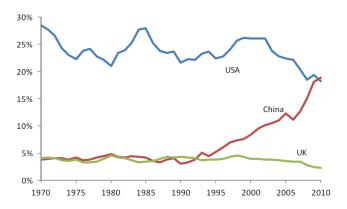
Towards green scheduling: A decision support for trade-off analysis between makespan and energy consumption

Afshin Mansouri ¹ Emel Aktas ¹ Umut Besikci ²

¹Brunel Business School, Brunel University London, UK ²Faculty of Engineering and Natural Sciences, Sabanci University, Turkey

43rd DSI Annual Meeting 2012 November 17-20, San Francisco, CA


Outline

- Motivation
- Problem Definition
- Methodology
- 4 Results
- Summary

Sustainability Concerns in Manufacturing

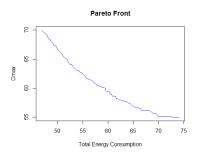
- Challenges
 - Increasing energy cost
 - Scarcity of energy, resources, and material
- Manufacturing sector:
 - The third largest sector in the UK economy
 - Over 11% of the national economy
 - More than 8% of total UK employment
- Transition to a low-carbon economy
- Energy considerations for resource efficient manufacturing
- One third of world energy is consumed by manufacturing sector
- 36% of global CO2 emissions by manufacturing sector (OECD-IEA 2007)

Manufacturing: A Global Driver

Manufacturing's global contribution (Mellows-Facer & Maer 2012)

Commitment of Developed Economies

- The Kyoto Protocol target for 37 industrialized countries and the European community for reducing Greenhouse Gas (GHG) emissions by 5% against 1990 levels over the five-year period 2008-2012.
- Carbon Reduction Commitment scheme aims to reduce CO2 emissions from the target organisations in UK by at least 4 million tonnes per year by 2020. (www.carbontrust.com)


An Immediate Need

- Carbon footprint reduction has high priority for a major UK biscuit manufacturer with core markets in Europe in line with their strategy to minimize impact on the environment
- Baking profile can influence up to 25% of total energy
- Key decision variables
 - Line process rates which may be driven by pack size
 - Changeovers (ie milk to plain chocolate) pause the process (the time requirement depends on the sequence)
 - Baking profile

Characteristics of the Problem

- Multiple products
- Different running speeds
- Conflicting criteria: C_{max} (or Makespan) and Total Energy Consumption (TEC)
- Two machine sequence dependent permutation flowshop (F2|ST_{sd}|C_{max}, TEC)


Summary of the Literature

- Yu (2010) defined Green Scheduling as "modern scheduling which considers resource consumption and environmental effect"
- Survey on scheduling problems with setup times / costs (Allahverdi et al. 2008)
- Minimizing Total Energy Consumption and Total Completion Time (Yildirim & Mouzon 2011)
- Energy consumption characteristics driven by task flow in machining (He et al. 2012)
- Energy consumption model and energy optimization in manufacturing (Dietmair & Verl 2009)

Four Interrelated Gaps

- Gap 1: Automatic access to data and analysis (Mani et al. 2012)
- Gap 2: Modelling carbon footprint (Jayal et al. 2010, Neto et al. 2010, Dekker et al. 2011, Tsoulfas & Pappis 2008)
- Gap 3: Optimization techniques(Mani et al. 2012, Sbihi & Eglese 2007)
- Gap 4: Decision support tools

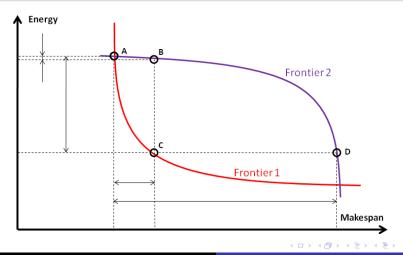
Multi-Objective Optimization (MOO)

$$Min \{f_1(\tilde{x}), \dots, f_m(\tilde{x})\};$$

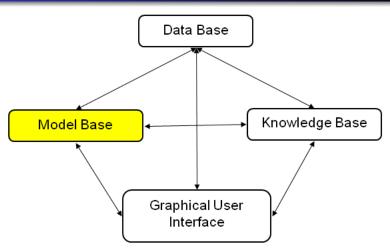
st: $\tilde{x} \in \{Feasible Set\}$

Dominance Relation

 \tilde{x} dominates \tilde{y} ($\tilde{x} \succ \tilde{y}$) iff:


- $f_i(\tilde{x}) \leq f_i(\tilde{y}); \ \forall \ i \in \{1,\ldots,m\};$
- $\bullet \exists i \in \{1,\ldots,m\} \mid f_i(\tilde{x}) < f_i(\tilde{y}).$

Pareto Frontier


Non-dominated solutions constitute the Pareto frontier in the objective space.

Pareto Frontier and Trade-off Analysis

MOO in a Decision Support Framework

Bicriteria MILP Model

- Min C_{max} and TEC
- s.t.
 - Timing Constraints;
 - Balance Constraints (for binary variables);
 - Binary and non-negativity constraints.

Complexity

Flowshop scheduling with sequence-dependent setups to minimize C_{max} is a special case of TSP and therefore NP-hard.

Bicriteria MILP Model

- Min C_{max} and TEC
- s.t.
 - Timing Constraints;
 - Balance Constraints (for binary variables);
 - Binary and non-negativity constraints.

Complexity

Flowshop scheduling with sequence-dependent setups to minimize C_{max} is a special case of TSP and therefore NP-hard.

Initiation and Evolution

Two Dimensional Chromosome Structure

Job string:	<i>J</i> ₁	J ₂	 J _n
Speed on Machine 1			
Speed on Machine 2	<i>y</i> _{21ℓ}	<i>y</i> _{22ℓ}	 У 2nℓ

- Random initial population
- Non-dominated sorting (Deb 2009) to calculate fitness values
- Elitist strategy to preserve non-dominated solutions
- Genetic operators
 - Order cross-over Michalewicz (1998) for recombination
 - Four Mutation Strategies: Inversion, Insertion, Swap and Alteration

Parameter Setting

Benchmarking MOGA with CPLEX in small problems, the following parameter set found to be effective:

- Population size = $4 \times n$
- Maximum execution time = 5 × n seconds
- Crossover rate = 0.7
- Mutation Strategies:
 - Insertion rate = 0.08
 - Inversion rate = 0.10
 - Swap rate = 0.02
 - Alteration rate = 0.10

Lower Bounds

- LB on C_{max} : for a no-setup single-speed version of the original problem wherein jobs are processed at the *highest* speed (v_1) after the *shortest* possible setups.
- LB on TEC: for a no-setup single-speed version of problem
 P in which jobs are processed at the lowest speed
 following the shortest possible setups.
- The straight connecting the above two LBs is a lower bound for the Pareto frontier.

Sample Comparison in a Small Problem

Performance

MOGA: 35s, 4.06% distant with LB; CPLEX: 2610s, 3.41% distant with LB

Comparisons in Large Problems

lobe	Jobs CPU Time (s)*		Distance with LB (%)		
3008 000		MOGA	Random Search		
10	50	16.64	63.14		
20	100	22.51	62.57		
30	150	31.47	70.07		
40	200	43.70	72.68		
50	250	39.48	73.58		
60	300	42.84	72.91		
70	350	51.74	73.72		
80	400	45.39	71.64		

^{*} On a Pentium 2.67GHz with 4GB RAM

Summary

- Contributions
 - Extending the literature on Green Scheduling
 - Mathematical modelling of Total Energy Consumption, a sustainability metric alongside Makespan, a measure of service
 - Defining lower bounds on energy and Makespan
 - Developing MOGA to facilitate trade-off analysis in large problems
- Future Work
 - Improving performance of MOGA
 - Possible tightening of the Lower Bounds
 - Embedding MOGA in DSS framework for trade-off analysis
 - Tackling other problems for reducing carbon footprint in manufacturing supply chains

Thanks for your attention!

Questions or Comments?

References I

Allahverdi, A., Ng, C., Cheng, T. & Kovalyov, M. Y. (2008), 'A survey of scheduling problems with setup times or costs', *European Journal of Operational Research* **187**(3), 985 – 1032.

URL: http://www.sciencedirect.com/science/article/pii/S0377221706008174

Coello, C., Lamont, G. & Van Veldhuisen, D. (2007), Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and Evolutionary Computation Series, Springer. URL: http://books.google.co.uk/books?id=rXluAMw3IGAC

Deb, K. (2009), Multi-Objective Optimization Using Evolutionary Algorithms, Wiley-Interscience series in systems and optimization, John Wiley & Sons. URL: http://books.google.co.uk/books?id=U0dnPwAACAAJ

Dekker, R., Bloemhof, J. & Mallidis, I. (2011), 'Operations research for green logistics—an overview of aspects, issues, contributions and challenges', *European Journal of Operational Research*.

References II

- Deva Prasad, S., Krishnaiah Chetty, O. & Rajendran, C. (2006), 'A genetic algorithmic approach to multi-objective scheduling in a kanban-controlled flowshop with intermediate buffer and transport constraints', *The International Journal of Advanced Manufacturing Technology* **29**(5), 564–576.
- Dietmair, A. & Verl, A. (2009), 'A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing', *International Journal of Sustainable Engineering* **2**(2), 123–133.
- He, Y., Liu, B., Zhang, X., Gao, H. & Liu, X. (2012), 'A modeling method of task-oriented energy consumption for machining manufacturing system', *Journal of Cleaner Production* **23**(1), 167 174.
 - **URL:** http://www.sciencedirect.com/science/article/pii/S0959652611004197
- Jayal, A., Badurdeen, F., Dillon, O. & Jawahir, I. (2010), 'Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels', CIRP Journal of manufacturing science and technology 2(3), 144–152.

References III

13/11/2012.

- Mani, M., Madan, J., Lee, J. H., Lyons, K. & Gupta, S. K. (2012), Characterizing sustainability for manufacturing performance management, in 'Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC / CIE 2012)', Chicago, IL, USA, pp. 1–10.
- Mellows-Facer, A. & Maer, L. (2012), International comparisons of manufacturing output, Technical report, Parliment UK.
- Michalewicz, Z. (1998), Genetic Algorithms + Data Structures = Evolution Programs, Artificial intelligence, Springer.
 - **URL:** http://books.google.co.uk/books?id=vlhLAobsK68C
- Neto, J., Walther, G., Bloemhof, J., Van Nunen, J. & Spengler, T. (2010), 'From closed-loop to sustainable supply chains: the weee case', *International Journal of Production Research* 48(15), 4463–4481.
- OECD-IEA (2007), Tracking industrial energy efficiency and co2 emissions., Technical report, International Energy Agency. http://www.iea.org/Textbase/npsum/tracking2007SUM.pdf date accessed:

References IV

- Pasupathy, T., Rajendran, C. & Suresh, R. (2006), 'A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs', The International Journal of Advanced Manufacturing Technology 27(7), 804–815.
- Ponnambalam, S., Jagannathan, H., Kataria, M. & Gadicherla, A. (2004), 'A tsp-ga multi-objective algorithm for flow-shop scheduling', *The International Journal of Advanced Manufacturing Technology* 23(11), 909–915.
- Sbihi, A. & Eglese, R. (2007), 'Combinatorial optimization and green logistics', 4OR: A Quarterly Journal of Operations Research 5(2), 99–116.
- T'kindt, V. & Billaut, J. (2006), Multicriteria scheduling: theory, models and algorithms, Springer.
- Tsoulfas, G. & Pappis, C. (2008), 'A model for supply chains environmental performance analysis and decision making', *Journal of Cleaner Production* **16**(15), 1647–1657.
- Yildirim, M. B. & Mouzon, G. (2011), 'Single-machine sustainable production planning to minimize total energy consumption and total completion time using a multiple objective genetic algorithm', *Engineering Management, IEEE Transactions on* PP(99), 1 –13.

References V

Yu, J. J. (2010), 'Green scheduling and its solution', *Advanced Materials Research* **139**, 1415–1418.