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Abstract 

 

In recent years, several authors have investigated how co-occurrence statistics in 

natural language can act as a cue that children may use to extract syntactic categories 

for the language they are learning. While some authors have reported encouraging 

results, it is difficult to evaluate the quality of the syntactic categories derived. It is 

argued in this paper that traditional measures of accuracy are inherently flawed. A 

valid evaluation metric needs to consider the well-formedness of utterances generated 

through a production end. This paper attempts to evaluate the quality of the categories 

derived from co-occurrence statistics through the use of MOSAIC, a computational 

model of syntax acquisition that has already been used to simulate several phenomena 

in child language. It is shown that derived syntactic categories that may appear to be 

of high quality quickly give rise to errors that are not typical of child speech. A 

solution to this problem is suggested in the form of a chunking mechanism that serves 

to differentiate between alternative grammatical functions of identical word forms. 

Results are evaluated in terms of the error rates in utterances produced by the system 

as well as the quantitative fit to the phenomenon of subject omission. 

 

Keywords: Distributional learning, Co-occurrence statistics, Syntactic Categories, 

MOSAIC, Chunking, Language Acquisition, Cognitive Modelling
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Introduction 

In recent years, several authors have argued that co-occurrence statistics can provide 

powerful cues that may aid children in extracting syntactic categories for the language 

they are learning (Redington, Chater & Finch, 1998; Mintz, 2003; Edelman, Solan, Horn 

& Ruppin, 2004). Redington, Chater and Finch (1998) analysed large corpora of child 

directed speech and performed a cluster analysis on vectors describing the lexical context 

in which words occurred. They found that words that occurred in linguistically similar 

contexts (tended to be preceded and followed by the same words) had a high likelihood 

of belonging to the same syntactic class.  

Mintz (2003) expanded on the work of Redington et al. Rather than analysing vectors 

describing lexical context, Mintz’s unit of analysis was a frame: two jointly occurring 

words with one word in between. Mintz restricted his analysis to the 45 most frequent 

frames that occurred in a large corpus. 

While both Redington et al. and Mintz showed that their procedure resulted in 

apparently good syntactic categories, there is an inherent difficulty with the use of co-

occurrence statistics to derive syntactic categories. As Pinker (1987) points out, words 

that occur in similar contexts may not be of the same category. Pinker argues that a 

distributional learning mechanism faced with utterances 1a, b and c, would produce an 

ungrammatical utterance like 1d. 

 

1a. John ate fish 

1b. John ate rabbits 
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1c. John can fish 

1d. *John can rabbits 

 

Mintz (2003) claims that ‘in children’s actual input, these problems do not significantly 

undermine the informativeness of distributional patterns’ (p. 92). He also suggests that 

‘although problematic environments may exist, there is nonetheless enough “signal” in 

the distributional patterns compared to the noise created by the problematic environments 

that categorization from distributional patterns is not intractable’ (p. 93).  

However, the approach taken by Mintz and Redington et al. may obscure the extent of 

the problem identified by Pinker. Mintz and Redington et al. evaluated the quality of the 

extracted categories using criteria of accuracy and completeness. Accuracy was 

computed by classifying every word-pair within a category as a hit (same syntactic class), 

or miss (different syntactic class). Where the grammatical class of a word was unclear, 

the corpus was consulted to disambiguate and label the word. Mintz used two types of 

labeling. In standard labeling, all nouns and pronouns were classed as nouns, and all 

verbs (lexical verbs, auxiliaries and the copula) were classed as verbs. In expanded 

labelling, nouns and pronouns were labeled as distinct categories, as were lexical verbs, 

auxiliaries and the copula. While Mintz achieved high levels of accuracy with both types 

of labelling, closer inspection of his categories reveals that they may not be as accurate as 

his analyses suggest. One of Mintz’s verb categories contains verbs in present tense and 

past tense as well as progressive participles, verbs that can and cannot be used in an 

imperative frame, and verbs such as do and have that can be used both as a main verb and 

as an auxiliary. 
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This heterogeneity of the derived word classes may not appear problematic since 

neither Mintz nor Redington et al. concern themselves with production (Mintz views the 

process of extracting distributional categories as a precondition for a (relatively 

unspecified) process of bootstrapping into a parametrized universal grammar). When one 

considers how the extracted categories might be used in production, however, it quickly 

becomes apparent that heterogeneous word classes will result in utterances that deviate 

considerably from child speech. The simplest way in which a child producing speech 

could use the categories arrived at through a distributional analysis of the input is by 

considering the members of a category as equivalent. That is, if words a and b occur in 

the same category, the child may simply substitute a for b in a context where it knows b 

has occurred. Taking the words do, have and put (which were classed together in Mintz’s 

analysis) as an example, such a substitution mechanism will result in (clearly incorrect) 

utterances such as Do you got an ice-cream and Put you want a drink. 

However, more subtle problems, that are not apparent with the use of an evaluation 

metric based on a researcher’s intuition about a word’s syntactic class, emerge as well 

when syntactic categories derived from co-occurrence statistics are used to generate 

speech. These problems become especially apparent in detailed quantitative simulations 

of child data, where seemingly correct substitutions may drastically affect the fit to actual 

child data. This became clear when Freudenthal, Pine & Gobet (2002b) used MOSAIC, a 

computational model of syntax acquisition which utilizes co-occurrence statistics to 

substitute phrases that occurred in similar contexts, to simulate the phenomenon of 

subject omission and the associated verb phrase length effect (Bloom, 1990). This 

phenomenon revolves around the fact that there is a stage in development where children 
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produce subjectless utterances such as Want a cookie. While the model simulated the 

general pattern of results, it tended to overestimate the levels of subject omission. One of 

the reasons for this was that, in order to identify ungrammatical subjectless utterances, 

the analyses were restricted to utterances containing ‘non-imperative verbs’ (i.e. verbs 

that can not be used in an imperative frame). Since MOSAIC tended to substitute non-

imperative verbs for imperative verbs, it generated a relatively high number of subjectless 

utterances. The reason why these verbs were substituted was that both verb types were 

linked because they both occur in non-imperative frames. While their substitution in 

imperative frames did result in child-like utterances, the substitution rate was too high to 

allow a good quantitative fit to the data. This type of problem is not apparent in an 

approach that simply extracts syntactic categories and does not use a production end to 

generate utterances. 

The examples described above suggest that the main cause of problematic substitutions 

is that a substitution that is correct in one context is incorrect in another context. This 

paper aims to show that one possible solution to this problem is to compute co-

occurrence statistics over longer units. Redington et al. considered longer contexts (two 

or three words preceding and following the target word), and found that this did not 

improve the quality of their syntactic categories much. This paper investigates a different 

approach, inspired by the well-established chunking theory (Chase & Simon, 1973; 

Gobet et al., 2001).  

A new version of MOSAIC has been developed that incorporates a novel chunking 

mechanism
1
 which results in frequent phrases being treated as one unit. One consequence 

                                                 
1 Earlier versions of MOSAIC employed a chunking mechanism as well. The novel chunking mechanism differs from 

the earlier chunking mechanism in that chunks can now occur at the primitive level. 
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of this is that single words that have been chunked up will no longer be substituted unless 

when substituted as part of a chunk. It will be shown that this mechanism decreases the 

amount of unwanted as well as incorrect substitutions, resulting in a decreased overall 

error rate as well as a better fit to the phenomenon of subject omission. 

The remainder of this paper is organized as follows. First, MOSAIC and its chunking 

mechanism will be described. Then MOSAIC will be trained on corpora of child directed 

speech while the parameter governing chunking frequency is manipulated. In order to 

provide an evaluation of the quality of the output, a sample of generated utterances is 

judged against criteria of ‘well-formedness’. The output is also compared to actual child 

speech, which is analysed with respect to the phenomenon of subject omission. 

 

Simulating Language Acquisition in MOSAIC 

MOSAIC has already been used to simulate several phenomena in child speech. Earlier 

versions have been used to simulate the Verb-Island phenomenon (Jones, Gobet & Pine, 

2000), negation errors (Croker, Pine & Gobet, 2003), the Optional Infinitive phenomenon 

in Dutch, Spanish and English (Freudenthal, Pine & Gobet, 2002a, 2003, in preparation), 

as well as phenomena related to subject omission in English (Freudenthal, Pine & Gobet 

2002b). Whilst the version used for the simulations discussed here has changed from the 

earlier simulations, the main theoretical underpinning of the model remains the same. The 

basic tenet of the model is that the learning of language is a performance-limited process 

that is heavily weighted towards the most recent elements in the speech stream (i.e., 

which has an utterance final bias). Several authors have argued that children are better at 
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learning material that occurs towards the end of the utterance (Shady & Gerken, 1999; 

Wijnen et al., 2001).  

MOSAIC learns from orthographically coded input, with whole words being the unit of 

analysis. The model is a simple discrimination net (an n-ary tree) that is headed by a root 

node. At the start of learning the discrimination net consists of just the root node. More 

nodes (encoding words or phrases) are added as the model is shown more utterances. An 

important requirement for nodes to be added is that whatever follows the word to be 

encoded in the input must already have been encoded in the model. That is, the model 

will only learn a new word when it has already encoded the rest of the utterance. This 

mechanism can be likened to a moving window, the size of which is determined by how 

much of the input has already been encoded in the network. When the model encounters a 

word that is unknown, the contents of the window are cleared, and the new word is 

deposited in the buffer. Only when the rest of the utterance is known will the new word 

remain in the buffer, thus making it eligible for encoding in the network. In terms of a 

child attending to the speech stream, the occurrence of an unknown word will effectively 

clear the contents of the speech stream encountered so far, leaving the new word and the 

rest of the utterance for analysis.  

Thus, while the model processes utterances from left to right, it builds up its 

representation of the utterances it receives by starting at the end of the utterance, and 

slowly working its way to the beginning
2
. The probability of creating a node in MOSAIC 

is given by the following formula:  

                                                 
2 Earlier versions of MOSAIC simulated such an utterance final bias by restricting production to utterances that had 

appeared in sentence final position. 
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NCP =
1

1+ e
m−u / c

 

 
 

 

 
 

d

 

where: NCP = Node Creation Probability 

 m = a constant, set to 20 for these simulations. 

c = corpus size (number of utterances). 

 u = total number of utterances seen. 

 d = distance to the end of the utterance. 

   

The formula results in a basic sigmoid curve (when plotted as a function of the number 

of utterances the model has seen). The formula contains the size of the corpus and the 

total number of utterances seen. The size of the corpus is included because the size of the 

available input corpora differs considerably. The use of the term (m – u/c) ensures that 

after n presentations of the complete input corpus the Node Creation Probability is 

identical for corpora of different sizes. The ‘distance to the end of the utterance’ in the 

exponent causes material that occurs near the beginning of the utterance to have a lower 

likelihood of being encoded than material that occurs near the end. This effect decreases 

as the model sees more input. Since learning in MOSAIC is slow, the input corpus is fed 

through the model several times, so that output of increasing average length can be 

generated after consecutive exposures to the input corpus.  

 

Production of Novel Utterances 

Utterance production in MOSAIC involves outputting all the utterances the model has 

encoded. However, the output that MOSAIC produces consists of more than the input it 
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has seen. MOSAIC has a mechanism for linking words or phrases that have occurred in 

similar contexts. All nodes being traversed when processing input are deposited into a 

buffer of limited size reflecting the most active/recently-encountered input. The nodes in 

the buffer are then compared with respect to their preceding and following context. When 

the overlap between two nodes is sufficiently high (more than 20% of both the context 

that preceded and followed the target node is the same), a generative link is created 

between them. The contents of nodes that share a generative link can be substituted for 

each other when the model produces output. This mechanism allows MOSAIC to 

produce utterances that were not present in the input.  

 

Chunking in MOSAIC 

MOSAIC employs a chunking mechanism that results in frequent multi-word phrases 

being treated as one unit. Nodes in the network contain a frequency slot, the value of 

which is increased every time that node is traversed when the net sorts an input utterance. 

The frequency of a node at one of the lower levels (non-primitive nodes
3
) in the tree 

encodes the frequency of the entire phrase leading up to that node. Thus, if a node for you 

occurs underneath the primitive do, the frequency of that node encodes the number of 

times the phrase do you has been encountered. When the frequency of a non-primitive 

node exceeds a pre-determined value, the node is chunked up with the node above it: the 

two nodes are merged into one node at the primitive level. Thus, in the above example 

the two nodes encoding the phrase do you will be merged into one node at the primitive 

level. The chunk is then propagated through the network; all occurrences of the phrase do 

                                                 
3 The distinction between nodes directly underneath the root node (primitive nodes) and those at lower levels (non-

primitive nodes) is an important one. Due to the structure of the discrimination net, primitive nodes encode all the 

context the word or phrase has been seen in (the ‘global context’). Non-primitive nodes encode ‘local context’. 
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you are chunked up. Nodes encoding chunks can be linked to other nodes encoding 

chunks (or words) in the same way that nodes encoding individual words are linked. 

Figures 1a and 1b show an example network before and after two nodes have been 

chunked. When two nodes are chunked, it is no longer possible to substitute words for the 

individual words making up the chunk. Thus, the chunk Do I may be substituted for the 

chunk Do you, when they share sufficient context. However, should the words I and you 

be linked, they can be substituted in unchunked contexts, but not in chunks. In this way, 

chunking serves to differentiate different grammatical functions of the same word form: 

if the dummy modal Do is chunked with the subject you, it will no longer be substituted 

by verbs that are linked to Do by virtue of its occurrence as a main verb.  

 

    ---------------------------------------- 

    Insert Figures 1a and 1b about here 

    ----------------------------------------- 

Chunking affects the substitution of words in two ways. Firstly, chunks themselves are 

deposited into the buffer, making phrases the target for the creation of generative links. 

Secondly, the context preceding and following a target node may be chunked up. Thus if 

the phrase He goes into the house contains the chunks he goes and the house, the context 

for the word into will be he goes and the house rather than goes and the. Chunking thus 

serves to increase the length of items considered for a generative link, as well as increase 

the context considered in the creation of a generative link. 
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The chunking mechanism also affects learning. If the model receives a novel input 

utterance containing a phrase that has been chunked up earlier, it will treat the phrase as a 

unit, rather than attempting to encode its constituent words separately. 

 

The Simulations 

Simulations were run using two corpora of English (maternal) child-directed speech 

(those of Anne and Becky) taken from the Manchester corpus (Theakston, Lieven, Pine 

& Rowland, 2001) available through the CHILDES database (MacWhinney, 2000). The 

size of the input sets is approximately 33,000 and 24,000 utterances. Simulations were 

run using different levels of chunking. The models’ output was analysed with respect to 

error rates and levels of subject omission. 

 

Error rates 

For the first simulation, models were trained with and without chunking for both 

children. For the chunked model, the chunking threshold (frequency required for a node 

to be chunked up) was set at 1/4 times the square root of the number of nodes in the net. 

The chunking threshold was expressed relative to the square root of the nodes in the net 

for two reasons. Firstly, as available input corpora differ considerably in size, absolute 

frequency was considered less appropriate than frequency relative to the size of the net 

(or amount of encoded knowledge). Secondly, the square root of the nodes in the net was 

chosen to ensure that the chunking rate was relatively constant over the development of 

the model. For all simulations, an output file was selected at an MLU (Mean Length of 

Utterance) of approximately 3.5 words.  
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Next, a sample of 500 utterances (involving substitutions) from each of the output files 

was coded by two independent raters for the presence or absence of syntactic errors. 

Syntactic errors were defined as cases in which one or more of the substitutions made by 

the model resulted in an utterance that was grammatically incorrect (e.g. Pegs find fallen 

down from Pegs have fallen down). Note that this definition of syntactic errors is 

designed to exclude cases in which the model substituted a grammatically correct word 

into a sentence fragment (e.g. My toys out v Your toys out) and cases in which the 

substitutions made by the model were semantically but not syntactically anomalous (e.g. 

Shall I cut them with the puzzle? v Shall we cut them with the knife?).  

The vast majority of the errors identified in this way fell into one of the following 

categories: word-class errors (e.g. To vest on his tummy v To lie on his tummy); subject-

verb agreement errors (e.g. They am sitting v I am sitting); missing argument errors (e.g. 

Putting the story v Reading the book); errors involving the use of a verb with the wrong 

particle (e.g. Shall we use her t-shirt off v Shall we take his dungarees off); errors 

involving the use of a verb form with the wrong auxiliary (e.g. I’ve just finish that off v 

You’ve just taken that off ) and errors involving the use of a particular type of noun with 

the wrong determiner (e.g. Put it on a sand v Put it on the sand). Interestingly, virtually 

all of the errors falling into these categories seemed to involve either the substitution of a 

word from the wrong syntactic category for a word that is a member of two or more 

syntactic categories (e.g. the use of vest as a verb instead of lie which can be both a noun 

and a verb) or the substitution of a word from the correct syntactic category into a context 

in which that particular instance of the category is not permitted to occur (e.g. the use of 

the indefinite article a with a mass noun instead of the definite article the which can be 
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used with both mass and count nouns in English). Note that these are precisely the kinds 

of errors that are likely to be hidden by the kind of evaluation metrics used in previous 

research using distributional learning mechanisms. 

Agreement between the raters was high, at .93 (Kappa = .74). The results are shown in 

Table 1. Error rates are lower for the chunking models (Χ
2
 = 40.70, p < .001 for Anne, 

and Χ
2
 = 5.42, p < .05 for Becky). 

 

    ------------------------------- 

    Insert table 1 about here 

    ------------------------------- 

 

However, a potentially confounding factor is that the unchunked models simply 

generate more novel utterances. It could therefore be argued that any mechanism that 

restricts the generativity of the model will reduce the error rate. In order to test this 

possibility, the generativity of the unchunked models was reduced by increasing the 

overlap parameter governing the creation of generative links to .25. This resulted in the 

proportion of novel utterances being similar to that in the chunked models. The error rate 

for Anne’s model was reduced to .16, less than for the high generativity model Χ
2
 = 4.15, 

p < .05, but more than for the chunked version Χ
2
 = 19.90, p < .001. For Becky’s model, 

the error rate was .23, not significantly different from the high generativity version Χ
2
 < 

1, p < 1, and still higher than the chunked version Χ
2
 = 4.44, p < .05. Thus, the reduced 

error rates in the chunking version are not just a result of chunking reducing the 

proportion of generated utterances, and suggest that chunking also reduces the proportion 
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of unwanted substitutions. The reason why error rates remain higher than in the chunked 

version is that even at a high overlap percentage, some links may remain which give rise 

to errors. As the overall rate of generativity decreases, these undesirable links may even 

gain weight, and could conceivably even increase the error rate. 

 

Subject omission 

A second analysis assessed whether chunking can decrease the levels of subject omission. 

For these simulations, the chunking threshold was set to three levels: 4, 1, and .25 times 

the square root of the number of nodes in the net. These simulations are referred to as 

low, medium and high chunking, respectively. 

In order to match the models’ output to child speech, models were trained iteratively to 

match the MLU of the children at two points in time. The models’ output was then 

compared against children’s output with respect to the phenomenon of subject omission. 

The analysis of the levels of subject omission was performed in the same way as in 

Bloom (1990), and Freudenthal, Pine and Gobet (2002b). Utterances were limited to 

those that Bloom identified as non-imperative (though the verb see was excluded from 

this list as it was found to occur in imperative frames in the input). The analysis was 

restricted to declaratives. Double verb constructions and utterances containing the words 

don’t, no, or not were  excluded from the analysis. 

The remaining utterances were scored with respect to the inclusion of a subject. Figure 

2 shows the results for the children and the six simulations at two different MLUs. Model 

MLUs were matched as closely as possible to the children’s MLUs. 
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----------------------------------- 

Insert Figures 2a and b about here 

----------------------------------- 

 

Figure 2 shows that the fits for the simulations increase as the chunking rate increases. 

While the overall fits are not particularly good, the chunking mechanism appears to have 

been successful in avoiding unwanted substitutions, with the high chunking model 

providing the best fit at the higher MLU (particularly for Becky). It may be worth 

stressing that only one parameter in the chunking mechanism has been manipulated. 

Future work may suggest manipulations that result in a better fit. 

 

Generative Chunks 

While it could be argued that the main effect of the chunking mechanism is to reduce 

error by avoiding incorrect substitutions, it is worth pointing out that the chunking 

mechanism leads to different types of substitutions (and errors) as well. The reason for 

this is that chunks themselves can be linked (both to single words and to other chunks). 

While a full analysis of the role of linked chunks is beyond the scope of this paper, some 

interesting examples can be given. In some of the high chunking models phrases like I 

can were linked to Can I, thus allowing the model to generate declaratives off questions 

and the other way round. Similarly, in one of the models the phrase I wouldn’t was linked 

to I don’t want to. The chunking mechanism thus aids in linking phrases as well as words 

that fulfill a similar grammatical role. The chunking mechanism resulted in some 

interesting errors as well. One of the simulations substituted don’t want to for want to. 
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While this resulted in some grammatical utterances, it also resulted in phrases like Do 

you don’t want to. This is  clearly a syntactic error. However, it is a type of error that 

children do occasionally make. 

 

Conclusions 

Several conclusions can be drawn from the simulations reported here. Firstly, in a global 

analysis of generated utterances, clear word class errors do occur, but not at very high 

rates. The problem identified by Pinker (1987) therefore does not appear to be 

particularly significant. However, when the analysis is restricted to a subset of the data 

(such as utterances containing non-imperative verbs), it becomes apparent that the fact 

that a simple distributional analysis does not pick up subtle differences between different 

verb classes can greatly affect the fit to child data. It was shown that the chunking 

mechanism was able to reduce the overall error rates as well as prevent the substitution of 

similar words in incorrect contexts.  

It should be stressed that chunking does not simply cut generativity in all contexts (as 

increasing the overlap parameter does). Rather, chunking restricts the contexts in which 

two words may be substituted. Thus, two single words that share a generative link may be 

substituted in unchunked contexts, but not in contexts where the word is chunked up 

(unless of course the chunk itself has a generative link). The chunking mechanism is thus 

able to cut generativity selectively. Besides diminishing unwanted generativity, chunking 

also adds to generativity by substituting phrases rather than words. 

It is important to bear in mind that the only parameter manipulated in these simulations 

is the chunking threshold. There is clearly a range of parameters that can be manipulated 
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in conjunction with the chunking threshold. At present, the chunking threshold is a 

function of the square root of the number of nodes in the net. Variations of this formula 

may affect the chunking rate differentially for different stages of development, thus 

affecting more detailed fits to child data. We are not committed to the fits and specific 

implementation used in these simulations, but rather stress the fact that chunking can be a 

powerful tool in resolving ambiguities in the extraction of syntactic categories. 

 On a more general level, these analyses illustrate two strengths of MOSAIC as an 

approach to modelling language acquisition: the use of realistic child-directed speech, 

and the production of utterances that can be compared with child speech. The use of 

child-directed speech is important because it ensures a realistic frequency distribution. As 

all distributional analyses are frequency sensitive, a realistic frequency distribution is 

crucial for obtaining good fits to detailed phenomena in child language.  

 The use of a production end has shown that traditional measures of accuracy are 

insufficient to evaluate the quality of syntactic categories derived from co-occurrence 

statistics, as accuracy not only depends on the researcher’s intuitions regarding a word’s 

syntactic class, but also on the context in which the word is used. Researchers should 

therefore be careful about relying on measures of accuracy to evaluate the quality of 

syntactic categories as the addition of a production end may show the quality of these 

categories to be considerably worse than it appeared. 
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Figure captions: 

 

Figure 1a: A (partial) MOSAIC network before the nodes do and you have been chunked 

up. Do and Put share a generative link. Only relevant nodes are shown in this example. 

Some links are shown to indicate that further nodes may exist beneath the nodes shown. 

Preceding context for primitive nodes is ignored in this figure, but is encoded in the 

network. 

 

Figure 1b: The same network after do and you have been chunked up. Note that do and 

you have also been chunked up in the what do you context. 

 

Figure 2a: Levels of Subject Provision for Anne and simulations at three levels of 

chunking frequency. 

 

Figure 2b: Levels of Subject Provision for Becky and simulations at three levels of 

chunking frequency. 
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Table 1: Syntactic error rates for Anne and Becky’s simulations at two levels of 

chunking. 

 No chunking  Chunking 

Anne .21 .07 

Becky .24 .18 
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