
Robot Navigation Control Based on Monocular Images: an

Image Processing Algorithm for Obstacle Avoidance

Decisions

William Benn and Stanislao Lauria
stasha.lauria@brunel.ac.uk

Department of Information Systems and Computing
Brunel University

Uxbridge
UB8 3PH

UK

1 Abstract

This paper covers the use of monocular vision to control autonomous navigation for a robot in
a dynamically changing environment. The solution focused on using colour segmentation against
a selected floor plane to distinctly separate obstacles from traversable space, this is then supple-
mented with canny edge detection to separate similarly coloured boundaries to the floor plane. The
resulting binary map (where white identifies an obstacle-free area and black identifies an obstacle)
could then be processed by fuzzy logic or neural networks to control the robot’s next movements.
Findings shows that the algorithm performed strongly on solid coloured carpets, wooden and con-
crete floors but had difficulty in separating colours in multi-coloured floor types such as patterned
carpets.

2 Introduction

Autonomous mobile robots need the capability to navigate along the hallway avoiding walls in
indoor environments. A number of methods have been proposed to solve the navigation problems,
based on different sensor technologies such as odometry, laser scanners, inertial sensors, sonar and
vision. Missing information due to sensor temporal failure or communication delay is one of the
critical aspects when dealing with sensory data for robot navigation. In [5, 22] some solutions
to tackle the missing information and filtering problems have been proposed. Also a multi-sensor
architecture could be used to design robots. While combining different sensor types such as ul-
trasound, vision, infrared may collectively result in a more accurate decision, it could also pose
increasing costs and complexity[6].

This paper will be focusing on how effective vision alone can be used as a tool for navigation
and collision avoidance. One notable challenge is providing autonomous navigation in a dynamic
environment, which Saffiotti [15] describes as real world environments that have not been specifically
engineered for the robot.

Vision is one of the most important senses to a human being and in the past decade there
has been an increased interest to use images in robotics. Machines may lack the vast knowledge
of object recognition that a human brain can provide but the amount of computational power

1

available in modern times make such machine vision a viable choice of input, and unlike a human
eye, machine vision does not degrade over time providing consistent image capture. Images from
a colour web camera are used here as the source of information for this task. Visual sensors
can provide plenty of information, however the environment they capture is often very dynamic
and elements and features to be detected can change with the environment (i.e. the floor, door
colour, etc). Still to navigate successfully, a robot needs to distinguish between what is and is
not navigable. By analysing each image frame, the system should be able to identify (if any) the
available navigable areas.

Broadly speeaking, there are two navigation strategies: Map-Based Navigation and Map-Less
Navigation. In this paper, we focus on the latter. In indoor environments, the robot has often to
navigate along the hallway while avoiding obstacles. Then, the navigation strategies are determined
by capturing and extracting relevant information about the elements in the environment. These
elements can be the walls, edges, doorways, etc and it is not necessary to calculate the absolute
positions of these elements of the environment. The navigation problem is well studied (see for
example [4]). Whereas, [25, 18] are some examples of strategies developed for the detection of
obstacles or edge detection using vision systems. However, often these methods are dependent on
the environment around a robot. For example, in [18] it is not clear how the system would react to
changes in the floor patterns, whereas in [25] Neural Networks stategies are considered during the
camera calibration phase to tackle this issue. [13, 19] have investigated the use of optical flow to
identify a dominant ground plane. However, their assumption is that the floor is the domminant
plane.

In our paper, we extend these ideas on using the floor to calculate the correct values for the
parameters necessary to extract the required information from each image. Then, to identify the
obstacles the sequential use of colour Image Segmentation and then Edge Detection strategies has
been investigated. That is, a two steps strategy has been used:

Step 1 Image Segmentation

Step 2 Edge Detection

Each of the steps above is based on one of two basic properties of intensity values: discontinuity
and similarity. Once the image has been processed in this way, fuzzy logic, neural networks, etc
could then be considered to optimise decisions and control the robot navigation strategies.

Colour segmentation will determine obstacles from the floor while canny edge detection sup-
plements the colour segmentation by finding sharp changes in colour gradients. Colour Image
Segmention is based on partitioning an image into regions that are similar according to a prede-
fined criteria. Whereas the aim of the Edge Detection stage is to partition an image based on
abrupt changes in intensity. In similar research, these two steps are not always applied indipen-
dently or only one of the two is applied (see for example [16, 1]). In our paper both steps are
applied as a consecutive sequence to the image. A measure on the effect on the success rate of each
step is also invesigated. Each of the steps mentioned above is discussed in detail below. Then,
results are presented and discussed.

2.1 Image Colour Segmentation

For robot navigation, Image Segmentation is the process of decomposing an image into parts which
should be meaningful to identify obstacle-free areas.

A more formal definition of segmentation, can be given in the following way [11]. Let I denote
an image and let H define a certain homogeneity predicate. Then the segmentation of I is a
partition P of I into a set of N regions Rn, n = 1, ..., N , such that:

1.
∪N

n=1 Rn = I with Rn

∪
Rm 6= 0;n 6= m;

2

2. H(Rn) = true ∀n;

3. H(Rn ∪ Rm) = false if Rn and Rm adjacent.

Condition 1) states that the partition has to cover the whole image; condition 2) states that
each region has to be homogeneous with respect to the predicate H; and condition 3) states that
the two adjacent region cannot be merged into a single region that satisfies the predicate H. The
desirable characteristics that a good image segmentation should exhibit have been defined in [8]

Several colour representations are currently in use in colour image processing. The most com-
mon is the RGB space where colors are represented by their red, green, and blue components in
an orthogonal Cartesian space. Most cameras will capture an image using the RGB colour space.

However, colour is better represented in terms of hue, saturation, and intensity. An example
of such a kind of representation is the HSV space. HSV rearranges the geometry of RGB in an
attempt to be more intuitive and perceptually relevant (see for example [7]).

The main approaches in Image Colour Segmentation are based on partitioning an image into
regions that are similar according to a set of predefined criteria. These segmentation methods
are based on sets of features that can be extracted from the images such as pixel intensities.
Thresholding, clustering, region growing are examples of such approaches. Extensive work has
been done in this area (see for example [16]).

Thresholding is one of the simplest and most popular techniques for image segmentation. The
threshold can be specified using a heuristic technique based on visual inspection of the histogram
but this approach is operator-dependent. If the image is noisy, the selection of the threshold is not
trivial. Thus, more sophisticated methods have been proposed. The Balanced Histogram Thresh-
olding (BHT), see for example [14], is a histogram based thresholding method. The BHT approach
assumes that the image is divided in two main classes: The background and the foreground. The
BHT method tries to find the optimum threshold level that divides the histogram in two classes. In
general, thresholding creates binary images from grey-level ones by turning all pixels below some
threshold to 0 and all pixels about that threshold to 1.

In this paper, a rectangular area of the image is selected (figure 5) to identify which part of the
image to calculate thresholds from. The selected rectangular area used is located at the bottom
of the image because this area is likely to contain the floor. Within this area of selection colour
thresholds are calculated to define the criteria to process in a meaningful way each pixel of the
image during the successive phases of the segmentation process discussed below. Further details
of the thresholding step are discussed in section 3.

There is extensive work investigating different algorithms to segment regions by identifying
common properties in order to separate an image into regions corresponding to objects. (see for
example [3]).

In [23] a multiphase image segmentation model for color images is discussed. It mainly focuses
on homogeneous multiphase images. It only considers the global information of the given image,
thus it cannot deal with images with inhomogeneity.

[20] applies relative values for R, G, and B components on each pixel for image segmentation.
He observed traffic signs in an open environment and segmented the red color in such a way that if
green and blue colors in a pixel are summed up and compared with red color, it gives relatively 1.5
times higher values for the red component in pixel. If the pixel has relatively higher red component,
it determines as the featured pixel. A binary segmented image is then created using the known
coordinates of the featured pixels.

[2] proposed a detection and recognition algorithm for certain road signs. Signs have the red
border for warning signs and a blue background for information signs. A car has a mounted camera
that gets images. Colour information can be changed due to poor lighting and weather conditions
such as dark illumination, rainy and foggy weather etc. To overcome these problems they proposed
two algorithms by using RGB color image segmentation.

3

[10] focused on identifying similar colour domains from human skin and vegetables. The ad-
vantage of this solution is that it does not require converting from the RGB colour space (allowing
the source of the captured image to be worked on directly) and was robust against various illu-
mination. To avoid converting RGB to other colour spaces such as HSV, [10] devised a method
which uses 5 constant threshold variables (α, β1, β2, γ1, γ2) to determine whether an RGB pixel is
within a specific colour zone. Assuming the following variable values:

r = red value of the pixel

g = green value of the pixel

b = blue value of the pixel

α = minimum red threshold value (0-255)

β1 = minimum red - green component value (0-255)

β2 = maximum red - green component value (0-255)

γ1 = minimum red - blue component value (0-255)

γ2 = maximum red - blue component value (0-255)

The algorithm considers a pixel to be within a certain colour range if:

1. r > α

2. β1 < r − g < β2

3. γ1 < r − b < γ2

Some initial evaluations of the [10] technique applied to indoor navigation domains have shown
that it captured a too broader amount of the threshold from the target floor surface. Therefore, in
the present paper a modification of the above algorithm has been investigated. In particular, an
additional constant (αmax) has been added to hold the maximum red threshold while the existing
red constant (αmin) was used to hold the minimum red threshold. The first rule was then modified
as follows:

1. αmin < r < αmax

After a few tests, the optimal settings found for the α parameters were the following. In higher
illuminated conditions and pastel coloured environments αmax is most efficient at being set to
higher values such as a range between 170 and 200. αmin is best set to a mid range value between
the 75 to 90 range. In low illumination conditions αmax is most efficient between low mid range
values such as 60 to 80. αmin should be set to a low range between 20 to 40. A higher broader
range is needed under high illumination as it is most likely that obstacles will reside in the lower
colour ranges. This broad range can be a downfall when obstacles are of a similar colour to the
surrounding environment; which is where the edge supplementation is expected be of a great aid.

Figure 1 shows that the modified rule set investigated in the present paper picks up less noise
from the image. It is also better at picking up colours that are similar to the floor plane, although
the effect of this varies depending on the difference of change. From some initial tests, there is
evidence that the modified algorithm keeps the floor threshold values correct when there was some
small illumination changes caused by the robot’s movement.

4

Figure 1: Comparison of original colour segmentation technique against modified rule set. Left
image modified rule set, middle image original rule set, right image raw capture.

2.2 Edge Detection

Colour segmentation alone is not enough to fully segment an image, gaps were left by noise and
areas of a similar colour to the floor plane were misinterpreted as traversable space. To eliminate
this issue a separate edge map was produced from the captured image which was then processed
by a probabilistic Hough algorithm to identify strong lines in an image.

It was decided that the best edge detection method for the project was the canny edge imple-
mentation. It excels in identifying strong edges with a lower number of line disconnections, it also
picks out major details from an object [12], [24]; while it is weaker at identifying minor details, we
are only interested in the silhouette of an obstacle.

Once the canny edge map has been generated the probabilistic Hough transform can be applied
to the image. The principle of this procedure is to scan through each pixel in a binary image finding
all lines that could fit through this point. If a line fits through enough points then it is considered
significant enough to keep [9]. Each point is picked randomly and once enough points have been
passed through by a line, then they are removed from any subsequent scanning. This is then
repeated until all points are eliminated or there are not enough points left to identify a significant
line. The implementations used for this solution are from the OpenCv library, there are various
parameters that can be passed to the probabilistic Hough transform:

Line votes Number of points a line must pass through to be considered significant.

Minimum segment length Minimum length a line must be to be selected.

Maximum pixel gap The biggest gap between points on a line that there can be.

After a few tests, the optimal settings found for the above parameters were the following:

Line votes = 80 lines

5

Minimum segment length = 20 pixels

Maximum pixel gap maximum pixel gap value

Figure 2: Comparison of Hough line parameters. Left image large maximum pixel gap value,
middle image low line votes and segment length value, right image optimal found settings.

In figure 2 it is possible to note that when a large pixel gap is allowed lines will often extend
across multiple disjointed edges from the canny map. This is not desirable for our purposes as
it could fill legitimate gaps that a robot would be able to pass through. However, when a small
segment length value and a low line vote count is set we end up with many short lines that could
easily be combined into a single long line, this again is not desirable as the more lines there are, the
larger the processing time that is required to apply the line information to the colour segmentation
map. See figure 3 for a list of images with the optimal found probabilistic Hough line parameters
(with blue lines indicating the Hough lines).

Figure 3: Optimal Hough line parameters applied to canny edge map.

Output of the probabilistic Hough transform was an array of lines. To apply this information
to the colour segmentation map, a polygon was drawn from the start and end points of each line
to the top of the image. Figure 4 shows a comparison between edge supplemented and non edge
supplemented segmentation maps.

6

(a) (b)

Figure 4: Comparison of applied edge supplementation to colour segmentation map. In both a)
and b), left image applied edge supplementation, right image non applied.

3 Implementation

The algorithms have been implemented in C++ because of the high performance libraries available
for this language. Additional processing was completed using the OpenCV library.

To calculate thresholds for the rules defined in section 2.1, a rectangular area is selected from
the image (figure 5). Within this mask, thresholds are calculated as shown in Listing 1 (See
Appendix A). In particular, each pixel is iterated, updating a colour threshold only when it less
than or bigger than the current threshold (depending on if it is a minimum or maximum threshold).
Once the minimum and maximum thresholds have been calculated they can be compared against
all the pixels in the captured image. If a pixel’s RGB value is between the desired threshold, then
the pixel can be marked as white otherwise as black as shown in Listing 2 (See Appendix A). To
apply the hough line information from the line array is simply a matter of drawing a black area
onto the existing binary map, this is achieved by plotting a 4 sided polygon. Care must be taken to
determine the correct winding order to avoid a twisted hourglass like shape; this is easily rectified
by checking whether the first point of the line is to left or right of the end point and changing the
point drawing order as shown in Listing 3 (See Appendix A).

Figure 5: Selecting area for colour thresholds.

4 Results

The algorithm discussed above has been tested using images from an indoor environment. The
same set of images has been used to test different settings. For each setting, every image has been
processed by a different combination of algorithms. The following four different settings have been

7

tested:

Original. The Image Segmentation algorithm [10].

Original and Edge. The Original and the Edge detection algrithms.

Modified. The modified Image Segmentation algorithm presented in this paper.

Modified and Edge. The Modified and the Edge detection algorithms.

Once the image has been processed following one of the settings listed above, a decision algo-
rithm has been applied to the produced binary map (produced result). The same decision algorithm
(based on a fuzzy logic algorithm) has been applied irrespective of the setting used to obtain the
binary image. Then, the produced result has been compared with the decision that humans would
produce in those situations (expected result).

A match between the produced result and the expected result has been considered correct,
whereas a discrepacy between the produced result and the expected result has been counted has an
error. Six different possible outputs have been defined as the range of the possible decisions. Move
Forward or Turn Left are examples of some of the six produced, expected results output.

Setting Success Rate (%)
Original 42
Original and Edge 76
Modified 57
Modified and Edge 90

Table 1: Algorithm testing. Correct matching results between produced result and the expected
result for the different settings.

Results in table 1 show that both the use of the modified algorithm and the two steps strategy
are very significant (χ2(3, N = 21) = 12.4, p = 0.006). That is, when the performance of the
modified red threshold rule is compared with the original rule in both settings (Original vs.
Modified and Original and Edge vs. Modified and Edge) a higher correct success rate
is obtained for the modified algorithm. Moreover, the discrepancy between produced result and
expected result is reduced with the introduction of the edge step when the image is processed.

Different floor patterns have also been tested to investigate the modified algorithm under dif-
ferent conditions. Figure 6 shows the outcome of using respectively the Modified in a) Original
in b) for a given floor pattern raw image in c). From Figure 6 it is possible to conclude that
the modified rule set seems to perform specifically strongly with white colours compared to the
original rule set. Moreover, the modified rule set handles the non uniform floor patterns better.
That is, with the introduction of the αmax value it is possible to notice that the algorithm per-
forms particularly strongly against white colours compared to the original algorithm (see figure 6
for example). The original algorithm would have a much larger threshold; based on our tests the
original algorithm has a threshold range 38.75% greater than that of the modified algorithm under
highly illuminated environments.

Table 2 shows the processing time for the different settings described at the beginning of the
section. The time difference between the Image Segmentation algorithm [10] (i.e. Original) and
the modified version presented in this paper (Modified) is too negligible to show in the results,
therefore only results for the Modified configuration have been shown.

The CPU used for all tests was a Phenom II X4 955 and CPU clock was set to 3.6GHz. The
time without edge detection step and the time with the edge detection step has been measured
respectively in row 1 and 2. The values in the table indicates the time in milliseconds it took to

8

(a) (b) (c)

Figure 6: Comparisons between the 2 different Image Segmentation algorithms under different
floor patterns. Columns a) and b) show the outcome of the processing for the raw image in c)

Setting Processing time (ms)
Modified 25.6
Modified and Edge 27.6

Table 2: Algorithm processing time. Processing time values (in ms) for the Image Segmentation
and the Image Segmentation and edge detection settings.

apply the algorithms indicated in the Setting column to the image and then to generate the binary
collision map. In all cases the mean was taken from a sample of 10 measurements.

Results in table 2 show that the modified algorithm does not increase the processing time
(since as stated above Modified and Original settings produce similar processing time). Further,
it shows a percentage increase of 7.8% over the no Edge configuration. That is, as expected, the
time to extract the required information increases by including the Edge detection step in the
algorithm. However, from table 2 6 it is possible to observe that a percentage increase of 7.8% in
processing time has produced a percentage increase of 57.9% in the success rate for the algorithm.

5 Discussions and Conclusions

The sequential use of Colour Image Segmentation and then Edge Detection strategies has been
investigated. A novel color image segmentation algorithm and a probabilistic Hough algorithm
have been implemented and tested. The novelty introduced here have been demonstrated to
improve an existing algorithm for image processing.

In particular, the modified red threshold rule considered for the image segmentation algorithm
helped in keeping the learnt thresholds stable. Moreover, the use of both colour segmentation and
edge detection techniques complemented each other by removing the weaknesses that each method
separately presented. In particular, with the colour segmentation technique identifying the main

9

obstacle-free area and the edge detection filling any remaining gaps in the detected segments in
the output binary map.

Although the approach discussed in this paper has been demonstrated to be indipendent from
floor changes, further development is needed to cope with patterned floor surfaces. This is because
the edges detected from the patterns and the wider colour thresholds that are learnt from such
floors make it difficult to produce an accurate binary map. A possible solution could be to make
use of the canny edge map to identify the patterned areas in the floor surface and combine that
with the information from the threshold learning algorithm so that it would ignore colours within
that area of the image. As a consequence the learnt colour thresholds would be narrower and
would not erroneously detect obstacles as obstacle free areas.

The scalability of this algorithm for a distributed architecture (with several robots involved)
is another aspect that could be investigate further. Each robot will produce a (slight) different
image of the same environment to extract the required features. Therefore each robot can receive
not only its own information but also the information from its neighboring robot according to the
topology of the given robot network. Then to deal with the complicated coupling between one
sensor and its neighbors, a filtering approach such as the ones in [17, 21] could be considered.
However, some further investigation is required to analyse how these paradigms would perform
with these types of data.

References

[1] S Al-amri, N V Kalyankar, and S D Khamitkar. Image segmentation by using edge detection.
International Journal on Computer Science and Engineering, 2(3):804–807, 2010.

[2] Vavilin Andrey and Kang Jo. Automatic detection and recognition of traffic signs using
geometric structure analysis. 2006 SICEICASE International Joint Conference, pages 1451–
1456, 2006.

[3] H.D. Cheng, X.H. Jiang, Y. Sun, and Jingli Wang. Color image segmentation: advances and
prospects. Pattern Recognition, 34(12):2259 – 2281, 2001.

[4] G.N. Desouza and A.C. Kak. Vision for mobile robot navigation: a survey. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(2):237 –267, feb 2002.

[5] Hongli Dong, Zidong Wang, and Huijun Gao. Distributed filtering for a class of time-varying
systems over sensor networks with quantization errors and successive packet dropouts. Signal
Processing, IEEE Transactions on, 60(6):3164 –3173, june 2012.

[6] Jaime Esteban, Andrew Starr, Robert Willetts, Paul Hannah, and Peter Bryanston-Cross.
A review of data fusion models and architectures: towards engineering guidelines. Neural
Computing & Applications, 14:273–281, 2005. 10.1007/s00521-004-0463-7.

[7] R. C. Gonzales and R. Woods. Digital Image Processing. Addison-Wesley, Reading, MA,
1992.

[8] R M Haralick and L G Shapiro. Image segmentation techniques. Computer Vision Graphics
and Image Processing, 29(1):100–132, 1985.

[9] Robert Laganière. OpenCV 2 Computer Vision Application Programming Cookbook. Packt
Publishing, 2001.

[10] Chiunhsiun Lin, Ching-Hung Su, Hsuan Shu Huang, and Kuo-Chin Fan. Colour image seg-
mentation in various illumination circumstances. In Proceedings of the 9th WSEAS, CSECS

10

’10, pages 179–184, Stevens Point, Wisconsin, USA, 2010. World Scientific and Engineering
Academy and Society (WSEAS).

[11] L Lucchese and S K Mitra. Color image segmentation : A state-of-the-art survey. Citeseer,
67(2):207–221, 2001.

[12] Ehsan Nadernejad, Sara Sharifzadeh, and Hamid Hassanpour. Edge detection techniques:
Evaluations and comparison. Applied Mathematical Sciences, 2(31):1507–1520, 2008.

[13] Naoya Ohnishi and Atsushi Imiya. Dominant plane detection from optical flow for robot
navigation. Pattern Recognition Letters, 27(9):1009 – 1021, 2006.

[14] N Otsu. A threshold selection method from gray-level histograms. Ieee Transactions On
Systems Man And Cybernetics, 9(1):62–66, 1979.

[15] A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft Computing, 1(4):180–
197, 1997. Online at http://www.aass.oru.se/˜asaffio/.

[16] N Senthilkumaran and R Rajesh. Edge detection techniques for image segmentation a sur-
vey of soft computing approaches. International Journal of Recent Trends in Engineering,
1(2):844–846, 2009.

[17] Bo Shen, Zidong Wang, and Xiaohui Liu. A stochastic sampled data approach to distributed
h∞ filtering in sensor networks. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 58(9):2237 –2246, sept. 2011.

[18] Wenxia Shi and Jagath Samarabandu. Corridor line detection for vision based indoor robot
navigation. In Electrical and Computer Engineering, 2006. CCECE ’06. Canadian Conference
on, pages 1988 –1991, may 2006.

[19] K. van Workum and R. Green. Smart wheelchair guidance using optical flow. In Image and
Vision Computing New Zealand, 2009. IVCNZ ’09. 24th International Conference, pages 7
–11, nov. 2009.

[20] S Varun, Surendra Singh, R Sanjeev Kunte, R D Sudhaker Samuel, and Bindu Philip. A road
traffic signal recognition system based on template matching employing tree classifier. In-
ternational Conference on Computational Intelligence and Multimedia Applications ICCIMA
2007, pages 360–365, 2007.

[21] Zidong Wang, Bo Shen, and Xiaohui Liu. filtering with randomly occurring sensor saturations
and missing measurements. Automatica, 48(3):556 – 562, 2012.

[22] Zidong Wang, Bo Shen, Huisheng Shu, and Guoliang Wei. Quantized h∞ control for non-
linear stochastic time delay systems with missing measurements. Automatic Control, IEEE
Transactions on, 57(6):1431 –1444, june 2012.

[23] Yunyun Yang and Boying Wu. A new and fast multiphase image segmentation model for color
images. Mathematical Problems in Engineering, 2012, 2012.

[24] Djemel Ziou and Salvatore Tabbone. Edge detection techniques - an overview. International
Journal of Pattern Recognition and Image Analysis, 8:537–559, 1998.

[25] An-Min Zou, Zeng-Guang Hou, Min Tan, and Derong Liu. Vision-guided mobile robot navi-
gation. In Networking, Sensing and Control, 2006. ICNSC ’06. Proceedings of the 2006 IEEE
International Conference on, pages 209 –213, 0-0 2006.

11

A Code

Listing 1: Threshold. The code calculating the thresholds for the Image Segmentatation step.
1 f o r (i n t i=startY ; i<he ight ;++ i)
2 {
3 f o r (i n t j=startX ; j<width;++j)
4 {
5 unsigned char blue = pixe lData [i ∗ step+j ∗ channels] ;
6 unsigned char green = pixe lData [i ∗ step+j ∗ channels +1] ;
7 unsigned char red = pixe lData [i ∗ step+j ∗ channels +2] ;
8
9 i f (red == 0 && green == 0 && blue == 0)

10 {
11 cont inue ;
12 }
13
14 //Find th r e sho ld s
15 i f (red < mMinimumRed)
16 {
17 mMinimumRed = red ;
18 }
19
20 i f (red > mMaximumRed)
21 {
22 mMaximumRed = red ;
23 }
24
25 in t redGreenRange = red − green ;
26 in t redBlueRange = red − blue ;
27
28 i f (redGreenRange < mRedGreenRangeMin)
29 {
30 mRedGreenRangeMin = redGreenRange ;
31 }
32
33 i f (redGreenRange > mRedGreenRangeMax)
34 {
35 mRedGreenRangeMax = redGreenRange ;
36 }
37
38 i f (redBlueRange < mRedBlueRangeMin)
39 {
40 mRedBlueRangeMin = redBlueRange ;
41 }
42
43 i f (redBlueRange > mRedBlueRangeMax)
44 {
45 mRedBlueRangeMax = redBlueRange ;
46 }
47 }
48 }

12

Listing 2: Image Segmentation. The code applying the thresholds.
1 f o r (i n t i =0; i<inImage−>he ight ;++ i)
2 {
3 f o r (i n t j =0; j<inImage−>width;++j)
4 {
5 in t bluePos = i ∗ step+j ∗ channels ;
6 i n t greenPos = i ∗ step+j ∗ channels +1;
7 in t redPos = i ∗ step+j ∗ channels +2;
8
9 unsigned char red = inPixe lData [redPos] ;

10 unsigned char green = inPixe lData [greenPos] ;
11 unsigned char blue = inPixe lData [bluePos] ;
12 in t redGreen = red − green ;
13 in t redBlue = red − blue ;
14
15 i f ((red > mMinimumRed && red < mMaximumRed)
16 && (redGreen >= mRedGreenRangeMin
17 && redGreen <= mRedGreenRangeMax)
18 && (redBlue >= mRedBlueRangeMin
19 && redBlue <= mRedBlueRangeMax))
20 {
21 // p i x e l i s within f l o o r range s e t to white
22 outPixelData [redPos] = 255;
23 outPixelData [greenPos] = 255;
24 outPixelData [bluePos] = 255;
25 ++to t a lP i x e l s ;
26 }
27 e l s e
28 {
29 outPixelData [redPos] = 0 ;
30 outPixelData [greenPos] = 0 ;
31 outPixelData [bluePos] = 0 ;
32 }
33 }
34 }

Listing 3: Edge Segmentation. The code implementing the Edge Segmentation algorithm.
1 f o r (auto i t=F i l t e r edL in e s . begin () ; i t != F i l t e r edL in e s . end () ; ++i t)
2 {
3 CvPoint po lyPoints [4] ;
4
5 // F i r s t point i s to the l e f t o f the r i gh t point
6 i f ((∗ i t) [0] <= (∗ i t) [2])
7 {
8 polyPoints [0] = cvPoint ((∗ i t) [0] , 0) ;
9 po lyPoints [1] = cvPoint ((∗ i t) [2] , 0) ;

10 polyPoints [2] = cvPoint ((∗ i t) [2] , (∗ i t) [3]) ;
11 polyPoints [3] = cvPoint ((∗ i t) [0] , (∗ i t) [1]) ;
12 }
13 e l s e // F i r s t point i s to the r i gh t o f the r i gh t point
14 {
15 polyPoints [0] = cvPoint ((∗ i t) [2] , 0) ;
16 polyPoints [1] = cvPoint ((∗ i t) [0] , 0) ;
17 polyPoints [2] = cvPoint ((∗ i t) [0] , (∗ i t) [1]) ;
18 polyPoints [3] = cvPoint ((∗ i t) [2] , (∗ i t) [3]) ;
19 }
20
21 cvFi l lConvexPoly (inImage , &polyPoints [0] , 4 , cvSca lar (0 , 0 , 0)) ;
22 }

13

