
FLOW-DISTRIBUTED SPIKES FOR SCHNAKENBERG KINETICS

JUNCHENG WEI,
DEPARTMENT OF MATHEMATICS,

THE CHINESE UNIVERSITY OF HONG KONG,
SHATIN, HONG KONG

AND MATTHIAS WINTER,
DEPARTMENT OF MATHEMATICAL SCIENCES,

BRUNEL UNIVERSITY,
UXBRIDGE, UB8 3PH,
UNITED KINGDOM

CORRESPONDING AUTHOR, EMAIL: MATTHIAS.WINTER@BRUNEL.AC.UK

Abstract. We study a system of reaction-diffusion-convection equations which combine a reaction-
diffusion system with Schnakenberg kinetics and the convective flow equations. It serves as a simple
model for flow-distributed pattern formation. We show how the choice of boundary conditions and
the size of the flow influence the positions of the emerging spiky patterns and give conditions when
they are shifted to the right or to the left. Further, we analyze the shape and prove the stability of
the spikes. The importance of these results for biological applications, in particular the formation of
left-right asymmetry in the mouse, is indicated.

1. Introduction

A model for the development of handedness in left/right asymmetry has been suggested by Brown
and Wolpert [2] which is based on three separate phenomena: (i) conversion from molecular hand-
edness to handedness at the cellular level, (ii) random generation of asymmetry, e.g. by a reaction-
diffusion process, (iii) an interpretation process which leads to the development of different structures
on the left and right. This model can explain many phenomena observed for various species e.g. situs
inversus viscerum mutation for triturus or in the mouse and bilateral asymmetry for sea urchins. Hu-
man diseases like the Ivemark syndrome or Kartegener’s syndrome can be understood in this context
as well. In particular, the model gives a good explanation why a loss of conversion of asymmetry
from a molecular or some other local source does not result in symmetry but in random asymmetry.

In contrast to this model which suggests a molecular basis for handedness, alternative approaches
to left/right symmetry breaking include electric currents flowing in anterior to posterior direction
[6] or fluid flow, e.g. nodal flow in the mouse, which might be initialized by rotation of monocilia
and then sustained and driven by interaction with a reaction-diffusion mechanism, e.g. based on an
interaction of the Nodal and Lefty proteins to establish the left/right asymmetry [5], [13].

Therefore it is interesting, on a theoretical level, to investigate the influence of a flow on reaction-
diffusion systems. In this paper we will consider the special case of flow-distributed spikes. We will
pay particular attention to the way in which the fluid flow breaks the left/right symmetry in the
system: Without convective flow the spike is located in the center of an interval. The flow will shift
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it to the left or right half of the domain, depending on the boundary conditions and the size of the
flow.

In particular, we study the effect of convective flow in a pattern-forming reaction-diffusion system.
As a prototype, we consider Schnakenberg kinetics and combine it with the convective flow equations.

For both diffusion and convection processes the transport is driven by a flux which for diffusion
is defined as the concentration gradient and for convection as the concentration gradient minus a
constant times the concentration.

In a closed system the flux will vanish at the boundary which for a convective system leads to Robin
boundary conditions (zero flux). For convective systems we will also consider Neumann boundary
conditions (zero diffusive flux). We will see that changing the boundary conditions will result in
strikingly different behavior of the system.

The pattern under consideration will be an interior single-spike pattern which will be studied for
either type of boundary conditions. For Neumann boundary conditions the spike will be shifted
either in the same direction as or in the opposite direction of the convective flow, depending on the
size of the convection (Section 2). This result is summarized in Theorem 2.1.

In contrast, for Robin boundary conditions the spike will always be shifted in the same direction
as the convective flow (Section 3). This result is given in Theorem 3.1.

Further, we will show analytically that the one-spike solution is always stable (Sections 4–6). This
result is formulated in Theorem 6.1.

Our analytical results will be supported by numerical computations. We will present simulations
showing that for Neumann boundary conditions the spike can be shifted in the same/opposite direc-
tion of the convective flow (Figures 1-2) and for Robin boundary conditions it will always be shifted
in the same direction as the flow (Figure 3). Further, we will compute some examples of multiple
spikes, both for Neumann boundary conditions (Figure 4) and Robin boundary conditions (Figures
5-6) which indicate that the spikes now have varying amplitudes and irregular spacing (Section 7).
Multiple spikes are not analysed in this paper, but these issues are work in progress which we leave
for future publications. The importance of these mathematical results for biological applications, in
particular for the formation of left-right asymmetry in mouse is discussed (Section 8).

We call the spikes in this reaction-diffusion-convection system flow-distributed spikes (FDS) fol-
lowing the terminology of Satnoianu, Maini and Menzinger [16]. The influence of flow on pattern
formation has been observed experimentally [8, 15]. Theoretical investigations have explained many
features of this interaction [9, 11, 12, 16, 20, 21], in particular new instabilities and stabilization
[10, 19, 22], boundary forcing [17], or phase differences [18] have been established and linked to the
Turing instability. We show that qualitatively some of these features are also present for spikes.

The system to be investigated is given in the following form
{

at = δaxx − δαax + 1
2
− cab2,

bt = bxx − αbx − b + ab2.
(1.1)

It can be derived as a prototype model for the interaction of an electric field and an ionic version of
an autocatalytic system [11, 12, 17].
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Rescaling the spatial variable x = x
ε
and letting δ = D

ε2
, α = εα, we get

{
at = Daxx −Dαax + 1

2
− cab2,

bt = ε2bxx − ε2αbx − b + ab2.
(1.2)

Setting

a = εâ, b =
b̂

ε
, D =

D̂

ε
,

we get after dropping hats and bars



εat = Daxx −Dαax + 1
2
− c

ε
ab2,

bt = ε2bxx − ε2αbx − b + ab2.
(1.3)

For a steady state this problem becomes



0 = Daxx −Dαax + 1
2
− c

ε
ab2,

0 = ε2bxx − ε2αbx − b + ab2.
(1.4)

Next we introduce suitable boundary conditions and consider single-spike steady-state solutions.

2. Neumann boundary conditions (zero diffusive flux)

First we investigate solutions of (1.4), i.e. steady-state solutions of (1.3), in the interval Ω = (−1, 1)

with zero Neumann boundary conditions:

ax = bx = 0, for x = −1 or x = 1. (2.1)

These boundary conditions model zero diffusive flux.
Before stating our main results, let us introduce some notation. Let L2(−1, 1) and H2(−1, 1) be

the usual Lebesgue and Sobolev spaces. Let w be the unique solution of the following problem:



wyy − w + w2 = 0 in R1,

w > 0,

w(0) = maxy∈Rw(y),

w(y) → 0 as |y| → ∞.

(2.2)

In fact, it is easy to see that w(y) can explicitly be written as

w(y) =
3

2
(cosh y)−2. (2.3)

We use the norm
‖u‖H2

ε (−1,1) = ‖u‖H2(Ωε),

where Ωε = Ω/ε = (−1/ε, 1/ε) and a similar notation is adapted for L2 and H1.

Theorem 2.1. For ε small enough, there is a spiky solution (aε, bε) of the system (1.4) with Neumann
boundary conditions (2.1). The shape of this solution is given by

bε(x) =
1

ξε

w

(
x− xε

1

ε

)
+ O(ε) in H2

ε (−1, 1), (2.4)

aε(x
ε
1) = ξε, (2.5)
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the amplitude satisfies

ξε = ξ0 + O(ε) with ξ0 =
6cα

eαx1 sinh α
(2.6)

and for the position we have

xε
1 = x0

1 + O(ε) with x0
1 =

1

α
ln

(
1 +

√
1 + 24Dcα3 coth α

)
− 1

α
ln(2 cosh α). (2.7)

Remarks:
1. Estimate (2.7) implies

xε
1 = α

(
6Dc− 1

2

)
+ O(α2 + ε)

as α, ε → 0. Therefore, if 12Dc > 1, then xε
1 > 0, and if 12Dc < 1, then xε

1 < 0 for α, ε small
enough; from (2.7) we also read off that xε

1 < 0 for α large enough and ε small enough. The size of
the shift is proportional to α in leading order. The results are valid for both positive and negative α

2. Note that a is a slow function and b is a fast function with respect to the spatial variable x.
Therefore, using their asymptotic behaviour, we have

c

ε

ˆ 1

−1

ab2 dx =
c

ξε

(ˆ

R
w2 dy

)
+ O(ε) =

eαx1 sinh α

α
+ O(ε). (2.8)

Proof of Theorem 2.1:
We now construct a solution which concentrates near x0

1.
For the rest of the paper, we assume that x1 ∈ Bε3/4(x0

1) = {x ∈ Ω : |x − x0
1| < ε3/4}. Let

χ : (−1, 1) → [0, 1] be a smooth cut-off function such that

χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2δ. (2.9)

Then we introduce the following approximate solution

bε,x1(x) =
1

ξε

w(y)χ

(
x− x0

1

r0

)
, aε,x1(x) = T [bε,x1 ],

where y = ε−1(x− x1), r0 = 1
3
min{1− x0

1, 1 + x0
1} and x1 ∈ Bε3/4(x0

1) is to be determined. Here T [A]

for A ∈ H2(−1, 1) is the unique solution of

DT [A]xx −DαT [A]x +
1

2
− ε−1cT [A]A2 = 0, −1 < x < 1 (2.10)

where T [A] satisfies Neumann or Robin boundary conditions, respectively.
Multiplying (2.10) by e−αx and integrating implies that ξε = ξ0 + O(ε).

To determine the component a of the approximate solution, we use the representation formula
given in (9.8) and get

a(x0) =
α

2 sinh α

ˆ 1

−1

e−αxa(x) dx +
α

sinh α

ˆ 1

−1

f(x)e−αxG(x, x0) dx,

where

f(x) =
c

ε
a(x)b2(x) =

c

εξε

w2χ2 + O(ε) in H2
ε (−1, 1)
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and G(x0, x1) is given by (9.10). Together with (2.8), this implies

a(x0) = c1 +
α

sinh α

c

εξε

ˆ 1

−1

w2

(
x− x1

ε

)
e−αxG(x, x0) dx + O(ε)

= c1 +
α

sinh α

c

ξε

e−αx1G(x1, x0)

ˆ

R
w2 dy + O(ε) + O(ε)

= c1 + G(x1, x0) + O(ε) (2.11)

with the real constant

c1 =
α

2 sinh α

ˆ 1

−1

e−αxa(x) dx.

We are now going to compute the integral in the constant c1.
Setting x1 = x0 in (2.11) and using (2.6), we get

α

sinh α
6ce−αx1 =

α

2 sinh α

ˆ 1

−1

e−αxa(x) dx + G(x1, x1) + O(ε). (2.12)

Substituting (2.12) into (2.11) gives

a(x0) =
α

sinh α
6ce−αx1 −G(x1, x1) + G(x1, x0) + O(ε)

=
α

sinh α
6ce−αx1 − x1

Dα
+

1

Dα2
eαx1 cosh α− 1

Dα
coth α + G(x1, x0) + O(ε), (2.13)

using (9.10).
Now we expand the component a around x1. Therefore we have to compute the O(ε) term in

(2.13) which requires an expansion of the Green’s function. We compute, using (2.11), (2.13) and
(9.10),

a(x1 + εy)− a(x1) =

=
α

sinh α

c

εξε

ˆ 1

−1

w2

(
x− x1

ε

)
[G̃(x, x1 + εy)− G̃(x, x1)] dx + O(ε2y2)

= Ia + Ib + O(ε2y2), (2.14)

where
G̃(x, y) = c1 + eα(P−x)G(x, y), (2.15)

Ia =
1

2
(∇zG̃(x1, z)|z=x+

1
−∇zG̃(x1, z)|z=x−1

)
ε

6

ˆ

R
(|y − z| − |z|)w2(z) dz

= [∇zG̃(x1, z)|z=x1 ]
ε

6

ˆ

R
(|y − z| − |z|)w2(z) dz

=
ε sinh α

2Dα

ˆ

R
(|y − z| − |z|)w2(z) dz,

Ib =
1

2
(∇zG̃(x1, z)|z=x+

1
+∇zG̃(x1, z)|z=x−1

)εy =< ∇zG̃(x1, z)|z=x1 > εy

and we have set P = x1 here. (We will need the general case later.)
Next, for the approximate solution, we compute

Sε = ε2bxx − ε2αbx − b + ab2

=
1

a(x1)
(ε2wyy − w)− εα

1

a(x1)
wy +

a(x)

a2(x1)
w2 + O(ε2)
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=
1

a(x1)

[
a(x)− a(x1)

a(x1)
w2 − εαwy

]
+ O(ε2) in H2

ε (Ω).

When dealing with the operator Sε there is the problem that it is not uniformly invertible for
small ε. Therefore, to solve the problem Sε = 0, we have to use Liapunov-Schmidt reduction to
derive an invertible operator which is suitable for methods from nonlinear analysis. To summarize
the argument, the following is done:

We define the approximate kernel as

Kε,x1 := span
{

wy

(
x− x1

ε

)
χ

(
x− x0

1

r0

)}
⊂ H2 (Ωε) ,

and the approximate co-kernel as

Cε,x1 := span
{

wy

(
x− x1

ε

)
χ

(
x− x0

1

r0

)}
⊂ L2

ε (Ωε) .

The L2-projection onto Cε,x1 is denoted by πε,x1 . Then its orthogonal complement is given by π⊥ε,x1
:=

id− πε,x1 . Then we introduce the linearized operator

L̃ε,x1 : H2(Ωε) → L2(Ωε)

defined by
L̃ε,t := S

′
ε[bε,x1 ]

which is the linearization of Sε around the approximate solution. Finally, we consider the linear
operator

Lε,x1 : K⊥
ε,x1

→ C⊥
ε,x1

defined by
Lε,x1 := π⊥ε,x1

◦ L̃ε,x1 .

By an indirect argument it is shown that this operator in invertible and its inverse is bounded
uniformly for ε small enough.

Then it can be shown that for every x1 ∈ Bε3/4(x0
1) there exists a unique solution φε,x1 ∈ K⊥

ε,x1
such

that
Sε[bε,x1 + φε,x1 ] ∈ Cε,x1 . (2.16)

Finally, in order to solve Sε = 0, it only remains to find xε
1 ∈ Bε3/4(x0

1) such that

Sε[bε,x1 + φε,x1 ] ⊥ Cε,xε
1
. (2.17)

(For the details of the argument we refer to Section 5 in [27].)
To this end, we have to choose xε

1 ∈ Bε3/4(x0
1) such that Sε[bε,xε

1
] ⊥ wyχ in L2(Ωε).

First we compute, using (2.14) and (9.10),
ˆ

R

a(x)− a(x1)

a(x1)
w2wy dy

=

ˆ 0

−∞

a(x1 + εy)− a(x1)

a(x1)
w2wy dy

+

ˆ ∞

0

a(x1 + εy)− a(x1)

a(x1)
w2wy dy
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=
ε

a(x1)

ˆ 0

−∞

[
1

2Dα
− 1

2Dα
eα(1+x1)

]
yw2wy dy

+
ε

a(x1)

ˆ ∞

0

[
1

2Dα
− 1

2Dα
eα(−1+x1)

]
yw2wy dy + O(ε2)

=
εeαx1 sinh α

6cα

´
Rw3

6D

[
1

2α

(
eα + e−α

)
eαx1 − 1

α

]
+ O(ε2)

=
εeαx1 sinh α

Dcα

´
Rw3

36

[
coshα

α
eαx1 − 1

α

]
+ O(ε2).

With the help of this result we calculate

0 = a(x1)

ˆ

R
Sεwy dy

=
εeαx1 sinh α

Dcα

´
Rw3

36

[
cosh α

α
eαx1 − 1

α

]
− εα

ˆ
(wy)

2 dy.

Using the integrals ˆ

R
w2 dy = 6,

ˆ

R
w3 dy = 7.2,

ˆ

R
w2

y dy = 1.2, (2.18)

we get
sinh α cosh α e2αx1 − sinh αeαx1 − α36Dc = O(ε). (2.19)

Determining the solution xε
1 of this equation, which is quadratic in eαx1 , implies (2.7).

Finally, the solution
(aε,xε

1
, bε,xε

1
) = (aε, bε)

of the system (1.4) with Neumann boundary conditions satisfies all the other properties stated in
Theorem 2.1.

¤
Remarks: 1. Note that xε

1 → 0 as α, ε → 0. This means that as the size of the flow and the
activator diffusivity tend to zero, the spike moves to the center of the interval (which is the position
of the spike in the absence of the flow). On the other hand, xε

1 → −1 as α → ∞ and ε is small
enough. This shows that, if the size of the flow tends to infinity, the spike can move to the left end
of the interval.

2. We observe that the spike has asymmetric shape. The flow breaks the symmetry of the spike.
So here we get flow-induced asymmetry. However, this asymmetry occurs not in leading order O(1)

but only in order O(ε). This observation will be made rigorous in Section 5 and it will be important
when computing eigenfunctions for small eigenvalues in Section 6.

We now change the boundary conditions.

3. Robin boundary conditions (zero flux)

We look for solutions of (1.4) in the interval Ω = (−1, 1) with no-flux boundary conditions which
model zero flux:

ax − αa = bx − αb = 0, x = −1, x = 1. (3.1)
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Theorem 3.1. For ε small enough, there is a spiky solution (aε, bε) of the system (1.4) with Robin
boundary conditions (3.1). The shape of this solution is given by

bε(x) =
1

ξε

w

(
x− xε

1

ε

)
+ O(ε) in H2

ε (−1, 1), (3.2)

aε(x
ε
1) = ξε, (3.3)

the amplitude satisfies
ξε = ξ0 + O(ε) with ξ0 = 6c. (3.4)

and for the position we have
xε

1 → x0
1 with x0

1 = 18Dcα. (3.5)

Remarks:
1. In contrast to the case of Neumann boundary conditions we have xε

1 > 0 whatever the size of α

is for ε small enough. Therefore the spike is located in the right half of the interval in the presence
of the flow. Again the size of the shift is proportional to α in leading order. The results are valid for
both positive and negative α

2. Note that xε
1 → 0 as α, ε → 0. This means that as the size of the flow and the activator

diffusivity tend to zero, the position of the spike moves to the center of the interval (which is also
the position of the spike in the absence of the flow).

Finally, if α exceeds a certain threshold value, the interior spike ceases from existence. Instead
numerical computations indicate that in this case there is a boundary spike at the right boundary.

3. Note that a is a slow function and b is a fast function with respect to the spatial variable x.
Therefore, using their asymptotic behavior, we have

c

ε

ˆ 1

−1

ab2 dx =
c

ξε

(ˆ

R
w2 dy

)
+ O(ε) = 1 + O(ε). (3.6)

Proof of Theorem 3.1:
We now construct a solution which concentrates near x0

1. The assumptions and definitions for
x1, Ωε, the cut-off function χ and the approximate solution are the same as in the proof of Theorem
2.1 and are therefore omitted. (Now the formula for ξε follows from integrating (2.10) without
multiplying by e−αx.)

To determine the component a, we use the representation formula given in (9.16) and get

a(x0) =
eαx0

2

ˆ 1

−1

e−αxa(x) dx + eαx0

ˆ 1

−1

f(x)e−αxG(x, x0) dx,

where
f(x) = ε−1ca(x)b2(x) =

=
c

εξε

w2χ + O(ε) in H2
ε (−1, 1)

and G(x, x0) is given by (9.18). Together with (3.6), this implies

a(x0) = c1e
αx0 +

c

εξε

eαx0

ˆ 1

−1

w2

(
x− x1

ε

)
e−αxG(x, x0) dx + O(ε)
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= c1e
αx0 +

6c

a(x1)
eα(x0−x1)G(x1, x0) + O(ε)

= c1e
αx0 + eα(x0−x1)G(x1, x0) + O(ε) (3.7)

for some real constant

c1 =
1

2

ˆ 1

−1

e−αxa(x) dx.

Now we are going to compute the integral in c1.
Setting x1 = x0 in (3.7) and using (3.6), we get

6c =
1

2
eαx1

ˆ 1

−1

e−αxa(x) dx + G(x1, x1) + O(ε). (3.8)

Substituting (3.8) into (3.7) gives

a(x0) = eα(x0−x1)(6c−G(x1, x1)) + eα(x0−x1)G(x1, x0) + O(ε)

= eα(x0−x1)

(
6c− x1

Dα
− 1

Dα2

)
+

sinh α

2Dα3
eαx0 + eα(x0−x1)G(x1, x0) + O(ε), (3.9)

using (9.18).
Now we expand the component a around x1. We compute, using (3.7), (3.9) and (9.18),

a(x1 + εy)− a(x1) = c1αeαx1εy

+
c

εa(x1)

ˆ 1

−1

w2

(
x− x1

ε

)
e−αx[eα(x1+εy)G(x, x1 + εy)− eαx1G(x, x1)] dx + O(ε2y2)

= Ia + Ib + O(ε2y2), (3.10)

where
Ia = [∇zG̃(x1, z)|z=x1 ]

ε

6

ˆ

R
(|y − z| − |z|)w2(z) dz

=
ε

12D

ˆ

R
(|y − z| − |z|)w2(z) dz,

Ib =< ∇zG̃(x1, z)|z=x1 > εy

=
(
6cα− x1

2D

)
εy,

G̃(x, z) = eα(z−P )6c + eα(z−x)(G(x, z)−G(x, P )) (3.11)

and we have set P = x1 here. (We will need the general case later.)
Now, for the approximate solution (aε,x1 , bε,x1), we compute

Sε = ε2bxx − ε2αbx − b + ab2

=
1

a(x1)
(wyy − w)− εα

1

a(x1)
wy +

a(x)

a2(x1)
w2 + O(ε2)

=
1

a(x1)

[
a(x)− a(x1)

a(x1)
w2 − εαwy

]
+ O(ε2) in H2

ε (Ω).

The framework for Liapunov-Schmidt reduction is the same is in the proof of Theorem 2.1 and we
have to find xε

1 ∈ Bε3/4(x0
1) such that Sε ⊥ wyχ in L2(Ωε).

First we compute, using (3.10) and (9.18),ˆ

R

a(x)− a(x1)

a(x1)
w2wy dy
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=

ˆ 0

−∞
a(x1 + εy)− a(x1)

a(x1)
w2wy dy

+

ˆ ∞

0

a(x1 + εy)− a(x1)

a(x1)
w2wy dy

=
ε

a(x1)

ˆ 0

−∞

[
6cα− x1

2D
− 1

2Dα

]
yw2wy dy

+
ε

a(x1)

ˆ ∞

0

[
6cα− x1

2D
+

1

2Dα

]
yw2wy dy + O(ε2)

= − ε

6c

´
Rw3

6D
[12Dcα− x1] + O(ε2)

= − ε

5Dc
[12Dcα− x1] + O(ε2).

With the help of this result, we calculate

0 = a(x1)

ˆ

R
Sεwy dy

= − ε

5Dc
[12Dcα− x1]− εα

ˆ
(wy)

2 dy + O(ε2).

This is equivalent to
− ε

5Dc
[12Dcα− x1]− 1.2εα = O(ε2). (3.12)

Determining the solution xε
1 of this equation implies (3.5).

Finally, the solution
(aε,xε

1
, bε,xε

1
) = (aε, bε)

for the system (1.4) with Robin boundary conditions satisfies all the other properties stated in
Theorem 3.1.

¤

4. Stability analysis I: Large eigenvalues

In this section, we consider the large eigenvalues of the associated linearized eigenvalue problem.
Let (aε,, bε) be the exact one-peaked solution constructed in Sections 2 and 3 for Neumann boundary

conditions (zero convective flux) and Robin boundary conditions (zero flux), respectively. We have
derived that

bε = ξ−1
ε w

(
x− xε

1

ε

)
+ O(ε), aε(x1) = ξε + O(ε), (4.1)

where the amplitudes satisfy

ξε =
6cα

eαx1 sinh α
+ O(ε) or ξε = 6c + O(ε)

and the positions are given by

xe
1p =

1

α
ln

(
1 +

√
1 + 24Dcα3 coth α

)
− 1

α
ln (2 cosh α) + O(ε),

or

xε
1 = 18Dcα + O(ε),

respectively.
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We linearize (1.3) around (aε, bε), using the ansatz (aε +ψεe
λεt, bε +φεe

λεt). The eigenvalue problem
for (ψε, φε) then becomes

{
ε2φε,xx − ε2αφε,x − φε + 2bεaεφε + ψεb

2
ε = λεφε,

Dψε,xx −Dαψε,x − c
ε
ψεb

2
ε − 2c

ε
aεbεφε = ελεψε,

(4.2)

where λε is some complex number, with the following boundary conditions: In Case 1 (Neumann
b.c.) we have

φε,x(±1) = ψε,x(±1) = 0 (4.3)

and in Case 2 (Robin b.c.) we get

φε,x(±1)− αφε(±1) = ψε,x(±1)− αψε(±1) = 0. (4.4)

We consider two classes of eigenvalues: The large eigenvalue case, where λε → λ0 6= 0, and the
small eigenvalue case, where λε → 0.

In this section we will handle the large eigenvalue case. The small eigenvalue case is more involved,
and we will analyze it in the following two sections.

Using the cut-off function χ defined in (2.9), we set

φ̃ε(x) = φε(x)χ

(
x− x0

1

r0

)
∈ H2

ε (Ω). (4.5)

Then, from the equation for φ̃ε, it is easy to see that

φ̃ε(x) = φε(x) + e.s.t. in H2(Ωε), (4.6)

where e.s.t. denotes an exponentially small term. For convenience, from now on, we drop the tilde
for φε.

We assume that
‖φε‖H2

ε (Ω) ≤ C (4.7)

if ε is small enough. Assume that, after a standard extension of the function φε(y) from (
−1−x0

1

ε
,

1−x0
1

ε
)

to the real line, see for example [4], and using the (4.2) to prove regularity results for φε, that

φε → φ0(y) in H2(R).

Now, using (4.1) and (4.2), we have that ψε → ψ0 in H2(Ω) as ε → 0, where ψ0 satisfies

Dψ0,xx −Dαψ0,x − γψ0δx0
1
− 2c(

ˆ

R
wφdy)δx0

1
= 0, (4.8)

where

γ =
c
´
Rw2

ξ2
0

=
6c

ξ2
0

, (4.9)

where xi0 has been defined in (2.6) and (3.4), respectively, and δx0
1
denotes the Dirac delta distribution

located at x0
1. From now on we drop the subscript 0 for ψ0 and the superscript 0 for x0

1. Let

η = ψ(x1).

Now we will show that

η = −2ξ2
0

´
Rwφ dy´
Rw2 dy

(4.10)
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for both types of boundary conditions.
First we consider Case 1 (Neumann b.c.):
For −1 < x < x1, we have ψxx − αψx = 0 and ψx(−1) = 0. Using the fundamental solutions, we

get that ψ = const. This implies that

ψ(x) = ψ(x1) = η for − 1 < x < x1. (4.11)

Similarly, for x1 < x < 1, we have ψxx − αψx = 0 and ψx(1) = 0 which implies

ψ(x) = η for x1 < x < 1. (4.12)

Now we consider Case 2 (Robin b.c):
For −1 < x < x1, we have (ψx − αψ)x = 0 and ψx(−1)− αψ(−1) = 0. This implies that

ψx(x)− αψ(x) = 0 for − 1 < x < x1. (4.13)

Similarly, for x1 < x < 1, we have (ψx − αψ)x = 0 and ψx(1)− αψ(1) = 0 which implies

ψx(x)− αψ(x) = 0 for x1 < x < 1. (4.14)

Since ψ(x) is continuous at x = x1, we get from (4.13) and (4.14) that also ψx(x) is continuous at
x = x1.

The important fact is that in both cases the function ψx(x) is continuous at x = x1. From (4.8)
we derive

γη + 2c

ˆ

R
wφdy = 0 (4.15)

since the coefficient of δx1 must vanish. Together with (4.9) his implies (4.10).
Substituting (4.10) into (4.2), we obtain

φyy − φ + 2wφ− 2

´
Rwφ dy´
Rw2 dy

w2 = λφ. (4.16)

Let us recall the following key lemma

Lemma 4.1. [24]: Consider the nonlocal eigenvalue problem

φyy − φ + 2wφ− µ

´
Rwφdy´
Rw2 dy

w2 = λφ. (4.17)

(1) If µ < 1, then there is a positive eigenvalue to (4.17).
(2) If µ > 1, then for any nonzero eigenvalue µ of (4.17) we have

Re(λ) ≤ c < 0.

(3) If µ 6= 1 and λ = 0, then
φ = cwy

for some constant c, where w is defined in (2.2).

From Lemma 4.1, we see that the threshold for the stability of large eigenvalues is µ = 1. Since in
(4.16) we have µ = 2 > 1, Case 2 of Lemma 4.1 applies and we derive that the eigenvalues of (4.16)
all satisfy Re(λ) ≤ c < 0. By a perturbation argument (see for example [27]) we derive that this
estimate also holds for ε small enough.

In summary, we have arrived at the following proposition:
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Proposition 4.2. Let λε → λ0 6= 0 be an eigenvalue of (4.2). Then Re(λε) ≤ c < 0, for some c < 0

independent of ε.

This finishes the study of large eigenvalues.
To conclude this section, we study the conjugate L∗ to the linear operator L. It is easy to see that

L∗ is given by

L∗φ = φyy − φ + 2wφ− 2

´
Rw2φ dy´
Rw2 dy

w, (4.18)

where

φ ∈ H2(R).

We obtain the following result.

Lemma 4.3.

Ker(L) = X0, (4.19)

where

X0 = span {wy(y)}
and w is defined in (2.2). Further,

Ker(L∗) = X0. (4.20)

Proof: First we note that (4.19) follows from Lemma 4.1 (3).
To prove (4.20), we multiply the equation L∗φ = 0 by w and integrate over the real line. After

integration by parts we obtain ˆ

R
w2φ dy = 0.

Thus the non-local term vanishes and we have

L0φ := ∆φ− φ + 2wφ = 0, (4.21)

This implies that φ ∈ X0. Further, since wy is an odd function it is easy to see that L∗φ = 0 for all
φ ∈ X0. This implies (4.20). ¤

As a consequence of Lemma 4.3, we have a result on the restriction of the operator L to the
orthogonal complements of X0:

Lemma 4.4. The operator

L : X⊥
0 ∩H2(R) → X⊥

0 ∩ L2(R)

is invertible. Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternatives Theorem and Lemma 4.3.
¤



FLOW-DISTRIBUTED SPIKES 14

5. Further improvement of the solutions

As a preparation for the computation of the small eigenvalues of the problem (4.2), in this section
we further improve our expansion for the solutions derived in Sections 2 and 3 for Neumann and
Robin boundary conditions, respectively.

Using the analysis in Section 4, in particular Lemma 4.3, we get in the limit λε → λ0 = 0 that

φε → φ in H2(R),

where Lφ = 0. Hence Lemma 4.1 implies that φ = cwy(y) for some real constant c. This suggests that
the first term in the expansion of φε(y) is awy(y) for some suitable constant a. We need to expand
the eigenfunction φε up to the order O(ε2)-term. To this end, we first expand the first component bε

of the exact solution up to order O(ε2).
More precisely, we will show that

bε = ξ−1
ε (w + w1 + w2 + w3 + w4)χ + φ⊥ = ξ−1

ε (w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4)χ + φ⊥, (5.1)

where we set w1 = εw0
1, w2 = ε2w0

2, w3 = εw0
3, w4 = ε2w0

4, ξε = ξ0+O(ε) and φ⊥ ∈ C⊥
ε,xε

1
, ‖φ⊥‖H2(R2) =

O(ε3). Further, w0
1, w0

4 are odd and w, w0
2, w0

3 are even functions which will be introduce in this
section.

First we consider Neumann boundary conditions.
Recall from (2.15) that

G̃(x, y) = c1 + eα(P−x)G(x, y).

Next we consider Robin boundary conditions.
Recall from (3.11) that

G̃(x, y) = eα(y−P )6c + eα(y−x)(G(x, y)−G(x, P )).

We define the average gradient for the function G̃, taken with respect to the second argument, as

< ∇G̃(x, x) >:=< ∇zG̃(x, z)|z=x >=
1

2

(
G̃z(x, z+) + G̃z(x, z−)

)
|z=x, (5.2)

where G̃z(x, z+) denotes the right-hand partial derivative etc. Half the jump of the gradient, taken
with respect to the second argument, is denoted as

[∇G̃(x, x)] := [∇zG̃(x, z)|z=x] =
1

2

(
G̃z(x, z+)− G̃z(x, z−)

)
|z=x. (5.3)

There are two types of second gradients to consider. The first type is a double derivative with respect
to the second argument, denoted by ∇2G̃. The second type is a single derivative with respect to
each of the first and second arguments, denoted by ∇∇G̃. For both types of second gradients we
now define the average and half the jump as follows:

< ∇2G̃(x, x) >:=< ∇2
zG̃(x, z)|z=x >=

1

2

(
G̃zz(x, z+) + G̃zz(x, z−)

)
z=x

, (5.4)

[∇2G̃(x, x)] := [∇2
zG̃(x, z)|z=x] =

1

2

(
G̃zz(x, z+)− G̃zz(x, z−)

)
z=x

, (5.5)

< ∇∇G̃(x, x) >:=< ∇x∇zG̃(x, z)|z=x >=
1

2

(
G̃xz(x, z+) + G̃xz(x, z−)

)
z=x

, (5.6)
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[∇∇G̃(x, x)] := [∇x∇zG̃(x, z)|z=x] =
1

2

(
G̃xz(x, z+)− G̃xz(x, z−)

)
z=x

. (5.7)

Now we expand the solution bε up to order ε2.
Let w0

1 ∈ X⊥
0 be the unique solution of the problem

w0
1,yy − w0

1 + 2ww0
1 − 2

´
ww0

1 dy´
w2 dy︸ ︷︷ ︸

=0 since w0
1 is odd

w2 = αwy − yw2< ∇G̃(x0
1, x

0
1) >

a(x0
1)

. (5.8)

Note that (5.8) has a unique solution which follows from Lemma 4.4 using the fact that
ˆ

R

[
αwy − yw2< ∇G̃(x0

1, x
0
1) >

a(x0
1)

]
wy dy = 0. (5.9)

Statement (5.9) is equivalent to
< ∇G̃(x0

1, x
0
1) >

a(x0
1)

= −1

2
α.

This statement follows by a suitable choice of spike position (see Sections 2 and 3). An explicit
calculation gives w0

1 = α
2
yw. We remark that w0

1 is an odd function in y.
Let w0

2 ∈ X⊥
0 be the unique solution of the problem

w0
2,yy − w0

2 + 2ww0
2 − 2

´
ww0

2 dy´
w2 dy

w2

= αw0
1,y − 2yww0

1

< ∇G̃(x0
1, x

0
1) >

a(x0
1)

− 1

2
y2w2< ∇2G̃(x0

1, x
0
1) >

a(x0
1)

−(w0
1 + w0

3)
2 +

´
(w0

1)
2 dy +

´
(w0

3)
2 dy´

w2 dy
w2 − 4

(´
ww0

3 dy´
w2 dy

)2

w2 + 4

´
ww0

3´
w2

ww0
3. (5.10)

Note that (5.10) has a unique solution by Lemma 4.4 since its r.h.s is an even function and so is
orthogonal to wy. We remark that w0

2 is an even function in y.
Let w0

3 ∈ X⊥
0 be the unique solution of the problem

w0
3,yy − w0

3 + 2ww0
3 − 2

´
ww0

3 dy´
w2 dy

w2

= −w2 [∇G̃(xε
1, x

ε
1)]

a(xε
1)

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)w2(z) dz. (5.11)

Note that (5.11) has a unique solution which follows from Lemma 4.4 since r.h.s. is an even function
and so is orthogonal to wy. We remark that w0

3 is an even function in y.
Let w0

4 ∈ X⊥
0 be the unique solution of the problem

w0
4,yy − w0

4 + 2ww0
4 − 2

´
ww0

4 dy´
w2 dy︸ ︷︷ ︸

=0 since w0
4 is odd

w2

= −yw2 [∇2G̃(x0
1, x

0
1)]

a(x0
1)

´
R2 2w0

3(z)w(z) dz´
R2 w2(z) dz

− 2yww0
3

[∇G̃(x0
1, x

0
1)]

a(x0
1)

+π⊥ε,x0
1

[
αw0

3,y − w2 [∇G̃(xε
1, x

ε
1)]

a(xε
1)

1´
R2 w2(z) dz

ˆ

R2

1

2
sgn(y − z)|y − z|2w2(z) dz + 4

´
ww0

3´
w2

ww0
1

]
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−ε−1π⊥ε,xε
1

[
−αwy + yw2< ∇G̃(xε

1, x
ε
1)]

a(xε
1)

]
+ ε−1π⊥ε,x0

1

[
−αwy + yw2< ∇G̃(x0

1, x
0
1)]

a(x0
1)

]

︸ ︷︷ ︸
=0

:= f1(y), (5.12)

where f1(y) represents the total r.h.s. of (5.12). Note that (5.12) has a unique solution which follows
from Lemma 4.4 since f1(y) is orthogonal to wy by the definition of the projection π⊥

ε,x0
1
. We remark

that f1(y) is an odd function and so w0
4 is also an odd function.

Remark: The projection, which is an odd function, satisfies

πε,xε
1

[
εαwy − εyw2< ∇G̃(xε

1, x
ε
1) >

a(xε
1)

]
− πε,x0

1

[
εαwy − εyw2< ∇G̃(x0

1, x
0
1) >

a(x0
1)

]

︸ ︷︷ ︸
=0

−πε,x0
1

[
αw0

3,y − w2 [∇2G̃(x0
1, x

0
1)]

a(x0
1)

1´
R2 w2(z) dz

ˆ

R2

1

2
sgn(y − z)|y − z|2 dz

]
ε2 = O(ε2).

This relation is included in the equation which is solved by the spike position xε
1. Because of the

non-degeneracy of G̃, namely the condition < ∇x2
1
G̃(x0

1, x
0
1) > 6= 0, we will get |xε

1 − x0
1| = O(ε).

Formally, this equation determines the ε order term of xε
1.

Now it follows that Sε[(w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4)χ] = O(ε3) since by the definition of w and
w0

i , i = 1, 2, 3, 4 all the terms up to order ε3 cancel. Using Liapunov-Schmidt reduction, in particular
the elliptic estimates for the solution of the nonlinear problem as indicated in the proof of Theorem
2.1, we finally have

bε = ξ−1
ε (w + w1 + w2 + w3 + w4)χ + φ⊥ = ξ−1

ε (w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4)χ + φ⊥,

where ξε = ξ
)
1 + O(ε) and φ⊥ ∈ C⊥

ε,xε
1
, ‖φ⊥‖H2

ε (Ω) = O(ε3). Further, w0
1, w0

4 are odd and w, w0
2, w0

3 are
even functions.

6. Stability analysis II: Small eigenvalues

As we shall prove, the small eigenvalues are of the order O(ε2). Let us define

b̃ε(x) = χ

(
x− x0

1

r0

)
bε(x), (6.1)

where χ has been defined before (4.5). Then it is easy to see that

b̃ε(x) = bε(x) + e.s.t. in H2
ε (Ω). (6.2)

From the defining equations for w and w0
i let us define the following identities which will be used

in the stability proof.
Taking derivatives w.r.t. y in (5.8) gives

w0
1,yyy − w0

1,y + 2wyw
0
1 + 2ww0

1,y = αwyy +
α

2
(w2 + 2ywwy). (6.3)

Taking derivatives w.r.t. y in (5.10) gives

w0
2,yyy − w0

2,y + 2wyw
0
2 + 2ww0

2,y − 4

´
ww0

2 dy´
w2 dy

wwy



FLOW-DISTRIBUTED SPIKES 17

= αw0
1,yy − 2(ywyw

0
1 + yww0

1,y + ww0
1)

< ∇G̃(x0
1, x

0
1) >

a(x0
1)

− (y2wwy + yw2)
< ∇2G̃(x0

1, x
0
1) >

a(x0
1)

−2(w0
1 + w0

3)(w
0
1 + w0

3)y +

´
(w0

1)
2 dy +

´
(w0

3)
2 dy´

w2 dy
2wwy − 8

(´
ww0

3 dy´
w2 dy

)2

wwy

+4

´
ww0

3´
w2

(wyw
0
3 + ww0

3,y). (6.4)

Taking derivatives w.r.t. y in (5.11) gives

w0
3,yyy − w0

3,y + 2wyw
0
3 + 2ww0

3,y − 4

´
ww0

3 dy´
w2 dy

wwy

= −2wwy
[∇G̃(xε

1, x
ε
1)]

a(xε
1)

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)w2(z) dz

−w2 [∇G̃(xε
1, x

ε
1)]

a(xε
1)

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)2w(z)wz(z) dz, (6.5)

where we have used
d

dy

ˆ

R2

|y − z|w2(z) dz =

ˆ

R2

(− d

dz
|y − z|)w2(z) dz =

ˆ

R2

|y − z|2w(z)wz(z) dz,

d

dy

ˆ

R2

|z|w2(z) dz = 0.

Taking derivatives w.r.t. y in (5.12) gives

w0
4,yyy − w0

4,y + 2ww0
4,y + 2wyw

0
4 − 4

´
ww0

4 dy´
w2 dy

wwy

=
d

dy
f1(y). (6.6)

Note that d
dy

f1(y) is an even function and so w0
4,y is also even. Note that w0

4,y is an even function
and it can be handled by adding an even correction of order ε2 to the eigenfunction (see the analysis
below).

Note that
b̃ε ∼ ξ−1

ε w(y)χ in H2
ε (Ω)

and b̃ε(x) satisfies
ε2b̃ε,xx − ε2αb̃ε,x − b̃ε + b̃2

εaε = e.s.t. in H2
ε (Ω). (6.7)

Taking derivatives w.r.t. x, we get{
ε2b̃ε,xxx − ε2αb̃ε,xx − b̃ε,x + 2b̃εaεb̃ε,x + b̃2

εaε,x + e.s.t. = 0,

b̃ε,x(±1) = 0 or b̃ε,x(±1)− αb̃ε(±1) = 0
(6.8)

in Case 1 or Case 2, respectively.
Let us now decompose

φε = χ(wy + εw0
1,y + ε2w0

2,y + εw0
3,y + ε2w0

4,y) + φ⊥ε + O(ε2), (6.9)

where
φ⊥ε ⊥ X0 = span {χwy} ⊂ H2(Ωε),

and Ωε =
(−1−x1

ε
, 1−x1

ε

)
.
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Our proof will consist of two steps. First we will show that ‖φ⊥ε − εφ⊥1 − ε2φ⊥2 ‖H2(Ωε) = O(ε3) for
suitably chosen even functions φ⊥1 , φ⊥2 ∈ H2(Ωε) such that ‖φ⊥1 ‖H2(Ωε), ‖φ⊥2 ‖H2(Ωε) ≤ C. Second we
will derive the asymptotic behavior of the eigenvalue λε as λ → 0.

As a preparation, we need to compute L
[(

wy + εw0
1,y + ε2w0

2,y + εw0
3,y + ε2w0

4,y

)
χ
]
, where

Lφ = φyy − εαφy − φ + 2bεaεφ + ψb2
ε

for φ ∈ H2
ε (Ω), the functions w, w0

1, w0
2, w0

3, w0
4 have been defined in (2.2), (5.8), (5.10), (5.11),

(5.12) respectively, and ψ is derived by solving the second equation of (4.2).
Substituting the decomposition φ =

(
wy + εw0

1,y + ε2w0
2,y + εw0

3,y + ε2w0
4,y

)
χ into (4.2) and using

(5.8), (5.10), (5.11), (5.12), (6.3), (6.4), (6.5), we have

Lφ = φyy − εαφy − φ

+2χ(w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4)

(
1 +

2ε
´

ww0
3 + 2ε2

´
ww0

2 dy + ε2
´

(w0
1)

2 + ε2
´

(w0
3)

2

´
w2 dy

)−1

φ

+2εy
< ∇G̃(xε

1, x
ε
1) >

ξε

χ(w + εw0
1 + εw0

3)φ + 2ε2 1

2
y2< ∇2G̃(x0

1, x
0
1) >

ξ0

χwwy

−2εχ(w + εw0
1 + εw0

3)φ
[∇G̃(xε

1, x
ε
1)]

ξε

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)w2(z) dz

−2ε2χwwy
[∇2G̃(x0

1, x
0
1)]

ξε

1´
R2 w2(z) dz

ˆ

R2

1

2
sgn(y − z)|y − z|2w2(z) dz

−2

´
(w + εw0

1 + ε2w0
2 + εw0

3 + ε2w0
4)φε dy´

(w)2 dy︸ ︷︷ ︸
=O(ε3)

χ(w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4)
2

+εy∇ψ(xε
1)

w2

ξ2
ε

+ O(ε3)

= (wyyy − wy + 2wwy)

+ε
(
w0

1,yyy − w0
1,y + 2wyw

0
1 + 2ww0

1,y

)

+ε

(
−αwyy + 2ywwy

< ∇G̃(x0
1, x

0
1) >

ξε

)

+ε2

(
w0

2,yyy − w0
2,y + 2wyw

0
2 + 2ww0

2,y − 4

´
ww0

2 dy´
w2 dy

wwy

)

−ε2

(
αw0

1,yy − 2(ywyw
0
1 + yww0

1,y)
< ∇G̃(x0

1, x
0
1) >

ξ0

− (y2wwy)
< ∇2G̃(x0

1, x
0
1) >

ξ0

)

−ε2

(
− 2(w0

1 + w0
3)(w

0
1 + w0

3)y +

´
(w0

1)
2 dy +

´
(w0

3)
2 dy´

w2 dy
2wwy − 8

(´
ww0

3´
w2

)
wwy

+4

´
ww0

3´
w2

(wyw
0
3 + ww0

3,y)

)

+ε

(
w0

3,yyy − w0
3,y + 2wyw

0
3 + 2ww0

3,y − 4

´
ww0

3 dy´
w2 dy

wwy

)
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+ε2wwy
[∇G̃(xε

1, x
ε
1)]

ξε

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)w2(z) dz

+εw2 [∇G̃(xε
1, x

ε
1)]

ξε

1´
R2 w2(z) dz

ˆ

R2

(|y − z| − |z|)2w(z)wz(z) dz

+ε2

(
w0

4,yyy − w0
4,y + 2ww0

4,y + 2wyw
0
4 − 4

´
ww0

4 dy´
w2 dy

wwy

)

+ε2g1(y) + εy∇ψε(x
ε
1)

w2

ξ2
ε

+ O(ε3)

= −εw2< ∇G̃(x0
1, x

0
1) >

ξ0

−ε2α
< ∇G̃(x0

1, x
0
1) >

ξ0

yw2−ε2< ∇2G̃(x0
1, x

0
1) >

ξ0

yw2−ε2< ∇∇G̃(x0
1, x

0
1) >

ξ0

yw2

−ε2 d

dy
f1(y) + ε2g1(y) + O(ε3), (6.10)

where the odd function f1(y) has been defined in (5.12) and the even function g1(y) is defined as

g1(y) := −2ywwy
[∇G̃(x0

1, x
0
1)]

ξ0

´
R2 2w0

3(z)w(z) dz´
R2 w2(z) dz

− (2ywyw
0
3 + 2yww0

3,y)
[∇G̃(x0

1, x
0
1)]

ξ0

+π⊥ε,x0
1

[
αw0

3,yy − 2wwy
[∇2G̃(x0

1, x
0
1)]

ξ0

1´
R2 w2(z) dz

ˆ

R2

1

2
sgn(y − z)|y − z|2w2(z) dz

]

+π⊥ε,x0
1

[
4

´
ww0

3´
w2

(wyw
0
1 + ww0

1,y)

]

−π⊥ε,x0
1

[
w2 [∇2G̃(x0

1, x
0
1)]

ξ0

1´
R2 w2(z) dz

ˆ

R2

sgn(y − z)|y − z|2w(z)wz(z) dz

]

−π⊥ε,xε
1
ε−1

[
2ywwy

< ∇G̃(xε
1, x

ε
1)]

ξε

]
+ π⊥ε,x0

1
ε−1

[
2ywwy

< ∇G̃(x0
1, x

0
1)]

ξ0

]
. (6.11)

The last equality sign in (6.10) holds since in the previous expression the first line vanishes by the
definition of w. Lines 2-3 equal −εw2 <∇G(x0

1,x0
1)>

ξ0
by (6.3). Lines 4-7 equal

−ε2α
< ∇G̃(x0

1, x
0
1) >

ξ0

yw2 − ε2< ∇2G̃(x0
1, x

0
1) >

ξ0

yw2

by (6.4). Lines 8-10 vanish by (6.5).
Here we have used

ψ(x0
1)

ξ2
0

= −2ξ2
0

(ˆ
(w + εw0

1 + ε2w0
2 + εw0

3 + ε2w0
4 + O(ε3))2 dy

)−1

×
ˆ

(w + εw0
1 + ε2w0

2 + εw0
3 + ε2w0

4 + O(ε3))(wy + εw0
1,y + ε2w0

2,y + εw0
3,y + ε2w0

4,y + O(ε3)) dy

= O(ε3)

which follows by arguments as in Section 4. Further, we have used

∇ψ(xε
1) = ∇ψ(x0

1) + O(ε2)
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=

(
ξ0´
w2

) ˆ (−x1+1)/ε

(−x1−1)/ε

< ∇xG̃(x0
1, x

0
1) >


ψ(x0

1)︸ ︷︷ ︸
=O(ε2)

w2(z)

ξ2
0

+ 2w(z)wz(z)


 dz + O(ε2)

= ε

(
ξ0´
w2

)
< ∇∇G̃(x0

1, x
0
1) >

ˆ
2zwwz dz + O(ε2)

= −εξ0 < ∇∇G̃(x0
1, x

0
1) > +O(ε2).

The derivation of this formula linking ∇ψ(x0
1) with ∇∇G̃(x0

1, x
0
1) is delayed to Appendix A (Section

9) where it will be given for both Neumann and Robin boundary conditions (see formulas (9.27) and
(9.38).
Step 1.
Substituting the eigenfunction expansion given in (6.9) into the linear operator L, we get

L
[(

wy + εw0
1,y + ε2w0

2,y + εw0
3,y + ε2w0

4,y

)
χ + φ⊥ε

]

= λε

((
wy + εw0

1,y + ε2w0
2,y + εw0

3,y + ε2w0
4,y

)
χ + φ⊥ε

)
+ O(ε3). (6.12)

Therefore φ⊥ε satisfies the equation

L[φ⊥ε ]− λεφ
⊥
ε = −(L− λε)[

(
wy + εw0

1,y + ε2w0
2,y + εw0

3,y + ε2w0
4,y

)
χ

= λε

(
wy + εw0

1,y + ε2w0
2,y + εw0

3,y + ε2w0
4,y

)
χ

+ε
< ∇G̃(x0

1, x
0
1) >

ξ0

w2 + ε2α

2

< ∇G̃(x0
1, x

0
1) >

ξ0

yw2 + ε2< ∇2G̃(x0
1, x

0
1) >

ξ0

yw2 + ε2< ∇∇G̃(x0
1, x

0
1) >

ξ0

yw2

+ε2 d

dy
f1(y)− ε2g1(y) + O(ε3).

We derive the following estimate, using a projection as in Liapunov-Schmidt reduction for the lin-
earised operator,

‖φ⊥ε − εφ⊥1 ε2φ⊥2 ‖H2(Ωε) = O(ε3 + |λε|‖φε‖H2(Ωε)). (6.13)

Here φ⊥1 is the unique even function in H2(R) which satisfies

φ⊥1,yy − φ⊥1 + 2wφ⊥1 − 2

´
wφ⊥1 dy´

w2
w2 =

< ∇G̃(x0
1, x

0
1) >

ξ0

w2

and is given by

φ⊥1 = −< ∇G̃(x0
1, x

0
1) >

ξ0

w. (6.14)

Further, φ⊥2 ∈ H2(R) is the unique even function which satisfies

φ⊥2,yy − φ⊥2 + 2wφ⊥2 − 2

´
wφ⊥2 dy´

w2
w2 =

d

dy
f1(y) + g1(y). (6.15)

Note that φ⊥ε cancels the even terms on the r.h.s. Therefore, in the next step, we only have to deal
with odd terms.
Step 2.
We multiply (6.12) by wyχ and integrate, using the fact that

´
φ⊥ε wyχdy = 0. This implies

ˆ
L

[(
wy + εw0

1,y + ε2w0
2,y + εw0

3,y + ε2w0
4,y

)
wyχdy +

ˆ
L[φ⊥ε ]wyχdy

]
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= λε

ˆ
w2

yχdy + O(ε|λε|). (6.16)

Using (6.10) and (6.13), we get

r.h.s. = λε

ˆ
w2

y dy = 1.2λε,

l.h.s. = − ε2

ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

) ˆ
yw2wy dy+

ˆ

Ωε

wyLφ⊥ε dy

=
ε2

ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

) 1

3

ˆ
w3 dy +

ˆ

Ωε

wyLφ⊥ε dy.

It remains to estimate
´

Ωε
wyLφ⊥ε dy. We will show that

´
Ωε

wyLφ⊥ε dy = O(ε3).

Integration by parts gives
ˆ

Ωε)

(L0φ
⊥
ε )wyχdy =

ˆ

R
(L0φ

⊥
ε )wy dy − 2

´
wφ⊥ε´
w2

ˆ

R
w2wy dy + O(ε3)

=

ˆ

R
L0[wy]φ

⊥
ε dy − 2

´
wφ⊥ε´
w2

ˆ

R
w2wy dy + O(ε3) = O(ε3)

since wy belongs to the kernel of L0, where L0φ = φyy − φ + 2wφ.
Finally, we estimate in the integral if Lφ⊥ε is replaced by L0φ

⊥
ε − 2

´
wφ⊥ε´
w2 w2:

∣∣∣∣
ˆ

Ωε

(Lφ⊥ε − L0φ
⊥
ε + 2

´
wφ⊥ε´
w2

w2)wyχdy

∣∣∣∣

≤ C(‖aε − ξεw‖H2(Ωε))‖φ⊥ε − εφ⊥1 − ε2φ⊥2 ‖H2(Ωε) = O(ε)(O(ε3) + O(|λε|)) = O(ε4 + ε|λε|).
This implies the estimate ˆ

L[φ⊥ε ]wy dy = O(ε4 + ε|λε|)
for the second term on the r.h.s..

Putting all contributions together, we get

λε =
ε2

1.2ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

) 1

3

ˆ
w3 dy + O(ε3)

=
2ε2

ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

)
+ O(ε3).

We have stability if

α < ∇G̃(x0
1, x

0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >< 0.

Now we check this condition. Starting with Neumann boundary conditions, we get from (9.39)

λε =
2ε2

ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

)
+ O(ε3)

= − ε2

Dξ3
0

cosh α eαx0
1 + O(ε3)

= − ε2

Dξ3
0

1 +
√

1 + 24Dcα3 coth α

2 cosh α
+ O(ε3) < 0.
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For Robin boundary conditions, we compute, using (9.28)

λε =
2ε2

ξ3
0

(
α < ∇G̃(x0

1, x
0
1) > + < ∇2G̃(x0

1, x
0
1) > + < ∇∇G̃(x0

1, x
0
1) >

)
+ O(ε3)

= − ε2

ξ3
0

(
1

D
+ 12cα2

)
+ O(ε3) < 0.

Theorem 6.1. The spiky steady states given in Theorem 2.1 and Theorem 2 are both linearly stable.
The linearized operator has a small eigenvalue of order λε = O(ε2) as ε → 0.

For Neumann boundary conditions we have

λε = − ε2

Dξ3
0

1 +
√

1 + 24Dcα3 coth α

2 cosh α
+ O(ε3) < 0.

For Robin boundary conditions we get

λε = − ε2

ξ3
0

(
1

D
+ 12cα2

)
+ O(ε3) < 0.

Remarks: 1. For Neumann boundary conditions the small eigenvalue satisfies

λε = − ε2

ξ3
0

(
1

D
+ 6cα2 + O(α4)

)
+ O(ε3).

2. The approach used in this paper is only applicable to the study of steady states. However, the
size of the small eigenvalues gives an indication of the speed with which the spike moves. The small
eigenvalue are stated in Theorem 6.1. It can be seen that they consist of two parts: The first one is
proportional to 1

D
, the second one is proportional to α2. This indicates that with decreasing D or

with increasing α the spike will move faster.

7. Numerical computations

We conclude this paper confirming our results by numerical computations.
First we consider Neumann boundary conditions for D = 10.
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Figure 1. Computation of a spiky steady state for Neumann boundary conditions with α = 0.30,
0.40, 0.50, 1.0, 5.0, 10, 15, 20, 30, 50, 100, 1000. Starting from the centre position, the spike first moves to
the right, then it changes direction and moves to the left and finally approaches the left end of the interval.
The other parameters are kept fixed and chosen as ε = 0.01, D = 10, c = 0.01.

Second we consider Neumann boundary conditions again, but now we choose a higher value value
of the diffusion constant D = 50. We will see that the spike now moves even further to the right than
observed in Figure 1 before it turns and moves to the left, finally approaching the left boundary.

 0

 5

 10

 15

 20

 25

 30

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 5

 10

 15

 20

 25

 30

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a
b
a



FLOW-DISTRIBUTED SPIKES 25

 0

 5

 10

 15

 20

 25

 30

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 10

 20

 30

 40

 50

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 10

 20

 30

 40

 50

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 20

 40

 60

 80

 100

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 20

 40

 60

 80

 100

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 20

 40

 60

 80

 100

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a



FLOW-DISTRIBUTED SPIKES 26

 0

 50

 100

 150

 200

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 50

 100

 150

 200

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 50

 100

 150

 200

 250

 300

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 100

 200

 300

 400

 500

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 200

 400

 600

 800

 1000

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

 0

 2000

 4000

 6000

 8000

 10000

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

b a

b
a

Figure 2. Computation of a spiky steady state for Neumann boundary conditions with α =

0.10, 0.20, 0.30, 0.50, 1.0, 2.0, 3.0, 4.0, 5.0, 10, 30, 50, 100, 1000. The position of the spike first moves to
the right, then it changes direction and moves to the left. Now it moves further to the right than for D = 10

(cp. Figure 1). The other constants are chosen as ε = 0.01, D = 50, c = 0.01.
Third we show some computations with Robin boundary conditions. In contrast to the case of

Neumann boundary conditions the spike always moves to the right only and does not change direction.
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Figure 3. Computation of a spiky steady state for Robin boundary conditions with α = 0.10, 0.20,
0.21, 0.22, 0.23, 0.24, 0.25, 0.30. The position of the spike moves to the right quickly after α exceeds 0.20.
The other constants are chosen as ε = 0.01, D = 10, c = 0.01.

Now we decrease the diffusion constant D. First we consider Neumann boundary conditions. We
observe that starting from a single spike we get more and more spikes as D decreases. These multiple
spikes have different amplitudes.
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Figure 4. Computation of a steady state with multiple spikes for Neumann boundary conditions
with α = 5 and D = 0.01, 0.008, 0.005. We observe 2, 5 and 7 spikes, respectively. Note that these multiple
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spikes have different amplitudes. The other constants are chosen as ε = 0.01, c = 0.01. For comparison, in
the first picture, we plot the solution with a single spike for D = 10 again.

Next we compute multiple spikes for Robin boundary conditions. We observe that, starting from
a single spike, we get more and more spikes as D decreases. These multiple spikes have different
amplitudes.
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Figure 5. Computation of a steady state with multiple spikes for Robin boundary conditions with
α = 0.20 and D = 0.1, 0.01, 0.005. We observe 2, 4 and 6 spikes, respectively. Note that these multiple
spikes have different amplitudes. The other constants are chosen as ε = 0.01, c = 0.01. For comparison, in
the first graph, we plot again the solution with a single spike for D = 10.

To enable an easy comparison between boundary conditions we compute the multiple spikes for
Robin boundary conditions again, but now with the same parameters as chosen for Neumann bound-
ary conditions in Figure 4. Note that now the starting configuration shown in the first graph is a
boundary spike (in contrast to an interior spike in Figures 4 and 5).
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Figure 6. Computation of a steady state with multiple spikes for Neumann boundary conditions
with α = 5 and D = 0.01, 0.008, 0.005. We observe 6, 7 and 8 spikes, respectively. Note that the spikes have
different amplitudes. The other constants are chosen as ε = 0.01, c = 0.01.

8. Discussion

A very important potential implication of these theoretical results is in the field of symmetry
breaking leading to left-right asymmetry. One of the hypotheses tested in recent work in mouse is
the effect of a nodal fluid flow leading to the one-sided accumulation of several molecular species
mediated by cilia. These models have been reviewed in [5, 13].

The results in this paper capture the interaction of pattern formation by a reaction-diffusion
mechanism with convective fluid flow in a simple model problem. In particular, they quantify the
effect of asymmetry caused by the flow: The spike is moved from the symmetric position in the centre
of the interval to either the left or the right side. The direction of this shift depends on the size of
the fluid flow as well as the boundary conditions.

In the biological application of nodal fluid flow in mouse these mathematical results imply that the
issue of left-right versus right-left orientation can be affected by various factors such as the size of
the flow and the interaction of the pattern-forming system with boundaries such as the cell domain
wall.
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We show that the shifted spike is stable. In particular, this implies that the new position of the
spike is stable and the method of shifting spikes off the center by a convective flow is reliable and
reproducable.

9. Appendix A: Representation formulas

In this appendix, we derive representation formulas for the inhibitor part of the solution.
First, we consider Neumann boundary conditions:
Let a be the solution of

Daxx −Dαax +
1

2
− f = 0, ax(−1) = ax(1) = 0, (9.1)

where f ∈ L2(−1, 1). We write (9.1) as

D(e−αxax)x +
1

2
e−αx − fe−αx = 0, ax(−1) = ax(1) = 0. (9.2)

Fix x1 ∈ (−1, 1). Let G(x, x1) be the Green’s function given by{
DGxx(x, x1)−DαGx(x, x1) + 1

2
− cx1δx1 = 0,

Gx(−1, x1) = Gx(1, x1) = 0.
(9.3)

which is equivalent to {
D(e−αxGx(x, x1))x + 1

2
e−αx − cx1e

−αx1δx1 = 0,

Gx(−1, x1) = Gx(1, x1) = 0.
(9.4)

(The constant of integration for G(x, x1) will be determined by (9.7) below.) We first determine the
constant cx1 . From (9.4), we have

cx1e
−αx1 =

1

2

ˆ 1

−1

e−αx dx =
sinh α

α
. (9.5)

Multiplying (9.2) by G, (9.4) by a and integrating, we get

1

2

ˆ 1

−1

e−αxG(x, x1) dx−
ˆ 1

−1

f(x)e−αxG(x, x1) dx =
1

2

ˆ 1

−1

e−αxa(x) dx− cx1e
−αx1a(x1).

Hence, using (9.5),

sinh α

α
a(x1) =

1

2

ˆ 1

−1

e−αxa(x) dx− 1

2

ˆ 1

−1

e−αxG(x, x1) dx +

ˆ 1

−1

f(x)e−αxG(x, x1) dx. (9.6)

Let us choose the constant of integration for the Green’s function such that
ˆ 1

−1

e−αxG(x, x1) dx = 0. (9.7)

Then we have the following representation formula for a:

a(x1) =
α

2 sinh α

ˆ 1

−1

e−αxa(x) dx +
α

sinh α

ˆ 1

−1

f(x)e−αxG(x, x1) dx. (9.8)

Now, if we let
f(x) = cx0δx0 ,

we get from (9.1), (9.3)
a(x) = G(x, x0)
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and so (9.8) implies

G(x1, x0) =
α

2 sinh α

ˆ 1

−1

e−αxG(x, x0) dx +
α

sinh α
e−αx0G(x0, x1).

Using (9.7), we get
G(x1, x0) =

α

sinh α
e−αx0G(x0, x1).

Now (9.5) implies that
G(x1, x0) = G(x0, x1). (9.9)

For later use, we compute the Green’s function explicitly. Using the boundary conditions, continuity
and jump condition at x1, we get

G(x, z) =

{
1

2Dα
(x + z)− 1

2Dα2 (e
α(x+1) + eα(z−1)) + c, −1 < x < z,

1
2Dα

(x + z)− 1
2Dα2 (e

α(x−1) + eα(z+1)) + c, z < x < 1.

We compute the constant c, using (9.7), which gives c = 1
Dα

coth α. Finally, we get

G(x, z) =

{
1

2Dα
(x + z)− 1

2Dα2 (e
α(x+1) + eα(z−1)) + 1

Dα
coth α, −1 < x < z,

1
2Dα

(x + z)− 1
2Dα2 (e

α(x−1) + eα(z+1)) + 1
Dα

coth α, z < x < 1.
(9.10)

Second, we consider Robin boundary conditions:
Let a be the solution of

Daxx −Dαax +
1

2
− f = 0, ax(−1)− αa(−1) = ax(1)− αa(1) = 0, (9.11)

where f ∈ L2(−1, 1). We write (9.11) as

D(e−αxax)x +
1

2
e−αx − fe−αx = 0, ax(−1)− αa(−1) = ax(1)− αa(1) = 0. (9.12)

Fix x1 ∈ (−1, 1). Let G(x, x1) be the Green’s function given by{
DGxx(x, x1)−DαGx(x, x1) + 1

2
− cx1δx1 = 0,

Gx(−1, x1)− αG(−1, x1) = Gx(1, x1)− αG(1, x1) = 0.
(9.13)

which is equivalent to{
D(e−αxGx(x, x1))x + 1

2
e−αx − cx1e

−αx1δx1 = 0,

Gx(−1, x1)− αG(−1, x1) = Gx(1, x1)− αG(1, x1) = 0.
(9.14)

(The constant of integration will be fixed by (9.7).) We first determine cx1 . From (9.13), we have

cx1 = 1. (9.15)

Multiplying (9.12) by G, (9.14) by a and integrating, we get

1

2

ˆ 1

−1

e−αxG(x, x1) dx−
ˆ 1

−1

f(x)e−αxG(x, x1) dx =
1

2

ˆ 1

−1

e−αxa(x) dx− e−αx1a(x1).

Hence, using (9.7) and (9.15), we get the following representation formula for a:

a(x1) =
1

2
eαx1

ˆ 1

−1

e−αxa(x) dx + eαx1

ˆ 1

−1

f(x)e−αxG(x, x1) dx. (9.16)

Now, if we let
f(x) = cx0δx0 ,
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we get (9.11), (9.13)

a(x) = G(x, x0)

and so (9.16) implies

G(x1, x0) =
1

2
eαx1

ˆ 1

−1

e−αxG(x, x0) dx + eαx1e−αx0G(x0, x1).

Using (9.7), we get the symmetry relation

e−αx1G(x1, x0) = e−αx0G(x0, x1). (9.17)

For later use, we compute the Green’s function explicitly. Using the boundary conditions, continuity
and jump condition at x1, we get

e−αxG(x, z) =

{ (
x

2Dα
+ 1

2Dα2 + 1
2Dα

)
e−αx +

(
z

2Dα
+ 1

2Dα2 − 1
2Dα

)
e−αz + c, −1 < x < z,(

x
2Dα

+ 1
2Dα2 − 1

2Dα

)
e−αx +

(
z

2Dα
+ 1

2Dα2 + 1
2Dα

)
e−αz + c, z < x < 1.

We compute the constant c, using (9.7), which gives c = − sinh α
2Dα3 . Finally, we get

G(x, z) =

{ (
x

2Dα
+ 1

2Dα2 + 1
2Dα

)
+

(
z

2Dα
+ 1

2Dα2 − 1
2Dα

)
eα(x−z) − sinh α

2Dα3 eαx, −1 < x < z,(
x

2Dα
+ 1

2Dα2 − 1
2Dα

)
+

(
z

2Dα
+ 1

2Dα2 + 1
2Dα

)
eα(x−z) − sinh α

2Dα3 eαx, z < x < 1.
(9.18)

For later use we make the following computations for Robin boundary conditions. First, we
recall from (3.7) that

a(z) =
1

2
eαz

ˆ 1

−1

e−αxa(x) dx + (eα(z−x)G(x, z))|x=P + O(ε). (9.19)

Setting z = P , we get

1

2

ˆ 1

−1

e−αxa(x) dx = e−αP (6c−G(x, P )) + O(ε). (9.20)

Substituting (9.20) into (9.19), we get

a(z) = eα(z−P )6c + eα(z−x)(G(x, z)−G(x, P )) + O(ε) = G̃(x, z) + O(ε). (9.21)

We recall from (3.11) that

G̃(x, z) = eα(z−P )6c + eα(z−x)(G(x, z)−G(x, P )).

Taking the first derivative w.r.t. z in (9.21) and setting z = P , we get

a′(P ) = 6αc+ < ∇zG(P, P ) > +O(ε) =< ∇zG̃(P, P ) > +O(ε). (9.22)

Taking the second derivative w.r.t. z, we get for z = P

a′′(P ) = 6α2c + 2α < ∇zG(P, P ) > + < ∇2
zG(P, P ) > +O(ε) =< ∇2

zG̃(P, P ) > +O(ε), (9.23)

using (9.22). Similarly to (9.19), we derive

ψ(z) =
1

2
eαz

ˆ 1

−1

e−αxψ(x) dx−∇x < eα(z−x)G(x, z) > |x=P + O(ε). (9.24)
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Integrating the equation for ψ given in (4.2), we get for ψ(P ) + O(ε). This implies, together with
(9.24) with z = P ,

1

2
eαP

ˆ 1

−1

e−αxψ(x) dx =< ∇x(e
α(P−x)G(P, P )) > +O(ε). (9.25)

and so

ψ(z) = eα(z−P ) < ∇x(e
α(P−x)G(P, P )) > − < ∇x(e

α(z−x)G(x, z)) > |x=P + O(ε) (9.26)

Taking a derivative w.r.t. z in (9.24), we get

ψ′(z) = ∇ze
α(z−P ) < ∇x(e

α(P−x)G(x, P ) > − < ∇x∇z(e
α(z−x)G(x, z)) > +O(ε)

=< ∇x∇z(e
α(z−x)(G(x, P )−G(x, z)) > +O(ε)

= − < ∇x∇zG̃(x, z) > +O(ε). (9.27)

Using (9.18), we compute

G̃(x, z) = 6ceα(z−P ) +

(
z

2Dα
+

1

2Dα2
∓ 1

2Dα

)

−
(

P

2Dα
+

1

2Dα2
∓ 1

2Dα

)
eα(z−P ),

where the upper or lower sign applies for −1 < x < z and z < x < 1, respectively. This implies

< ∇zG̃(x, z) >= 6cα− P

2D
+ O(ε),

< ∇2
zG̃(x, z) >= 6cα2 − Pα

2D
− 1

2D
+ O(ε),

< ∇x∇zG̃(x, z) >= O(ε)

which implies, using (3.5),

α < ∇zG̃(x, z) > + < ∇2
zG̃(x, z) > + < ∇x∇zG̃(x, z) >

= 12cα2 − Pα

D
− 1

2D
+ O(ε) = −6cα2 − 1

2D
+ O(ε). (9.28)

Similarly, for Neumann boundary conditions, we compute the following:
First, we recall from (2.11) that

a(z) =
α

2 sinh α

ˆ 1

−1

e−αxa(x) dx + eα(P−x)G(x, z) + O(ε). (9.29)

Setting z = P , we get
α

2 sinh α

ˆ 1

−1

e−αxa(x) dx =
α

sinh α
6ce−αP − G̃(P, P ) + O(ε), (9.30)

where
G̃(x, z) = eα(P−x)G(x, z).

Substituting (9.30) into (9.29), we get

a(z) =
α

sinh α
6ce−αP + (G̃(x, z)− G̃(x, P )) + O(ε). (9.31)

Taking the derivative w.r.t. z in (9.31) and setting z = P , we get

a′(P ) =< ∇zG̃(P, P ) > +O(ε). (9.32)
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Taking a second derivative w.r.t. z, we get

a′′(P ) =< ∇2
zG̃(P, P ) > +O(ε), (9.33)

using (9.32). Similarly, we derive

ψ(z) =
α

2 sinh α

ˆ 1

−1

e−αxψ(x) dx− < ∇xG̃(x, z)|x=z > +O(ε). (9.34)

Integrating the equation for ψ given in (4.2), we get

ψ(P ) = O(ε) = (− < ∇xG̃(P, z) > + < ∇xG̃(P, P ) >) + O(ε). (9.35)

Setting z = P , we get
α

2 sinh α

ˆ 1

−1

e−αxψ(x) dx = ∇xG̃(P, P ) + O(ε). (9.36)

Substituting (9.36) into (9.34), we get

ψ(z) = − < ∇xG̃(P, z) > + < ∇xG̃(P, P ) > +O(ε). (9.37)

Taking a derivative w.r.t. z in (9.37) and setting z = P , we get

ψ′(z) = − < ∇x∇zG̃(x, z) > + < ∇x∇zG̃(x, P ) > +O(ε). (9.38)

Using (9.10), we compute
G̃(x, z) = eα(P−x)G(x, z)

=
1

2Dα
(x + z)eα(P−x) − 1

2Dα2

(
eα(P±1) + eα(z+P−x∓1)

)
+

1

Dα
coth α eα(P−x),

∇zG̃(P, P ) =
1

2Dα

(
1− eα(P∓1)

)
,

< ∇zG̃(P, P ) >=
1

2Dα

(
1− cosh α eαP

)
,

∇2
zG̃(P, P ) = − 1

2D
eα(P∓1)

which implies

< ∇2
zG̃(P, P ) >= − 1

2D
cosh α eαP .

Taking a derivative w.r.t. x, we get

∇x∇zG̃(P, P ) = − 1

2D

(
1− eα(P∓1)

)
,

< ∇x∇zG(P, P ) >= − 1

2D
(1− cosh α eαP )

which implies, using (2.7),

α < ∇zG̃(x, z) > + < ∇2
zG̃(x, z) > + < ∇x∇zG̃(x, z) >

= − 1

2D
cosh αeαP + O(ε)

= − 1

2D

1 +
√

1 + 24Dcα3 coth α

2 cosh α
+ O(ε). (9.39)
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