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Abstract

We consider a Susceptible-Infected-Removed (SIR) epidemic model with two
types of nonlinear treatment rates: (i) piecewise linear treatment rate with sat-
uration effect, (ii) piecewise constant treatment rate with a jump (Heaviside
function). For Case (i), we compute travelling front solutions whose profiles are
heteroclinic orbits which connect either the disease-free state to an infective state
or two endemic states with each other. For Case (ii), it is shown that the profile
has the following properties: the number of susceptibles is monotone increasing
and the number of infectives approaches zero at infinity, while their product con-
verges to a constant. Numerical simulations are performed for all these cases.
Abnormal behaviour like travelling waves with non-monotone profile or oscilla-
tions are observed.

Keywords: population dynamics (theory), population dynamics (experiment), dynam-

ics (theory), epidemic modelling

1 Introduction

Since the pioneering work of Kermack and McKendrick [1] in 1927, mathematical

epidemiology developed an extensive body of literature and SIR models have been

playing an important role in modelling epidemics of infectious diseases (such as measles,

chickenpox, SARS, HIV, flu and poliomyelitis). The SIR model is suitable for: (i)

directly transmitted diseases such as measles, rubella, or mumps, for which an infection

confers permanent immunity (i.e., the individual once recovered is not susceptible to

infection again) [2, 3, 4], (ii) diseases that allow the permanent removal of some of the
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infectives from the infectious class due to quarantine, isolation, treatment, etc [5, 8, 34].

Many researchers have studied the classical SIR model (e.g., [5, 8, 10, 14, 17] and the

references therein), which describes the infection and removal process of individuals

during an epidemic of an infectious disease. The SIR model is one of the simplest and

yet most accurate of all biological models [6, 7]. Deterministic models for studying

dynamics of epidemics are based on ordinary differential equations.

In recent years, some mathematical models incorporating treatment have been stud-

ied by many researchers (e.g., [5, 10, 32, 33, 34]). We define treatment as a way of

dealing with a patient medically which may include isolation or quarantine. Further,

treatment is an important method to reduce the burden and spread of diseases such

as AIDS, TB, and SARS [35, 36, 37, 38]. Thus, in this paper, infective individuals are

removed from the infective class due to the treatment at a certain rate.

In mathematical epidemiology, some models for spatial spread of epidemics have

been analyzed [18, 19, 21, 27, 28, 40, 41, 46]. A fascinating question is whether a disease

could remain endemic by the geographic motion of individuals. Mobility formulation

as a random diffusion process in epidemic models takes the form of reaction-diffusion

equations, which have been successful in modelling the spatial spread of diseases as

illustrated in [18]. In the theory of reaction-diffusion equations, travelling waves play

an important role and many techniques have been developed to prove existence or

stability of such waves (see, e.g., [20], [22],[23] and [30] for their existence, and stability

results can be found in [26], [29] and references therein). In general, Murray [18],

Gardner [15], Fife [16] and Volpert et al. [26] provide a great detail on the subject.

The investigations on travelling wave solutions for epidemic models are attracting more

and more attention [19].

In this paper, we consider epidemiological models introduced in [5] and [10] which

have certain non-smooth nonlinearities. After adding diffusion terms to the system

like in [9], we analyze travelling-wave solutions. We consider two different cases for

nonlinear and non-smooth treatment terms: (i) piecewise linear treatment rate with

saturation effect, (ii) piecewise constant treatment rate with a jump (Heaviside func-

tion). In Case (i), we observe some effects which are not present for travelling waves in

classical SIR systems with constant coefficients such as non-monotone profiles for both

susceptibles and infectives, or oscillations of the profiles due to complex eigenvalues. In
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Case (ii), we observe a profile for which the susceptibles tend to infinity, the infectives

converge to zero and their product approaches a constant at the forward end of the

profile.

Finally, numerical simulations are presented which confirm these analytical results.

The organization of the paper is as follows. In Section 2, the model is introduced,

first in its spatially independent then in its spatially dependent form. Then results

on its disease-free and endemic equilibria are stated. The existence of travelling wave

front solutions are established in Section 3. Finally, we conclude by briefly discussing

our results in Section 4.

2 Model

2.1 Basic Model

Following [5, 10], we consider, as basic model, the following deterministic system of

nonlinear differential equations which represent an SIR model with nonlinear and non-

smooth treatment rate:

dS

dt
= A− dS − λSI,

dI

dt
= λSI − dI − T (I),

dR

dt
= T (I)− dR,

(1)

where S(t), I(t) and R(t) denote three classes, namely, susceptible to disease, infective

and infectious, and removed (infective, but no longer infectious due to treatment)

individuals at time t, respectively. The constant A is the recruitment rate of the

population, d the natural death rate of the population and λ the force of infection

associated with the transmission of the disease from susceptibles to infectives, T (I)

is the treatment rate of infective individuals. In most epidemic models it is assumed

that T (I) = cI for some constant c > 0. To take into account the limited capacity of

treatment facilities, Wang [10] considers a treatment rate which is proportional to the

number of the infectives below the maximal capacity and remains constant otherwise.

Furthermore, Wang and Ruan [5] adopted a piecewise constant treatment rate with a
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jump. Thus, we consider both cases with regard to the definition of T (I) as follows:

(i) T (I) =





rI, if 0 ≤ I ≤ I0,

k, if I > I0,

(ii) T (I) =





0, if I ≤ 0,

m, if I > 0,

(2)

as defined in [5] and [10] respectively, where the constants r > 0, m > 0, k = rI0

and I0 is the capacity of treatment resources. Note that for (i) we have a piecewise

linear treatment rate with saturation effect and for (ii) a piecewise constant treatment

rate with jump (Heaviside function). Epidemiologically, case (i) is more appropriate if

medicines to be supplied to the infectives are not sufficient or in a case where the number

of hospital beds is limited. Case (ii) is valid for the situation where the population of

the infectives is much more than the resources available for the treatment. Thus, the

maximum capacity of the treatment is reached instantly.

Nonlinear incidence rates of different types have been used in many epidemiological

models (e.g., [43, 44, 45, 46] and the references therein). However, in classical epidemic

models, the incidence rate (the rate of new infections) is bilinear λS I or standard
λS I

N
. The bilinear incidence rate is more suitable for communicable diseases such

as SARS, swine flu, etc., but not for sexually transmitted diseases like HIV, whilst

standard incidence rate is more appropriate if the number of available partners is large

enough and everybody could not make more contacts than is practically feasible [5].

2.2 Spatial SIR Model

We now add diffusion effects to the basic model as in [9]. Whereas [9] analyze Turing

instability and simulate stripy patterns, we are interested in travelling waves.

Random movement of individuals in space was further incorporated into model (1)

by adding some diffusion terms, so that Fick’s law holds. Letting S(x, t) and I(x, t) be

the respective densities at a spatial position x and time t, this results in the following

system of PDEs:

St = A− dS − λS I + Ds Sxx, (3a)

It = λS I − d I − T (I) + Di Ixx, (3b)

Rt = T (I)− dR + Dr Rxx, x ∈ R, t > 0, (3c)
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where Ds, Di and Dr are the diffusion rates for the susceptible, infective and recovered

individuals, respectively. Since the first two equations of system (3) are independent

of the last one, it suffices to consider the following reduced reaction diffusion model:

St = A− dS − λS I + Ds Sxx,

It = λS I − d I − T (I) + Di Ixx, x ∈ R, t > 0.
(4)

After solving system (4), R can be determined from (3c) which is a linear equation

for R. It is assumed that the parameters A, d, λ, Ds, Di are all positive constants.

The system (4) has a disease-free equilibrium E0 = (A/d, 0). For Case (i), the basic

reproduction numbers are given by R0 =
λA

d(d + r)
if 0 ≤ I ≤ I0 and R′

0 =
λA

d2
if

I > I0, which measure the average number of new infections generated by a single

infective person in a community. For Case (ii), R′
0 is always used. Note that R0 =

λA

d(d + r)
< R′

0 =
λA

d2
. The number of infective individuals is expected to decline

towards zero whenever R′
0 < 1, because each infective individual on average infects

less than one susceptible person. The disease will persist whenever R0 > 1.

We now consider homogeneous equilibria of system (4). For Case (i) there will be a

positive endemic equilibrium E1 = (S1, I1) of the system (4) provided 1 < R0 ≤ 1+
λ k

d r
,

where

S1 =
d + r

λ
, I1 =

d(R0 − 1)

λ
< I0.

Further, define b = d2+(k−A) λ and ∆ = b2−4 d2 k λ. Following [10], if ∆ ≥ 0 then we

have positive endemic equilibria of system (4), namely, E2 = (S2, I2) and E3 = (S3, I3),

where

S2 =
A

(d + λI2)
, I2 =

−b−√∆

2dλ
> I0,

S3 =
A

(d + λI3)
, I3 =

−b +
√

∆

2dλ
> I0.

From Theorems 2.1 and 2.2 of [10], we deduce the following result.

Proposition 1. Consider the system (4), where T (I) is given by Case (i), and define

p0 = 1 +
λ k − d r

d(d + r)
+

2
√

λ k

(d + r)
, p1 = 1 +

λ k − d r

d(d + r)
+

2λ k

r(d + r)
and p2 = 1 +

λ k

d r
. Suppose

that R0 ≥ p0 and R0 > 1 then

(a) E1 is the unique endemic equilibrium if R0 ≤ p2 and R0 < p1.
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(b) The endemic equilibrium points E2 and E3 co-exist whenever p1 < R0 < p2.

We will investigate travelling wave solutions whose profiles are heteroclinic orbits

connecting different equilibrium points of system (4) in Section 3.

2.3 Stability of Disease-free Equilibrium

Here, we are concerned with the stability of the disease-free equilibrium E0 = (A/d, 0)

of the system (4). Therefore, we claim the following result.

Theorem 1. Suppose that R0 < 1 in the system (4), where the nonlinearity T (I) is

given in Case (i) of equation (2). Then the disease-free equilibrium E0 = (A/d, 0) is

locally asymptotically stable.

Proof. Consider the vector field

(f1(S, I), f2(S, I)) = (S M(S, I), I N(S, I)),

where

f1(S, I) = A− dS − λS I, f2(S, I) = λS I − d I − T (I),

M(S, I) = A/S − d− λI and N(S, I) = λS − d− T (I)/I.

Note that MI(S, I) < 0 and NS(S, I) > 0 (where subscripts denote differentiation). The

Jacobian J of the vector field (S M(S, I), I N(S, I)) around the disease-free equilibrium

E0 is given by

J =



−d −λ A

d

0 λ A
d
− (d + r)


 .

Thus, the eigenvalues of J are both negative if R0 < 1. From Theorem 4.1 of [24],

there exists an open neighourhood Σ of E0 which is contained in

{(S, I) : S ≥ 0, I ≥ 0}

such that every solution to the system (4) with initial conditions in Σ decays exponen-

tially to E0 as t →∞. ¤
Under slightly stronger assumptions (replacing R0 < 1 by R′

0 < 1) we are able to

prove a result which includes both Cases (i) and (ii) for T (I) and explicitly locates a

set of initial conditions for which asymptotic stability holds.
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Figure 1: semi-contracting rectangle

Theorem 2. Suppose that R′
0 < 1, then the disease-free equilibrium E0 = (

A

d
, 0) of the

system (4) is locally asymptotically stable. More precisely, (S(t, x), I(t, x)) → (
A

d
, 0) if

(S(0, x), I(0, x)) ∈ Σ+ where Σ+ = (0,
A

d
)× (0, Imax) for all x ∈ R, and Imax = d

2λ
.

Proof.

Consider the rectangle Σ+ = (0,
A

d
)× (0, Imax) given in Figure 1, where Imax = d

2λ
.

Let f1(S, I) = A− dS − λS I and f2(S, I) = λS I − d I − T (I). We can easily see

that f1 is negative on the “right edge” of Σ+, and positive on the “left edge” of Σ+.

On the other hand, on the “top” of Σ+,

f2(S, Imax) = λS Imax − d Imax − T (Imax).

Since S ≤ A
d

and R′
0 < 1 then f2(S, Imax) < 0. On the “bottom” of Σ+, f2(S, 0) = 0.

Thus, Σ+ is a semi-contracting rectangle as defined in [31].

In the same way we now show that

γΣ+ + (1− γ)(
A

d
, 0) = [(1− γ)

A

d
,
A

d
]× [0, γImax] := [Sl,

A

d
]× [0, Il]

is a family of similar semi-contracting rectangles for 0 < γ < 1 centered at the point

(A
d
, 0). By definition, it is clear that this is a similar family of rectangles. Further, as
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in the case Il = Imax, this is a semi-contracting family if

A− dSl − λSl Il > 0, (5)

where Sl = (1− γ)A
d

and Il = γImax for all 0 < γ < 1. From (5), we obtain

λ(1− γ)

d
Imax < 1 for all 0 ≤ γ ≤ 1.

The condition (5) is satisfied if Imax < d
λ
. Choosing Imax = d

2λ
, we have a similar

semi-contracting family of rectangles centered at (A
d
, 0).

Finally, by using the same argument as in the proof of Lemma 3.8 of [29], the result

follows. ¤
Remarks:

(1) Theorem 1 considers the nonlinearity in Case (i) of equation (2) only, while

Theorem 2 deals with both nonlinearities of equation (2).

(2) It is assumed that R0 < 1 and R′
0 < 1 in Theorems 1 and 2, respectively, where

R0 < R′
0 < 1. Thus, the condition in Theorem 2 is stronger.

(3) Σ+ is located to the left of the point (
A

d
, 0) in Theorem 2, whilst there exists Σ

around (
A

d
, 0) in Theorem 1.

(4) Mulone et al. introduced Liapunov functions to prove nonlinear stability of some

epidemic models of SI type [40]. Their method is elegant and shows global stabil-

ity, but it requires special transformations and works only on bounded domains.

3 Travelling-wave solutions

The spatial model (4) is the starting point of the analysis in this paper. We are

interested in the question of the existence of travelling wave solutions. Now, we look

for travelling wave solutions of the form S(x, t) = u(x + ct) = u(z) and I(x, t) =

v(x + ct) = v(z) with z = x + ct and c is the travelling wave speed. We assume that

susceptible individuals and infectives diffuse at the same rate (i.e., Ds = Di = 1) and

substitute u and v into (4). These result in the following coupled system of ordinary
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differential equations:

uzz − cuz + A− du− λuv = 0, (6a)

vzz − cvz + λuv − dv − T (v) = 0. (6b)

Biologically speaking, the introduction of few infective individuals at one end of a

linear habitat (e.g., coastline), which is initially uniformly saturated with susceptible

individuals at the carrying capacity of the environment, may result in a “wave of prop-

agation” of infective individuals. Therefore, a zone of transition from one equilibrium

point to another is possible and the travelling wave profile occurs when this transition

zone moves across the population [23]. In order to investigate the existence of such a

travelling wave of system (4), let f = uz and g = vz, so that fz = uzz and gz = vzz ,

which leads to the four-dimensional system

uz = f, (7a)

fz = c f − A + d u + λu v, (7b)

vz = g, (7c)

gz = c g − λu v + d v + T (v). (7d)

Now we state the following Corollary about the non-existence of certain travelling

waves which follows immediately from Theorem 2.

Corollary 1. Suppose that R′
0 < 1, then there is no travelling wave profile from the

disease-free equilibrium E0 = (
A

d
, 0) of the system (6) provided the initial sizes of the

sub-populations are within the semi-contracting set Σ+ = (0,
A

d
)× (0, Imax).

Proof. Corollary 1 follows directly from the result of Theorem 2. ¤
In the following subsections, we consider the Case (i) piecewise linear treatment

rate with saturation effect and Case (ii) piecewise constant treatment rate with jump

separately.

3.1 Piecewise linear treatment rate with saturation effect

In this section, we assume that the treatment rate is proportional to the number of in-

fectives when the capacity of treatment is less than or equal to the number of infective
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individuals and takes the maximal capacity otherwise (i.e., we are considering Case

(i)). We shall first establish the existence of a heteroclinic connection in R4. In other

words, a travelling wave solution must correspond to a trajectory that connects two

different steady states in R4. A travelling wave solution of system (4) exists if there is

a heteroclinic orbit connecting at least two of the following critical points of (7), which

are related to the equilibrium point found in Section 2.2.

E ′0 =




0
A/d
0
0


 , E ′1 =




0
S1

0
I1


 , E ′2 =




0
S2

0
I2


 and E ′3 =




0
S3

0
I3


 .

Linearization of (7) about E ′0 has a characteristic equation

λ4 − 2 cλ3 +
(−2 d2 − rd + λA + c2d) λ2

d
− c (−2 d2 − rd + λA) λ

d
+ d2 + rd− λA = 0.

Thus, it has the following eigenvalues

Λ1,2 =
c±√c2 + 4 d

2
and Λ3,4 =

c±
√

c2 − 4(r + d)(R0 − 1)

2 d
. (8)

Since R0 > 1, then for c > c∗, where c∗ = 2
√

(r + d)(R0 − 1), the stable manifold at

E ′0, denoted by Ms(E ′0), is three dimensional (that is, dim(Ms(E ′0)) = 3) while the

dimension of the unstable manifold is one (that is, dim(Mu(E ′0)) = 1). If c ≥ c∗ then

all the four eigenvalues in equations (8) are real.

However, if 0 < c < c∗ then Λ3 and Λ4 are a pair of complex conjugate eigenvalues

with positive real part. From Theorems 6.1 and 6.2 in [39], we have a two-dimensional

unstable manifold at E ′0 and the disease-free equilibrium point is a spiral point on this

unstable manifold. A trajectory approaching E ′0 must have v(z) < 0 for some z. This

contradicts the fact that the travelling wave solutions are non-negative. Therefore, c∗

is a minimal wave speed.

Hence, we summarize the result as follows.

Theorem 3. Suppose that R0 > 1 and 0 < c < c∗, then the system (7) with Case

(i) of equation (2) has no heteroclinic orbit connecting E ′0 with any of the endemic

equilibrium points.
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Let Ms(E ′ i) and Mu(E ′ i) denote the local stable and unstable manifolds associated

with E ′ i, i = 0, 1, 2, 3. We claim the following result.

Lemma 1. Suppose that Case (a) of Proposition 1 holds, then

dim(Ms(E ′0)) + dim(Mu(E ′1)) = dim(R4) + 1.

Proof. Let Case (a) of Proposition 1 hold, then E ′1 exists and we may linearize (7)

around E ′1. Thus, we have the following characteristic polynomial

λ4 − 2 cλ3 +
(
c2 − dR0

)
λ2 + c dR0λ + d (R0 − 1) (d + r) = 0,

and the corresponding eigenvalues

Λ1,2 =
c±

√
c2 + 2 dR0 − 2

√
∆2

2
,

Λ3,4 =
c±

√
c2 + 2 dR0 + 2

√
∆2

2

where ∆2 = d2R0
2−4 d(d+r)(R0−1). This implies dim(Ms(E ′1)) = dim(Mu(E ′1)) =

2. Since dim(Ms(E ′0)) = 3 and dim(Mu(E ′0)) = 1, then

dim(Ms(E ′0)) + dim(Mu(E ′1)) = dim(R4) + 1.

¤

Lemma 2. Suppose that Case (b) of Proposition 1 holds, then

dim(Ms(E ′0)) + dim(Mu(E ′3)) = dim(R4) + 1.

Proof. Let Case (b) of Proposition 1 hold, then E ′3 exists. By using similar argu-

ment above, we linearize around E ′3 and obtain the following eigenvalues

c±√c2 + 4d

2
and

c±
√

c2 + 4
d

√
∆

2
,

with dim(Ms(E ′3)) = dim(Mu(E ′3)) = 2 where ∆ = b2−4 d2 k λ and b = d2+(k−A) λ.

Hence, dim(Ms(E ′0)) + dim(Mu(E ′3)) = dim(R4) + 1. ¤
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The Lemmas 1 and 2 show that Ms(E ′0) can potentially intersect transversally

along a one-dimensional curve with Mu(E ′ i) in R4 for i = 1 and 3 [12, 13]. If this

happens, then the existence of a heteroclinic connection between the equilibrium points

E ′0 and E ′ i for i = 1 and 3 follows.

The linearization about E ′2 leads to the following eigenvalues

Λ4 − 2 cΛ3 − γ1Λ
2 + γ2Λ +

∆ + b
√

∆

b +
√

∆
= 0,

and the corresponding eigenvalues
c±√c2 + 4 d

2
and

c±
√

c2 − 4
d

√
∆

2
, where

γ1 =

(
d2 b + ∆− c2d2(d− λ k + λA)− (c2d + λ k − λA)

√
∆

)

d
(
b +

√
∆

) ,

γ2 =
c
(
d2 b + ∆ + d2b

√
∆

)

d
(
b +

√
∆

) ,

∆ = b2 − 4 d2 k λ and b = d2 + (k − A) λ. Therefore, dim(Ms(E ′2)) = 3 and

dim(Mu(E ′2)) = 1 with a critical speed c∗∗ = 2

√√
∆

d
where ∆ ≥ 0.

We summarize the result as follows.

Lemma 3. Suppose that Case (b) of Proposition 1 holds, then

dim(Ms(E ′2)) + dim(Mu(E ′3)) = dim(R4) + 1.

It should be noted that E ′2 = (0, S2, 0, I2) does not have zero components corre-

sponding to the subpopulation densities. Therefore, it will be instructive to study

oscillation of trajectories around this equilibrium point. For 0 < c < c∗∗, which means

travelling wave fronts travel with a speed smaller than the critical value c∗∗, there are

two complex conjugate eigenvalues which lead to small oscillations in the travelling

wave profiles around E ′2. Numerical examples of heteroclinic orbits for all cases in

Lemmas 1, 2 and 3 will be presented in Section 3.3.
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3.2 Piecewise Constant Treatment Rate with a Jump

Here, we assume that the treatment rate is piecewise constant with a jump, i.e.,

T (I) =





m, if I > 0,

0, if I ≤ 0.

(9)

(Case (ii)). Due to the discontinuity of T (I), we cannot use our approach in section

3.1 to construct travelling waves. Further, we will see that the jump of T (I) creates a

jump in the second derivative of v(z) and in the fourth derivative of u(z) at z = 0. We

claim the following result.

Theorem 4. Suppose that we have Case (ii) for the treatment rate and that

(
λA

d
− d)v(z0) > m for some z0 > 0. (10)

Then a positive travelling front solution (u(z), v(z)) of (7), if it exists, has the following

properties: for all c < 0, u(z) is monotone increasing for all z ∈ (0,∞) and v(z) has

at least one local maximum point z0 ∈ (0,∞).

Proof. We first show that u(z) is monotone increasing. Considering (7), we derive

from the fact that T (v) has a jump at v = 0, that vzz has a jump where v = 0 and

v, vz are both smooth functions. Because of the jump for vzz there is also a jump for

uzzzz and u, uz, uzz, uzzz are all smooth functions.

Since u(z) = A
d

for z < 0, we derive u(0) = A/d and uz(0) = uzz(0) = uzzz(0) = 0.

Using again (7), we derive uzzzz(0
+) =

λA m

d
. Thus,

u(z) =
A

d
+

λ Am

d

z4

24
+ O(z5) for z > 0 small.

This implies that u(z) > A
d

and u(z) is increasing for z small enough. Suppose that

u(z) has a local maximum point z0 with u(z0) >
A

d
, then uz(z0) = 0 and uzz(z0) ≤ 0.

This implies that f(z0) = 0 and fz(z0) ≤ 0, but the right-hand side of (7b) is strictly

positive (i.e., c f −A+d u+λu v > 0) which is contradiction. Hence, u(z) has no local

maximum.

Next we show that v(z) has at least one local maximum. Using again (7), we derive

v(0) = vz(0) = 0 and vzz(0
+) = m. Therefore,

v(z) = m
z2

2
+ O(z3) for z > 0 small.
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Hence, v(z) is monotone increasing for z > 0 small.

Assuming that v(z) is monotone increasing for all z > 0 (i.e., v(z2) > v(z1) for all

z2 > z1 > 0) we will derive a contradiction. Then from (6b) we have for z > z0

vzz − c vz = −λ u v + d v + m

≤ −λA
d
v + d v + m since u is increasing (implying u(z) ≥ A/d)

= v
(−λA

d
+ d

)
+ m

≤ v(z0)

(
−λ

A

d
+ d

)

︸ ︷︷ ︸
<0 by (10)

+m since v(z) > v(z0) for all z > z0

≤ L < 0, where L is a negative constant by (10).

Using that vzz − c vz ≤ L < 0 for all z > z0, we derive gz − cg ≤ L, where

g = vz. Setting g(z) = exp(cz)h(z), we have hz exp(cz) ≤ L. Integrating this inequality

gives h(z) ≤ −L
c

exp(−cz) + D for some real constant D. This implies g(z) ≤ −L
c

+

D exp(cz) < 0 for z large enough since L < 0. Integrating again, we get v(z) =

B1 exp(c z) + B2 − L

c
z for some constants B1, B2. This implies that v(z) < 0 if z

is large enough. This is a contradiction to the positivity of v. Therefore v is not

monotone.

Since v is a continuously differentiable function which is monotone increasing for

small enough z > 0 and monotone decreasing for some other z > 0, it must have a local

maximum somewhere in between by the Intermediate Value Theorem for the derivative

of v(z).

¤
Remark: The technical assumption (10) seems quite strong. However, we have

not been able to prove the non-monotonicity or the existence of a local maximum for

v without it.

Next we state a result about the behaviour of the solution as z →∞.

Theorem 5. If u(z) → ∞ and v(z) → 0 as z → ∞, then u(z) v(z) approaches a

constant.

Proof. Let u(z) → ∞ and v(z) → 0 , then u(z) v(z) >> v(z), u(z) >> u(z) v(z)
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and u(z) >> A as z →∞. Thus, (7) in leading order reads

uz = f, (11a)

fz = c f + d u (11b)

vz = g, (11c)

gz = c g − λu v + m. (11d)

From (11a) and (11b), we have uzz − cuz − d u = 0. Solving this linear equation for u,

leads to the characteristic equation µ2 − c µ− d = 0 which has the solutions

µ± =
c±√c2 + 4 d

2
.

Since u(z) →∞, we take

µ+ =
c +

√
c2 + 4 d

2
.

Further, considering the original system (7) we arrive at

u(z) = u0 exp(µ+ z) + O(1) for some z > 0, (12)

since all the terms neglected when going from (7) to (11) are of order O(1). This

requires the estimate v = O(exp(−µ+ z)) which will be shown below.

We now determine the decay for v, assuming that v(z) → 0 as z → ∞. From

(11c) and (11d), we obtain vzz − c vz + λ u v −m = 0. Substituting (12) into (11b) the

O(1) terms give λu v − m = 0. Matching terms of the exact order O(1), we derive

v(z) = H exp(−µ+z)(1 + o(1)), where H =
m

λu0

. These are the same O(1) terms as

for the full system, given in (7).

Considering the terms of the exact order O(exp(−µ+ z)) in (7), we get vzz − c vz −
dv = O(exp(−µ+ z)) as z → ∞ (no resonance). Thus, for the solution of (7) we have

the estimate

v(z) = H exp(−µ+ z) + O(exp(−2µ+ z)).

Hence, for the solution (u, v) of (7) we have derived the estimate u(z)v(z) =
m

λ
+

O(exp(−µ+ z)). ¤
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3.3 Numerical simulations

In this section, before mentioning our numerical results with regard to sections 3.1 and

3.2, it will be instructive to briefly describe the numerical methods used. For Case (i),

since T (I) is continuous, let ξ = (ξ1, ξ1) and Φ = (Φ1, Φ1) be two equilibrium points

we are interested in connecting. Then the travelling wave solutions, if they exist, must

satisfy the following asymptomatic boundary conditions: u(−∞) = ξ1, u(∞) = ξ2

and v(−∞) = Φ1, v(∞) = Φ2. We truncate the interval R = (−∞,∞) by a finite

interval [Z−, Z+] where Z− < 0 < Z+ and Z± ∈ Z. We obtain the travelling wave

solutions by simulating system (7) with T (I) as defined in Case (i) as a Boundary

Value Problem (BVP). We implemented this on MATLAB using solver bvp4c together

with the projected boundary and phase conditions given by [42, 47, 48, 49]. By setting

the truncated domain to be [−30, 30], we use the following piecewise functions as initial

conditions:

u(z) =





ξ1, if −30 ≤ z ≤ 0,

ξ2, if 0 ≤ z ≤ 30,

v(z) =





Φ1, if −30 ≤ z ≤ 0,

Φ2, if 0 ≤ z ≤ 30.

(13)

Here, however, we do not fix the model variables and parameters throughout the sim-

ulations due to the existence conditions of the equilibrium points mentioned in Propo-

sition 1. At first, we demonstrate the results for Theorem 3 with the following set of

parameter values:

A = 2.8, λ = 0.001, r = 0.001, d = 0.02, k = 1. (14)

This leads to E ′0 = (0, 140, 0, 0) and E ′1 = (0, 21, 0, 113.3333). Further, the condi-

tion for the existence of E ′1 is fulfilled (i.e., p0 = 6.345 < R0 = 6.6667 < p2 = 51,

R0 = 6.6667 < p1 = 98.5714). Figure 2 shows that there is no travelling wave front

connecting the disease-free equilibrium E ′0 and the endemic equilibrium E ′1 with speed

c = 0.1099 < c∗ = 0.6899, because v(z) takes negative values, which is unrealistic, and

oscillates around the disease-free equilibrium E ′0. Hence, the simulation agreed with

Theorem 3.

The subpopulation densities of susceptible individuals and infective individuals are

represented as Subfigures A1 and A2 respectively, for most of the simulations. Figures

2 and 3 indicate that, as c decreases from c∗, more and more oscillations are observed.
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Figure 2: Assuming (14) with c∗ = 0.6899 > c = 0.1099.
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Figure 3: Assuming (14) with c∗ = 0.6899 > c = 0.2899.

Now, we numerically illustrate the results obtained in Lemmas 1, 2 and 3, by

carrying out some simulations. Lemma 1 suggests the connection between E ′0 and E ′1
and we have the following:

∆2 ≥ 0 : all the eigenvalues of the jacobian evaluated at E ′1 are strictly real and

hence smooth travelling wave profiles, corresponding to the system (7) with T (I)

as defined in Case (i), connecting E ′0 and E ′1 are obtained as depicted in Figure

4.
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Figure 4: Assuming (14) with ∆2 = 0.0083 and c = 0.9899.

∆2 < 0 : non-monotone travelling wave solutions connecting E ′0 = (0, 140, 0, 0) and

E ′1 = (0, 30, 0, 73.3333) are obtained as shown in Figure 5. Here, we observed a

hump in the wave profile for v(z) and a corresponding dip in that for u(z).
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Figure 5: Assuming (14) with r = 0.01 and c = 0.6643. This leads to ∆2 = −8.8889 ·
10−5, p0 = 4.4415 < R0 = 4.6667 < p2 = 6, R0 = 4.6667 < p1 = 9.

Lemma 2 suggests the connection between E ′0 and E ′3 and Figure 6 depicts non-

monotone wave fronts connecting the two equilibria. This shows a zone of transition

from the disease-free equilibrium E ′0 to the endemic equilibrium E ′3 where the level of

susceptible individuals first decreased and then increased, and that of infective indi-

viduals first increased then decreased.
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Figure 6: E ′0 = (0, 91.6, 0, 0), E ′3 = (0, 44.4788, 0, 11.7712), R0 = 1.8320, ∆ = 3.7779 ·
10−8, p0 = 1.7220, p1 = 1.3332, p2 = 1.9090, A = 0.916, λ = 0.0009, r = 0.035,
d = 0.01, I0 = 10.1.

Lemma 3 suggests the connection between E ′2 and E ′3 if Case (b) of Proposition 1

holds (i.e., E ′2 and E ′3 exist simultaneously). Thus, the model parameters and variables

are fixed as follows:

A = 0.916, λ = 0.003, r = 0.035, d = 0.02, k = 0.35. (15)

The conditions for the existence of E ′3 and E ′3 are satisfied (i.e., p0 = 2.4965 < R0 =

2.4982 < p2 = 2.5 R0 = 2.4982 > p1 = 2.4091). We investigate the travelling wave

solutions connecting E ′2 = (0, 18.0609, 0, 10.2391) and E ′3 = (0, 16.9057, 0, 11.3943) as

follows:

If c ≥ c∗∗ then there are travelling wave profiles which connect E ′2 and E ′3 without

any oscillations as depicted in Figure 7. The wave profiles for both u(z) and v(z)

are monotone and smooth.
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Figure 7: Assuming (15) with ∆ = 4.8040 · 10−9, c∗∗ = 0.1177 < c = 0.1277

If c < c∗∗ then there is a travelling wave profile connecting E ′2 and E ′3 which oscillates

near E ′2 as shown in Figure 8.
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Figure 8: Assuming (15) with ∆ = 4.8040 · 10−9, c∗∗ = 0.1177 > c = 0.0176.

Finally, we consider system (7), with T (I) defined in Case (ii), as Initial Value

Problem (IVP) with initial condition (A/d, 0, 0, 0) due to the discontinuity of T (I).

We show the results obtained in Theorems 4 and 5, by carrying out some simulations

as depicted in Figures 9(A & B) and 9C respectively. The observed behaviour of the

system is qualitatively different from that of the case analysed previously, and the

travelling wave connects the disease-free equilibrium state to another disease-free state

for which u →∞. In the last part of Figure 9 it can be seen that u(z)v(z) → m
λ

= 110

(compare with the proof of Theorem 5).

It is evident from Figure 10 that the travelling wave profile for the density of

the infective individuals v(z) oscillates in the initial phase as the removal rate of the

infective individuals m increases. Furthermore, the decay rate of v(z), as calculated in

Theorem 9C, is independent of the removal rate m. It can be read off that the gradient

of log(v(z)) approaches approximately 0.03 which corresponds reasonably well with the
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value µ+ ≈ 0.06 for the approximate solution (see the proof of Theorem 5).

With increasing removal rate m of the infective individuals, the region where the

disease presents high incidence shrinks, and the maximum of v(z) increases with m.
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Figure 9: A = 0.916, d = 0.02, λ = 0.001, m = 0.11, c = −0.6.
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Figure 10: A = 1, d = 0.02, λ = 0.001, c = −0.5

4 Conclusion

In this work, we incorporate reaction-diffusion terms in a simplified form of the systems

in [5] and [10] to model the spatial spread of an epidemic in the presence of a treatment

in a given populations. This work has been motivated by our effort to analyze the

effect of the nature of treatment rate in the model. That is, nonlinear and non-smooth

treatment terms; namely, (i) piecewise linear treatment rate with saturation effect, (ii)

piecewise constant treatment rate with jump (Heaviside function). We have analyzed

the linear stability of the disease-free equilibrium of the model with both treatment

terms. Travelling waves are constructed and their existence is numerically shown in
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both cases. Furthermore, when the treatment rate is piecewise linear with saturation

effect we have shown that there are travelling wave trajectories which connect the

disease-free state to an infective state and also between two endemic states, while with

piecewise constant rate of treatment, which has a jump at the disease-free state, we

can only connect the disease-free state to itself. Biologically, the latter is indeed of

public health importance because it shows that if few infectives are introduced into

a completely susceptible population, then there will be a moving transition zone of

high concentration of infective individuals only for a while, and the infectives vanish

at the end of the wave front. However, the former demonstrates the conditions of

reaching an endemic state from the disease-free state and how two infective states are

connected. For piecewise linear treatment rate with saturation effect, we observe some

phenomena which are not present for travelling-waves in classical SIR systems with

constant coefficients such as non-monotone profiles for both susceptibles and infectives,

or oscillations of the profiles due to complex eigenvalues. However, if the treatment

rate is piecewise constant and has a jump, the wave profile for susceptible individuals

tends to infinity, whilst the infectives converge to zero and their product approaches a

constant at the forward end of the profile. For increasing removal rate m of the infective

individuals oscillations of the wave profile occur and their amplitude increases.

In model (3), it would be desirable to study the stability of travelling waves. Fur-

ther, it is instructive to investigate the spatial spread in higher-dimensional space. The

mathematical analysis for the resulting model is considerably more complicated and so,

we leave it for future work. Furthermore, our assumption that susceptible individuals

and infectives diffuse at the same rate is not necessary, one could also study the effects

of different diffusion rates on the travelling wave profile.
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