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Abstract

In this paper, the distributed consensus problem is considered for discrete-time delayed networks of dynamic agents
with fixed topologies, where the networks under investigation are directed and the time-delays involved are distributed
time delays including a single or multiple time delay(s) as special cases. By using the invariance principle of delay
difference systems, a new unified framework is established to deal with the consensus for the discrete-time delayed
multi-agent system. It is shown that the addressed discrete-time network with arbitrary distributed time delays reaches
consensus provided that it is strongly connected. A numerical example is presented to illustrate the proposed methods.
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I. Introduction

Coordination phenomena are ubiquitous in the natural world such as birds flocking and fish schooling [21].

Roughly speaking, the coordination phenomenon of networked multi-agent systems is characterized by the fact

that each agent adjusts its own state by locally coupling with its neighbors (i.e. via the information from its

neighbors) to achieve a common collective objective. In such a case, some natural questions arise as follows: 1)

how can local communications and cooperations among individuals lead to certain desirable global behaviors?

2) what are the underlying mechanisms behind the coordination phenomena? and 3) which characters have

significant influences on the coordination of the networked multi-agent systems? To answer these questions,

various models and algorithm have been proposed and analyzed in the literature. Recently, the coordination

problems of networked multi-agent systems have been attracting considerable research interests and a large

number of results have been reported, see e.g. [13, 14,22,28].

In many practical applications, the study of coordination problems has been motivated by different real-

world phenomena involving information flow among agents such as flocking, swarming, synchronization, dis-

tributed decision making and schooling; see e.g. [29] for a survey. In particular, consensus problems for net-

worked dynamic systems have been extensively dealt with in the past few years [8, 17, 18, 23–27, 36]. Among

This work was supported in part by City University of Hong Kong under Grant 7008114, the Royal Society of the UK, the

National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of

Jiangsu Province of China under Grant BK2010313.
Y. Liu is with the Department of Mathematics, Yangzhou University, Yangzhou 225002, China.
D. W. C. Ho is with the Department of Mathematics, City University of Hong Kong, Hong Kong.
Z. Wang is with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH,

United Kingdom. (Email: Zidong.Wang@brunel.ac.uk)
Email: liuyurong@gmail.com (Y. Liu), madaniel@cityu.edu.hk (D. W. C. Ho), Zidong.Wang@brunel.ac.uk (Z. Wang)



REVISION OF IDTCON-2012-0177 2

others, the algebraic graph theory [7] appears to be one of the main tools used to analyze the consensus prob-

lem; see [8,11,24,25,27]. By using the graph theory, each agent is modeled as a vertex of a graph, and an edge

of the graph joins node i to node j if agent j is receiving information from agent i. Conditions for asymptotic

consensus under a variety of assumptions on interagent communication have been recently published [30,33].

In [33], a simple discrete-time model has been proposed to simulate a group of autonomous agents moving in

the plane with the same speed but different headings. The model addressed in [33] is essentially a simplified

model introduced earlier by Reynolds in [30]. It has been shown that the network connectivity is a key factor

in reaching consensus [3, 11, 24, 27]. It has also been proven that the consensus in a network with a dynami-

cally changing topology can be reached if and only if the time-varying network topology contains a spanning

tree frequently enough as the network evolves with time [11, 27]. Recently, stochastic approximation-type

algorithms with a decreasing step size have been developed, and almost sure convergence has been established

for consensus seeking; see e.g. [10] and the references therein.

Time-delay is well known to be an inherent feature of signal transmission over networks in practical ap-

plications, and is also recognized as one of the main sources for causing instability and poor performances

of systems [1]. Here we shall discuss some of the recent work on consensus problems for delayed multi-agent

networks. In [24], communication time-delays was first taken into account for continuous-time undirected

networks with fixed topology and, based on the Laplace transform the consensus problem was analyzed with

the time-delays in all channels equal to a common constant. In [19], a sufficient condition was derived to

ensure the networks with the time-dependent communication patterns and a common time-delay in commu-

nication between distinct agents to reach consensus asymptotically. These results were further extended to

the continuous-time directed networks with non-uniform delays [17].

Recently, the consensus problem in discrete-time multi-agent systems with time-delay has begun to attract

the attention from researchers. For instance, [32] studied the state synchronization for systems with fixed

undirected topology and time-delay, and based on the properties of non-negative matrices it was shown that

the all agent states in the system converge to a single value regardless of the size of communication delays.

In [5], asynchronous protocols involving time-delay were proposed, and the resulting consensus problem was

investigated as well by means of graph theory, matrix theory and asynchronous theory. Also in [39], the

model of networks of dynamic agents was extended to the case with multiple time-delays and it was proved

that if the communication topology, time-delays, and weighting factors are time-invariant, then the necessary

and sufficient condition that the multi-agent system solves a consensus problem is that the communication

topology, represented by a directed graph, has spanning trees. Very recently, in [35], an new approach, i.e.,

pre-leader-follower decomposition was introduced to deal with the consensus problem for the discrete time

multi-agent systems with fixed topology and time delays. By augmenting the state vector of the system, the

consensus-seeking for the system with time delays reduced to the consensus problem for a system without time

delays. In another paper [31], the linear matrix inequality approach was also used to investigate consensus

problems in undirected networks of dynamic agents with fixed and switching topologies as well as multiple

time-varying communication delays.

It should be noted that, in spite of much attention paid to the consensus problem for discrete-time delayed

systems, the investigation has been made mostly on the systems including either a single or multiple time

delay(s). On the other hand, another time-delay, namely infinite distributed time delay (simply called dis-

tributed time delay) has been also introduced to describe the dependence of the future state of a system on
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its past history. Multi-agent network usually ha a spatial nature due to the presence of an amount of parallel

pathways of a variety of node sizes and lengths. Therefore, a great deal of research effort has been made on

both theory and applications for such distributedly delayed systems, such as dynamical analysis, asymptotic

behavior, and control and synchronization [2,12,16,34,37,38]. Up to date, however, to the best of the authors’

knowledge, the consensus problems for discrete-time directed multi-agent systems with distributed time delays

have received little research attention due mainly to the mathematical difficulties. In particular, since such

systems cannot be expressed in the form of matrices, the commonly used approaches such as matrix analysis,

algebraic connectivity and pre-leader-follower decomposition are no longer directly applicable to deal with the

consensus problem. It is, therefore, our intention in this paper to tackle such an important yet challenging

problem.

In this paper, we deal with the distributed consensus problem for the discrete-time directed multi-agent sys-

tems with distributed time delays. Under the assumption that the multi-agent network is strongly connected,

we prove that the delayed discrete-time network reaches consensus, and a simulation example is exploited to

illustrate the derived theory. The contribution of the paper is threefold:
(1) for the consensus seeking, the distributed time delays are first taken into account in the discrete-time

directed multi-agent systems, and a single or multiple time delay(s) can be viewed as the special cases;

(2) different from most of the existing results, we develop a new unified framework to cope with the consensus

for the delayed discrete-time agent systems by a blend of matrix theory, spectral graph theory, and especially

a discrete-time version of LaSalle’s invariance principle, which may be of independent interest. It is worth

pointing out that our main results are also valid for the case of a single or multiple time delay(s); and

(3) some new techniques are employed in this paper. In particular, a key inequality and an appropriate

Lyapunov-Krasovskii functional will be introduced to handle the distributed time delays, and they play a crucial

role in the derivation of our main results.
The paper is organized as follows. In Section II, we introduce some basic concepts and formally state the

problem. Section III contain our main results and proofs. Section IV provides an illustrative example. Finally,

Section V concludes the paper with a summary of our results.

Notation The notation used here is fairly standard except where otherwise stated. Throughout this paper,

N, Z, Z+ and Z− stand for, respectively, the set of natural numbers, the set of integers, the set of non-negative

integers and the set of non-positive integers. R,Rn and Rn×m denote, respectively, the set of real numbers,

the n dimensional Euclidean space and the set of all n ×m real matrices. The superscript T represents the

transpose for a matrix, and | · | may stand for any absolute value of real numbers or the standard Euclidean

norm from the context.

II. Problem formulation

Consider n agents distributed according to a directed graph G = (V, E) with a set of nodes V = {1, 2, ..., n},
a set of edges E ∈ V × V, and a weighted adjacency matrix A = [aij ] with nonnegative adjacency elements

aij . In G, the ith node represents ith agent, and a directed edge (simply called an edge) from node i to node

j denoted as an ordered pair (i, j) ∈ E represents a unidirectional information exchanges link from node i to

node j, that is, agent j can receive or obtain information from agent i, but not necessarily vice versa. We

assume that the graph has no self-loops, namely there is no edge between a node and itself, or (i, i) /∈ E . The

set of neighbors of node i is denoted by Ni = {j : (j, i) ∈ E}. A weighted adjacency matrix A = [aij ] ∈ Rn×Rn,

associated with a weighted directed graph, is defined such that aij is a positive weight if only (j, i) ∈ E (since
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the graph has no self-loops, it is obvious that aii = 0, for all i ∈ V). In other words, aij > 0, if j ∈ Ni,

otherwise aij = 0. A directed path (simply called a path) of length k from vt to vl (t, l ∈ V) is a sequence of

edges (i0, i1), (i1, i2), ..., (ik, ik+1) with i0 = t, ik+1 = l and (is, is+1) ∈ E for s = 0, 1, ..., k. A graph G is said

to be strongly connected if there exists a path between any two distinct nodes in it. Throughout this paper,

the two names, agent and node, will be used interchangeably.

Now let us investigate the dynamics of n agents distributed over a directed graph G. Let xi(k) ∈ R denote

the state of node i at time k, x(k) = [x1(k), x2(k), . . . , xn(k)]T be the state of the system accordingly, and

A = [aij ] be the weighted adjacency matrix associated with the graph. The dynamics of discrete-time multi-

agent network under consideration is governed by:

xi(k + 1) = xi(k) +
∑

j∈Ni

aij

(
+∞∑

v=0

cijvxj(k − v)− xi(k)

)
, i ∈ V, (1)

where aij ≥ 0 describes the communication link from node j to node i, while the weight coefficient cijv ≥ 0,

and is subject to the following assumption.

Assumption 1:
+∞∑

v=0

cijv = 1, j ∈ Ni. (2)

Notice that the term
+∞∑
v=0

cijvxj(k− v)− xi(k) in Eq. (1) can be rewritten as
+∞∑
v=0

cijv

[
xj(k− v)− xi(k)

]
, and

the weight coefficient cijv represents the strength of influence on node i from the past history of node j. In

Eq. (1), cijv is defined only for j ∈ Ni. For convenience, we add the definition of cijv for j /∈ Ni by letting

cijv =

{
1, for v = 0;

0, v ≥ 1.

Accordingly, for all i, j ∈ V, the following holds:
+∞∑

v=0

cijv = 1. (2′)

Remark 1: The multi-agent system (1) is rather general, and some well-known systems may be viewed as

its special cases. For example, letting τij ∈ Z+, and letting cijv = 0 for all v > τij , then the system (1) reduces

to

xi(k + 1) = xi(k) +
∑

j∈Ni

aij

( τij∑

v=0

cijvxj(k − v)− xi(k)

)
, i ∈ V. (3)

In addition, letting cijv = 1 for v = τij , and cijv = 0 otherwise, the system (1) is further simplified as

xi(k + 1) = xi(k) +
∑

j∈Ni

aij (xj(k − τij)− xi(k)) , i ∈ V. (4)

Note that the consensus problem for systems (3) and (4) have been investigated in the literature; see e.g. [5,

25,31, 35,39] and the references therein.

For the interaction topology of multi-agent system (1), we make the following assumption.

Assumption 2: The graph G = (V, E) is strongly connected.

Let B = [bij ] with bij = aij for i 6= j and bii = 1−∑
j 6=i aij . Then, the system (1) can be rewritten as

xi(k + 1) = biixi(k) +
∑

j 6=i

bij

+∞∑

v=0

cijvxj(k − v), i ∈ V. (5)
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In view of the definitions of bij(i 6= j) and bii, it follows that

n∑

j=1

bij = 1, for all i. (6)

Remark 2: Since i /∈ Ni, aii = 0, and bij = aij = 0 for j /∈ Ni and j 6= i, it is clear that Eq. (5) is equivalent

to Eq. (1).

Assumption 3: bii > 0 for any i ∈ V.

Definition 1: The multi-agent network (5) is said to reach consensus if, for any solution x(k) = (x1(k), x2(k),

. . . , xn(k))T of system (5), there exists a real number a∗ such that limk→∞ xi(k) = a∗ holds for all i ∈ V.

In this paper, we aim to investigate the consensus problem for discrete-time system with arbitrary dis-

tributed time delays. By constructing a suitable Lyapunov-Krasovskii functional and employing invariance

principle for delayed difference systems. We shall prove that network (5) reaches consensus under assumption

of the strong connectedness.

III. Main Results and Proofs

This section is devoted to the consensus analysis for system (5). To start with, let us introduce two lemmas

to be used in deriving our results.

Lemma 1 ( [9]) Let A = [aij ] ∈ Rn×n is nonnegative matrix, i.e., aij ≥ 0, and let ρ(A) be the spectral

radius (called the Perron root of A). Suppose that A is strongly connected, then there is a positive vector x

such that Ax = ρ(A)x. ¥
Lemma 2 ( [15,16]) Let M ∈ Rn×n be a positive semi-definite matrix, xi ∈ Rn, and scalar constant ai ≥ 0

for i ∈ N. If the series concerned is convergent, then the following inequality holds:

(
+∞∑

i=1

aixi

)T

M

(
+∞∑

i=1

aixi

)
≤

(
+∞∑

i=1

ai

)
+∞∑

i=1

aixT
i Mxi. (7)

Let X = {φ : Z− → Rn and φ is bounded } with the norm defined by ‖φ‖ = max{|φ(s)| : s ∈ Z−}. For a

sequence {x(k) ∈ Rn, k ∈ Z}, define xk ∈ X by xk(s) = x(k + s) for s ∈ Z−. Then, for any given initial value

φ ∈ X, there is a solution of the system (5) through (0, φ), which is denoted as x(φ)(·), or simply x(·). Then,

with these symbols, it is obvious that x0 = φ if {x(k)} is a solution of network (5) with initial value φ.

The main result of this paper is given as follows.

Theorem 1: Under Assumptions 1 and 3, the discrete-time multi-agent network (5) with arbitrary dis-

tributed time delays reaches consensus.

For analysis of the consensus problems of network (5), there are two difficult issues arisen as follows: (i)

how to handle the distributed time delays in the given network; (ii) how to handle the non-uniqueness of

equilibrium points of network (5). To deal with these problems, the construction of a Lyapunov-Krasovskii

functional V is quite crucial, and is introduced from (9) to be given later. Here, the proof consists of three

main steps. Step 1 is to construct a candidate Lyapunov-Krasovskii functional V (xk), and verify the result

of ∆V (xk) ≤ 0; Step 2 is to characterize the maximal positively invariant set [41] relative to (5); and Step 3

is devoted to the proof of the consensus.

Proof of Theorem 1
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Step 1: First of all, by Lemma 1, there exists a positive left eigenvector ξ = [ξ1, ξ2, ..., ξn]T of B such that

ξT B = ξT , and
n∑

i=1

ξi = 1. (8)

In order to deal with the consensus problem, we construct the following Lyapunov-Krasovskii functional:

V (xk) = V1(xk) + V2(xk), (9)

where

V1(xk) =
n∑

i=1

ξix
2
i (k) (10)

and

V2(xk) =
n∑

i=1

ξi

n∑

j=1

n∑

l=1

bijbilVijl(xk) (11)

with

Vijl(xk) =
1
2

[
+∞∑

v=0

cijv

k−1∑

s=k−v

x2
j (s) +

+∞∑

v=0

cilv

k−1∑

s=k−v

x2
l (s)

]
, for 1 ≤ j, l ≤ n. (12)

Noticing that for convenience in a unified frame to deal with the different cases of time delays, throughout

our analysis, for ak ∈ R, we adopt the convention:

t∑

k=s

ak = 0, if t < s. (13)

From the convention and definition of Vijl, it is obvious that

Viii(xk) = 0, Viji(xk) =
1
2

+∞∑

v=0

cijv

k−1∑

s=k−v

x2
j (s), Viil(xk) =

1
2

+∞∑

v=0

cilv

k−1∑

s=k−v

x2
l (s).

And it is also clear that Vijl = Vilj .

Now, the difference of V (xk) along the solutions of network (5) is defined to be

∆V (xk) = ∆V1(xk) + ∆V2(xk). (14)

Here,

∆V1(xk) = V1(xk+1)− V1(xk)

=
n∑

i=1

ξix
2
i (k + 1)−

n∑

i=1

ξix
2
i (k)

=
n∑

i=1

ξi

[
biixi(k) +

∑

j 6=i

bij

+∞∑

v=0

cijvxj(k − v)

]2

−
n∑

i=1

ξix
2
i (k)

=
n∑

i=1

ξi

[
b2
iix

2
i (k) +

∑

j 6=i

b2
ij

( +∞∑

v=0

cijvxj(k − v)
)2

+ 2biixi(k)
∑

j 6=i

bij

( +∞∑

v=0

cijvxj(k − v)
)

+ 2
∑

j 6=i

∑
l>j
l6=i

bijbil

( +∞∑

v=0

cijvxj(k − v)
)( +∞∑

v=0

cijvxl(k − v)
)]
−

n∑

i=1

ξix
2
i (k), (15)
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and

∆V2(xk) = V2(xk+1)− V2(xk)

=
n∑

i=1

ξi

n∑

j=1

n∑

l=1

bijbilVijl(xk+1)−
n∑

i=1

ξi

n∑

j=1

n∑

l=1

bijbilVijl(xk)

=
n∑

i=1

ξi

n∑

j=1

n∑

l=1

bijbil∆Vijl(xk)

=
n∑

i=1

ξi

[
n∑

j=1

∑

l=j

bijbil∆Vijl(xk) +
n∑

j=1

∑

l 6=j

bijbil∆Vijl(xk)

]

=
n∑

i=1

ξi

[
b2
ii∆Viii(xk) +

∑

j 6=i

b2
ij∆Vijj(xk) + 2

( ∑

j 6=i

biibij∆Viji(xk)

+
∑

j 6=i

∑
l>j
l6=i

bijbil∆Vijl(xk)
)]

, (16)

where ∆Vijl(xk) = Vijl(xk+1)− Vijl(xk).

By the definition of Vijl(xk), it follows that

∆Vijl(xk) =
1
2

[
+∞∑

v=0

cijv

k∑

s=k+1−v

x2
j (s) +

+∞∑

v=0

cilv

k∑

s=k+1−v

x2
l (s)

]

− 1
2

[
+∞∑

v=0

cijv

k−1∑

s=k−v

x2
j (s) +

+∞∑

v=0

cilv

k−1∑

s=k−v

x2
l (s)

]

=
1
2

[
+∞∑

v=0

cijv(x2
j (k)− x2

j (k − v)) +
+∞∑

v=0

cilv(x2
l (k)− x2

l (k − v))

]

=
1
2

[
x2

j (k)−
+∞∑

v=0

cijvx
2
j (k − v) + x2

l (k)−
+∞∑

v=0

cilvx
2
l (k − v)

]
. (17)

Notice that we have used
+∞∑
v=0

cijv = 1, and
+∞∑
v=0

cilv = 1.

Substituting (17) into (16) yields that

∆V2(xk) =
n∑

i=1

ξi

[ ∑

j 6=i

b2
ij

(
x2

j (k)−
+∞∑

v=0

cijvx
2
j (k − v)

)
+

∑

j 6=i

biibij

(
x2

j (k)−
+∞∑

v=0

cijvx
2
j (k − v)

)

+
∑

j 6=i

∑
l>j
l6=i

bijbil

(
x2

j (k)−
+∞∑

v=0

cijvx
2
j (k − v) + x2

l (k)−
+∞∑

v=0

cilvx
2
l (k − v)

)]
, (18)

From Lemma 2, it follows that

( +∞∑

v=0

cijvxj(k − v)
)2

≤
( +∞∑

v=0

cijv

) +∞∑

v=0

cijvx
2
j (k − v) =

+∞∑

v=0

cijvx
2
j (k − v). (19)
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Thus, (18), together with (19), implies that

∆V2(xk) ≤
n∑

i=1

ξi

[ ∑

j 6=i

b2
ij

(
x2

j (k)−
( +∞∑

v=0

cijvxj(k − v)
)2

)
+

∑

j 6=i

biibij

(
x2

j (k)−
( +∞∑

v=0

cijvxj(k − v)
)2

)

+
∑

j 6=i

∑
l>j
l6=i

bijbil

(
x2

j (k)−
( +∞∑

v=0

cijvxj(k − v)
)2

+ x2
l (k)−

( +∞∑

v=0

cilvxl(k − v)
)2

)]
. (20)

Substituting (15) and (20) into (14) results in

∆V (xk) ≤
n∑

i=1

ξi

[
b2
iix

2
i (k) +

∑

j 6=i

b2
ijx

2
j (k) +

∑

j 6=i

biibij

(
x2

j (k)−
( +∞∑

v=0

cijvxj(k − v)
)2

+ 2xi(k)
+∞∑

v=0

cijvxj(k − v)
)

+
∑

j 6=i

∑
l>j
l6=i

bijbil

(
x2

j (k)−
( +∞∑

v=0

cijvxj(k − v)
)2

+ x2
l (k)

−
( +∞∑

v=0

cilvxl(k − v)
)2

+ 2
( +∞∑

v=0

cijvxj(k − v)
)( +∞∑

v=0

cijvxl(k − v)
))]

−
n∑

i=1

ξix
2
i (k)

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

∑

j 6=i

biibij

(
x2

i (k) + x2
j (k)−

(
xi(k)−

+∞∑

v=0

cijvxj(k − v)
)2

)

+
∑

j 6=i

∑
l>j
l6=i

bijbil

(
x2

j (k) + x2
l (k)−

( +∞∑

v=0

cijvxj(k − v)−
+∞∑

v=0

cijvxl(k − v)
)2

)]

−
n∑

i=1

ξix
2
i (k)

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l>j

bijbil

(
x2

j (k) + x2
l (k)

)]
−

n∑

i=1

ξix
2
i (k)

−
n∑

i=1

ξi

[ ∑

j 6=i

biibij

(
xi(k)−

+∞∑

v=0

cijvxj(k − v)
)2

+
∑

j 6=i

∑
l>j
l6=i

bijbil

( +∞∑

v=0

cijvxj(k − v)−
+∞∑

v=0

cijvxl(k − v)
)2

]
. (21)
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For the first term on the right hand side of (21), one has

n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l>j

bijbil

(
x2

j (k) + x2
l (k)

)]

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l>j

bijbilx
2
j (k) +

n∑

j=1

∑

l>j

bijbilx
2
l (k)

]

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l>j

bijbilx
2
j (k) +

n∑

l=1

∑

j>l

bilbijx
2
j (k)

]

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l>j

bijbilx
2
j (k) +

n∑

j=1

∑

l<j

bilbijx
2
j (k)

]

=
n∑

i=1

ξi

[
n∑

j=1

b2
ijx

2
j (k) +

n∑

j=1

∑

l 6=j

bijbilx
2
j (k)

]

=
n∑

i=1

ξi

n∑

j=1

n∑

l=1

bijbilx
2
j (k)

=
n∑

i=1

ξi

n∑

j=1

bijx
2
j (k)

n∑

l=1

bil. (22)

It follows from
∑n

j=1 bij = 1 (i ∈ V) and the equality (8) that

n∑

i=1

ξi

n∑

j=1

bijx
2
j (k)

n∑

l=1

bil =
n∑

i=1

ξi

n∑

j=1

bijx
2
j (k)

=
n∑

j=1

n∑

i=1

ξibijx
2
j (k) =

n∑

j=1

x2
j (k)

n∑

i=1

ξibij =
n∑

j=1

ξjx
2
j (k). (23)

Equation (21), together with (22) and (23) implies that

∆V (xk) = −
n∑

i=1

ξi

[ ∑

j 6=i

biibij

(
xi(k)−

+∞∑

v=0

cijvxj(k − v)
)2

+
∑

j 6=i

∑
l>j
l6=i

bijbil

( +∞∑

v=0

cijvxj(k − v)−
+∞∑

v=0

cijvxl(k − v)
)2

]
(24)

By Assumption 3 and the definition of bij , bij ≥ 0 for all i, j and, therefore, it follows that

∆V (xk) ≤ 0. (25)

Step 2: Let E = {φ ∈ X : ∆V (φ) = 0}, and M ⊂ E denote the maximal positively invariant set, which

is discussed in [41] for discrete-time systems, relative to (5). Let M̂
def= {φ ∈ X : ∃ a ∈ R such that φ(s) =

a1, for s ∈ Z−} where 1 ∈ Rn denotes the vector with all entries equal to one. In view of (2) and (2′), it is

easy to verify that

M ⊃ M̂.

We shall prove that

M = M̂. (26)
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Now it suffices to prove that

M ⊂ M̂. (27)

To this end, for any φ ∈ M, let {x(k), k ∈ Z} be the solution of (5) relative to the initial value φ. Then, by

the definition of M, one has

∆V (xk) = 0, for k ≥ 0. (28)

By (24) and with ξi > 0, clearly (28) is equivalent to

∑

j 6=i

biibij

(
xi(k)−

+∞∑

v=0

cijvxj(k − v)
)2

= 0, for all k ≥ 0 and i ∈ V (29a)

and

∑

j 6=i

∑
l>j
l6=i

bijbil

( +∞∑

v=0

cijvxj(k − v)−
+∞∑

v=0

cilvxl(k − v)
)2

= 0, for all k ≥ 0 and i ∈ V. (29b)

Notice that bii 6= 0, and Ni 6= ∅ since the graph G(V, E) is strongly connected, and obviously bij 6= 0 (j 6=
i) if and only if j ∈ Ni. Then from Eq. (29a), we have

xi(k) =
+∞∑

v=0

cijvxj(k − v), j ∈ Ni ( or when bij 6= 0). (30)

With a view to Eq. (6), substituting (30) into (5) yields

xi(k + 1) = biixi(k) +
∑

j 6=i

bijxi(k) = xi(k), i ∈ V; (31)

Hence, (30) and (31) imply that if j0 ∈ Ni0 , then

xi0(k) =
+∞∑

v=0

cij0vxj0(k − v) = xj0(k). (32)

Furthermore, according to the strong connectedness of the graph G(V, E), we have

xi(k) = xj(k), for any k ∈ N, and i, j ∈ V. (33)

Noticing that M is positively invariant set relative to (5), and from (31) and (33), it is not difficult to see

xk ∈ M̂, xk+1 = xk, (34)

Specially, letting k = 0 in the first formula of (34), one has

φ = x0 ∈ M̂. (35)

Hence we arrive at M ⊂ M̂, and M = M̂ accordingly.

Step 3: Now we shall prove network (5) reaches the consensus. For this purpose, let {x(k), k ∈ Z} be the

solution of (5) relative to the initial value φ. By the Invariance Principle for autonomous delay difference

systems [41], there is a constant c such that

xk → M ∩ V −1(c), as k →∞, (36)
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which means that there is a sequence {φ(k)} ⊂ M with φ(k)(s) = ak1 for s ∈ Z− such that

lim
n→∞ ‖xk − φ(k)‖ = 0 and lim

n→∞V (xk) = c. (37)

From (37) and the continuity of V (·), it follows that

lim
n→∞V (φ(k)) = c. (38)

Through a straightforward calculation, we can deduce from (38) that there exists a real number c∗ ≥ 0, such

that limk→∞ a2
k = c∗, or

lim
k→∞

|ak| =
√

c∗. (39)

However we can assert that

lim
n→∞ ak = a∗, with a∗ =

√
c∗ or−

√
c∗. (40)

In fact, from (39) it is obvious for c∗ = 0. Now consider the case that c∗ > 0. First, notice that since system

(5) is autonomous its solutions are uniformly continuously dependent on the initial values. Therefore there

exists a positive number δ such that for any two solutions {y(k), k ∈ Z} and {z(k), k ∈ Z} with initial values

ψ(1), ψ(2) ∈ X, respectively, such that

‖y1 − z1‖ <
√

c∗/2, if ‖ψ(1) − ψ(2)‖ < δ. (41)

According to (39), there is a positive integer N2 such that

| |ak| −
√

c∗ | <
√

c∗/2, when k > N1. (42)

Also by the first equality of (37), there exists a positive integer N2 such that

‖xk − φ(k)‖ < min{δ,
√

c∗/2}, when k > N2. (43)

Now assume that equality (40) is not true. Setting N0 = max{N1, N2}, then we can deduce that there

exist a positive integer k0 > N0, such that ak0ak0+1 < 0. Without loss of generality, we assume that ak0 > 0

and ak0+1 < 0. Then it readily follows that

‖φ(k0+1) − φ(k0)‖ = (|ak0+1|+ |ak0 |)
√

n ≥ |ak0+1|+ |ak0 | >
√

c∗, (44)

where the last inequality follows from (42). On the other hand, noting that φ(k) is fixed or invariant relative

to (5), from (41) and (43) we have that

‖xk0+1 − φ(k0)‖ <
√

c∗/2, (45)

which implies that

‖φ(k0+1) − φ(k0)‖ ≤ ‖φ(k0+1) − xk0+1‖+ ‖xk0+1 − φ(k0)‖ <
√

c∗/2 +
√

c∗/2 =
√

c∗. (46)

This is in contradiction with (44). Consequently (40) holds, and we further have

lim
k→∞

φ(k) = φ∗, (47)
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where φ∗ ∈ X with φ∗(s) = a∗1 for s ∈ Z−. Combination of (37) and (47) leads to

lim
k→∞

xk = φ∗, (48)

which implies that

lim
k→∞

x(k) = a∗1, (49)

namely

lim
k→∞

xi(k) = a∗.

Therefore system (5) reaches consensus, and the proof of this theorem is complete. ¥
Remark 3: The construction of V1(xk) is not trivial and the parameter ξ plays a crucial role which can be

seen in later derivation; on the other hand, V2(xk) is a necessary part for dealing with the distributed time

delays.

Remark 4: Based on the particular choice of Lyapunov-Krasovskii functional V (xk) in (9), it can be seen

that all positive terms in ∆V1(xk) and ∆V2(xk) (see (15) and (20)) are canceled by those terms in V1(xk) (see

(15) ). There Lemma 2 also plays a key role in handling ∆V2(xk) and deriving (24). Note that (24) involves

only a few negative terms, and the terms in square brackets are no longer related to the left eigenvector ξ in

(8). In addition, these terms are important and have been used in Step 2.

As mentioned earlier, the systems (3) and (4) are regarded as the special cases of system (5), and one

therefore has

Corollary 1: Under Assumptions 2 and 3, the discrete-time multi-agent network (3) reaches consensus.

Corollary 2: Under Assumptions 2 and 3, the discrete-time multi-agent network (4) reaches consensus.

Remark 5: Corollaries (1) and (2) can be given a direct proof by making a slight modification to the proof

of Theorem 1 with the help of another discrete-time version of LaSalle’s invariance principle [40].

In this paper, we only consider scalar individual states, and it is easy to extend them to vector individual

states. Consider the following multi-agent system of n-nodes with vector-valued states:

xi(k + 1) = biixi(k) +
∑

j 6=i

bij

+∞∑

v=0

cijvxj(k − v), i ∈ V, (50)

where xi(k) ∈ Rm.

Assumption 4: Let bij ≥ 0, bii = 1 − ∑n
j 6=i bij > 0 and τii = 0. Assume that network (50) is strongly

connected.

Theorem 2: Under Assumptions 1 and 4, the discrete-time multi-agent system (50) with arbitrary dis-

tributed time delays reaches consensus, i.e., for any given solution x(k) = (x1(k), x2(k), · · · , xn(k))T of system

(50), there exists a constant vector x∗ ∈ Rm such that limk→∞ xi(k) = x∗, i ∈ V.

Proof: The proof of this theorem is similar to that of the previous theorem, and therefore it is omitted

here.

IV. A Numerical example

For the purpose of illustration, let us consider two examples. The first example is used to justify our

assumption 3, and the second example to demonstrate the effectiveness of our main results.
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Example 1: Theorem 1 holds under Assumptions 1-3. We shall point out here that Assumption 3 is necessary

for consensus reaching. This can be shown by the following example. For simplicity, we consider network (5)

of two nodes given by: {
x1(k + 1) = x2(k − 1),

x2(k + 1) = x1(k − 1),

where the network is strongly connected, but b11 = b22 = 0. Take an initial value φ with φ(−1) = φ(0) = [1 2]T ,

then the resulting solution x(k) relative to this initial value is given by
{

x(k) = [2 1]T , k = 4t + 1, 4t + 2, for t ∈ Z+,

x(k) = [1 2]T , k = 4t + 3, 4t + 4, for t ∈ Z+.

Clearly, each individual state does not converges, and hence the network does not reach consensus.

Example 2: Consider the multi-agent network (5), and for simplicity, we take n = 6. The interaction

topology between the agents is shown in Fig. 1, and the other parameters are taken as follows:

[bij ]6×6 =




0.6 0 0 0.4 0 0

0.2 0.8 0 0 0 0

0.4 0 0.6 0 0 0

0 0 0 0.5 0 0.5

0 0.4 0 0 0.6 0

0 0 0 0.2 0.4 0.4




; c12v = 2−v for v ∈ Z+; c21v =





1/10, if v = 0;

2/5, if v = 1;

3−v, if v ≥ 2;

c31v =





2/3, if v = 3;

1/3, if v = 5;

0, otherwise;

c46v =





3/5, if v = 2;

2/5, if v = 4;

0, otherwise;

c52v =





3/5, if v = 3;

1/5, if v = 5;

1/5, if v = 6;

0, otherwise;

c63v =





4/5, if v = 1;

1/5, if v = 4;

0, otherwise;

c65v =

{
1, if v = 5;

0, otherwise.

Clearly, for the given parameters above, Assumptions 1-3 are satisfied, and from Theorem 1, the multi-agent

system reaches consensus.

1

2

4

6

3

5

Fig. 1. The interaction topology of multi-agent system
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In Fig. 2, three sets of initial values are taken randomly to simulate the evolution of the states, and the

numerical results show that for each initial value, the individual state of the multi-agent system converges to

a constant limit, which agrees well with the proposed theoretical result.

0 10 20 30 40 50 60 70 80 90 100
−25

−20

−15

−10

−5

k

x i

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

k

x i

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

k

x i

Fig. 2. The states of multi-agent system converge to the same constant.

V. Conclusions

We have investigated the distributed consensus problem for a class of discrete-time multi-agent network.

The network under study is a directed graph and contains arbitrary distributed time delays. For consensus

seeking, we developed a Lyapunov based framework and derived the theoretical results that the discrete-

time network with arbitrary distributed time delays reaches consensus provided that the network is strongly

connected. Numerical simulation further illustrates our theoretical approach. It is possible to extend the

main results to the more complicated cases such as the multi-agent systems with the time-varying interaction

topology, or with the weaker connectivity that the graph contains a spanning tree, which are the future

research topics.
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