absorbed by the dynamometer 

Substituting for P: 

P=2, TNT (4.8) 

BMEP (bar) = 
41rT x 103 
0.001596 

where 

T= torque exerted by the engine 

4.3 Specific Fuel Consumption 

(4.9) 

In order to ease the comparison amongst engines, values for fuel consumption are more 

useful when converted onto specific values, such as BSFC and ISFC. 

Brake Specific Fuel Consumption is the fuel flow rate per unit power output and is given 

by: 

n-ý mt(Sls) t3JC C. _ 
P(kW) 

(4.10) 
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Substituting for P 

BSFC= mf(g/s) 
21N(rev /s)T(Nm) 

where 

N= engine speed 

mf = fuel mass flow rate 
P= Power 

T= Torque produced by the engine 

(4.11) 

Based on values of IMEP, BMEP and BSFC, Indicated Specific Fuel Consumption is 

readily calculated: 

ISFC = 
BSFC * BMEP 

IMEP 

4.4 Emissions Calculations 

(4.12) 

Similar to the previous data, emissions data are more useful when converted to specific 

values, allowing easy comparison amongst different engines. This section describes how 

the emissions values are converted from "raw" values (ppm or vol. %) to brake and 
indicated specific values. 

The Horiba Mexa 7000 series gas analyser (section 3.7) was used to collect the data for 

CO, CO2i 02, uHC and NOR. 

Brake Specific Emissions and Indicated Specific Emissions are calculated using the 

formula below [56], respectively: 

BS(X) = (1 + AFRS )* BSFC *X 
(Vol. %) MX 
100 MEX� 

(4.13) 
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IS(X) = (1 + AFRS )* ISFC * 
X(Vol. %) 

* 
MX 

100 MsxH 

Where: 

BS(X) = brake specific value for the emission of interest 

IS(X) = indicated specific value for the emission of interest 

AFRS = stoichiometric air/fuel ratio 
BSFC = brake specific fuel consumption 
ISFC = indicated specific fuel consumption 
X= concentration of the emission of interest 

Mx = molecular mass of the emission of interest 

MEXH = average molecular mass of exhaust products 

(4.14) 

It should be noted that when the raw value of the emission of interest is given in ppm, it 

should be converted to Vol. % to enter it in the equations above. The average molecular 

mass of exhaust products for the air/fuel ratios in use is 29g, according to Heywood [33]. 

4.5 Trapped residuals, In-Cylinder Temperature and Heat Release 

Calculations 

During this research, CAI combustion is achieved by trapping residual gas in the cylinder 

by means of advanced exhaust valve closure. It is of vital importance 'to know the 

amount of trapped residuals at EVC. The mass of trapped residuals in the cylinder can be 

calculated through equation (4.15). The in-cylinder pressure is measured with the 

pressure transducer installed in the combustion chamber. Based on engine geometry, and 

with the information of piston position provided by the tooted wheel, the cylinder volume 

at EVC can be calculated. The burnt gas temperature was assumed to be the exhaust 

temperature at EVC, measured by the thermocouples placed in the exhaust ports. The 

amount of residuals at EVC was assumed to be the total amount for the whole cycle. 

PV = mýRT (4.15) 
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Where, 

P= in-cylinder pressure 
V =cylinder volume 
m1 = mass of trapped residuals 
R= specific gas constant 
T= burnt gas temperature 

This procedure proved to be reasonably accurate despite of the differences between the 

exhaust gas temperature and the actual burnt gas temperatures. 

The amount of fresh charge in the cylinder is calculated from lambda and fuel flow rate 

data. Hence, one can calculate the ratio of Trapped Residuals to Total In-Cylinder 

Charge. In addition, since pressure and volume are known, In-Cylinder Temperature 

values can be estimated. 

4.6 Heat Release Analysis 

Heat Release Analysis is a useful tool for studying the combustion process in the engine. 

The amount of heat necessary to produce an observed pressure variation can be 

calculated based on the first law of thermodynamics applied to the cylinder contents 

(equation (4.16)). The cylinder contents are treated as being a single zone and therefore 

reactants and products are fully mixed. Likewise, it is assumed that there is no difference 

between reactants and products properties. 

SQ, =dU+SW+SQn, 

Where: 

SQi, r= Heat released by combustion 
SQht=Heat transfer to the chamber walls 

SW = pdV 

dU = madT 

mdT = 
[pdV + Vdp] 

R 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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Combining equations (4.17) and (4.18), substituting terms into equation (4.19) and 
writing on an angle incremental basis gives: 

dQ. 
` 

dQh. dQm 
_y 

dV 
+yV 

dp 
dB dB dB y- Ip dB y- I dB 

(4.20) 

The ratio of specific heats y is equal to cdc, and is assumed to have a constant value of 
1.35. 

Thus, the net heat release rate dQn/d6 is obtained from the measured pressure array, the 

calculated volume array, an estimation of average ratio of specific heat values during 

compression and expansion, and arrays that define the rate of change of pressure and 

volume with respect to crank angle. 

Integrating equation (4.20) with respect to crank angle gives a cumulative heat release 

function, from which the normalized mass fraction burned (MFB) curve can be obtained 

and the CA at 10%, 50% and 90% MFB can be calculated. MFB curves are useful to 

quantify ignition timing and combustion duration [57]. 

4.7 Summary 

The present chapter explains the method used for data acquisition and the devices 

involved in such a task. The main features of the data acquisition program are discussed. 

It also explains the importance of synchronizing the different sets of data and the post 

processing operation using the macro program. All the main equations and mathematical 

operations contained in the program are described. 
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5. Naturally Aspirated CAI 

5.1 Introduction 

As previously discussed in Chapter 2, there are several ways to achieve CAI combustion. 
The method chosen in this study is to trap large amounts of exhaust residuals inside the 

cylinder. The large amount of retained residuals provides sufficient energy to promote 

auto-ignition of the charge and also controls the heat release rate due to the dilution 

imposed. This is all made possible through the negative valve overlap (NVO) approach, 
further described in this chapter. 

This chapter also describes the methodology used in this research and investigates the 

effects of CAI combustion on a naturally aspirated engine. Performance and emissions 

parameters are presented and discussed, for various conditions. Effects of varying valve 

timing and lambda are likewise assessed. 

5.2 CAI Combustion via Negative Valve Overlap Approach 

To retain a large amount of exhaust residuals inside the cylinder without having to use 

external EGR, one strategy is to close the exhaust valve before TDC, trapping the 

residuals inside the cylinder. Furthermore, if one has a situation in which EVC occurs 
before TDC on the exhaust stroke and IVO after TDC on the intake stroke, intake and 

exhaust valves are never opened simultaneously, and the duration in °CA between EVC 

and NO is defined as the negative valve overlap (NVO) period. 

In order not to loose the energy accumulated by the recompression of the exhaust gases, 

the intake valve has to open around a symmetrical position in relation to TDC. In other 

words, EVC and IVO need to occur at similar crank angle intervals, relative to TDC. If 

IVO occurs too early, the energy accumulated by the recompression event will be 

dissipated in backflow to the intake manifold, rather than being used to push down the 

piston. 

However, with standard camshafts with fixed profiles and, therefore, valve durations, to 

achieve NVO is not just a matter of advancing EVC and retarding NO. Standard 
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camshafts generally have durations of more than 220°CA for both intake and exhaust 

cams. If EVC is too advanced, there is an impact on the power stroke, by having a too 

early EVO. In addition, if IVO is too retarded, there is a negative effect on the 

compression stroke, limiting the compression ratio and pumping the intake charge back 

in the intake manifold. Consequently, for CAI operation, shorter duration cams are 

needed. 

In previous research [23][24], camshafts having durations (at 0.1mm valve lift) of 
110°CA for exhaust and 120°CA for intake and lifts of 2 and 2.5 mm for intake and 

exhaust, respectively, were used successfully. 

The CAI camshafts are bespoke, re-profiled units, based on standard production items. 

Re-profiling the cams for the desired duration, however, has a penalty on lift. This 

happens because, in order to keep an optimum cam profile with good dynamic behavior, 

the lift has to be reduced from the original values of around 9mm to 2 mm for the exhaust 

and 2.5 mm for the intake. 

The company designated to re-profile the cams received, therefore, a file containing these 

specs for the desired camshafts. However, the actual finished unit has a slightly smaller 
lift for both cams: 1.85 mm for exhaust and 2.33 mm for intake. The durations, however, 

are according to the requested values: 120°CA for intake and 110°CA for exhaust. 

Intake and exhaust valve timings are selected to be similar to previous experiment 

[23][24], with EVC ranging from 57°CA to 104°CA BTDC and IVO ranging from 

72°CA to 124°CA ATDC. As mentioned on section 3.3.2, the shifting range for the VCT 

unit is 47°CA for the exhaust and 52°CA for the intake respectively. 

In order to minimize experimental variables and to stay in the most efficient range, with 

minimum back flow and energy losses, IVO was chosen to always open on a symmetrical 

position, compared to EVC, in relation to TDC, in this part of the experiment. However, 

the recompression stroke after EVC and the subsequent expansion between TDC and 

IVO has some heat losses, creating the small pumping loop presented on Figure 5.1. 
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Figure 5.1 Experimental P-V diagram at 1500 rpm 

The ECU controls the solenoid valves which supply the oil to the VCT units, allowing 

the camshafts to be shifted. This camshaft control has a precision of 1°CA. As described 

in section 3.3.2, the default (start-up) camshaft position is fully advanced exhaust and 

fully retarded intake. In general, the shift increments were of 5°CA until the end of the 

VCT range is reached. Figure 5.2 shows the possible valve timing range as well as valve 
lift profiles for both intake and exhaust. It should be noted that although all the 

"mechanical" VCT range was available, it was not used completely, since the operation 

was limited by either misfire or knock. 
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5.3 Naturally Aspirated CAI Engine Operation and Test Procedure 

Table 5.1 shows a summary of engine operating conditions for the naturally aspirated 
CAI testing. 

Table 5.1 NA CAIEngine Test Conditions 

Coolant temperature 

Fuel 

Fuel line pressure 
IVO 

EVC 

Engine Speed 

Throttle Opening 

90 °C 

Gasoline 95 RON 

3.5 bar 

75°-104° ATDC 

75°-104° BTDC 

1000-3500rpm 

100% 

For engine start up SI operation was required. Since CAI needs hot residuals to start, the 

engine had to first generate the hot residuals by running in SI operation and then, 

progressively, switch to CAI operation. 

The procedure was to set the throttle opening to around 30% and to crank the engine. As 

soon as the engine started, the oil pressure rose and released the cams from the base 

position, after which they were controlled by the ECU, following a valve timing table, 

with preset values for each condition. 

For easier starting, a richer mixture of lower X value was set, being controlled by the 

ECU via closed loop with aX sensor. 
The engine was then left to warm up at a constant speed, still at part throttle. When the 

coolant temperature reaches 80°C, the throttle was fully opened, and CAI started to take 

place, depending on the valve timing combination. If EVC was too late, knocking took 

place, as it could be confirmed from the pressure trace, with a rate of pressure rise higher 

than 10bar/°CA. Conversely, if it was too early, the engine tended to misfire, showing a 

coefficient of variation in IMEP (COVimep) higher than 10, as it will be explained in the 

following sections. As the temperature rose further and stabilized at around of 90°C, the 

engine started to be less sensitive to manual changes in ignition timing and ignition could 

be actually shut off. 
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However, during each engine test the spark was left on, since it ensured that CAI would 

occur, avoiding occasional cylinder stall due to misfire, specially when the engine was 

still in the warm up phase. Moreover, it could broaden the CAI range by allowing a 

spark-assisted CAI zone, normally found on the boundaries of the normal, sparkless, 

CAI, as shown by Kalian [57]. 

Testing was carried out with the dynamometer set for constant engine speed. In order to 

determine the CAI operating range, constant speed test points of 1000,1250,1500,2000, 

2500,3000 and 3500 rpm were used. For each test point, load was varied mainly through 

valve timing change. For example, increasing NVO with advanced EVC traps more 

exhaust residuals and hence reduces the volume of fresh air/fuel mixture inducted in the 

following cycle. When the minimum load for stable operation at ? =1.00 was achieved, ?, 

was then progressively increased up to the lean limit. For speeds of 3000 and 3500 rpm, 

stable operation could only be achieved with mixtures leaner than a, =1.05 and ? =1.10, 

respectively. Load was varied and lambda progressively increased until misfire took 

place. Figure 5.3 shows the CAl operational range that was possible to achieve. 
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Figure 5.3 NA CAI Combustion Operational Range 

The higher load range was limited by knock at speeds up to 2000 rpm. For higher speeds, 

knock was not observed and load limitation was caused only by the gas exchange 

restriction imposed by the short duration/low lift camshafts. For the same reason, for 

speeds higher then 3500 rpm the engine could not achieve stable operation anymore. 
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At every speed, there was a lower load limit (lowest BMEP). At this situation, a high 

amount of exhaust residuals (Figure 5.4) was trapped in the cylinder and the exhaust 
temperature was already very low as shown in Figure 5.5. 
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For each valve timing combination at each test point, the lambda target value was always 

set to ? =l. 00 and progressively increased, in steps of 0.05 until the engine starts to 

misfire. For speeds more than 2500rpm, however, the engine did not achieve stable 

operation with lambda values less than 1.05. The mixture was progressively leaned until 

the maximum achievable lambda value. 
At every test point, for every combination of valve timing and lambda value, the engine 

was left to stabilize for few seconds and then data was acquired according to the 
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procedure described in chapter 4. In addition, the combustion characteristics were 

monitored real-time on the screen, using the Labview program, where pressure vs. crank 

angle, pressure vs. volume and mass fraction burn diagrams were displayed (Figure 4.1). 

5.4 Performance and Emissions Overview 

The results presented in this section were taken mostly at ? =1.00, with some lean 

boundaries at low load, as described in section 5.3. To minimize testing time and to 

replicate conditions from a road car, emissions were sampled only downstream from the 

catalyst, which means, no raw emissions measurements were taken. 

Figure 5.6 shows BSFC over the CAI range. It can be noticed that fuel consumption 

tends to be more sensitive to load than speed, with BSFC reducing as load increases, for 

the same speed. 
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Figure 5.6 CAI fuel consumption 

Figure 5.8 to Figure 5.10 present NO,,, CO and HC emissions of the CAI combustion 

range. Emissions of NO, are extremely low compared to spark ignition combustion as to 

be shown later. The level of NO,, emissions increase as the load increases. This is 

expected due to the lower amount of residuals (Figure 5.4) and increased cylinder 

temperatures at this condition, as shown in Figure 5.7. As speed goes up and load goes 

down, NO, emissions are further reduced. 
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Figure 5.7 Maximum In-Cylinder Temperature for the NA CAI range 

In Figure 5.9, CO shows very high values at 1000rpm. The reasons for this are still under 

investigation, but possible causes could be the formation of a fuel rich zone in the 

cylinder or the occurrence of bulk quenching. As the speed goes up, CO emissions fall 

drastically and increase again around 2500rpm, when the engine operation becomes less 

stable at k=l. Above this speed, the engine could not run anymore with X<1.05, which 

explains the very low values of CO at the higher speeds. At the top speed of 3500rpm, 

CO emissions increase once more, especially at the low load region. This is expected 

since the engine was approaching the misfire range. At any given speed it is observed 

that CO decreases with increased load. 

Figure 5.8 CAI brake specific NOx emissions 

1000 1500 2000 2500 3000 3500 
Engine Speed (rpm) 

4000 
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Figure 5.9 CAI brake specific CO emissions 

Figure 5.10 shows that HC emissions decrease with increased load, for each speed point. 
Keeping the load constant and increasing speed also helps to reduce HC emissions, 

suggesting that for these two conditions combustion tends to be more complete. 
50 ý 

15 

Figure 5.10 CAI brake specific HC emissions 

Figure 5.11 to Figure 5.14 shown a comparison between the brake specific results of CAI 

combustion operation in this engine and SI combustion operation from a 1.8 litre 

standard production gasoline engine (Ford ZetecrM), tested at stoichiometric mixtures, 

supplied by the manufacturer. It can be seen in Figure 5.11 that BSFC is reduced over the 

whole CAI operation and tends to improve with increased speed and reduced load. The 

improvements in BSFC are mainly due to the almost absence of pumping losses at part 

65 



load because, as the load approaches the lower limit, the SI engine has to operate with 

more throttling, impairing BSFC in comparison to the CAI engine. Moreover, the fact 

that CAI combustion is very fast, with constant volume heat addition, also leads to 

improvements in fuel consumption. 

Figure 5.12 shows the advantages of CAI combustion in NOx reduction. Over the whole 

speed range, NOx emissions are dramatically reduced to up to 99%. The combustion 

analysis carried out in the next section will explain that this is due to the low CAI 

combustion temperature. 
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Figure 5.13 Change in BSCO (%) with CAI combustion demonstrates that, apart from 

the 1000 rpm region, CO is greatly reduced over the remaining CAI range. It has a little 

increase at 2500 rpm, when the engine starts to be less tolerant to X=1 and then falls 

again thereafter. 

Figure 5.14 shows, however, that unlike the other emissions, BSHC is much higher with 

CAI than with SI combustion. A possible reason for that is the low combustion 

temperature achieved with CAI. 
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Figure 5.13 Change in BSCO (%) with CAI combustion 
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Figure 5.14 Change in BSHC (%) with CAI combustion 

67 



5.5 Analysis of In-Cylinder Conditions 

To draw conclusions on how to improve the usable range of CAI (Figure 5.3) and to 

understand its limiting factors, the analysis of the in-cylinder conditions was carried out. 
This section presents data taken at X=1 for speeds up to 2500 rpm. Values for 3000 and 
3500 rpm were taken at )=1.05 and A=1.15 respectively, since the engine could not run 
stable with stoichiometric mixture at such speeds. 

5.5.1 Effects of Trapped Residuals on Engine Performance 

Figure 5.15 describes the effects of exhaust residuals throughout the whole CAI range. It 

can be seen that there is a linear correlation between the amount of residuals and engine 

performance. As the quantity of residuals increase, torque output decreases. For a given 

speed, bearing in mind that the engine was operated at WOT, as the mass of exhaust 
increased, less fresh charge could be drawn into the engine, resulting in lower torque. 

This confirms that changing the residual fraction via valve time adjustment is an effective 

way of controlling load, resulting in throttleless operation and, therefore, reduced 

pumping losses. 

Together with Figure 5.3, Figure 5.15 also describes the upper and lower limits of the 

CAI operation, for every speed. The upper limit, at low speed, was due to knocking 

combustion and, at high speed, due to restrictions in the gas exchange process imposed 

by the low lift camshafts. The lower limit was caused by misfire, since there was not 

enough energy for the charge to ignite. At lower speed, the volumetric efficiency of the 

engine was improved, yielding a higher maximum torque. Conversely, as the speed 

increased, the volumetric efficiency fell, limiting the maximum torque obtainable. To 

expand the maximum limit at high speed, the gas exchange process has to be improved. 

Some possible ways to do that could be forced induction and to use a more flexible valve 

train. 
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Figure 5.15 Effect of residual fraction on MEP values for the whole CAI range 

Frictional losses are indicated in Figure 5.15 by the difference between IMEP and 
BMEP. It shows that the friction increases from about 1 bar at 1000rpm to 1.5bar at 
3500rpm. 

5.5.2 Effect of Exhaust Gas Temperature 

Trapped residuals were used to obtain CAI. Therefore, exhaust gas (or burnt gas) 

temperature would have a major effect on auto-ignition and hence on engine operation. 

Figure 5.16 demonstrates that exhaust temperature decreases with increasing residuals, 
for the same speed. This is logical since with increased residuals, less air/fuel mixture 

will be burnt in the cylinder. For the same residual fractions, exhaust temperature 

increases with the engine speed. This is mostly due to the reduced heat losses at higher 

engine speeds. 

It is noticeable that at the maximum residual rate the exhaust temperature was always 
between 600 and 700 K. Below this misfire took place, limiting the BMEP range. This 

shows that any means to increase residual gas temperature would help to extend the 

lower load limit. 
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Figure 5.16 Effect of Residual fractions on exhaust and ignition temperature 

5.5.3 Combustion Analysis 

Figure 5.16 also shows the average charge temperatures at the time of autoignition (T; 6). 
The autoignition time was defined as the crank angle at which 10% of the charge had 

been burnt. The charge temperature was calculated by assuming that the fresh charge and 

residuals were homogeneously mixed and that combustion took place simultaneously 

across the combustion chamber. Although these assumptions might differ from the real 

case, they yield useful information about the in-cylinder conditions. 

As shown in Figure 5.16, T, for gasoline was between 1000 and 1300K and it could vary 

up to 20% with the residual fractions. It can clearly be seen that, for a given speed, as the 

residual rate increases, Tig becomes lower. This is the opposite of what should be 

expected and the reasons for this unusual behaviour are under investigation, although a 

plausible reason could be the larger amount of more reactive species present. 
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Figure 5.17 Effect of residual fractions on 10% and 90% burn angle 

Figure 5.17 shows the crank angles for 10% and 90% mass fraction burnt. Autoignition 

(10%MFB) started between 355 and 365°CA depending on speed and load. At low speed 

and high loads, autoignition showed a tendency to start early, since exhaust residuals are 

at high temperature. As speed increases, first it tends to happen slightly later and then 

advances again, coming back to around 355°CA, once more due to the high temperature 

of the exhaust gases. At high speed, although the amount of residuals is higher, their 

temperature still remains high, due to the lower heat losses. 

Figure 5.18 shows the combustion duration, which is the interval between 10 and 90% 

mass fraction burnt. The trend lines in the graph indicate that the combustion duration in 

crank angles increases with speed and decreases with load but they are of similar values 

in absolute time. Other than 2500rpm and 3000rpm, combustion gets faster as the 

residual fraction decreases. The engine had points of instability at 2500rpm and slightly 

less at 3000rpm, where it could only run with lean mixtures of X=1.05 and above. This 

led to the scattered data shown in Figure 5.18. 
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Figure 5.19 Effect of residual fractions on peak cylinder pressure 

Figure 5.19 shows the peak cylinder pressures for the CAI range. Peak pressure 
increases with load (less residuals), given the same speed. For the same load, peak 

pressure increases with speed except for the lean conditions above 2500 rpm. 
The maximum rate of pressure rise for constant values of X=1.00 (1000-2500 rpm) and 
X=1.05 (3000 rpm) as mentioned before, can be seen in Figure 5.20, which shows that it 

reduces as load decreases (the amount of residuals increase). For the same load, it tends 

to increase with speed. Again, the behaviour changes slightly for the leaner conditions at 
high speed. 
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Figure 5.21 Effect of combustion phasing on peak cylinder pressure 

From Figure 5.21 it can be seen that combustion phasing advances as speed reduces, and, 

therefore, load increases, since the highest loads were achieved at low speed. Conversely, 

combustion phasing retards as the residual fraction increases (load decrease). In addition, 

the maximum cylinder pressure decreases with increased speed and residual fraction. The 

same behaviour also applies to the maximum rate of pressure rise, as Figure 5.22 

demonstrates. It should be pointed out that although the rate of pressure rise was 

approaching IObar/°CA, the engine wasn't actually knocking. There was combustion 

noise, but not at the same level that could be deemed as knocking. 
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Figure 5.22 Effect of combustion phasing on the maximum rate of pressure rise 

To summarize, load has a strong effect on CAI combustion. At high loads, CAI 

combustion starts earlier and burns faster. Ignition temperature, exhaust temperature, 

peak pressure and maximum pressure rise were higher. Speed has an effect on load, 

caused mainly by the flow limitation imposed by the low lift camshafts. At high speeds, 
heat losses are lower, thus temperatures are higher and ignition happens earlier. 

5.5.4 Analysis of Emissions 

Figure 5.23 demonstrates that NOx emissions are strongly affected by load. As load 

increases, NOx emissions rise steeply. Conversely, as load decreases (i. e. the residual 
fraction increases) NOx emissions fall down and remain very low for the majority of the 

test points. In addition, for a fixed load point, NOx emissions tend to increase with speed. 

To better understand the NOx results, a calculation was made to determine the in- 

cylinder temperature (Figure 5.24), assuming the mixture was perfectly homogeneous. 

Figure 5.24 shows temperature profiles for two different load conditions at 1000 rpm. 
Until ignition takes place the temperature exhibits no significant difference between the 

two conditions. After ignition, the temperature at 5.5bar BMEP was considerably higher, 

rising steeply up to 2500K, while at the 3.6bar BMEP it reached only up to 1800K. 

ý 
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The substantially higher in-cylinder temperature at 5.5bar BMEP explains the difference 
in NOx emissions, as shown in Figure 5.25. It presents the effects of peak cylinder 
temperature on NOx emissions for different speeds. It can be seen that negligible NOx 

emissions are present before 1800K, after which they increase exponentially with 
temperature. 
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Figure 5.23 Effects of load and speed on NOx emissions 
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Figure 5.24 In-cylinder gas temperature histories 

The results shown in Figure 5.25 demonstrate that CAI combustion does not always yield 

ultra-low NOx emissions. In fact, when the cylinder temperatures were high enough the 

NOx emissions were comparable to those from a SI combustion engine. Hence, it's clear 
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that cylinder temperatures need to be kept down to minimize NOx emissions. That can be 

achieved by maintaining enough dilution rate as the load is increased. This all suggests 

that forced induction could be a good alternative if it could operate with a higher residual 
fraction or a leaner air/fuel mixture. 
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Figure 5.25 Effects of peak cylinder temperature on NOx 

Figure 5.26 presents brake specific values of CO versus residual rates. At the speed of 

1000 rpm CO emissions are very high, possibly due to poor mixing and cylinder filing, 

as mentioned previously. They also show no significant variation as load goes up. As the 

speed increases, CO emissions have a tendency to decrease. There is a point of unstable 

operation at 2500 rpm, with an increase in CO emissions. At this speed it was difficult to 

achieve stable operation, possibly due to some manifold tuning effect. For higher speeds, 

combustion becomes stable again and CO emissions fall significantly and increase again 

when the speed reaches 3500 rpm, where flow restrictions are at the maximum, leading 

to unstable combustion. Hence, except for the speed points of 2500 and 3500 rpm, CO 

emissions are not greatly affected by load. 

Figure 5.27 shows brake specific HC emissions against the residual fraction. For the 

same speed, HC emissions decrease with load. For a constant load, HC emissions 

decrease with increased speed, possibly due to the higher in-cylinder temperatures 

achieved. 
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Figure 5.26 Effect of load and speed on CO emissions 
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Figure 5.27 Effects of load and speed on IIC emissions 

5.5.5 Analysis of Specific Fuel Consumption 

Figure 5.28 shows how BSFC varies with load and speed. For speeds up to 2500 rpm, 
BSFC decreases with load. From 1500rpm up to 2500 rpm, speed seems to have no great 

effect on BSFC. For the speeds of 3000 rpm and especially 3500 rpm, BSFC increases 

dramatically with speed and load. The variation with load will be better explained later. 
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Figure 5.28 Effects of load and speed on BSFC 

A good way to analyze the effects of speed and load on CAI combustion is to plot net 
ISFC (Figure 5.29) and to compare it with BSFC (Figure 5.28). The ISFC results are very 
different from the BSFC ones. Unlike the BSFC values, ISFC decreases with engine 

speed. The difference between ISFC and BSFC can only be caused by frictional losses. 

This explains, therefore, high BSFC values at high speeds because of the increased 

frictional losses. 

5.5.6 Effects of Pumping Losses 

As previously explained, the necessary high amount of residuals to obtain CAI was 

achieved by early exhaust valve closure and late inlet valve opening, running on negative 

valve overlap. During this stage, exhaust gases were recompressed and expanded again 
during the piston movement downwards, at the beginning of the intake stroke. Obviously 

there are some heat losses in this process, which generate the small pumping loop (Figure 

5.1) as explained previously. According to Figure 5.30, one can see that the average 

pumping losses have a tendency to decrease with speed. 

For 1000 rpm only, it tends to increase with increased residuals (less load). As the speed 
from 1500 rpm and above, this behaviour changes and, for a constant speed, pumping 

losses increase dramatically as the residuals decrease (higher load). This can be explained 

by the fact that at high speeds, during the exhaust stroke, the piston has to overcome a 
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large flow restriction caused by the low lift camshafts, generating considerable energy 
losses. If the exhaust valve is closed early and the intake valve opens late enough, the 

piston does not need to pump exhaust out and dissipates less energy. The piston has then 

to recompress the exhaust gases, but, since the speed is high, there is not much time for 

heat losses to occur and the gases still retain much of their potential energy, which will 

be delivered back to the piston during the intake stroke. 
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Figure 5.31 shows the effects of pumping losses on ISFC. It can be seen that the 

recompression and expansion loops account for an average of 12% losses on ISFC, 
increasing slightly with speed and then remaining at a constant threshold. This leads to 
the conclusion that the main cause for the high BSFC value at high speed is really the 
friction, rather than pumping losses. 
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Figure 5.31 Effect of pumping losses on ISFC 

This section presented the results obtained during the Naturally Aspirated CAI test. The 

engine performance and emissions characteristics for the CAI operation were analysed. 
In-cylinder conditions were assessed, from which several parameters were studied. It was 
found that load has a determinant effect on CAI combustion, as well as on emissions. For 

the majority of the CAI range values for NO., emissions were ultra-low and brake 

specific fuel consumption was lower than the standard SI engine. 
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6. Spark Assisted Turbocharged CAI Engine 

6.1 Introduction 

This chapter looks into the potential of turbocharging for enlarging the CAI range. The 

method for obtaining CAI is similar to the one used in the NA CAI test, with the 

particularity of having a turbocharger installed. Together with intake boosting, the NVO 

approach was used during the test and the amount of residuals will be directly affected by 

the boost pressure as well as valve timing.. 

Performance and emissions parameters are presented and discussed, for various 

conditions. The effects of varying spark, valve timing and lambda are assessed, together 

with their consequences on boost, trapped residuals and overall engine performance. It 

should be noted that all the values for boost pressure are given as gauge. 

6.2 Turbocharged operation with Negative Valve Overlap 

Similarly to the previous NA engine test, NVO was used in order to enable CAI 

operation. The base engine was the naturally aspired one used for NA CAI operation, as 

discussed in Chapter 5. A turbocharger was installed as described in section 3.4. 

During the initial tests with the same camshafts as the NA CAI set-up, it was found that 

the turbocharger would not generate enough boost, with maximum values limited to 

0.2bar. As a result, it was decided to use another bespoke intake camshaft (Figure 6.1), 

with higher lift and duration than that used for the NA CAI operation. 

With the use of the higher lift intake cam (4mm), it was possible to produce substantially 
higher boost levels, which would put the engine straight into the knocking zone. Even 

with increased residuals, knock would take place, narrowing the available operating 

range. In order to reduce the engine's knock sensitivity, it was decided to reduce its 

compression ratio. 
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After having the compression ratio lowered from 11: 1 to 8.8: 1 via a bespoke cylinder 
head spacer (section 3.4), further tests started. This time, it was found out that the 

operating range was largely improved, and it was decided that the actual experiment 

could start. 

The profile for the new intake camshaft was determined from previous experiments, as 

well as the valve timing to start with. This information is plotted on Figure 6.1. EVC had 

a range from 44 to 64°CA BTDC and IVO had a range from 25 to 75°CA ATDC. The 

VCT units were unchanged and had the same shifting range as before, 47°CA for the 

intake and 52°CA for the exhaust. 

POWER EXHAUST INDUCTION COMPRESSION 
STROKE STROKE STROKE- - STROKE 

360 

-EXHAUST-EXHAUSTADV -INTAKE -INTAKE ADV 

Figure 6.1 Intake and Exhaust cam profiles and VCT range for the turbocharged operation 

6.3 Turbocharged Engine Operation and Test Procedure 

The operation of the turbocharged engine was essentially the same as the NA CAI 

engine. The same starting procedure was needed, with all the other controls being the 

same as explained in Section 5.3. Table 6.1 shows a summary of the test conditions for 

the turbocharged engine. 
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Table 6.1 Turbocharged CAI eng ine test conditions 
Coolant temperature 90 °C 

Fuel Gasoline 95 RON 

Fuel line pressure 3.5 bar 

IVO 25°-75°ATDC 

E VC 44°-64°BTDC 

Boost Pressure (gauge) 0.14 - 0.64bar 

Engine Speed 1250-4500rpm 

Throttle Opening 100% 

The only substantial difference in operation was the fact that the engine was, at low 

speed, much more sensitive to the spark timing variation. 

6.4 Operational Range of the Turbocharged Engine with Negative 

Valve Overlap 

The achievable operational range with the turbocharged operation and NVO is shown in 

Figure 6.2, where for each torque value it was selected the combination of X values, 

valve and spark timing that yielded the lowest BSFC. As it can be noticed in comparison 

with the NA CAI range (Figure 6.3), the minimum speed in which stable operation can 
be accomplished is a little higher: 1250rpm. Below this speed, large cycle-to-cycle 

variation and too low turbo boost was achieved, making the operation rather unstable. 

Similarly to what happens with the NA CAI operation in the low speed range, the higher 

load range is limited by knock at speeds up to 3000rpm. Between 3000rpm and 4500rpm, 

the limits are the restricted gas exchange process, imposed by the low lift cams, and the 

increased combustion noise. Speeds above 4500rpm could not be achieved, since there 

was not enough fresh charge being drawn into the cylinder anymore. 

At every speed, there is a lower load limit, determined primarily by the amount of 

residuals (Figure 6.5) that was trapped inside the cylinder. After this condition is 

achieved, further decrease in load can be achieved by increasing A. up to the lean limit 

and by moving ignition timing away from MBT. 
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A region of strong instability is found at 2500rpm, narrowing the operating range at this 

point. However, as soon as the engine passes this point and goes up on speed, 

combustion becomes more stable and the operating region widens once again. This 

phenomenon could be due to the manifold geometry causing some adverse tuning. 

As it can be noticed from Figure 6.3, much higher load figures can be obtained with the 

turbocharged operation. The lower load limit, in its majority, tends to be higher than the 

higher load limit obtained in the NA CAI operation. 

Even having higher exhaust temperatures than shown by the NA experiment (Figure 6.6), 

the lower load limit is still much higher than the NA counterpart. As it will be shown 

later in this section, this is due to the presence of forced induction and associated 

pumping losses. Therefore one of the ways to achieve a lower load limit could be to 

reduce boost. 
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It is interesting to notice that the turbocharged full load curve when in CAI operation, i. e. 
for speeds of 3000rpm and above, resembles the NA CAI full load curve from 1000 rpm 

to 3500rpm. The increased air flow caused by the combination of a higher lift intake cam 

and forced induction seem to have shifted the original NA CAI range to a higher speed 

region (Figure 6.4). The maximum load achieved in the CAI range of the turbocharged 

operation is similar to the one achieved during the NA CAI test, with the difference that 

it happens at a higher speed. 
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Figure 6.4 Shifting in CAI range between NA and boosted operation 
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Figure 6.5 Residual concentration as a function of speed and load (%) 
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Figure 6.6 NA vs. Turbocharged exhaust temperature (°C) comparison 

6.5 Performance and Emissions Overview 

This section presents and discusses the performance and emissions results for the whole 

turbocharged range. In order to minimize data points and to get more comprehensible 

plots, only data for best BSFC figures was used in this section. For every speed, the load 

range was swiped in increments of 0.5 bar BMEP from minimum to maximum load, and, 
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at every step, the combination of IVO, EVC, 7. and spark timing that would yield the 

lowest BSFC value was selected. Figure 6.7 shows an example of a minimum BSFC 

contour plot at 1500rpm with optimized k and spark timing. It is noted that the minimum 

BSFC region is obtained around symmetrical EVC/IVO timings. 
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Figure 6.8 shows the boost pressure used for minimum BSFC through the operational 

range. As expected, the boost pressure increases with both engine speed and load as more 

exhaust energy becomes available. 
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Figure 6.8 Intake boost pressure (bar) for the turbocharged operation 
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Figure 6.9 shows the X range for minimum BSFC. It is noted that leaner mixtures are 

required and that the leanest mixture occurs at high speed. 

Figure 6.9 Lambda range for the turbocharged operation 

Figure 6.10 shows the BSCO emissions throughout the turbocharged range. As one can 

expect, there is a strong correlation between CO emissions and X. Where X is the 

minimum, CO is the maximum, and vice-versa. On the full load line, where the figures 

for best BSFC demanded )=1.00, CO increases substantially and reaches its maximum 

value. 
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Figure 6.10 BSCO for the turbocharged range 
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Figure 6.11 shows the corresponding BSHC emissions for the turbocharged operation. 
As it will be shown later, the values are substantially higher than the ones of the standard 

engine. The peak values happen towards the lower load limit, where the boost pressure is 
lower, mixtures are leaner, in-cylinder and exhaust temperatures are lower. Conversely, 

when the load approaches the higher limit, in-cylinder temperatures tend to be higher and 

uHC emissions tend to decrease, especially where X approaches 1.05, and burned gas 
temperatures are higher. 
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Figure 6.11 BSHC emissions for the turbocharged range 
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Figure 6.12 shows the NOx emissions values for the whole turbocharged operational 

range. It can be readily seen that the lowest values happen near the lower load curve. 

From BMEP of 4bar and below NOx values tend to stabilize below 2 g/kWh. On the 

other hand, as expected, the maximum values happen near the highest load point, where 

exhaust residuals tend to be the minimum (Figure 6.5) and cylinder temperatures reach 

the maximum (Figure 6.13). For a constant load line, NOx values decrease as speed 
increases. This is caused, again, by the increase in residual fraction as speed goes up. 
Calculations show that maximum cylinder charge temperatures are always above 1800K, 

which explains the relatively high NOx levels. 

It is not a coincidence, however, that the lowest NOx values happen exactly inside the 

CAI zone (Figure 6.2), reaffirming, thus, the advantages of CAI combustion in reducing 

NOx emissions. 
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Figure 6.12 BSNOx emissions for the turbocharged range 
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Figure 6.13 Maximum in-cylinder temperatures for the turbocharged range 

Figure 6.14 shows the BSFC values for the turbocharged operation. It can be noticed that 

BSFC has a stronger correlation with load than with speed. The lowest BSFC values are 

found next to the highest load points at low speed. At a constant speed, if load goes 

down, BSFC increases. For a constant load, as speed increases, so does BSFC, although 

this tendency is less pronounced at low loads. 
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Figure 6.14 BSFC values for the Turbocharged range 

6.6 Performance and Emissions: Comparative Analysis 

5000 

This section presents a comparative analysis between the emissions and fuel consumption 

results obtained with the turbocharged operation in comparison to the standard, spark 
ignited Ford Zetec 1.8L Naturally Aspirated engine and to the naturally aspirated CAI 

operation. 

A CO emissions comparison between the standard engine and the turbocharged CAI 

operation is shown in Figure 6.15. It can be noticed that CO emissions are reduced for 

the vast majority of the operating range. This is mainly due to the lean mixtures used, and 

this fact can be confirmed when one looks at Figure 6.9, where it is possible to conclude 

that CO emissions follow the A pattern very closely. If the mixture is lean (lower loads), 

BSCO emissions are lower than the standard engine. Conversely, whenever the mixture 

approaches X=1.00 (higher loads), BSCO values become higher than the ones from the 

standard SI engine. 
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Figure 6.15 Change in BSCO (%) with Turbocharged Operation 
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Figure 6.16 shows the HC emissions changes in comparison to the standard SI engine. 

Similar to what happens during the NA CAI operation, HC emissions are much higher in 

the Turbocharged CAI engine than in the standard SI one. The main reason for that is the 

presence of a large amount of exhaust residuals in the cylinder, in comparison to the 

standard SI counterpart. 

However, the percentage of HC increase is much less in the turbocharged operation than 

in the NA CAI operation (Figure 5.14). This is because the in-cylinder temperatures 

(Figure 6.13) in the turbocharged engine are much higher than the NA CAI ones (Figure 

5.7) and the turbocharged engine could operate at considerably higher loads with leaner 

mixtures, leading to a reduction in HC emissions. Moreover, the presence of the 

turbocharger increases the exhaust temperatures and pressures, improving the oxidation 

for hydrocarbons that flow out of the cylinder. 
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Figure 6.16 Change in BSHC (%) with Turbocharged Operation 

Figure 6.17 shows that NO,; emissions are much lower than the standard SI engine. As 

expected, when the turbocharged engine reaches the CAI range, i. e., above 3000rpm, the 

reduction in NOx emissions becomes similar to the one showed by the NA CAI engine 
(Figure 5.12). This is caused mainly by the high residuals rate existent in the 

turbocharged CAI range. 
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Figure 6.17 Change in BSNOx (%) with Turbocharged Operation 
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Figure 6.18 shows the changes in BSFC in comparison to the SI standard engine. BSFC 

is higher over the whole range by an average of 20%. The main reason for that, as will be 

shown later, is the increase in pumping losses caused by the turbocharger and the very 

restrictive camshaft profiles. It can be noticed, however, that the difference becomes 

smaller at the lowest load points, at high engine speeds, where the standard SI engine 

operates with more throttling and becomes less efficient. 
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Figure 6.18 Change in BSFC (%) with Turbocharged Operation 
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The thermal efficiencies of the NA CAI engine, the Turbocharged CAI and the SI 

standard engine can be seen in Figure 6.19. As it is shown, the NA CAI engine operates 

always at higher efficiencies than the SI standard engine, whereas the Turbocharged CAI 

engine doesn't. Apart from the pumping losses, there is also a small drop in indicated 

fuel conversion efficiency, in the turbocharged CAI engine, due to its smaller 

compression ratio (section 3.4.4). 
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Figure 6.19 Thermal Efficiency comparison 

Figure 6.20 shows the pumping losses for the Turbocharged CAI engine. It is easy to 

notice that PMEP is higher at high loads and high speeds, exactly where air flow and 

intake boost pressure reach the maximum values (Figure 6.8). For speeds above 

4000rpm, pumping losses start to fall, despite the increased boost and air flow. This is an 

indication that the compressor was reaching its best efficiency point. 

2500 3000 3500 4000 4500 
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Figure 6.20 Pumping Losses for the Turbocharged CAI engine 
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6.7 Effects of boost and trapped residuals on engine performance 

In the current turbocharged CAI engine set-up, boost pressure is highly dependent on 
trapped residuals, therefore these two quantities can not be analyzed separately, as it will 
become evident in this section. 

The turbine chosen for the turbocharged CAI engine set-up was the best match available 

at the time. However, it is still a little oversized for the current CAI set-up. Thus, in order 
to have good levels of boost throughout the whole operational range, the waste-gate is 

always kept closed, and the turbine receives all the exhaust gases produced by the engine. 
There is no direct boost control and the turbine speed is, therefore, solely dependent on 

the enthalpy of the exhaust gases produced by the engine and on the restrictions imposed 

by the low lift camshafts. 

By changing EVC, the exhaust flow rate can be changed, causing the speed of the turbine 

and, consequently, the boost pressure to change. With early EVC timings, less exhaust 

gases are delivered to the turbine and hence lower boost is produced. Conversely, for late 

EVC timings, higher levels of exhaust are delivered and higher levels of boost are 

generated. 

Intake manifold pressure (boost pressure), therefore, has a direct correlation with exhaust 

residuals, which in turn, affects directly the engine's output. The higher the amount of 

exhaust residuals, the lower is boost and load. As shown in Figure 6.21, it becomes 

apparent that there is an almost linear relationship between load and residuals rate. 
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Since the engine has no direct, independent boost control, intake manifold pressure is 

always determined and inversely proportional to the exhaust residual rate, as it can be 

seen in Figure 6.22. 
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Figure 6.22 Effect of trapped residuals on boost for ]. =1.00 at MBT 

At low speeds, it can be seen that a slight variation in trapped residuals cause a strong 

effect on boost. However, this variation, achieved by means of changing the valve 

timing, has less effect at high speeds. The reason is that, at high speeds, the gas exchange 
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process is more limited by the small camshaft profiles than by the valve timing itself. The 

operational range becomes very short and the amount of trapped residuals reaches its 

highest levels, which, in turn, despite of the higher boost, end up limiting the achievable 
load, as it can be seen in Figure 6.23. 
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Boost also has an effect on intake air temperature, since the compressor work adds heat 

to the intake charge, increasing its temperature, as it can be seen in Figure 6.24 and is 

subject to analysis in the next section. 
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6.8 Effect of Intake Air Temperature 

One immediate adverse effect of increasing intake air temperature on the Turbocharger 

CAI engine is that whenever the temperature approaches 90 °C, knock takes place if the 

residuals quantity is not high enough. That is observed at low speeds, particularly below 

2500 rpm. If the intake charge could be cooled down by adding a standard intercooler or 

any other cooling device, it could probably extend the higher load limit at low speeds and 
decrease combustion noise at high speeds. 

Intake air temperature also affects BSFC, as it can be observed in Figure 6.25. It is 

important to stress, however, that intake air temperature is more an indicator of changes 

in BSFC than the actual cause of them, since its variations are the result of changes in the 

turbocharger compression work. 

It is noticeable that the points for lowest BSFC are always in general in the middle of the 

temperature range, at each engine speed. For low temperatures, the graph shows 

increased BSFC. However, this is more due to the reduced boost (which would produce 

lower temperatures in the intake charge) than to the low temperature itself. As the 

temperature goes up, as a result of an increase in boost (Figure 6.24), BSFC starts to rise 

again because of the associated pumping losses (Figure 6.20). 
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Another negative effect of a high intake air temperature is to lower the charge's density, 

which impairs the volumetric efficiency and decreases the achievable load range. Also, 

by lowering the charge's density, the turbocharger will have less exhaust flow to drive it, 

generating, in turn, lower boost. 

6.9 Effects of Spark Timing on Engine Performance 

When the engine is running in SI mode, i. e., in speeds below 3000 rpm, spark timing has 

a strong effect engine performance. Only above 3000rpm, when the engine goes onto 

CAI combustion, it has less or no effect at all. The effects of spark timing over 

combustion on the turbocharged CAI set-up are directly related to the boost levels. 

If ignition is retarded, exhaust temperatures increase and the turbocharger spins faster, 

generating higher levels of boost. On the other hand, if ignition is advanced, exhaust 

temperatures decrease and lower levels of boost are produced. These facts can be better 

observed when looking at Figure 6.26. 
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Figure 6.26 Effect of spark timing on boost, for 1500rpm at ). =1.00 

As it was already mentioned in section 6.7 changes in boost affect load. Thus, the effects 

of spark timing on boost and, therefore, load are shown in Figure 6.27. As it can be 

noticed, for one of the valve timing combinations, load could, theoretically, further 

increase if spark timing could be later than 10 °BTDC. However, that was not possible, 

since more retared spark timings put the engine into very unstable operation. 
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As it can be expected, there is also a strong impact of spark timing on BSFC, as Figure 

6.28 shows. For each valve timing combination, there is optimum spark timing for lowest 

BSFC that is, in general, earlier than 20°BTDC. Different from NA engines, the spark 

timing for best BSFC is not always the same as the MBT timing. 
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Figure 6.28 Effect of spark timing on BSFC, for 1500rpm at 1`=1.00 

Spark timing also has an effect on the residuals rate. For every engine operating 

condition, there is an average range of trapped residuals that is mostly dependant on the 

valve timing combination, in particular EVC timing. However, the residuals rate can be 

further varied by varying the spark timing. This is because the spark timing affects boost, 

and hence the amount of fresh charge in the cylinder. This is illustrated by Figure 6.29. 
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Figure 6.29 Effect of spark timing on residuals rate, for 1500 rpm at I =1.00 

6.10 Effects of . on Engine Performance 

This section analyses the effects of the relative air/fuel ratio X for the engine speeds of 
1500 and 3000rpm during the Turbocharged CAI engine operation. 

For each speed and A value, a particular valve timing combination and ignition timing 

which would yield the best BSFC were chosen. For 1500rpm the valve timing 

combination was IVO at 450 ATDC and EVC at 540 BTDC; for 3000rpm it was IVO at 

25° ATDC and EVC at 49° BTDC. 

Figure 6.30 shows the effects of), on trapped residuals. It can be noticed that the residual 

rate is almost constant for each speed. This is expected since what really determines the 

amount of trapped residuals is the valve timing, which is constant and different for each 

case. Obviously, the residuals rate is much higher at 3000rpm than at 1500rpm due to the 

gas exchange restrictions at that speed. At 3000rpm, there is a trend showing a decrease 

in residuals as the mixture becomes leaner. 
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Together with the trapped residuals, changes in ? also contribute to the change in the 

maximum cylinder temperature, as shown by Figure 6.31. It is readily noticeable that 

temperatures are higher for 1500 rpm, which is expected since the residual fraction at this 

speed is smaller. 

Increasing X seems to have little effect for 3000rpm when compared to those at 1500rpm. 

For both speeds, the temperature drop becomes higher for mixtures leaner than )=1.10, 

since on one hand there is an increase in residuals rate and on the other there is less fuel 

being burnt, generating, therefore, less heat. 
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Figure 6.32 shows the effects of A on BMEP. It can be noticed that as lambda increases, 

load decreases, as expected. However, for 1500rpm, the difference between X=1.00 and 
A=1.05 is negligible. For 3000rpm there is no such behavior, since load decreases linearly 

with the increase in X. Nevertheless, the variations in load with changing A for 3000rpm 

are minor, when compared to the ones of 1500rpm. In fact, load at 3000rpm could be 

considered almost constant, in comparison with the magnitude of the changes at 
1500rpm. 
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Figure 6.32 Effect of .% on BMEP 
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Figure 6.33 shows the effects of X variation on BSFC. It is possible to notice the lower 

figures for BSFC at k=1.05 for both engine speeds. For 1500 rpm, however, the reduction 

in BSFC at ý. =1.05 is less pronounced. With ? higher than 1.05, there is an increase in 

fuel consumption for both speeds, which is minor for 3000rpm and exponential for 

I500rpm. As a matter of fact, looking at the larger picture one could say that fuel 

consumption is constant with A at 3000rpm and varies significantly at 1500rpm. 
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Figure 6.33 Effects of a, on BSFC 

Figure 6.34 shows the effect of X on NO, emissions. As one could expect, NO, emissions 
have a strong correlation with cylinder temperature. It is noticeable that values for 

1500rpm are much higher than the ones of 3000rpm, which can be explained by the high 

cylinder temperatures at 1500rpm. For 1500rpm, as the mixture goes lean, NO, 

emissions increase until a maximum at around X=1.10 and then fall again for leaner 

mixtures due to the falling cylinder temperatures. This is typical of SI combustion. In 

comparison, NO,, emissions are much less affected by the X value due to the presence of 

high amount of residuals and hence low temperature CAI combustion. 
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Figure 6.35 shows the CO emissions as a function of X. The trend for CO emissions seem 
to be much more affected by X than by speed itself, since for both speeds the behavior is 

very similar, with minimum levels happening between Xv 1.05 and X=1.10. Therefore, it 

can be concluded that the dependency of CO emissions is the same for both SI and CAI 

combustion processes. 
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Figure 6.35 Effect of) on BSCO 

Figure 6.36 shows the effects of 2 on BSHC. As the mixture goes from ? =1.00 until 

? -1.10 there is a substantial emissions reduction, since there is excess air and still high 

cylinder temperatures to oxidize the unburned hydrocarbons. As mixture goes even 

leaner, cylinder temperatures fall substantially, impairing the HC oxidation process. 
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When running the engine in the CAI range, i. e. from 3000rpm to above, from the figures 

in this section, it becomes clear the advantage of operating with k around 1.05, since this 

does not affect NOx emissions to a great extent, produces lower levels of HC and CO 

emissions and gives the lowest values for BSFC. 

This also shows the ability of CAI to handle lean mixtures without great impact on NOx 

emissions, which is desirable from the fuel consumption point of view. 

6.11 Operational Parameters for Minimum and Maximum Values of 

BMEP and BSFC 

As it was found during the tests, several combinations of parameters can lead to similar 

engine outputs but with different fuel consumption results. For each speed, combinations 

of X, ignition timing, EVC and IVO would generate a particular load range. However, 

many of the achievable load points would present high cycle-to-cycle variation, 

expressed in terms of the coefficient of variation in IMEP (COV;,,, ep). According to 

Heywood [33], whenever COVimep exceeds about 10%, vehicle drivability problems 

arise. Thus, in order to have more realistic figures, data was filtered and only 

combinations showing COVimep values smaller than 10% were chosen. 
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Figure 6.38 BSFC range vs. boost varying spark, valve timing and X 

Values for maximum and minimum load at each speed were selected (Figure 6.37) and 

can be found in Table 6.2. A similar procedure was done for the fuel consumption data, 

which covers the range shown in Figure 6.38. 

Table 6.2 Operation parameters for Maximum and Minimum values of BSFC 
and BMEP at 1500 and 3000rpm 

Themid 
PUMPING FRICTION 

SPEED 
INT. 

T 
IGN. 

IVO EVC LOSSES LOSSES EKtiercy 
mqu Boosl 

Air Temp 

E%H 
ADV. ^etlMEP PMEP FMEP BMEP o BSFC BSNOa BSIIC BSCO ýI oCA oCA 

bar par bai bar % qMwh gMwh gA(wh qi%w-n % 
Nm bar oC oC cB1DC AT UC biDC 
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5 04 
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0.82 1 SS 

rviý 

4.48 

r 

262 427.40 4 04 2.05 6.35 19 

MAX 1800 88 051 82 832 10 1.00 25 49 8.09 1.28 1.18 5.43 1.84 338.57 774 387 2464 24 

MIN 3000 32 0 35 70 558 45 1.10 25 54 3.56 1 84 1.04 2.52 3.38 458.93 1.74 8 82 3.103 18 

MAX 3000 47 0.44 75 560 65 1.05 8S 54 ý t41 10A 3. ]0 8.24 373.84 288 3 B] 2. fl 

MAXIMUM AND MINIMUM VALUES OF BSFC 
MIN 1800 7a 0.30 60 1-1 1- 1.05 45 54 7.00 053 124 587 2B1 305.37 8.31 412 435 27 

MAX 1500 57 0.45 77 541 10 1.10 45 54 0.04 0.82 1.55 4.48 12 427 45 Ba 2 88 5.38 18 

U IN 3000 44 039 70 548 45 7.05 55 54 4.75 1.25 1.31 3.40 365 37]. 54 1.9 44.50 2.37 22 

MAX 3000 32 0.35 70 558 45 1.10 25 54 350 1.84 1.04 2.52 3.30 458.03 1.74 8.52 3.03 IS 

Both maximum load points, i. e. for 1500 and 3000rpm happen at the richest a, of their 

ranges, which was ? =1.00 for 1500rpm and ? =1.05 for 3000rpm. At these conditions, 
boost is at the maximum and pumping losses are higher. However, in proportion to the 

respective IMEP values, pumping losses are lower at high load than at low load, which 

means the engine is on a higher efficiency zone at high load. The points for best BSFC 

tend to happen at the maximum load point or very near to it, as shown in Table 6.2. 
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6.12 Combustion and In-Cylinder Conditions Analysis 

In order to get more appropriate comparisons, this section analyzes the results obtained at 

X=1.00 at MBT for the SI and spark assisted operation and at 2=1.00 for the CAI 

combustion operational region. Figure 6.39 shows the charge temperatures at the point of 

ignition, whether by spark or through autoignition, as well as exhaust temperatures. It is 

important to notice the clear difference in values between the SI and the CAI combustion 

ranges. For speeds less than 2500rpm, only SI combustion was present. At 2500rpm, 

spark-assisted CAI was taking place and from 3000rpm and above pure CAI was present. 

The occurrence of pure CAI could checked by turning off the spark and by the 

appearance of the pressure trace. 

As shown by Figure 6.39, similar to what happened with the NA CAI engine, for the 

same amount of residuals, exhaust temperature increases as speed gets higher and heat 

losses become lower. This behavior is more pronounced in the SI combustion range, 

where larger variations in exhaust temperature were present. During the CAI operation, 

exhaust temperatures were lower. 
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Figure 6.39 Effect of trapped residuals on ignition and exhaust temperature for k=1.00 at MBT 

It is also noticeable that CAI starts to happen only with a residual fraction higher than 35- 

40%, becoming fully stabilized from 40% onwards. This goes in accordance to the results 

obtained in the NA CAI set-up, where CAI would take place at the same residual fraction 

and above. Figure 6.39 also shows that as the residual fraction goes up, the ignition 

temperature, in the SI range, gets higher, which leads to the conclusion that ignition 
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needs more heat (from compression) to happen. However, the opposite occurs with CAI 

operation. There seem to be a threshold of 40% of trapped residuals after which 

autoignition starts to happen earlier and with less heat needed. The increased residuals 

seem to accelerate the autoignition process. This could be a result of more active species 

in the exhaust residuals. 

Figure 6.40 further illustrates this phenomena by showing that as the residual rate 

increases, ignition starts later for the SI range and earlier for the CAI range. The end of 

combustion duration also has a tendency to happen earlier as residual fraction and speed 

increase, which means combustion gets faster, as it can be seen from Figure 6.41. 
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It is noticeable as well, in Figure 6.41 that combustion becomes much faster and more or 
less at a constant rate as the speed goes above 2500rpm, which is where CAI takes place. 

Figure 6.42 shows the effects of the residual fraction on peak cylinder pressure. It can be 

seen that at higher speeds, in the CAI range, cylinder pressures are higher and tend to 
decrease with the residual rate, as expected. The peak pressures are similar to those of the 
NA CAI test (Figure 5.19). 
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Figure 6.42 Effect of residual fraction on peak cylinder pressure 

In relation to load, the maximum cylinder pressure shows a different behavior, as can be 

seen in Figure 6.43. The CAI region, which produces less load, has the highest pressures. 
The peak pressures do not happen, therefore, at the highest loads, but, as Figure 6.44 

demonstrates, at the highest boost regions. Hence, one can conclude that what determines 

the peak cylinder pressures is boost rather than load or trapped residuals. It should be 

pointed out, though, that this is a particularity of the current set-up, in which there was no 
independent boost control. If independent boost control was applied, the residual fraction 

would have a larger effect on peak cylinder pressures since it could be possible to lower 

the boost at that condition, if necessary. 
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Figure 6.43 Effect of BMEP on maximum cylinder pressure 
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Figure 6.44 Effect of boost on peak cylinder pressure 

The effect of residual rate on the maximum rate of pressure rise is plotted on Figure 6.45. 

There is a clear difference between data from the SI and from the CAI range. In the SI 

range, i. e. below 2500rpm, it decreases with the residual fraction. However, for the CAI 

range, on speeds starting from 2500rpm, the maximum rate of pressure rise increases as 
the residual fraction goes up. This is more due to the higher boost generated at high 

speeds than to the residual fraction itself, as Figure 6.46 can confirm. There is only one 

exception, at the speed of 4500rpm, where the maximum rate of pressure rise decreased 

with higher residual fraction. At this point, the gas exchange process was very restricted, 

limiting the effect of boost. In addition, the residual fraction was also very high, making 

the maximum rate of pressure rise fall again, for values around 3bar/°CA. 
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Figure 6.45 Effect of residual fraction on maximum rate of pressure rise 

Figure 6.46 shows the effects of boost on maximum rate of pressure rise. It is possible to 

see that it has a stronger correlation with boost than with residuals, for the current set-up, 

regardless of being in the SI or CAI range. Again, at 4500rpm there is a change in 

behavior, with dp/d°CA,,, ax falling once again, for the reasons already explained. 

Figure 6.46 Effect of boost on maximum rate of pressure rise 

It is important to notice that the values of the maximum rate of pressure rise are not very 

different than the ones obtained during the NA CAI test. The maximum levels were 

around 7 bar/°CA, which confirm that the engine was not knocking. At high speed, where 
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the boost is at the maximum, there is combustion noise present, but not loud enough, on a 
subjective analysis, to be deemed as knocking. In any case, they were below 10 bart'CA, 

a value noticed and chosen to be the knock threshold. 

6.13 Effects of Boost, Residuals Fraction, Pumping and Friction Losses 

on BSFC 

Figure 6.47 shows the effects of boost on BSFC. It can be readily seen that the highest 

fuel consumption happens at the points of higher boost and higher speeds, i. e. BSFC gets 
higher as speed increases. At low speeds, BSFC is less sensitive to boost, whereas at high 

speeds it changes much more with boost, having a tendency to decrease with an increase 

in boost. 

600 

550 

Soo 

: 450 
m 

u 400 
LL 
f/) 

350 

300 

250 
200 

+- 
+ 

+ + 
" =- -+- + - . + 

i 

ý . 

. , ý 

0.10 020 0.50 0.60 0.30 a. ao 

Boost Pressure (bar) 

f 450 rpm 2000 rpm X 1500 rpm 2500 rpm "_3000 rpm +3500 rpm -4500 rpm 

Figure 6.47 Effect of boost on BSFC 

0.70 

Figure 6.48 shows that ISFC increases with speed, reaching a maximum at 3500rpm and 

then falling again at 4500rpm. At every speed, as boost goes up, ISFC goes down. Since 

the difference between ISFC and BSFC can only come from the friction losses, it is 

apparent that at high speed frictional losses are an important source of fuel consumption. 

This fact can be confirmed when one looks at Figure 6.49, where it is easy to notice that 

the fraction of ISFC taken by the friction losses scales up with speed. 

114 



400 

380 

360 

340 

320 
LL 
tA 

300 

280 

260 

240 ý-- 
0.10 

+ 

0.30 

ý* 
"ý\ 
-ý ý ý- ýc 

:ý- 
. ". ý a 

0.20 

0 

x 

0.40 

ý 

Boost Pressure (bar) 
0.50 0.60 0.70 

f 1250 rpm 2000 rpm * 1500 rpm 2500 rpm 0 3000 rpm +3500 rpm -4500 rpm 

Figure 6.48 Effect of boost on ISFC 

60.00 

50.00 U 
LL 
H 

0 40.00 
tl! 
O 

30.00 
C 
0 
= 20.00 

ö 

10.00 

0.00 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Figure 6.49 Effect of friction losses on ISFC 

Similar to what happened during the NA CAI test, the fact of having the NVO strategy 
for achieving CAI introduces pumping losses as shown in section 5.2. Pumping losses, in 

turn, have a degree of dependence on the amount of trapped residuals, as shown by 

Figure 6.50. It can be noticed that for the SI range, pumping losses decrease as the 

residual fraction increases, for every speed up to 2000rpm. Pumping losses also increase 

with speed, in this range. For the CAI range, however, pumping losses are not so variable 

anymore in relation to the residual fraction. 
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The pumping losses seem to have a better correlation with boost, as shown in Figure 

6.51, for they always increase with boost until the speed of 4500rpm. At this point, 

pumping losses fall. This suggests that the turbocharger may be operating in a higher 

efficiency zone. 

This correlation with boost is expected, since for the compressor to pressurize the intake 

it has to take power from the turbine, which, in turn, increases the back pressure in the 

exhaust manifold. 

Figure 6.50 Effect of residual fraction on pumping losses 
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The effect of pumping losses can be better evaluated when it is referred to ISFC, as a 

percentage, shown in Figure 6.52. It is very clear that pumping losses are the major 

source of fuel consumption in the turbocharged set-up. The only exception happens at the 

speed of 4500rpm, where pumping losses fall and the main source of fuel consumption 

becomes the frictional losses (Figure 6.49). 
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0.70 

Figure 6.53 shows a p-v diagram for the turbocharged CAI operation at 3500rpm and 

2.43 bar boost, where it is possible to see the large pumping loop at the bottom. 
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Figure 6.53 P-V diagram for the turbocharged operation at 3500rpm, X=1.00, boost=0.53bar, 
BMEP=2.43bar 
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6.14 Summary 

This section presented the results for the turbocharged operation of the CAI engine. 

General emissions and performance analysis was carried out, followed by the combustion 

and in-cylinder conditions analysis. 

It was noticed that CAI could only happen at high speed. For speeds lower than 2500rpm 

, only SI was present. From 2500 to 3000rpm, with more than 40% trapped residuals, CAI 

started to happen in spark-assisted mode and from 3000rpm to 4500rpm pure CAI was 

present. 

Emissions of HC and CO proved to be, for most of the operational range, lower than for 

the standard SI engine, and NO, emissions showed up to 98% reduction. Fuel 

consumption, however, was found to be higher then both the NA CAI set-up and the SI 

standard engine. The causes for this occurrence were investigated and it was found that 

pumping losses where the main cause for increasing the energy losses and, therefore, the 

fuel consumption. 
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7. Conclusions and recommendation for future work 

A 4-cylinder Ford Duratec 1.6 L Ti-VCT (Twin Independent Variable Cam Timing) 

Gasoline Engine was commissioned and modified to operate with Controlled Auto- 

Ignition combustion. Two main tests were carried out and the results were compared to 

the ones for a standard SI production engine. The conclusions obtained from these 

experiments are detailed below. 

7.1 Naturally Aspirated CAI/HCCI 

CAI combustion has been achieved on a production type 4-stroke, 4-cylinder gasoline 

engine employing substantially standard components, having only the camshafts changed 

in order restrict the gas exchange process. CAI could be achieved over a fair range of 

load and speed. When in CAI operating mode, significant BSFC and emissions reduction 

could be achieved, especially for NOx (up to 99%). Aiming to better understand the NA 

CAI combustion, detailed analysis of the combustion and heat release process was 

carried out. 

7.1.1 Effect of load, speed and residual fraction on engine performance 
and fuel consumption 

The engine torque output was determined principally by the amount of residuals trapped 

in the cylinder using variable valve timing. The higher the residual fraction, the lower the 

torque output. 

The higher load range was limited by knock at low speeds and by restrictions in the gas 

exchange process at high speeds. The lower load limit was determined by misfire. 

Measures to extend the high load limit could be the use of external, cooled EGR for the 

low speed part and to improve the flow at low speeds by having a more flexible valve 

train, allowing at least an independent control of valve opening/closing events would be 

necessary. 
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The use of trapped residuals is an effective way to control heat release. Maximum 

cylinder pressure and maximum rate of pressure rise decreased as the residual fraction 
increased. 

Load had a determinant effect on CAI combustion. At high loads, CAI combustion 

started earlier and completes faster; combustion temperature, exhaust temperature, peak 
pressure and maximum pressure rise were at their maximum. 

Speed had a noticeable effect as it tends to lower emissions figures and increase BSFC. 

At high speeds, heat losses and PMEP were lower. FMEP, however, increased and offset 

the advantages of the others, impairing BSFC. While BSFC increased with speed, ISFC 

decreased, confirming that friction was the main cause of increased fuel consumption at 

high speed. 

Brake specific fuel consumption tended to decrease as load increased, suggesting that any 

increase in the load limit would be beneficial, at any speed. 

The pumping losses caused by the recompression loop remained low and tended to fall 

with speed. This was due to lower heat losses at high speed. 

To improve the CAI load range whilst still keeping the high dilution rate, forced 

induction via turbocharging could be a good alternative. This is because intake boost is 

accomplished with increased exhaust back pressure, helping to trap a larger residual 

fraction in the cylinder. 

7.1.2 Emissions Performance 

For the most of the CAI combustion range, NOx emissions were ultra-low. This was due 

to the low cylinder temperatures achieved by the high residuals rate. NO, was not always 

low. Without the necessary residual fraction the values could be as high as for the 

standard SI engine. NO,, emissions tended to increase with load since lower residual rate 

was present. Any ways to increase load while keeping the residual fraction high would 

help extend CAI range while still holding NO,, emissions down. 
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HC levels were higher than the standard SI engine for the whole CAI range due to low 
combustion temperatures. 

CO emissions were higher than the standard SI engine at 1000rpm, but were in general 

much lower at higher speeds. Improving mixture preparation at this speed could help 

reduce CO emissions levels. 

7.1.3 Summary 

The potential of CAI/HCCI for lowering emissions levels and fuel consumption was 

proven in a 4-cylinder NA engine with minor changes from the production unit. CAI was 

achieved by means of NVO strategy. It has been shown that CAI combustion is very 

efficient especially to control NO,, emissions. It has, however, still a limited range of 

operation and ways to extend it are very necessary. 

7.2 Turbocharged CAIIHCCI 

Similarly to the NA test, the turbocharged CAI engine relied on exhaust gas trapping 

using a negative valve overlap strategy to promote auto-ignition of the fresh charge. A 

turbocharger was added to the engine in order to provide forced induction and extend the 
CAI range. 

Boosting via turbocharging, in conjunction with residual gas trapping, has been shown to 

be an effective way to raise the CAIIHCCI operation usable load range. It was possible to 

achieve much higher loads and increase the attainable speed. 

The addition of a turbocharger and boost to the engine, together with NVO, added many 

more parameters for engine operation. Many secondary effects that influenced engine 

performance came in place. It was necessary to choose what results to aim for and 

optimize the parameters appropriately. 
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7.2.1 Emissions Performance 

CO emissions showed a great dependency on AFR for both SI and CAI operation. For 

lean mixtures, however, CO was lower with the Turbocharged CAI than with the 

standard SI engine operation. It is important to point out that in this condition the 

Turbocharged CAI operation produced CO emissions up to 75% lower than the standard 

SI engine. 

HC emissions were much higher with the Turbocharged CAI engine than with the 

standard SI engine. However, the Turbocharged CAI engine showed lower HC emissions 

than the NA CAI engine due to leaner mixtures and substantially higher exhaust 

temperatures. 

NO. emissions showed higher values in the Turbocharged CAI operation than with the 

NA CAI operation. Nevertheless, both cases show values extremely low when compared 

to the standard SI engine. 

It becomes evident that the Turbocharged CAI operation is advantageous from the 

emissions point of view. In comparison to the standard SI engine, CO and NO. emissions 

show very low figures. HC emissions, despite of being higher than the SI engine, show 

smaller levels than the NA CAI and could be treated by a standard 3-way catalyst. 

7.2.2 Effects of AFR on engine performance 

The effects of ? were more pronounced in the SI operation (below 2500rpm) than on the 

CAI range (above 3000rpm). Maximum cylinder temperature, load and brake specific 

fuel consumption tended to be more or less constant with A, in the CAI range when 

compared to the SI range. Nevertheless, for the CAI range, these values showed a slight 

decrease as , increased. 

The AFR seemed to have little effect on residuals percentage, since these were more 

dependent on valve timing. 
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There seems to be, however, an optimum A. value of 1.05 that yields low fuel 

consumption as well as reasonably low levels of NO,,, CO and HC emissions. 

7.2.3 Effects of Spark Timing 

Spark timing was found to have a strong effect over the engine's overall performance 
during the SI range. Since spark timing had a strong effect on exhaust temperatures, 
boost was highly dependent on it during SI operation (below 2500rpm). The effect 
became slightly less in the spark assisted CAI range and were almost inexistent in the full 

CAI range, i. e. above 3000rpm. This suggests that the presence of spark, at appropriate 
times, is a very important way to promote a seamless SI/CAI switching. 

7.2.4 Effects of boost, residual fraction, pumping and friction losses on 
engine performance and fuel consumption 

Compared to the standard SI engine, BSFC was 20% higher with the Turbocharged CAI 

operation. This is mainly due to the increased pumping losses caused by the turbocharger 

that affect engine efficiency. 

BSFC has shown, however, a strong negative correlation with load, which suggests that 

if load could increase further, BSFC would probably decrease. At high speeds, the 

frictional losses reach their maximum and account for a substantial amount of the 

available IMEP. Since friction tends to be more dependent on speed than load, once 
friction has reached the maximum for a certain speed, if load increases further, BSFC 

will fall. 

The results also suggest that the turbocharger was not operating at a good efficiency 

point. This implies that a better matched turbocharger would decrease pumping losses 

and hence fuel consumption. In addition, a better matched turbocharger would be able to 

provide higher boost for the same or less pumping losses, which means that the attainable 

load would be higher and fuel consumption would tend to fall since the overall thermal 

efficiency would increase. 
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The gas exchange process became very restricted at high speeds, therefore limiting the 
achievement of a potentially higher load that could contribute to decrease BSFC. 

Boost increased intake air temperature. Increased air temperature limited the achievable 
load by lowering the knock limit and by decreasing the charge density. Measures that 

would tackle these effects would extend the load range and improve the overall 

efficiency and reduce fuel consumption, at the same time that would have the potential to 
decrease NO,, emissions even further. 

Boost pressure increased with speed and load as more exhaust energy became available. 
Boost has shown a strong dependency on exhaust residuals. The higher the residual 
fraction, the lower the boost was. 

It was possible to achieve CAI with turbocharged operation only with residual rate higher 

than 40%, which is similar to what happens in the NA CAI. With the turbocharged 

operation, the use of trapped residuals is a valuable way to control heat release. Increased 

residual rate tends to advance combustion phasing and make combustion faster. Values 

for combustion duration and maximum cylinder pressure are similar to the ones from the 

NA CAI operation. The latter, however, is higher than for the standard SI engine. 

Maximum cylinder pressure and maximum rate of pressure rise showed to be more 

dependent on boost than any other variable, so boost control is an effective way to limit 

these two quantities. 

The use of residual trapping via NVO proved indeed to be a good alternative for 

promoting autoignition and achieving CAI. On the other hand, trapping residuals 

negatively affects the turbocharger operation by limiting the available exhaust energy 

and, therefore, boost. If there could be a way to increase boost without decreasing the 

percentage of trapped residuals, this would probably enable higher loads while still 

controlling heat release. 

124 



7.2.5 Summary 

With turbocharged operation, the results seemed to be very much dependent on the set- 

up. The described set-up introduced high pumping losses that impaired the results for 

fuel consumption. Load and emissions, however, seemed to have much improved results 
in comparison to the standard SI engine and to the NA CAI engine. Turbocharging is, 

therefore, a potential way to increase even further the achievable CAI load range and to 

contribute for the evolution of the CAI technology. 

7.3 Recommendations for Future Work 

The results provided by the Turbocharged CAI Engine test unveiled some interesting 

characteristics as well as some areas of possible improvement by further research. The 

further results would give some insights that could help CAI to reach the roads and 

motorways in the future. It is the view of the author that the following areas could be 

further explored. 

7.3.1 Reducing Pumping Losses 

Pumping losses have to be minimized in order for the BSFC values to reach acceptable 

levels. This could be done by better selecting a turbocharger, i. e. finding an unit that 

could be a better match for the engine. In addition, it would be desirable to have a 

variable geometry turbocharger to operate closer to its best efficiency throughout the 

whole engine operating range. It would be desirable to further monitor the turbocharger 

operation by installing extra pressure and temperature sensors closer to the turbine and 

compressor inlet/outlet. Also, if possible, it would be helpful to have a rotor speed sensor 

to monitor the turbocharger with more precision. 

7.3.2 Improving the Gas Exchange Process 

The gas exchange process has to be improved in order to achieve higher loads at high 

speeds. This could be done by better designing the camshaft profiles. Since the engine is 

a research unit and does not need long-lasting camshafts, more aggressive cam profiles 
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could be designed, providing higher valve lifts for still short durations. The timing for the 
valve opening/closing events should be better studied, perhaps through simulation, in 
order to find more optimized figures and then to design new cam profiles based on them, 
if possible. 

7.3.3 Expanding the Turbocharged CAI Range 

The CAI range needs to be increased by expanding the upper and lower load limits. The 

upper load limit could be increased by the use of cooled external EGR while still using 
trapping residuals via NVO as well as the use of an intercooler to cool down intake air. 
This would avoid knocking at high loads as well as improve the charge density, 

contributing even further for the achievement of higher loads. 

The lower load limit could be extended by lowering boost pressure by waste-gate 

opening. This would require an electronic control over the waste-gate. The lower load 

limit could be extended by increasing slightly the compression ratio. Obviously this 

would have an impact on the upper load limit but could be possibly counteracted by 

having cooled EGR and intercooler. 

Instabilities at 2500rpm should be investigated and possibly counteracted. This would 
widen the operation at that speed. 

7.3.4 Improving Mixture Preparation 

Although it was not reported in this thesis, during the tests, the author observed some 

conditions in which mixture preparation could be improved. Injection timing could be 

optimized for each valve timing combination, improving mixture preparation and 

yielding possibly better emissions results. Particularly at low speed and low loads, when 

the injectors operate with very low pulse widths, their precision in metering the fuel tends 

to fall. At this condition smaller injectors could play a critical role. 
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7.3.5 Evaluating Catalyst Efficiency with CAI 

Since CAI produces low exhaust temperatures, especially for the NA operation, a test 

should be performed to assess catalyst efficiency with CAI combustion. It should 

compare raw emissions with emissions downstream from the catalyst. 

7.3.6 Using Ethanol as Fuel 

A test having ethanol as a fuel should be performed. It's lower knock sensitivity and 

charge cooling effects should help extend the higher load limit. A test should be 

performed both in NA and boosted operation. 

7.3.7 Non-symmetrical Valve Timings for NA operation 

It should be performed a naturally aspirated test having valve timings not symmetrical. It 

should investigate the possibility to expand CAI range with this configuration and to find 

out optimum operating parameters. 
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Appendix A- CAD drawings for pressure transducer installation 
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Appendix B- MHI Turbocharger range and specifications 
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Appendix C- MOTEC ECU M800 Series specification 
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