Pey et al. BMC Systems Biology 2013, 7:134
http://www.biomedcentral.com/1752-0509/7/134

BMC
Systems Biology

METHODOLOGY ARTICLE Open Access

Integrating gene and protein expression data
with genome-scale metabolic networks to infer

functional pathways

Jon Pey', Kaspar Valgepea®®, Angel Rubio', John E Beasley*" and Francisco J Planes'

Abstract

Mixed-integer linear programming

Background: The study of cellular metabolism in the context of high-throughput -omics data has allowed us to
decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is
essential to efficiently integrate experimental data into metabolic modeling.

Results: We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype
under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP)
approach, a mixed-integer linear program that expands classical path finding techniques by considering additional
biophysical constraints. In particular, the objective function of the CFP approach is amended to account for
gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path
(iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which
provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real
scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow
metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the
phenomenon leading to impaired acetate overflow are proposed.

Conclusions: A novel mathematical framework that determines functional pathways based on gene/protein
expression data is presented and validated. We show that our approach is able to provide new insights into
complex biological scenarios such as acetate overflow in Escherichia coli.
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Background

Systems biology models biological processes at different
hierarchical levels, ranging from genetic mechanisms to
metabolic events as well as associated interactions and
synergies. This “systems” perspective has allowed us to go
beyond classical biology and chemistry, obtaining valuable
insights regarding different fields: medicine [1,2], pharma-
cology research [3-5] and biotechnology [6] amongst
others. The rapid growth of systems biology has been pos-
sible thanks to the advent of high-throughput -omics data
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[7] and efforts in the scientific community to develop
mathematical and computational methods that integrate
such data [8-11]. In order to continue with this pace of
discoveries, extending and improving these integrative
tools is a major challenge in systems biology.

In particular, the work presented here is focused on the
metabolic layer. Metabolism has been intensively studied
for the last decade due to its close relationship with cellu-
lar phenotype and, in consequence, with several diseases
and biotechnological processes. The study of metabolism
from a systems biology viewpoint has been accelerated by
the publication of several genome-scale networks relating
metabolites, enzymes and genes [12-14]. As discussed
above, utilizing experimental data is essential to extract
relevant biological conclusions regarding the particular
scenario being modeled. In this light, three main families
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of experimental techniques provide a closer picture of cell
metabolism: metabolomics [15], stable isotope labeling
[16] and gene/protein expression measurements [17,18].

Gene expression can be quantified at the transcriptome
level using DNA microarray technology [19], which pro-
vides a vast amount of information due to the low cost of
measuring thousands of mRNAs simultaneously. Despite
this vast amount of information, the number of relevant
conclusions extracted from the direct analysis of these ex-
periments has not met expectations [20]. This highlights
the necessity for novel modeling frameworks accounting
for gene and protein expression data [21]. In this context,
pathway analysis tools arise as powerful alternatives [22].
Their application has already generated relevant insights,
for example in health [23,24] or in biotechnology [25].
Complementary to transcriptome data, proteomics pro-
vides genome-wide information as to protein abundances,
which is closer to the metabolic phenotype compared to
gene expression data, by avoiding the intermediate regula-
tory mechanisms between mRNA expression and final
protein production. However, the number of measured
proteins is below the number of measured mRNAs, des-
pite the recent rapid developments of proteomics [26]. In
this article, we present a novel mathematical methodology
integrating gene/protein expression data into metabolic
networks with the objective of finding key pathways for
the particular phenotype under study.

Pathway analysis tools can be classified into two gen-
eral groups depending on how they are obtained, namely
via manual curation [27,28] or via network-based tech-
niques. In this second group, the use of path finding
techniques has been extensive [29,30]. Whilst computa-
tionally efficient, these methods do not take into account
reaction stoichiometry, which may lead to results that
are not meaningful, as recognized in [31]. For this rea-
son much effort is being carried out to explore other
pathway concepts that consider mass-balances. One of
the most important pathway concepts is the Elementary
Flux Mode (EFM) [32]. In a pioneering work, Schwartz
and co-workers [33] assign a probability to a set of EFMs
calculated from KEGG maps [34] based on gene expres-
sion data. Recently, Rezola et al, [35] has extended this
work for genome-scale metabolic networks and deter-
mine a set of characteristic EFMs for different human
healthy tissues based on gene expression data. Similarly
to EFMs, [36] presented the concept of Elementary Flux
Patterns. Recently, several biological insights have been
obtained when gene expression data was projected into
Elementary Flux Patterns [37]. In this article, we present
the first framework mapping gene expression data into
Carbon Flux Paths (CFPs) [38]. This approach intro-
duces reaction stoichiometry into classical path fin-
ding techniques via Mixed-Integer Linear Programming
(MILP). In particular, metabolites (nodes) are joined via
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reactions (arcs) representing effective carbon exchange.
In addition, the obtained path is able to operate in sus-
tained steady-state [38]. The versatility of CFP has been
recently exploited to detect key enzymes whose malfunc-
tion is responsible for changes in metabolomic data [39].

The vast majority of approaches project gene expres-
sion data into a pre-calculated template containing
a large number of pathways, regardless of the actual
physiological scenario [28,33,40]. The inherent plasticity
of the metabolic network may require pre-calculating a
large number of pathways to guarantee that any bio-
logical scenario is properly represented. To avoid this
limitation, other approaches calculate a particular set of
pathways for each gene expression data set [41]. Our ap-
proach is in consonance with the discussion presented
in [42], which suggests calculating specific pathways by
weighting each reaction in terms of the corresponding
enzyme expression. We directly find the most represen-
tative pathways in each scenario and enumerate top-
ranked paths according to an objective function based
on actual gene expression/protein data.

Finally, we apply our new approach to examine key
pathways and find novel metabolic pathways involved in
the regulation of acetate overflow metabolism in E. coli
[43]. Acetate overflow, more precisely excretion of acetic
acid, exists under aerobic E. coli growth on glucose at
high specific growth rates [43,44] and severely inhibits
growth and diverts carbon from biomass or target pro-
duct synthesis [45,46]. Several hypotheses have been
postulated for causing overflow metabolism of acetate,
mainly involving imbalance between glucose uptake and
TCA cycle or energy and biomass generation throughput
[44,47]. Recently, Valgepea et al. 2010 [43] proposed a
new regulation mechanism of acetate overflow being
triggered by carbon catabolite repression of acetyl-CoA
synthetase and subsequent disruption of the phospho-
transacetylase-acetyl-CoA synthetase (PTA-ACS) node.
Despite decades of study, the regulation mechanisms
and all pathways involved have not been unequivocally
determined making this metabolic phenomenon a very
attractive one to study and test with the new mathema-
tical modeling method developed in the current work.

Results and discussion

With the CFP method [38] as a starting point, we aim to
find relevant paths for a particular phenotype under
study based on gene or protein expression data. As de-
tailed in Pey et al. [38], the calculation of CFP is based
on MILP, which allows us to (i) ensure that the obtained
path can operate at sustained steady-state; (ii) force
effective carbon exchange in each intermediate step;
(iii) enumerate paths in increasing path length order.
Here, we amend the CFP enumeration procedure regar-
ding the gene and protein expression data. In addition,
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since CFPs take into account off-path reactions (not just
fluxes for reactions involved in the path), gene expression
data also guides the balancing of the path. Further metho-
dological details can be found in the Methods section.

We first classify each metabolic reaction as Highly/Over
expressed, Lowly/Down expressed or Medium expressed/
Invariant based on gene and protein data sets, as done in
[48]. For this, the set of highly/over expressed or lowly/
down expressed genes/proteins is first determined. Several
strategies can be adopted to perform this analysis [49].
Hereinafter, we apply the Boolean rules relating genes/
proteins and reactions included in different metabolic net-
work reconstructions [50,51], which finally leads to the
definition of the set H of highly/over expressed reactions,
the set L of lowly/down expressed reactions and the set
M=R-H-L of medium expressed/invariant reactions
(where R is the complete set of reactions). Further details
as to how we classified reactions based on gene and pro-
tein expression data can be found in the Methods section.

Our model is constrained to have non-zero flux bet-
ween the source and target metabolites forcing an ad-
ditional set of reactions to be active so as to balance the
path. Given this constraint, our optimization model is a
three-stage minimization: firstly, minimize the total flux
associated with reactions in L; then minimize the total
flux associated with reactions in AM; then minimize the
length of the flux path from source to target metabolite.
Note here how our model integrates gene expression
data (as represented by the reaction sets H, M and L) via
the objective functions in our three-stage minimization.
This allows gene expression data to influence the flux
scenario without directly constraining it. In particular,
we guide the flux through the reactions in H as a result
of minimizing flux in L and M. Note that the third-stage
optimization is a path length minimization step, as is
common in the literature [52]. Conclusively, we call our
approach iCFP (Integrated gene and protein expres-
sion Carbon Flux Paths).

We first highlight the inherent advantages of the iCFP
approach with respect to existing approaches by means
of a theoretical example. Afterwards, this theoretical
example is reinforced in a more realistic scenario,
namely in degradation of L-Alanine during biofilm for-
mation of a genetically modified strain of E. coli. Finally,
we apply iCFP for finding relevant metabolic pathways
involved in acetate overflow metabolism in E. coli.

Theoretical example

We explain our iCFP approach by the example pre-
sented in Figure 1A which involves 10 metabolites and
12 reactions. The source and target metabolites for the
CFP are A and E, respectively. Assume that, based
on expression data, reactions are classified as follows:
L={9,10,11}, M = {1,6,7,12} and H = {2,3,4,5,8}.
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Figure 1 lllustrative example. (A) Metabolic network, (B) Pathway
obtained when stoichiometry balance is neglected, (C) Pathway
obtained with iCFP that accounts for stoichiometry balance. Highly/
over expressed reactions are represented by solid lines, Medium
expressed/invariant reactions by dashed lines and Lowly/down

expressed reactions by dotted lines.

Classical path finding approaches, where stoichiometry
is neglected, only take into account the reactions on the
path. For the example shown in Figure 1A, the solution
given by a classical approach, ignoring the reactions
needed to balance the path, is shown in Figure 1B. Note
how the path from A to E in Figure 1B is made up
entirely from highly expressed reactions (reactions 3, 5,
8 in H). Even though this path is highly expressed, it
needs flux in reactions 10 and 11 to achieve stoichio-
metric balance. This fact diminishes the relevance of the
path since reactions 10 and 11 are lowly expressed. This
demonstrates precisely how off-path reactions may alter
the pathway enrichment structure.

On the contrary, when iCFP is applied (so including
stoichiometric balance), the solution is as shown in
Figure 1C. Note that the solution utilizes a mix of
reactions from H (reactions 2 and 4) and M (reactions 6
and 7), but no reactions from L when balancing the path.

By means of this toy example, we show that iCFP, in
contrast to classical approaches in the literature, obtains
relevant paths with a consistent stoichiometric balance
according to expression data. This theoretical example is
now extended to a real metabolic scenario.

Validation
In this subsection, using a more realistic scenario, we
reinforce the importance of considering stoichoimetric
balance when selecting relevant paths based on expres-
sion data. In particular, we analyze L-Alanine (L-Ala)
degradation pathways to Pyruvate (Pyr) during biofilm
formation of a genetically modified strain of E. coli.
Details as to the reactions constituting the backbone
of L-Ala degradation pathway can be found in EcoCyc
[53], which are summarized here in Figure 2A. Note that
the last step of this pathway, catalyzed by D-Amino acid
dehydrogenase (DAAD), consumes and produces Flavin
adenine dinucleotide oxidized (FAD) and Flavin adenine
dinucleotide reduced (FADH2), respectively. We show
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Figure 2 Pathways for L-Alanine degradation to Pyruvate. A Canonical pathway extracted from [53]; B, C, D Alternative pathways calculated
using iCFP. Metabolites: 3MOB, 3-Methyl-2-oxobutanoate; D-Ala, D-Alanine; L-Val, L-Valine; NH,;, Ammonium; Pydx5P, Pyridoxal 5'-phosphate;
PyAm5P, Pyridoxamine 5'-phosphate. Reactions: ALAR, alanine racemase; ALATA_D2, D-alanine transaminase; ALATA_L2, alanine transaminase;
DAAD, D-Amino acid dehydrogenase; VPAMT, Valine-pyruvate aminotransferase. Highly/over expressed reactions are represented by solid lines,
Medium expressed/invariant reactions by dashed lines and Lowly/down expressed reactions by dotted lines.
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below that the balancing of these two compounds plays
a crucial role, confirming that the example presented
in the previous section goes beyond a hypothetical
scenario.

We took data from [54]. Kim and co-workers provide
gene expression data after modifying a particular set
of genes related to biofilm formation in E. coli
(GSE14203). Several gene expression comparisons bet-
ween cultures are presented in terms of log, fold
changes. In particular, we focus on the comparison bet-
ween wild type and mgsR mutant E. coli (GSM355066/
GSM355065). As in [55], those genes with a fold change
above 1.5 (log, (fold change) > 0.5850) are considered
highly/over expressed genes; on the contrary, genes with
a fold change below -1.5 (log, (fold change) < -0.5850)
are included within the set of lowly/down expressed
genes. If a gene is neither highly nor lowly expressed, it
is classified as a medium expressed gene.

We incorporate gene expression data into the genome-
scale metabolic network of E. coli in [51]. Following the
logic rules relating gene/protein expression data with the
final enzyme activity presented in [51], we obtain the final
reaction classification into sets H, M and L. We used the
same growth medium (Lysogeny Broth (LB)) in our simu-
lations as in [54].

With the conditions described above, when iCFP is ap-
plied between L-Ala and Pyr, three paths are obtained
(Figure 2B, C, D) before recovering the canonical solu-
tion (Figure 2A). Despite the similarity in the backbone
of the pathways, the balancing produces a remarkable
difference in terms of number of reactions in L and M,
especially between the first three (Figure 2B, C, D) and
the fourth (Figure 2A) pathway. Observe, for instance,
that we obtained the same intermediates in the

canonical pathway in Figure 2A and the third solution in
Figure 2D. However, the set of co-substrates and by-
products for each pathway is different, namely Pyridoxal
5’-phosphate (Pydx5P) and Pyridoxamine S’-phosphate
(PyAm5P) for Figure 2D, while FAD and FADH2 for
Figure 2A. We found that the balancing of FAD and
FADH2 requires the activation of at least one reaction in
L, while for Pydx5P and PyAm5P only reactions in
M and H are required. For this reason the pathway
in Figure 2D was ranked in a better position than the
canonical pathway in Figure 2A.

As a technical note, consider that FAD/FADH2 is tightly
bound to a protein, in our case to D-amino acid dehydro-
genase (DAAD) in Figure 2A. Because of this, the reaction
cannot be balanced by any arbitrary FAD-reducing reac-
tion in the network, but only by those that do not require
FAD to be bound by a different protein. This lack of dif-
ferentiation is a limitation of the employed metabolic net-
work but not of the proposed method. Without taking
into account this differentiation, we found that the stoi-
chiometric balance of the canonical pathway in Figure 2A
requires at least five and one enzymes in M and L,
respectively. If this differentiation had been considered,
we can only expect a worse (or equal) position in the
ranking for the canonical pathway in Figure 2A, which
reinforces the need for alternative pathways. Solutions
obtained in Figure 2B, C, D do not include FAD/FADH?2
and, hence, this issue does not apply here.

In summary, with this example of L-Ala degradation
pathways into Pyr, we show that iCFP successfully ac-
counts for stoichiometric balancing when selecting path-
ways based on gene expression data. This constitutes a
progress over the state of the art, as it is typically
neglected in classical path finding methods.
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Case study: acetate overflow metabolism in E. coli
Recently, Valgepea et al., 2010 [43] studied the specific
growth rate-dependent metabolism of E. coli from a sys-
tems biology viewpoint using advanced steady-state
continuous cultivation (A-stat [56]) by integrating ge-
nome-wide metabolomics, transcriptomics and proteo-
mics measurements. In that work, a novel regulation
mechanism for acetate overflow was elucidated. In par-
ticular, they propose that acetate overflow metabolism
in E. coli is triggered by the disruption of the PTA-ACS
node, namely acetyl-CoA synthetase (ACS) down-regu-
lation results in decreased assimilation of acetate via
phosphotransacetylase (PTA). We apply iCFP using the
gene and protein expression data from [43] and the
metabolic network of E. coli presented in [51] to gain
further insights into key and novel pathways involved in
acetate overflow metabolism. The criterion to classify
reactions into L/M/H sets is included in the Methods
section.

Since the consequence of acetate overflow metabolism
is the excretion of Acetate (Ac) [44], we set Ac as the
target metabolite with Glucose (D-Glc), the unique
external input of carbon in the experimental growth
medium in [43], as the source metabolite. We applied
iCFP to this scenario and found 100 paths from D-Glc
to Ac (Additional file 1). As an indication of the effect of
incorporating gene and protein expression data, we also
calculated here 100 paths from D-Glc to Ac ignoring
expression data (i.e ignoring the first two stages in
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iCFP). Only 10 of 100 paths were the same in both sce-
narios, namely with and without gene expression data.
In other words, our results here indicate that incorpo-
rating expression data in the manner described above
does significantly alter the set of paths found. A detailed
analysis that discusses the effect of incorporating ex-
pression data and the resulting paths can be found in
Additional file 2.

Of the 100 paths from D-Glc to Ac determined using
iCFP, we observed that 98 had Acetyl Coenzyme A
(AcCoA) as an intermediate metabolite. This is in line
with a previous hypothesis for acetate overflow metabo-
lism [57,58], which suggests that AcCoA diverts from
entering the TCA cycle into formation of Ac. In order to
capture the diversity in Ac producing pathways from
AcCoA, we then calculated 100 paths setting AcCoA as
the source metabolite and Ac as the target metabolite. We
discuss and summarize below the most relevant pathways
obtained via iCFP in this new scenario. The full set of
pathways is included in Additional file 1.

The first path appearing in the ranking is one half of the
PTA-ACS cycle recently proposed by Valgepea et al., [43]
as being central in the regulation of acetate metabolism
(see Figure 3A). In essence, this pathway produces Ac
from AcCoA with Acetyl phosphate (AcP) as an inter-
mediate metabolite. In particular, AcP is transformed to
Ac through the highly expressed reaction acetate kinase
(ACKTr). Further details regarding this mechanism can be
found in Valgepea et al., [43].
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Figure 3 Four relevant paths for acetate overflow calculated by iCFP. A, First path; B, Second path; C, Third path; D, Fourth path. Highly/over
expressed reactions are represented by solid lines, Medium expressed/invariant reactions by dashed lines and Lowly/down expressed reactions by
dotted lines. Metabolites: Ac, Acetate; AcAld, Acetaldehyde; AcCoA, Acetyl-CoA; AcG5P, N-Acetyl-L-glutamyl 5-phosphate; AcG5sA, N-Acetyl-L-glutamate
5-semialdehyde; AcGlu, N-Acetyl-L-glutamate; AcP, Acetyl phosphate; D-Glc, D-Glucose; L-Asp, L-Aspartate; L-AspsA, L-Aspartate 4-semialdehyde;
L-Hom, L-Homoserine; L-PHom, O-Phospho-L-homoserine; L-Thr, L-Threonine; OAA, Oxaloacetate; Pyr, Pyruvate. Reactions: ACALD, acetaldehyde
dehydrogenase (acetylating); ACGK, acetylglutamate kinase; ACGS, N-acetylglutamate synthase; ACKr, acetate kinase; AGPR, N-acetyl-g-
reductase; ALDD2x, aldehyde dehydrogenase (acetaldehyde, NAD); ASAD, aspartate-semialdehyde dehydrogenase; ASPK, aspartate kinase; ASPTA,
aspartate transaminase; HSDy, homoserine dehydrogenase (NADPH); HSK, homoserine kinase; NACODA, N-acetylornithine deacetylase; PDH, pyruvate
dehydrogenase; PTA, phosphotransacetylase; THRAI, Threonine aldolase; THRS, threonine synthase.

glutamyl-phosphate
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A very similar pathway is obtained in the second posi-
tion (Figure 3B). Note that this second solution is equiva-
lent to the first pathway in terms of the optimization
criterion using gene and protein expression data. In ana-
logy with the mechanism presented in Valgepea et al.,
[43], this is a two-step procedure from AcCoA to Ac, but
through a different intermediate metabolite Acetaldehyde
(AcAld). In addition, note that the enzyme producing Ac
from AcAld (aldehyde dehydrogenase (ALDD2Xx)) is over-
expressed (Figure 3B). It is worth mentioning that the
close distance between AcCoA and Ac makes this path-
way a promising target to impair acetate overflow. Since
the possible role of AcAld in acetate overflow metabolism
has not been previously studied in depth, further experi-
mental research is required to validate this hypothesis.

iCFP also provides the pathway in Figure 3C within the
first five solutions. This pathway comprises part of Arginine
and Proline metabolism [34] with all the reactions
between AcCoA and Ac catalyzed by highly-expressed
enzymes Le. all reactions included in H. Note that this
pathway (Figure 3C) consumes and produces a molecule
of L-Glutamate (L-Glu) and L-Glutamate 5-semialdehyde
(Glu5sA), respectively. Since extracellular accumulation of
Glu5sA was not detected in these experiments, we will
analyze two mechanisms to balance this by-product:

1. On one hand, Glu5sA can be consumed to produce
Proline (L-Pro) in a two-reaction pathway
(L-glutamate 5-semialdehyde dehydratase
(spontaneous) (G5SADs) and pyrroline-5-carboxylate
reductase (P5CR)). This pathway represents the
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canonical biosynthetic mechanisms of L-Pro [59].
This is summarized in Figure 4A.

2. On the other hand, by means of another
two-enzyme pathway constituted by G5SADs and
1-pyrroline-5-carboxylate dehydrogenase (P5CD),
Glu5sA can be consumed to produce the required
molecule of L-Glu consumed in ACGS reaction so
that the pathway in Figure 3C can be balanced, see
Figure 4B. This is precisely the solution provided by
iCFP.

In essence, both paths differ in the last enzyme ie.
P5CR for L-Pro production and P5CD in the case of
L-Glu, respectively. Interestingly, P5CR is classified as
belonging to the set L, while P5CD is classified as
belonging to the set M (Figure 4). We can conclude that
the second pathway consuming Glu5sA is more favorable
based on gene and protein expression data (Figure 4B).
This may imply that L-Pro, an essential amino acid for
cellular proliferation, is not a limiting resource at faster
growth, in line with preliminary experiments conducted in
[60,61]. In addition, the second pathway seems to more
efficient for acetate production, as L-Glu is balanced and
therefore carbon is not diverted into other by-products,
such as L-Pro.

Finally, we discuss the pathway in Figure 3D. AcCoa is
first consumed to produce Oxaloacetate (OAA). Then,
OAA is degraded by means of L-Threonine (L-Thr) meta-
bolism [34] so that Ac is finally produced. Note that the
first step is constituted by the action of two enzymes,
namely citrate synthase (CS) and citrate lyase (CITL). It is

A

‘ACGK

P5CR .
GOSADs: NACODA

B i

P5CD

Figure 4 A, Glu5sA is consumed to produce L-Pro; B, Glu5sA is consumed to produce L-Glu. Highly/over expressed reactions are
represented by solid lines, Medium expressed/invariant reactions by dashed lines and Lowly/down expressed reactions by dotted lines.
Metabolites: 1Pyr5¢c, 1-Pyrroline-5-carboxylate; Ac, Acetate; AcCoA, Acetyl-CoA; AcG5P, N-Acetyl-L-glutamyl 5-phosphate; AcG5sA, N-Acetyl-L-glutamate
5-semialdehyde; AcGlu, N-Acetyl-L-glutamate; Glu5sA, L-Glutamate 5-semialdehyde; L-Glu, L-Glutamate; L-Pro, L-Proline. Reactions: ACGK, acetylglutamate
kinase; ACGS, N-acetylglutamate synthase; AGPR, N-acetyl-g-glutamyl-phosphate reductase; G5SADs, L-glutamate 5-semialdehyde dehydratase
(spontaneous); NACODA, N-acetylornithine deacetylase; P5CD, 1-pyrroline-5-carboxylate dehydrogenase; P5CR, pyrroline-5-carboxylate reductase.
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important to note that there is no effective carbon
exchange between AcCoA and OAA through these two
reactions. In contrast, it can be verified that Ac is fully
composed by carbon atoms from OAA. As OAA can be
produced by several mechanisms, such as glycolysis,
effective carbon exchange is guaranteed between D-Glc
and OAA, and in consequence between D-Glc and Ac.
In this light, OAA can be produced from the glycolytic
product phosphoenolpyruvate (PEP) by phosphoenolpy-
ruvate carboxylase (PPC), which is classified as belo-
nging to the set H.

We are aware that this pathway is not particularly effi-
cient for Ac production, as it requires 10 enzymatic steps
and the consumption of 2 molecules of ATP and NADPH,
respectively. However, this long path involves a well-
known route for the biosynthesis of L-Thr, an essential
amino acid for biomass synthesis. In addition, in the reac-
tion catalyzed by Threonine aldolase (THRAi), L-Thr is
degraded into glycine (Gly) and AcAld, which is then con-
verted into Ac via aldehyde dehydrogenase (ALDD2x).
Given that this pathway was obtained as differentially
(highly) expressed with increasing specific growth rate,
Gly and L-Thr should be synthesized at a high rate and,
therefore, this pathway is likely to occur also at a high rate.
The use of less efficient pathways also emphasizes increa-
sing carbon wasting with faster growth as experimentally
observed (mainly associated with acetate overflow). It is
interesting to note in the context of acetate overflow that
higher biomass vyields are observed by supplementing
minimal medium with Gly and L-Thr in addition to glu-
cose [60], which is in line with the results presented above,
where these two amino acids appear to be a limiting
resource.

Conclusions
There is a large volume of gene expression data available
through different public databases. In addition, due to
the rapid advancement in proteomics technologies, pro-
tein abundance data is increasing day by day, as well as
absolute quantitative —omics data. In order to exploit
this valuable information, we require models and effi-
cient algorithms to extract biological conclusions.
Genome scale networks have shown that cellular me-
tabolism underlies a wide number of phenotypes. As dis-
cussed elsewhere [32], representing those phenotypes by
means of the well-known canonical metabolic pathways,
may be a limited strategy. Thus, it is essential to use
mathematical pathway models which allow us to cal-
culate more solutions, going beyond canonical metabolic
pathways. Amongst pathway models, the Carbon Flux
Path model appears as a promising tool that extends
classical path finding techniques by incorporating bio-
physical constraints, such as mass balance. In this article,
we emphasized the relevance of including these biophysical
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constraints (stoichiometric balance) by means of, firstly, a
theoretical example and, secondly, the analysis of L-Ala
degradation pathways into Pyr during biofilm formation
of a genetically modified strain of E. coli. In order to take
into account the balancing in the obtained paths, the use
of MILP is required. Efficient MILP solvers exist and
therefore the application of iCFP to genome-scale meta-
bolic networks is feasible, as shown in the Results section.

As posed above, genome scale metabolic networks
may present assorted phenotypes. In order to correctly
represent those phenotypes, it may be necessary to pre-
calculate an extremely large number of metabolic path-
ways. The framework presented here overcomes this
issue by directly calculating the best metabolic pathways
under a given gene/protein expression phenotype. The
effect of gene and protein expression data in our ap-
proach is clearly observed, particularly leading to two
significantly different sets of pathways depending upon
whether this information is included or not.

In iCFP, reactions are classified into H, M or L sets. We
defined these sets based on a standard procedure (see
Methods section). However, this problem deserves further
research, as complex effects may arise. For instance, redu-
cing the concentration of a particular protein may not lead
to a proportional decrease in its catalytic activity [62,63].
Therefore, other factors, such as thermodynamic proper-
ties, dynamics of catalytic rates of enzymes, etc, should be
included to more accurately classify reactions.

Based on the above, we proposed novel metabolic path-
ways involved in acetate overflow metabolism, which
might be targets to possibly mitigate acetate overflow and
help to understand the regulation of this phenomenon.
The role of Acetaldehyde is of particular interest, which to
our knowledge has not been previously related to acetate
overflow. In addition, we also discussed two other over-
expressed metabolic pathways possibly relevant for acetate
overflow. The evidence of acetate production directly
linked to Gly and L-Thr seems plausible, as their import-
ance for increasing biomass yield per substrate has been
previously reported and explored in the context of acetate
overflow. We are aware that overflow metabolism is a
more general problem and additional studies, which com-
plement the one presented here, need to be carried out
to design an optimized strain, as if acetate secretion is
blocked, the strain may still export other compounds such
as lactate at a high rate.

As future lines for research into acetate overflow, note
that our insights were obtained from the metabolic
model presented in [51], as carbon exchange arcs associ-
ated with reactions, which constitute a key input for the
CFP approach, are currently only available for this
model. Developing a database of carbon exchange arcs
for the most recent E. coli genome-scale metabolic net-
work [64] would need to be done so as to verify and
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complement obtained results. Additionally, isotope labe-
ling methods would be beneficial to validate the proposed
pathways obtained by iCFP. Finally, as one of our analyzed
pathways involves the well-known signal molecule AcP,
which plays a critical role in regulation of chemotaxis,
pathogenesis, biofilm formation etc. [43] and protein
acetylation [65], it seems relevant to try and detect a rela-
tionship between signal transduction pathways and meta-
bolic alterations associated with acetate overflow.

In conclusion, the increasing efficiency of high-through-
put technologies in association with novel computational
frameworks lays the foundations for future discoveries.
Overall, methods exploiting -omics data, as is the case of
iCFP presented in this article, are essential to unravel the
complex biological scenarios that exist in different areas of
health science and biotechnology. E. coli acetate overflow
is one of these complex scenarios. With our iCFP
approach, we were able to develop non-trivial insights that
contribute to the better understanding of this phe-
nomenon relevant for industry biotechnology.

Methods

Classifying reactions into H, M and L sets based on
specific growth rate-dependent gene and protein
expression data

The data presented in [43] contains experimental mea-
surements of gene and protein expression at different
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specific growth rates (Figure 5A). Due to the regulatory
mechanisms between gene expression and protein pro-
duction, proteomic data is more reliable when inferring
metabolic phenotypes. However, more measurements as
to gene expression data are available. Thus, when prote-
omic data was not available or incomplete, we used gene
expression data. When neither gene nor protein expres-
sion data was provided for a particular gene, we assume
that the associated gene is invariant over the studied
range of specific growth rates. Further details are in-
cluded below.

In order to properly classify as up and down regulated
genes/proteins, the data provided by Valgepea et al., [43]
is normalized by applying logarithm to the base 2 (Log,),
which is particularly common in the literature [66]. Those
genes/proteins not involved in the E. coli metabolic net-
works are removed (Figure 5B). Then, those genes and
proteins with three or less measurements over the studied
range were removed from the analysis and directly in-
cluded in the set of non-differentially expressed features
(Figure 5C).

Genes or proteins may show random behavior without
a clear indication of either down regulation or up regula-
tion. It is crucial to distinguish between genes/proteins
with and without regular change of expression over the
course of study; this can be done via linear regression.
This technique is efficiently implemented in the limma

B C Protein p-values
Protein Data Protein Data Protein Data B
t, 12 a t ot t a ot t, a i
Gene Data Removing Gene Data Removing Gene Data Computing
. . Gene p-values
Lyt non-metabolic Wt incomplete WL p-values .
© @E E data Eﬁ @ data @Eﬁ :
s (2] [se} s
"oe- “log- “log-

H | < <_Fz

G
L162

Based on .
L276| | Boolean rules Classify into | £,
classify into H/Land M |*
| M 2142 | H, L apd M M 731 genes/proteins
reactions

g-values (1038)

S

Lumped p-values (1038)

Lumping p-values
giving priority
to protein p-values

Computing| ¢
g-values

Figure 5 Flowchart showing the procedure to classify genes as up and down regulated from the data of Valgepea et al. [43]. AB.CDE,

F.GH Individual steps in the procedure.
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package [67]. In particular, the treat function [68] in-
cluded in limma provides the p-value of having an up or
down regulation more extreme than a selected threshold.
The corresponding null hypothesis for this test is that the
gene is up or downregulated less than the threshold, 7. As
in previous works [69,70], this pre-defined threshold is set
to 1.5-fold changes, ie. the (ratio) change in expression
between the initial and final condition increases or de-
creases by 50%. Note that these probabilities are calculated
for gene and protein expression data and, therefore, two
sets of p-values are calculated (Figure 5D). We conducted
a sensitivity analysis for different 7 values. Results can be
found in Additional file 2.

Our two sets of p-values included in Figure 5D are com-
bined into a unique set. For those enzymes with two asso-
ciated p-values, namely from the protein and gene
expression data, the p-value corresponding to the proteo-
mics data is assigned. When the p-value calculated with
proteomics data is not available, the p-value obtained
using gene expression data is assigned. Finally, when nei-
ther protein nor gene p-value is available, the gene is dir-
ectly included in the set of non-differentially expressed.
After grouping the p-values, a unique set of 1038 values is
obtained (Figure 5E).

In addition, since this analysis implies multiple inde-
pendent tests, we have corrected the obtained p-values
so as to obtain the set of g-values. This correction is
performed using fdrtool [71] implemented in the R
language. fdrtool estimates the False Discovery Rate
(FDR) for a set of independent p-values. After multiple
hypothesis correction, the genes with FDR below 0.2
(20%), are considered to be differentially expressed
[72,73]. Using this FDR, we found 307 metabolic genes
differentially expressed (Figure 5F). Note that the set of
differentially expressed genes/proteins are classified as
up or down regulated if the sign of the regressed curve
provided by limma is positive or negative respectively.
This resulted in 145 up regulated and 162 down regu-
lated genes/proteins (Figure 5G).

Finally, following the strategy adopted in previous
works [48], we classify all the metabolic reactions in the
set of the Highly/Over expressed reactions (H), the set
corresponding to the Lowly/Down expressed (L) and the
set of Medium expressed/Invariant reactions (M) based
on the Boolean rules included in [51]. Overall, 217, 276
and 2142 reactions are included in the H, L and M sets,
respectively.

Carbon flux paths

Drawing directly on [38], the model for carbon flux paths
is as follows. C contains all the metabolites present in the
metabolic network whilst R contains all the reactions. Re-
versible reactions contribute two different reactions to the
metabolic network, so all fluxes (flux v, for reaction r) take
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positive values. S, is the stoichiometric coefficient asso-
ciated with metabolite ¢ in reaction r. The source and tar-
get metabolites are a and f5, respectively. A flux path is a
simple path from a to S able to operate in steady-state.
Arcs in the path are given by the zero-one (binary) vari-
able u;; = 1 if the arc i—j linking metabolite i to metab-
olite j is active in the path, 0 otherwise. The zero-one
(binary) variable z, is equal to 1 if reaction r has non-
zero flux, 0 otherwise. The coefficient d;;, is one if there
exists effective carbon exchange between input metabolite
i (Si<0) and output metabolite j (S;>0) in reaction r
(and is zero otherwise). The constraints in the model are:

o — =1 1
;'EZCM’ ieZCuﬁ (1)
w= 3 Uy =0 2

iezcu“ jezcuﬁl (2)

Y ug = X ugVkeC;k=a,f (3)

ieC jeC

Y ux<l VkeC (4)

ieC

Y Sevy =0 Veel (5)

reR

Y Sev,20 VceE, c¢E,, (6)

reR

z,<v,<Nz, VreR (7)

zy + 2,1 V(A u)eB (8)
Y zez2uy  VieCiVjeCiizj 9)

reR,dj=1

Equation (1) ensures that one arc leaves a and one
arc enters f5. Equation (2) that no arc enters a and
no arc leaves . Equation (3) ensures that the number
of arcs entering a metabolite k is equal to the number
leaving. Equation (4) ensures that a metabolite cannot
be revisited in the path. Equation (5) is the steady-
state condition for the set (I) of internal metabolites.
Equation (6) ensures that metabolites not involved in
a specific growth medium (E,,) can be produced, but
cannot be consumed. Equation (7) relates each flux
with a binary variable that indicate whether the reac-
tion is active or not, where N is the maximum flux
and the minimum (non-zero) flux is 1. Equation (8)
prevents a reaction and its reverse both being active
where B = {(1,u)| reaction 1 and reaction y are the re-
verse of each other}. Equation (9) ensures that if a
carbon exchange arc is used in the path, then some
reaction involving such arc is active.

Carbon flux paths accounting for expression data

With expression data, the set R of reactions has been
subdivided into three mutually exclusive sets L/M/H of
lowly/medium/highly expressed reactions. Our model is
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a three-stage optimization model. In the first-stage
optimization, we minimize the total flux associated with
lowly expressed reactions, namely those included in the
set L:

Minimize ¥, v,
rel

(10)

Subject to Equations (1)-(9)

This is a mixed-integer linear problem and algo-
rithmically such problems are solved by linear program-
ming based tree search. Modern software packages to
perform this task, such as IBM ILOG CPLEX which we
used, are well developed and highly sophisticated. IBM
ILOG CPLEX was run in a Matlab environment Version
7.5 (R2007b).

If the optimal objective function value is V3, then, in
the second-stage optimization, we minimize the total
flux associated to reactions in M, ie medium
expressed reactions:

Minimize Y, v,
reM

(11)

Subject to Equations (1)-(9) and X v, = V;
rel

This ensures that we retain the optimal value (V;) for
Yrervr achieved at the first-stage.

If the optimal value here is V5, then, in the third-
stage optimization, we minimize the length of the flux
path from source to target metabolite:

Minimize 3. Y uy

12
ieC jeC j=i ( )

Subject to Equations (1)-(9) and ZLv,: V; and

re

> Vy = V2
reM

This ensures that we retain the optimal values
achieved at the first two stages.

Note here that the three stage optimization model
can be converted into a single step optimization by
introducing suitable weighting factors for each term
in equations (10)-(12), namely very large for the first
objective, less large for the second, etc. However, this
introduces numerical issues as the different terms in
the objective vary widely in value. So, for the sake
of numerical stability, we opted for the three step
optimization model.

Since the last stage here is to minimize the number
of reactions, we can enumerate path solutions in as-
cending (staged) objective value order, so first find
the CFP that best minimizes our three-stage objective;
then the next best solution; then the next best solu-
tion; etc. To do this, after finding a path solution, we
simply add a constraint eliminating it from the solu-
tion space. If U5 is the binary solution value for the
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u; variable in the k-shortest path (and we have K
such paths) then the elimination constraint is:

Y Y Ufug<y ¥ Uf-1k=1,.K

(13)
ieC jeC j=i ieC jeC j=zi

Additional files

Additional file 1: Details for pathways between Glucose-Acetate
and Acetyl Coenzyme A-Acetate.

Additional file 2: Effect of gene expression data and sensitivity
analysis on T value.
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