
3026 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 6, DECEMBER 2004

Scalability Tests of R-GMA-Based Grid
Job Monitoring System for CMS

Monte Carlo Data Production
Daniele Bonacorsi, D. Colling, L. Field, S. M. Fisher, Claudio Grandi, Peter R. Hobson, Paul Kyberd, B. MacEvoy,

J. J. Nebrensky, H. Tallini, and S. Traylen

Abstract—High-energy physics experiments, such as the com-
pact muon solenoid (CMS) at the large hadron collider (LHC),
have large-scale data processing computing requirements. The grid
has been chosen as the solution. One important challenge when
using the grid for large-scale data processing is the ability to mon-
itor the large numbers of jobs that are being executed simulta-
neously at multiple remote sites. The relational grid monitoring
architecture (R-GMA) is a monitoring and information manage-
ment service for distributed resources based on the GMA of the
Global Grid Forum. In this paper, we report on the first measure-
ments of R-GMA as part of a monitoring architecture to be used
for batch submission of multiple Monte Carlo simulation jobs run-
ning on a CMS-specific LHC computing grid test bed. Monitoring
information was transferred in real time from remote execution
nodes back to the submitting host and stored in a database. In
scalability tests, the job submission rates supported by successive
releases of R-GMA improved significantly, approaching that ex-
pected in full-scale production.

I. MONITORING ARCHITECTURE

THE management of a large Monte Carlo (MC) produc-
tion or data analysis, as well as the quality assurance of

the results, requires careful monitoring and bookkeeping. The
batch object submission system (BOSS) [1] has been developed
as part of the compact muon solenoid (CMS) suite of software
to provide real-time monitoring and bookkeeping of jobs sub-
mitted to a compute farm system. Its original design assumed
that jobs were submitted to a local batch farm. Individual jobs

Manuscript received November 14, 2003; revised April 20, 2004 and June 15,
2004. This work was supported in part by PPARC and in part by the European
Union.

D. Bonacorsi and C. Grandi are with the Instituto Nazionale di
Fisica Nucleare, Bologna, Italy (e-mail: Daniele.Bonacorsi@bo.infn.it;
Claudio.Grandi@bo.infn.it).

D. Colling, B. MacEvoy, and H. Tallini are with the Department of Physics,
Imperial College London, London, SW7 2BW, U.K. (e-mail: d.colling@impe-
rial.ac.uk; b.macevoy@imperial.ac.uk; h.tallini@imperial.ac.uk).

S. M. Fisher and S. Traylen are with the Particle Physics Department,
Rutherford Appleton Laboratory, Chilton, U.K. (e-mail: S.M.Fisher@rl.ac.uk;
S.Traylen@rl.ac.uk).

L. Field was with the Particle Physics Department, Rutherford Appleton Lab-
oratory, Chilton, U.K.

P. R. Hobson, P. Kyberd, and J. J. Nebrensky are with the Department of
Electronic and Computer Engineering, Brunel University, Cleveland Road,
Uxbridge, UB8 3PH, U.K. (e-mail: Peter.Hobson@brunel.ac.uk; Paul.Ky-
berd@brunel.ac.uk; J.Nebrensky@brunel.ac.uk).

P. R. Hobson, P. Kyberd, and J. J. Nebrensky are with the Department of
Electronic and Computer Engineering, Brunel University, Cleveland Road,
Uxbridge, UB8 3PH, U.K. (e-mail: Peter.Hobson@brunel.ac.uk; Paul.Ky-
berd@brunel.ac.uk; J.Nebrensky@brunel.ac.uk).

Digital Object Identifier 10.1109/TNS.2004.839094

to be submitted are wrapped in a BOSS executable which, when
it executes, spawns a separate process that extracts information
from the running job’s input, output, and error streams. Pertinent
information (such as status or events generated) for the partic-
ular job is stored, along with other relevant information from
the submission system, in a local database. BOSS allows an end
user to define new jobtypes in order to store specific sets of infor-
mation about those jobs in addition to the standard job details.

In order for the BOSS database to monitor jobs reliably
in a grid environment, jobs executing on a remote compute
element need to pass information back to the submitter’s site
in real time. However the current implementation of BOSS
is unsuitable for wide-area deployment since each wrapper
instance makes a direct connection back to the database man-
agement system (DBMS). This introduces security and firewall
issues for the database host as well as being unusable with grid
implementations that do not allow outgoing connectivity from
worker nodes, and the sheer number of connections required in
the grid context can overwhelm the DBMS. Hence, BOSS has
been modified to use the relational grid monitoring architecture
(R-GMA) as a transport mechanism to deliver information from
the remotely running job to the centralized BOSS database at
the user interface (UI) of the grid system, from where the job
was submitted.

The R-GMA architecture is based on that of the grid moni-
toring architecture (GMA) [2] of the Global Grid Forum. The
GMA, as shown in Fig. 1, consists of three components: con-
sumers, producers, and a directory service, which we refer to as
a registry as it avoids any implied hierarchical structure.

Producers of information register themselves with the reg-
istry when they are instantiated. The registry describes the type
and structure of information the producers want to make avail-
able to the grid. Consumers of information query the registry
to discover what type of information is available and locate
producers that provide the required information. Once a con-
sumer has this information, it contacts the producer directly to
obtain the relevant data. Thus, in principle, the “Register” and
“Discover” transactions between the clients and the registry (the
dotted lines in Fig. 1) only need to occur once, irrespective ei-
ther of how much data is actually transferred (the solid line)
or of the lifetime of the producer or consumer. R-GMA [3] is a
specific implementation of this general GMA architecture using
Java servlet technology (Tomcat [4]), so that as well as the pro-
ducer and consumer described above, producer and consumer
servlets exist and communicate using HTTP or HTTPS.

0018-9499/04$20.00 © 2004 IEEE

BONACORSI et al.: SCALABILITY TESTS OF R-GMA-BASED GRID JOB MONITORING SYSTEM 3027

Fig. 1. GMA. The solid line shows the data transfer path, while the dotted lines
show the “Register” and “Discover” transactions.

In our tests, R-GMA and BOSS were used in the following
way (numbers in braces refer to entities in Fig. 2). At the UI, a
receiver is created. This receiver sends its registration de-
tails via a locally running servlet to the registry . The
registry stores details of the receiver (i.e., that it wishes to con-
sume messages from a BOSS wrapper and the hostname of the
DBMS) and sends back a list of any available matching pro-
ducers. A job is submitted using the grid infrastructure—details
of which are in principle irrelevant—from a UI and even-
tually arrives on a worker node (WN) at a remote compute
element. When the job runs, the BOSS wrapper first creates a
producer that sends its details, via a servlet at that remote
farm, to the registry which records details about the pro-
ducer, including a description of the data but not the data itself.
This description includes the output messages from the BOSS
wrapper and the hostname of the DBMS at the submitting UI.
The registry is thus able to notify the receiver of the new
producer. The receiver then contacts the new producer directly
and initiates data transfer, storing the information in the BOSS
database . As the job runs and monitoring data on the job are
generated, the producer sends data into a buffer within the farm
servlet, which, in turn, streams it to the receiver servlet.

Using BOSS and R-GMA in this way is a flexible and ro-
bust method for retrieving real-time job monitoring informa-
tion. The use of standard Web protocols for data transfer allows
straightforward operation through site firewalls and networks.
Moreover, with only a single local connection required from the
consumer to the BOSS database (rather than from a potentially
large number of remote grid compute sites) this is a more secure
mechanism for storing data.

In production deployment, the intention is that the receiver
would be a specialized Java application based on the stan-

dard R-GMA consumer, storing data in a MySQL database [5].
The dashed arrows from the WN back to the UI in
Fig. 2 indicate the BOSS journal file containing all messages
sent, which is returned via the sandbox (a controlled environ-
ment in which potentially hazardous code can be safely run)
after the job has finished and can thus be used to ensure the
integrity of the BOSS DB (but not, of course, for online moni-
toring).

II. TEST SETUP AND INITIAL RESULTS

The monitoring architecture was initially tested on the Euro-
pean data grid (EDG) test bed [6]. An R-GMA producer servlet
(v. 2.2.4) was installed on a single compute element at Impe-
rial College, London, U.K., a consumer servlet was installed on

Fig. 2. Use of R-GMA in BOSS. Components labeled 3 and 5b form the
R-GMA consumer while those labeled 4 and 5a are the producer. Components
which are local to the submitting site lie to the left of the dividing curve, while
those to the right are accessed via the grid infrastructure. Receiver servlets may
be local to the UI or at other sites on the grid.

the Imperial College UI, and a registry was installed at Brunel
University. The BOSS database was installed on the Imperial
College UI. Small numbers of CMS MC jobs were submitted
from the UI to the EDG grid with the requirement for the re-
source broker to send the job to the Imperial College farm so that
the appropriate R-GMA producer software would be found. It
should be emphasized that standard CMS MC production soft-
ware was used in submitting these jobs, and as such this repre-
sented a “real world” application test of R-GMA.

In this initial test, the MC jobs were configured to generate
only a small number of events, such that they took about 10 min
to complete execution. For each job, approximately 30 separate
messages were required to be sent back to the BOSS database,
via R-GMA. A comparison could then be made between the
information in the database and the BOSS journal file to verify
that no information had been lost or corrupted.

In initial tests, submitting small bunches of jobs such that
no more than five jobs were running simultaneously, the moni-
toring system was shown to work successfully with all informa-
tion being successfully relayed and stored in the BOSS database.
When the submission rate was increased, however, information
was lost. This was thought to be due to the use of a (now depre-
cated) producer that had a limited buffer size such that, at high
transfer rates, information was overwritten before the consumer
was able to retrieve it.

III. TEST DESCRIPTION

R-GMA (version 3.3.28) was installed on machines (typically
dual 1-GHz PIII with 1 GB of RAM) on a CMS-specific LHC
computing grid [7] test bed. This provided a more appropriate
producer and thus a more demanding test was required to pro-
vide a realistic stress on the system. It was not possible to dedi-
cate all of the test bed machines to a test of the monitoring archi-
tecture, nor is it a suitable use of resources to involve software
whose ability to perform is completely unknown in a data chal-
lenge. Finally, a test of the real system is limited to the perfor-
mance provided by the current system; it is not possible to test

3028 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 6, DECEMBER 2004

Fig. 3. Cumulative distribution of message arrival time for 44 CMSIM jobs.

the performance of a future, upgraded system. It was, therefore,
decided to create a simulation of the production system, specif-
ically of the output from the “CMSIM” component of the CMS
Monte Carlo computation suite.

In the first instance, around 50 jobs were individually run. The
times of their messages were recorded. From this information
a message profile of a typical CMSIM job was created. The
messages have a mean length of 35 characters.

It can be seen from Fig. 3 that the distribution of messages
from jobs has three distinct phases. During the first second of
the job, messages are sent equally spaced at a rate of around
one every 50 ms and a single message occurs some 890 s later
with an uncertainty of 170 s. This ends the first phase of the
job. During the main phase of the job messages are generated
about every 8800 s, with a Gaussian width of 480 s. In the final
phase, as the job performs various housekeeping operations, 40
messages are generated in bursts over 100 s, including a burst
of approximately ten messages in the final second that signals
the termination of the job. With the distribution of completion
times stretching over a period of 5000 s, even for jobs that start
simultaneously, the probability of two jobs terminating together
is less than 0.1%.

A test class using the R-GMA streamproducer [4] was written
in Java, which created and sent messages at the measured rates.
An instance of such a class is a realistic model of the perfor-
mance of a single CMS Monte Carlo job as far as the R-GMA
system is concerned. Since no processing is required between
messages, a single CPU is capable of providing a load equiva-
lent to many CPU’s running the full job.

A single machine can generate messages at a rate of greater
than fifty per second; thus it can provide a load greater than a
typical grid cluster of 200 machines, up to a rate of 4/s per node.

Job initialization generates a similar number of messages and
here the limiting factor is how fast a submission script is ca-
pable of starting jobs on the grid. Preliminary measurements
indicate that the time for jobs to propagate through the work-
load management system and start executing varies between 3
and 10 s. Thus, the initial message bursts of submitted jobs will
not overlap. Since we are interested in keeping a record of all

messages that get through, rather than just a cumulative update
as provided by BOSS, we also replaced the dedicated BOSS re-
ceiver with a consumer that uses the R-GMA Archiver [4] to
store all received messages in a MySQL database. This makes
it possible to detect the loss of messages even when they are su-
perseded by a later, successfully transmitted, message.

We, thus, have a system that allows a single machine to gen-
erate an R-GMA load that is equivalent to several hundred ma-
chines at a single site. Adding a local machine to run the R-GMA
servlets and with two machines at a site (representing the UI and
the farm) we can simulate the full load on R-GMA. To complete
the test system, we placed a registry at the Rutherford Appleton
Laboratory and the consumer at Imperial College. Tests so far
completed have involved running such a system at up to four
geographically dispersed sites.

IV. SCALABILITY TEST RESULTS

The greatest load on the monitoring system occurs during
job initialization, as this is the period when messages are being
passed with the greatest frequency, and so the number of simul-
taneously running jobs that can be handled depends on the in-
terval between the different jobs starting. In the extreme case of
all the jobs starting (essentially) simultaneously release 3.3.45
of RGMA can handle the equivalent of 400 CMSIM jobs with
no message loss. However, introducing a delay of as little as 1 s
between job starts more than doubles this. This staggered start
provides a much more realistic simulation of an actual CMSIM
production. Four hundred jobs represents approximately 20% of
the predicted CMS production load.

When 500 jobs are started together, only about 440 transfer
data successfully. When failure occurs, typically all the mes-
sages are lost from one or more jobs; this is generally because of
a catastrophic failure of the StreamProducer servlet. Together
with the developers of R-GMA, we have identified various
problems including: initial use of under-powered machines
(e.g., 733-MHz PII with 256 MB RAM) running servlets
within the R-GMA infrastructure; the Java Virtual Machine
(JVM) instance used by the servlets only having the Tomcat

BONACORSI et al.: SCALABILITY TESTS OF R-GMA-BASED GRID JOB MONITORING SYSTEM 3029

default memory allocation available; the JVM instance used by
the producer servlets requiring more than the default number
(1024) of network sockets available; as well as other limits
and flaws in the versions of R-GMA used. The developers of
R-GMA have addressed these issues in newer releases. We
have installed more powerful hardware (all machines with
1-GB RAM) and a new version of R-GMA (v. 3.4.13) with
optimally configured JVM instances. We repeated the tests
described in Section III and successfully received all the data
from more than 4000 simulated jobs at multiple sites, a level
of performance consistent with the needs of CMS. A report of
these results is currently in preparation.

V. SUMMARY

We have created a system to simulate the loads that R-GMA
will experience during its use as a monitoring tool for the CMS
data challenges on the EDG test bed. The original installation
of R-GMA was unable to sustain the expected loads, failing at

just over 400 jobs. By upgrading to more powerful machines
running the servlets, improvements to R-GMA, and a more op-
timized configuration of the JVM, we have recently achieved
a level of performance better than this by a factor of 10. This
improved level of performance should meet the requirements of
the running CMS experiment.

REFERENCES

[1] C. Grandi and A. Renzi. Object based system for batch job
submission and monitoring (BOSS). [Online]. Available:
http://www.infn.it/cms/computing/BOSS

[2] B. Tierney et al.. (2002) A grid monitoring architecture. [Online]. Avail-
able: http://www.gridforum.org/

[3] A. Cooke et al., “R-GMA: An information integration system for grid
monitoring,” in Proc. 11th Int. Conf. Cooperative Information Systems,
2003.

[4] [Online]. Available: http://jakarta.apache.org/tomcat/.
[5] [Online]. Available: http://www.mysql.com/.
[6] [Online]. Available: http://eu-datagrid.web.cern.ch/eu-datagrid/.
[7] [Online]. Available: http://lcg.web.cern.ch/LCG/.

	toc
	Scalability Tests of R-GMA-Based Grid Job Monitoring System for
	Daniele Bonacorsi, D. Colling, L. Field, S. M. Fisher, Claudio G
	I. M ONITORING A RCHITECTURE

	Fig. 1. GMA. The solid line shows the data transfer path, while
	II. T EST S ETUP AND I NITIAL R ESULTS

	Fig. 2. Use of R-GMA in BOSS. Components labeled 3 and 5b form t
	III. T EST D ESCRIPTION

	Fig. 3. Cumulative distribution of message arrival time for 44 C
	IV. S CALABILITY T EST R ESULTS
	V. S UMMARY
	C. Grandi and A. Renzi . Object based system for batch job submi
	B. Tierney et al. . (2002) A grid monitoring architecture . [Onl
	A. Cooke et al., R-GMA: An information integration system for gr

