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Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes
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We develop connections between generalized notions of entanglement and quantum computational devices
where the measurements available are restricted, either because they are noisy and/or because by design they are
only along Pauli directions. By considering restricted measurements one can (by considering the dual positive
operators) construct single-particle-state spaces that are different to the usual quantum-state space. This leads to
a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can
become separable). We use this approach to develop alternative methods of classical simulation that have strong
connections to the study of nonlocal correlations: we construct noisy quantum computers that admit operations
outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise
classical in that they can be efficiently simulated classically and cannot generate nonlocal statistics. Although the
approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does
not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common
noise models.
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I. INTRODUCTION

A scalable quantum device is useful for nonclassical
computation if it cannot be simulated efficiently classically,
as any such device can always be used compute its own
observable behavior. It is hence important to understand when
a quantum device can or cannot be efficiently simulated
classically. In one direction this problem is hard: while it is
conjectured to be the case that ideal quantum computers are
not classically tractable, proving this rigorously would resolve
longstanding open problems in theoretical computer science.

The opposite direction is usually more amenable to attack.
For example, it is possible to construct various families of
quantum system that can be efficiently simulated classically
[1], including ones that contain significant amounts of multi-
party entanglement [2,3]. Of particular interest are the noise
levels required before a proposed quantum computer becomes
so noisy that it can be efficiently simulated classically [4].
These noise levels are important because they represent the
noise levels at which the power to do nonclassical computation
is lost, and hence are strongly related to the topic of fault
tolerant quantum computation. Studies in that area have shown
that for a variety of noise models there is a so-called quantum
fault tolerant threshold noise level, below which it is possible
for a noisy quantum computer to simulate an ideal quantum
computer efficiently. However, in almost all cases the values
of this threshold are unknown. Lower bounds to the thresholds
have been obtained using constructive methods for quantum
error correction that are robust to imperfections (see, e.g.,
[5,6]). Upper bounds have been obtained in two ways: one
approach is to argue that once the noise is too high the output
cannot contain sufficient information about the input [7–9],
another approach is to argue that above a certain noise level
the system can be efficiently simulated classically [4,10–16].
It is this latter “classical” approach that we will follow
here.

Within the classical approach there are two methods for
simulating noisy quantum computers that will be relevant to us.
The first is a method of Harrow and Nielsen (HN) [10], which

argues that if the noise level is too high then the entangling
gates in the device [for instance the controlled-NOT (CNOT)
gates] will become nonentangling, and that once this happens
the probability distribution of measurement outcomes can
be efficiently sampled classically. The second method uses the
Gottesman-Knill (GK) theorem [2] to show that if the noise
levels are high enough, all the elementary operations in the
devices will enter the so-called stabilizer or Clifford set, and
hence can be efficiently simulated using the stabilizer formal-
ism. The GK theorem is especially relevant for fault tolerant
quantum computation because the most well-understood fault
tolerance proposals are built using stabilizer operations with
an additional nonstabilizer resource.

The aim of the present work is to use a generalized
notion of entanglement [17] (in a sense described in the
next section) to apply a modified version of the Harrow and
Nielsen method to devices where there are restrictions on the
measurements available. Such restrictions arise naturally in
fault tolerant quantum computation for two reasons. Firstly,
most fault tolerance schemes only use measurements of
certain observables (in particular Pauli measurements or
their generalizations in higher dimensions). Secondly, any
measurements that are available are always prone to noise.
It turns out that such restrictions can allow one to consider
nonquantum single-particle-state spaces, and thereby a new
notion of entanglement.

We will show that this approach forms a bridge between
the foundations of quantum theory and the study of noisy
quantum computation. For instance, the approach shows that
for quantum computers using physical measurements from
the Pauli operators only, nonclassical computation is only
possible if the dynamics is either nonpositive with respect
to the non-quantum-state space, or can generate nonlocal
correlations. It also motivates the construction of generalized
probabilistic theories [18] that are inspired by fault tolerant
quantum computation schemes (although in our primary
case the generalized theory turns out to be very close to a
classical theory), and provides regimes of classically tractable
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noisy quantum evolution that appear to fall outside the
scope of existing methods. It also falls under the program
initiated in [17] to investigate so-called generalized notions
of entanglement, and motivates some interesting questions
regarding the contrast between different forms of generalized
multiparty entanglement.

Any readers not interested in technical details may ignore
the Appendices and skim the detailed calculations in the latter
half of the paper. In the first few sections we begin with some
general motivation and properties of the restriction to Pauli
measurements.

II. GENERALIZED NOTIONS OF ENTANGLEMENT, AND
APPLICATION TO THE STABILIZER FORMALISM

For our purposes a classical simulation of a quantum
device is a classical algorithm that samples the probability
distribution of measurement outcomes that occur in the device
(we do not require the ability to calculate these probabilities
directly). For a general quantum system this sampling is
believed to be impossible to achieve efficiently, due to the
conjectured superiority of the quantum computer. However,
if the quantum gates in the system are so noisy that they are
incapable of entangling separable input states, then Harrow and
Nielsen (HN) [10] showed that it can be efficiently simulated
classically. It is helpful to illustrate their method in order to
motivate the rest of this paper. Consider a noisy two-particle
gate that has this property (i.e., it is incapable of entangling
separable inputs) and suppose that it acts on the first two input
qubits in the device. As the gate is by hypothesis separable, it
will give an output state ρ that is also separable [19]:

ρ =
∑

i

piai ⊗ bi, (1)

where ai,bi are states on the first and second qubits, re-
spectively, and pi is a probability distribution. In such cases
the algorithm of [10] does not store the whole state, a task
which could require exponentially large memory, but instead
classically samples the probability distribution {pi}, and then
only stores aj ,bj corresponding to the result j of this sampling.
This process is then repeated for every gate in the quantum
circuit. When the last gate in the circuit has been applied,
the computer memory will have in storage N single qubit
states (where N is the number of qubits), requiring modest
memory. To complete the simulation we sample what happens
when single qubit measurements are performed on these
states. It is intuitively clear that this process, if performed
to sufficiently high accuracy, will lead to a final outcome that
is sampled from the same distribution as would be obtained if
the quantum device were actually built. A complete analysis
of the algorithm requires an analysis of the errors induced
by finite precision storage and sampling methods on classical
computers. However, these details will not concern us, as the
analysis presented in [10] applies with only minor modification
to the alternative notion of entanglement that we consider
below. It is also useful to note that the HN method also applies
to adaptive schemes, where measurement outcomes are use to
determine future choices of gate. This property also carries
over to the generalized notions of entanglement that we now
consider.

The ordinary notion of quantum separability relies on the
conventional notion of a single-particle-quantum-state space.
In a manner similar to [17], we will consider a redefinition
of the single-particle-state space away from the “quantum”
version, thereby giving a different notion of “separability”
under which one can apply the algorithm of [10]. As a starting
point for our generalized state spaces we will use the following
characterization of the quantum set Qd of dimension d single-
particle states. We may define Qd as the set of complex d × d

matrices that give valid probability distributions for all

Qd = {ρ|tr{Mρ} � 0, ∀I � M � 0}. (2)

This definition can be generalized: we may define a single
particle “state space” as the set of matrices that give valid prob-
ability distributions for the set of measurements that we have
available. If the set of measurements is restricted, then the set
of “states” defined in this way will be larger than quantum—it
will contain matrices that are not admissible as quantum states
because they need not be positive for measurements outside the
restricted set. If we are considering quantum devices with such
restricted measurements, then we may apply the HN algorithm
to efficiently simulate gates that are separable with respect to
these modified state spaces—the modified state spaces still
allow us to sample the probability distribution obtained from
the restricted measurements available. As the gates that are
separable will be different to the quantum-separable ones, this
leads to different regimes of classically efficient simulation.

There are various natural ways to select a set of “allowed”
measurements. One possibility is to consider a single Positive-
operator valued measure (POVM) (which may or may not be
noisy), and then construct a set of measurements by acting
upon it with a symmetry group of single-particle unitaries.
A prototypical example is inspired by stabilizer architectures
for fault tolerant quantum computation: In these proposals the
measurements are restricted to the Pauli axes, which can be
generated from a single Pauli measurement using the “Clifford
group” [2]. It is this restriction that we consider in the next
section.

III. BLOCH CUBES

We begin by analyzing the restriction to Pauli X,Y,Z

measurements. It is easy to show that in this case the set of
valid states is a “cube,” the corners of which are given by eight
Bloch vectors

{(1,1,1),(1,1,−1),(1,−1,1), . . . ,(−1,−1,−1)}. (3)

To see this, note that because the Pauli matrices form a basis,
any two-dimensional matrix can be written as

1
2 (aI + bX + cY + dZ) (4)

for some expansion coefficient a,b,c,d. Under the Born rule,
probability of getting +1 on measuring Z is (a + d)/2,
and the probability of getting the −1 outcome is (a − d)/2.
Hence for Z measurements alone any matrix with a = 1 and
d ∈ [−1,+1] gives a valid probability distribution. Similar
conclusions hold for X,Y measurements, and so we find
that any matrix in the “Bloch cube” with a = 1 and b,c,d ∈
[−1,+1] is admissible (see Fig. 1 , and also Ref. [20] for some
related aspects of this geometry for hidden variable models).
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FIG. 1. (Color online) The Bloch sphere represents the set of
positive operators when all POVMs are included. If the Born rule
is used with only Pauli measurements, however, then a cube of
operators becomes positive. The eight corners of the cube are given
by Bloch vectors (s,t,u) with s,t,u ∈ ±1, and attain any set of
possible outcomes for Pauli measurements. Hence we describe Pauli
measurements as “operator compatible.” Any pure quantum state that
is not a Pauli eigenstate lies on the surface of the sphere but strictly
inside the cube.

Now that we have established these cubes of “single-
particle states” for X,Y,Z measurements, let us consider
the implications of using them to define a modified notion
of entanglement. We define a separable two-particle state
as one that is a convex combination of products of valid
“single-particle states,” i.e., a separable two-particle state is
now one that can be written as

ρ =
∑

i

piai ⊗ bi, (5)

where ai,bi are single qubit operators represented by vectors
from the Bloch cube, not just positive states from the Bloch
sphere.

If we have a quantum device that can only perform
Pauli X,Y,Z measurements, and if the gates in the device
take separable Bloch cube input states to cube-separable
output states, then we can apply the HN algorithm without
modification to efficiently simulate the system classically.
This is particularly relevant for the “magic state” architectures
[21,22]. These devices have the following attributes:

(i) The ability to measure in the Pauli bases.
(ii) The ability to prepare single qubit states that are not

mixtures of Pauli eigenstates.
(iii) The ability to do single qubit unitaries from the Clifford

group—these unitaries are all symmetries of the Bloch cube.
(iv) The ability to do a single two qubit operation, typically

a CNOT or controlled SIGN (CSIGN) gate, or something else
sufficient for generating the entire Clifford group on n qubits.
In these notes we shall only consider the CSIGN gate, which
is represented by the unitary matrix |00〉〈00| + |01〉〈01| +
|10〉〈10| − |11〉〈11|. The results that we will obtain can be
applied to other entangling Clifford group gates by modifying
the local X,Y,Z reference frame appropriately.
The first three of these attributes fit nicely into the picture of
“cube states”—the Pauli directions are the allowed measure-

ments, single qubit states from the Bloch sphere are contained
entirely within the Bloch cube, and the single qubit Clifford
unitaries are symmetries of the Bloch cube.

The only operations that fail to preserve cube separability
are the last ones—the two-qubit Clifford operations. That this
is true is a special case of a result in [23] in the context of box-
world generalized theories, but for convenience in Appendix B
we provide an alternative proof that is tailored to our problem.

We hence must answer the following question: How much
noise does it take to make a CSIGN gate cube-separability
preserving? If we have such noise levels then we know that we
can simulate the system efficiently classically, and hence these
noise levels should supply upper bounds to the fault tolerance
thresholds.

Because the regime covered by cube separability is different
from both the GK regime (we admit all single-qubit states),
and the the original HN approach (there are entangled states
that are cube separable), there is a chance that it can simulate
some systems efficiently classically that are not covered by
naive applications of the other two approaches. We provide
evidence for the existence of such regimes below, although it
is possible that more sophisticated versions of these existing
algorithms (perhaps allowing entangled “clusters,” as in [4])
could cover any regime that we propose here.

In considering nonquantum states, we are exploring a type
of generalized probabilistic theory [18] that can lie outside
conventional quantum mechanics. However, we are still using
a large amount of quantum structure: while the cubes of
states that we consider are effectively (three-measurement,
two-outcome) “boxes” from box-world theories [18], we take
our dynamics directly from noisy quantum mechanics with a
given Hilbert space. In some cases the generalized theory that
we are trying to construct is nevertheless very close to being
classical—most of the calculations in the paper in fact involve
identifying noisy quantum gates that can be considered valid
operations in an almost classical theory. However, it is because
we are considering noisy quantum gates that we choose to
retain the description of the cubes in terms of Pauli operators,
rather than using tables of probabilities that are more natural
in generalized theories.

IV. CONTRAST BETWEEN CUBE ENTANGLEMENT AND
QUANTUM ENTANGLEMENT, CONNECTIONS

TO NONLOCALITY

The main technical problem underlying these investigations
is to decide when a noisy quantum operation is cube separable.
This section presents a number of observations that are useful
for understanding the context of this problem, and its relation-
ship to ordinary quantum entanglement and nonlocality.

Definition 1: Operator compatibility. We define a set of
quantum measurements to be operator compatible if one
can find, for all combinations of measurement outcomes, an
operator (usually a nonpositive operator) that achieves those
outcomes deterministically under the Born rule. �

For instance, X,Y,Z measurements are operator com-
patible: Suppose that you wish to get values e,f,g for a
measurement of X,Y,Z, respectively, where e,f,g ∈ ±1. Then
the operator 1/2(I + eX + f Y + gZ) achieves this under the
Born rule. These operators are just the corners of the Bloch
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cube. The same argument extends to any set of measurements
described by traceless orthogonal observables (in a Hilbert-
Schmidt inner product), as one can write out the desired
operator as a suitable linear sum of the observables.

While this notion of “compatibility” for sets of quantum
measurements does not occur in general, it is not difficult
to generically characterise the set of operator compatible
measurements:

Lemma 2: Characterization of operator compatible mea-
surements. On quantum systems of dimension d a set of
N distinct POVMs can only be operator compatible if the
total number of outcomes summed over all the POVMs is
� d2 + N − 1. Generically chosen measurements satisfying
this constraint are operator compatible.

Proof. Consider N POVMs P1,P2, . . . ,PN of a d-
dimensional quantum system, and suppose that these POVMs
have m1,m2, . . . ,mN outcomes, respectively. A trace-one
Hermitian matrix A of dimension d × d has d2 − 1 free
parameters. Under the Born rule only one of the POVM
elements in each POVM must have probability one, the
rest must have probability zero. However, one of these
mi constraints is guaranteed by normalization. Hence each
measurement Pi leads to mi − 1 independent linear constraints
on A. Hence we will generically require that∑
i=1,..,N

mi − 1 � d2 − 1 ⇒
∑

i=1,..,N

mi � d2 + N − 1. �

In particular, if there are d-measurement outcomes for each
measurement, and if N > 1, then this condition reduces to (for
N = 1 the condition is trivial anyway)

0 � d2 − N · d + (N − 1) ⇒ 0 � [d − (N − 1)](d − 1)

⇒ N � d + 1.

The property of operator compatibility has important
consequences if the measurements being considered are
tomographically complete, i.e., if the values of the probabilities
of each measurement outcome are sufficient to fix the state.
In these cases a matrix is separable with respect to the
single-party-state space [as constructed via Eq. (2)] iff it
satisfies a local hidden variable model:

Lemma 3. A multiparticle state is separable with respect to
the state spaces corresponding to tomographically complete
operator compatible measurements iff there is a local hidden
variable model for those measurements made upon the state.

Proof. We consider only two particles for simplicity, the
argument straightforwardly to multiparticle systems. As the
measurements are tomographically complete, this means that
a state A fixes uniquely and is uniquely fixed by the traces
of the matrix with the measurement operators. Hence the
state is exactly characterized by the probability distribution
of measurement outcomes.

If the probability distribution satisfies a local hidden-
variable model [24], then by definition it can be written as

tr{A[(Pa)i ⊗ (Pb)j ]} =
∑

λ

p(λ)p(i|a,λ)q(j |b,λ), (6)

where (Pa)i and (Pb)j are the ith and j th elements of POVMs
Pa,Pb, respectively, p(λ) is a probability distribution over a
hidden variable, and p(i|a,λ) and q(j |b,λ) are probability

distributions for local outcomes. These local probability
distributions can in turn be decomposed as mixtures of
local deterministic distributions, where a single deterministic
outcome is specified for each measurement choice. The
deterministic distributions in turn are matched by the extreme
points of the state space [as defined via Eq. (2)], and so a
matrix A is separable with respect to the state space defined by
the measurements iff it satisfies a local hidden variable model
for those measurements. �

In particular for the case of qubit Pauli measurements a
quantum state is cube separable iff it has a local hidden
variable model for Pauli measurements. If a set of allowed
measurements is not “operator compatible,” then this opens up
the possibility that there is a distinction between nonlocality
and nonseparability—just as has been debated in the setting of
conventional quantum theory [19].

The connection between hidden variable models and non-
classical computation is still an unresolved question (see, e.g.,
[25] for other investigations in this direction). The property
of “operator compatibility” sheds partial light on this question
for machines restricted to Pauli measurements. As we can
classically efficiently simulate any dynamics that preserve
separability of the “cubes” corresponding to the operator
compatible measurements, we have that:

Corollary 4. Quantum devices using only tomographically
complete operator compatible measurements cannot perform
nonclassical computation if the quantum dynamics considered
as dynamics of the modified state spaces cannot generate
negative or nonlocal measurement probabilities (as computed
via the Born rule) when acting upon states from the modified
state space.

Note that in this corollary we need to exclude the possibility
of having negative probabilities because even single particle
unitaries (not from the Clifford group) can rotate cube states
to matrices that are not within the cubes.

Lemma 5. Bell states of two-qubits are cube separable,
hence there are quantum operations that are cube-separable,
despite being entangling.

Proof. It is well known that Bell states have a LHV model
for X,Y,Z measurements (one way of proving this is presented
later). Hence any quantum operation that creates Bell-diagonal
two qubit states (e.g., by throwing the input away and creating
a bell state in its place) will be separable in the cube
setting, even though may be entangling in the usual quantum
setting. �

While Lemma 5 establishes a difference between cube-
separable operations and entangling operations, operations that
create Bell diagonal states are entanglement breaking (they
break entanglement between the two-qubits and the rest of
the universe [26]) and so they cannot be used to generate
multiparty entanglement by themselves (and indeed they can
be classically efficiently simulated [11]). In Lemma 8 we
will present examples of quantum operations that are cube
separable despite being capable of generating some form of
multiparticle entanglement. However, first let us observe the
following:

Lemma 6. Around almost any quantum product pure state
of many qubits, there is a region of cube-separable states.

Proof. Consider a pure quantum state σ that is not an
eigenstate of the Pauli X,Y,Z operators. Such a state can be

032309-4



GENERALIZED STATE SPACES AND NONLOCALITY IN . . . PHYSICAL REVIEW A 83, 032309 (2011)

represented as a mixture of cube-pure state with strictly
nonzero weights for all cube-pure states. Consider a small Her-
mitian perturbation � to products of such pure quantum states,
to give an operator σ + �. As cube-pure states form an over-
complete basis for the space, � can be expanded as a real com-
bination of products of cube-pure states, possibly with negative
weights. However, if the norm of � is small enough, these neg-
ative weights will be small enough not to take the product pure
state σ out of the cube separable states (each non-Pauli pure
state lies on the Bloch sphere but is strictly inside the cube—see
Fig. 1). �

A quantum state is said to be genuinely N -party entangled
if it cannot be written as a probabilistic mixture of states that
are products of entangled states of less than N parties. In the
case of three parties, for example, it has been shown [27]
that there are two classes of three-qubit entanglement—the
“W” and Greenberger-Horne-Zeilinger (GHZ) class entangled
states, and that examples of such states can be found that are
arbitrarily close to product states. Hence we have the following
observation:

Corollary 7. There are genuinely multiparticle quantum-
entangled states that are cube separable.

Proof. Both W and GHZ class three-qubit states can be
found that are arbitrarily close to product states. Hence the
previous lemma shows that there are W and GHZ class
entangled states that are cube separable. �

This argument suggests that it is quite likely that a
variety of genuinely multipartite entangled states can be
found that are cube separable, and hence have a LHV
model for X,Y,Z measurements. However, as the number
of qubits increases the size of the cube-separable ball will
decrease.

However, as we show in the next lemma, it is possible
to construct noisy quantum gates that are not quantum-
separability preserving (i.e., they can entangle product input
quantum states), are not entanglement breaking, and that are
not Clifford operations. The first two of these properties mean
that these operations can act on systems of product input
particles to generate entanglement of increasing numbers of
particles. The final property means that these entangled states
can be chosen to be non-Clifford. However, it is not yet
clear to us whether the entanglement generated by these cube
separable but not quantum-separable operations can become
arbitrarily long range, and this is something that warrants
further investigation. It is important to note however that
quantum Bell states are cube separable, so they can in principle
be included as a free resource to help generate multiparticle
entanglement.

Lemma 8. There are noisy quantum gates that are cube sepa-
rability preserving but not (a) quantum separability preserving,
(b) entanglement breaking, or (c) Clifford operations.

Proof. There is a semisystematic way of generating a family
of quantum operations with this property. Consider the magic
“T state” [21]—the qubit with Bloch vector

√
1/3(1,1,1). Let

this state be denoted |T 〉 and the orthogonal qubit state be
denoted |T̄ 〉. Then we may construct a Choi-Jamiolkowski
(CJ) [28] state for a two-qubit quantum operation acting upon
qubits A,B as follows. Let A1,A2 be the two qubits of the
CJ state corresponding to qubit A, and B1,B2 be the two
qubits of the CJ state corresponding to qubit B. Consider CJ

state made by mixing with probabilities 1/2 + ε and 1/2 − ε,
respectively, the following two normalized states:

(α|TA1TA2TB2〉 + β|T̄A1T̄A2T̄B2〉) ⊗ IB1/2,
(7)

(γ |T̄A1TA2T̄B2〉 + δ|TA1T̄A2TB2〉) ⊗ IB1/2,

where we abuse notation slightly to keep the notation
uncluttered—the first terms are written in “coherent” form,
whereas the state on particle B1 is written in operator form—
ideally we should have written both as operators.

However, it is not difficult to show that provided that(
1
2 + ε

) |α|2 + (
1
2 − ε

) |δ|2 = 1
2 , (8)

the reduced state of particles A1,B1 is maximally mixed.
Hence the mixture is a valid CJ state for a trace preserving
quantum operation [28]. But if both |α|,|γ | are close enough
to 1, the output state of this operation is close to a mixture of
TA2T̄B2 and TA2TB2, regardless of the input state. By linearity
this extends to input cube states that are not quantum—so for
all input cube states, the output states will be close to a mixture
of TA2T̄B2 and TA2TB2. This means that provided that we pick
|α|,|γ | close enough to 1 while maintaining condition (8)
(which we can do provided that ε is close enough to 0) the
operation is cube separable, because as explained earlier, states
close enough to non-Pauli pure product states (and hence states
close to mixtures of TA2T̄B2 and TA2TB2) are cube separable.
The output qubit A2 is also always close to TA2, and hence
the quantum operation represented by Eq. (7) is not a Clifford
operation, as together with the Clifford resources required to
do teleportation it can generate TA2.

We would like to argue that the operations in Eq. (7) can be
chosen such that they are neither entanglement breaking nor
separability preserving. They definitely are not entanglement
breaking or separable because creating the CJ state involves
generating entanglement—measuring T ,T̄ parity on A2B2
of the CJ state distills a GHZ-like state, similarly measuring
parity on A1A2 does the same. Hence the operation is neither
separable nor entanglement breaking as it is entangled across
both the 1 : 2 split and the A : B split.

However, to ensure that the gates that we define do not
fall under the regime covered by the Harrow and Nielsen
algorithm [10], we must also show that they are not separability
preserving, i.e., we must show that there are input product
states that are entangled by the gate, even without the use of
extra ancillas that would be required to make the CJ state.
It can be shown by explicit calculation (using the Positive-
Partial-Transposition (PPT) criterion [29]) that any product
quantum input states with the A particle in 1/

√
2(|T 〉 + |T̄ 〉)A

are taken to non-PPT outputs provided that ε > 0. �

V. DYNAMICAL QUANTUM GATES AND NOTATION FOR
REPRESENTING TWO 2-LEVEL OPERATORS

Most of the remaining sections of the paper will be
concerned with determining the noise levels required to turn
a CSIGN gate into a separable operation with respect to the
modified notions of entanglement that we consider. In this
section we lay out some of our notation. The same notation
will be used both for the analysis of cube separability, as
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well as the analysis of the rescaled Bloch sphere that appears
later.

For our purposes the action of the CSIGN gates is most
easily represented by its action on Pauli operators. It is hence
convenient to represent the state of two cubes in the basis of
products of Pauli operators. Let σ0 = I,σ1 = X,σ2 = Y , and
σ3 = Z. Any two-cube operator can be represented as

A =
∑
ij

Aijσi ⊗ σj . (9)

It is convenient to represent the set of coefficients Aij as a
4 × 4 matrix where the matrix elements refer to the coefficient
of the Pauli operator expansion as follows:

⎛
⎜⎜⎝

II IX IY IZ

XI XX XY XZ

YI YX YY YZ

ZI ZX ZY ZZ

⎞
⎟⎟⎠ ,

e.g., the row-1, column-2 matrix element is the coefficient of
the I ⊗ X operator in the expansion. For example, an explicit
calculation shows that the quantum Bell state 1/

√
2(|00〉 +

|11〉) has the expansion

1

4

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

whereas a product state of two cube states is given by

1

4

⎛
⎜⎜⎝

1 x2 y2 z2

x1 . . .

y1 . . .

z1 . . .

⎞
⎟⎟⎠ ,

where the “.” elements are given by the product of the first
element of the row, and the first element of the column,
e.g., element (2,3) in the matrix is given by x1y2. The “pure
product” states in the cube picture are ones where all the
x1,x2,y1,y2, . . ., are either +1 or −1. In many cases we will
ignore normalisation factors such as 1/4.

This representation provides one way of seeing that the Bell
state 1/

√
2(|00〉 + |11〉) is separable in the cube picture—it

is given by a uniform average of all cube-pure product states
that satisfy the constraint x1 = x2,y1 = −y2,z1 = z2 (this then
extends to all the Bell states, because they are related to each
other by Pauli unitaries on one side).

Most of the calculations involving cubes in this paper will
involve first ensuring that the output of a noisy CSIGN leads to a
valid general theory on the cube states. The arguments proceed
along the following lines. Suppose that you have a product of
two cube-states input into a two-cube linear operation such
as a CSIGN. If we want the theory to be self-consistent, we
have to make sure that the output state from this process gives
a valid probability distribution for the set of allowed X,Y,Z

measurements. A CSIGN acts in the following way upon a

product input state:

1

4

⎛
⎜⎜⎝

1 A B C

x xA xB xC

y yA yB yC

z zA zB zC

⎞
⎟⎟⎠

→ 1

4

⎛
⎜⎜⎝

1 zA zB C

xC yB −yA x

yC −xB xA y

z A B zC

⎞
⎟⎟⎠ .

On such an output state, what is the probability of measuring
Pauli product P ⊗ Q, and getting, say, the outcome +1 for P

and −1 for Q? Well we use the usual Born rule:

1
4 tr[(I + P ) ⊗ (I − Q)]ρ, (10)

which is just given by an appropriate sum of four elements
from the matrix of coefficients representing the output state.
So if, for example, P = X and Q = X, then we just take a
linear combination of the top-left-corner matrix elements:

1
4 (1 + xC − zA − yB). (11)

If the theory is self-consistent, then we need all expressions
such as this to be valid probabilities, and so they cannot be
negative. In Appendix B we show that without adding noise,
the CSIGN gate acting on any state spaces larger than the
Bloch sphere leads to negative values for such expressions.
As cube separability implies positive probabilities for Pauli
measurements, this means that the noiseless CSIGN cannot be
a cube-separable operation.

VI. NOISE MODELS AND CORRESPONDING BOUNDS
FOR CUBE SEPARABILITY

The arguments of Appendix B show that a CSIGN gate
cannot be cube separable, as it does not even lead to positive
output states (for the allowed Pauli measurements) when acting
upon input product cube states. However, as we shall see, it can
often be made cube separable by the addition of noise. In this
section we consider a few standard noise models on the CSIGN

gate, and bound or compute the noise levels required to make it
cube separable. One might hope that because of example (7),
there may be situations involving natural noise models for
which the consideration of cube separability may lead to tighter
upper bounds on nonclassical computation thresholds.

However, we shall see that in all the cases considered in
this section the upper bounds derived are either the same or
worse than those that can be derived by considering quantum
separability, or have not been proven to be lower by us. In
fact for magic state architectures (which were the primary
motivation for considering the cubes anyway) better bounds
can in many cases be obtained using the GK theorem [30].

To show that a given (noisy) gate is cube separable, one
would have to show that all possible combinations of input
product-pure cube states (the corners of the cubes) are taken
to output states that are cube separable. However some of the
noise models that we will consider have certain symmetry
properties which mean that it is sufficient to consider only
one input cube pure product state. In particular, suppose that
we have a CSIGN gate U acting on a pair of pure cube states
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ρ and some CP map error E acting with probability λ, such
that under the total action of the noisy gate the output state is
cube separable:

(1 − λ)U (ρ) + λE(U (ρ)) ∈ (cube separable).

Now suppose that E is such that it commutes with any local
Pauli product unitary transformation Q, as well as local
products of phase gates S := |0〉〈0| + i|1〉〈1|, both acting by
conjugation. Then it will be the case that

(1 − λ)QU (ρ)Q† + λE(Q(U (ρ))Q†) ∈ (cube separable),

(1 − λ)SU (ρ)S† + λE(S(U (ρ))S†) ∈ (cube separable),

because both Q and S are Clifford unitaries and hence
preserve the cubes. Now we can move Q through the CSIGN

U to get another Pauli transformation P , and we can move S

through the CSIGN simply because it commutes:

(1 − λ)U (PρP †) + λE(U (PρP †)) ∈ (cube separable),

(1 − λ)U (SρS†) + λE(U (SρS†)) ∈ (cube separable),

where P is some other Pauli product. Now by choosing
sequences of P gates and S appropriately, we can take an
cube extremal state to any other.1 This hence means that if
λ is strong enough to make one particular input cube-pure
product state separable, it can make any cube state separable,
provided that E satisfies the required commutation properties.
If E corresponds to local or joint dephasing or depolarization
noise (as defined later), then it has these properties, and so for
those noise models we shall only consider what happens to
one particular product input cube state.

Despite this simplification the problem is still not easy in
general, because deciding whether there is a LHV model for a
given joint probability distribution is not straightforward [31].
In the relevant case of two parties, three measurements, and
two measurement outcomes, a complete but large list of Bell
inequalities has been obtained [32]. However, we shall find that
for most of the noise models that we examine, the problem can
be completely or almost completely solved analytically—in
fact in most cases the key constraint is not one of locality, but
of having a valid probability distribution for the outcomes.

(i) Error-per-gate noise on two particles undergoing
CSIGN. The minimal error rate λ required satisfies 50% � λ �
20%.

In this noise model we apply a perfect CSIGN and then
afterwards with probability p apply a general quantum CP map
of our choosing—we may be as adversarial as possible within
the set of two-qubit CP maps. It can be seen that p = 50% noise
is sufficient. To see that it is sufficient, consider dephasing one
particle completely prior to performing the CSIGN gate—this
corresponds to 50% Z noise on one arm. This takes that particle
to a mixture of |0〉 and |1〉, which means that the second particle
will be probabilistically rotated by Z. As Z’s preserve the cube
this means that the overall operation will be cube separable.

1For instance starting with the cube Bloch vector (1,1,1) we
can cycle through (1,1,1) →X (1,−1,−1) →Y (−1,−1,1) →X

(−1,1,−1) →S (−1,−1,−1) →X (−1,1,1) →Y (1,1,−1) →X

(1,−1,1).

We may also show that at least 20% noise is necessary
using the following argument. Consider the cube-extremal
state given by Bloch vector (1,1,1). We may write this state as
a linear combination of the density matrices T and T̄ , which
we define as the density matrices corresponding to the magic
states |T 〉 and |T̄ 〉, respectively. The expression is

1

2
(I + X + Y + Z) =

(√
3 + 1

2

)
T −

(√
3 − 1

2

)
T̄

= wT − (w − 1)T̄ ,

where we define w :=
√

3+1
2 . Similar expressions hold for the

other cube extrema, albeit with different magic states. So the
tensor product of two of cube extrema will be of the form

w2TA ⊗ TB + (w − 1)2T̄A ⊗ T̄B

−w(w − 1)TA ⊗ T̄B − w(w − 1)T̄A ⊗ TB

for two choices of magic state TA,TB . Hence any CP map
acting upon the product of cube extrema inputs will give an
expression of the form

w2ρ1 + (w − 1)2ρ2 − w(w − 1)ρ3 − w(w − 1)ρ4, (12)

where ρ1, . . . ,ρ4 are quantum states. Note that both w and
w − 1 are positive, and so the maximum “probability” for a
measurement outcome on Eq. (12) will be no greater than

w2 + (w − 1)2 = 2. (13)

Equation (11) with the choice x = y = z = A = B = −C =
1 gives a negative probability of −1/2 for the pure CSIGN , so
at the very least we need the noise to be sufficiently strong to
make this positive. Now as the noise can at most balance this
out by mixing in a “probability” of w2 + (w − 1)2 = 2, we
require that

(1 − λ)
(−1

2

) + λ(2) � 0 ⇒ λ � 1
5 = 20%.

We have not been able to obtain an exact value for the
error-per-gate noise required to make CSIGN cube separable.
However these values should be compared to the noise required
for the CSIGN to become quantum separable, which is 50% [10].

(ii) Joint depolarizing on output. A noise level of λ � 2/3
is necessary and sufficient.

Joint depolarizing noise on a two-cube-operator acts is
parametrized by a probability λ and acts as ρ → (1 − λ)ρ +
λtr{ρ}I/4 immediately after the action of an ideal CSIGN .
In terms of the matrix representations that we have been
using above, this transformation is represented as A00 → A00,
otherwise Aij 	=00 → (1 − λ)Aij . It can be shown that λ = 2/3
noise is both necessary and sufficient. Necessity follows
from Eq. (11): picking input cubes with x = −C,z = A,y =
B and then applying the depolarizing noise, we find that
requirement (11) is equivalent to 1 − 3(1 − λ) � 0, and hence
λ � 2/3. That this level of noise leads to a system with a LHV
is shown in the appendix by considering instead an input state
where x = y = z = A = B = C = 1.

This is essentially the same as ordinary quantum case—as
2/3 total joint depolarisation is required to take an EPR pair to
a separable state. Hence the consideration of cube separability
leads to no reduction in the upper bounds.
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(iii) Local depolarizing noise. An error rate of p � 2 −√
2 ∼ 60% is necessary and sufficient.
Local depolarizing of strength λ acts as ρ → (1 − λ)ρ +

λtr{ρ}I/2 independently on each particle. In terms of the Pauli
coefficients Aij this corresponds to A00 → A00, A0j → (1 −
p)A0j for j 	= 0, Ai0 → (1 − p)Ai0 for i 	= 0, and Aij →
(1 − p)2Aij otherwise. Applying condition (11) for CSIGN

acting upon input pure cube states with x = −C,z = A,y = B

followed by such noise gives

1 − 2(1 − p) − (1 − p)2 � 0 ⇒ p � 2 −
√

2 ∼ 60%.

That this level of noise leads to a system with a LHV is shown
in the Appendix A by considering instead an input state where
x = y = z = A = B = C = 1–the relevant LHV is the last
one presented in Appendix A.

This figure is worse than the local depolarizing rate required
to turn an arbitrary entangled pure two-qubit state into a
separable state, which using the PPT criterion [29] can be
easily shown to be p = 1 − 1√

3
= 42.2%.

(iv) Local dephasing noise. An error rate of p � 1 − 1√
2

∼
30% is necessary and sufficient.

Local dephasing of strength p implements a Z with
probability p on each particle independently. In terms of the
matrix representation that we have been using above, this is
equivalent to Aij → Aij whenever i ∈ {0,3} and j ∈ {0,3},
Aij → (1 − 2p)2Aij whenever i ∈ {1,2} and j ∈ {1,2}, and
otherwise Aij → (1 − 2p)Aij . Applying condition (11) for
CSIGN acting upon input pure cube states x = −C,z = A,y =
B followed by such dephasing noise hence leads to the
condition

1 − 2(1 − 2p) − (1 − 2p)2 � 0 ⇒ p � 1 − 1√
2

∼ 30%.

That this level of noise leads to a system with a LHV is
shown in Appendix A by considering instead an input state
where x = y = z = A = B = C = 1—the relevant LHV is
the penultimate one presented in Appendix C.

Unfortunately the value of p � 1 − 1√
2

∼ 30% is no tighter
than can be obtained by considering quantum separability:
it is precisely the same local dephasing rate as is required
make the CSIGN a quantum-separable operation (we omit the
details to show this, but it can be shown by considering the
CJ state of the noisy operation, which turns out to be locally
equivalent to a separable Bell diagonal state in an encoded
basis |0̄〉 = |00〉,|1̄〉 = |11〉).

VII. NOISY MEASUREMENTS OR PREPARATIONS:
RESCALED BLOCH SPHERE

An alternative scenario (and a very realistic one) in which
measurements can be restricted is when they are noisy. In this
section we shall find that admitting noise on the measurements
allows the CSIGN gate to become separable (with respect to
the redefined state space) with slightly less noise than is
required for quantum separability. The differences are slight
[Figs. 3, 5), but do reveal some interesting behavior. Firstly,
one can consider adding noise to preparations instead of
measurements, but we find that in contrast more noise is
required. Secondly, in the case of local dephasing noise we find

that the noisy CSIGN cannot be a valid dynamical operation (in
a generalized theory sense) for the non-quantum-state spaces
unless the dephasing is maximal.

First let us establish the state spaces that we consider.
Consider a given projective measurement {|e〉〈e|,|ē〉〈ē|}, and
suppose that immediately prior to it the particle being
measured is depolarized with probability p. The fact that the
measurement is noisy means that a longer Bloch vector can
be admitted than in the noise-free setting. A qubit matrix ρ

(perhaps from outside the Bloch sphere) will be admissible for
a noisy version of the measurement if

(1 − p)tr{|e〉〈e|ρ} + p

2
� 0,

(14)
(1 − p)tr{|ē〉〈ē|ρ} + p

2
� 0,

for all possible measurement directions. In the case of qubits
this condition translates to the requirement that the Bloch
vector v representing the state ρ be valid in the noisy setting if

v = Rv′ (15)

defines a valid vector v′ in the noise-free setting, where R is
given by

R = 1

1 − p
. (16)

This simply means that the new noisy valid set is equal
to the noise-free valid set enlarged by a factor R > 1.
Actually the rescaling factor R can be used to describe noise
in the preparation of qubits too: if we have R < 1 then
this corresponds to preparing qubits and then depolarizing
them individually at a rate 1 − R [i.e., ρ → Rρ + (1 −
R)I/2]. Hence we have two types of noisy modifications
of the Bloch sphere: if R > 1 we interpret this as depo-
larizing noise just before the measurements at rate p =
(R − 1)/R, if R < 1 we interpret this as depolarizing noise
in the qubit preparations at rate 1 − R. It will be convenient
for us to use the following notation:

Definition: Rescaling map. Let TR denote the linear map
corresponding to rescaling parameter R. Provided that R > 0
this map is invertible, and we denote the inverse by T −1

R .
With these modifications of the single particle state space,

our goal is to calculate the amount of noise required before an
entangling gate such as the CSIGN C becomes nonentangling
in the modified picture. The PPT criterion can be applied to
answer this question, because a two-particle operator AB will
be separable with respect to an R rescaled single particle
space iff T −1

R ⊗ T −1
R (AB) is both positive and PPT. Hence

we need to work out the minimal noise N required before all
the expression

T −1
R ⊗ T −1

R ◦ N ◦ C ◦ TR ⊗ TR(φ ⊗ ψ) (17)

is both positive and PPT for all possible input pure quantum
product states φ ⊗ ψ .

Appendix C gives some symmetry arguments that simplify
this problem for local and joint depolarizing models, and for
local dephasing models. In all these cases numerical search
enabled us the minimal noise to make the outputs positive
and PPT. We expect from the numerics that the choices for
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FIG. 2. Joint depolarization noise required to remove CSIGN

entangling power with respect to rescaled Bloch spheres. R = 1
corresponds to no rescaling. We see that adding noise to the
measurements in the device (R > 1) allows the CSIGN gate to become
separable with respect to the rescaled state space with slightly less
noise.

φ and ψ that need the most noise to give output PPT and
positive states can be chosen to be either 1/2(I + X) or
1/2(I + Z), however we have not yet been able to confirm this
analytically.

(i) Joint depolarizing. We numerically obtained the graphs
in Figs. 2 and 3 for the tradeoff between rescaling and noise on
the CSIGN required to ensure rescaled separability. The graphs
show that at a rescaling of R = 1.73, corresponding to a local
depolarization rate of approx 42.2% before measurements,
joint depolarization rates on the CSIGN of 53.6%, are sufficient
to ensure rescaled separability. Hence despite the fact that
the noisy CSIGN gates are slightly entangling, the noise on
the measurements is sufficient to eradicate any effective
entanglement.

(ii) Local depolarizing. We numerically obtained the graphs
in Figs. 4 and 5 for the tradeoff between rescaling and
noise on the CSIGN required to ensure rescaled separability.
The graphs show that for rescaling of R = 1.16, corre-
sponding to a local depolarization rate of approximately
13.8% before measurements, a local depolarization rate of
39.5%, a is sufficient to ensure rescaled separability. Hence
despite the fact that the noisy CSIGN gates are slightly
entangling (one can see from the figures that the gate
noise is lower than the value at R = 1), the noise on
the measurements is sufficient to eradicate any effective
entanglement.

(iii) Local dephasing. Interestingly it can be shown that for
R 	= 1 only complete local dephasing (i.e., applying local Zs
with independent 50% probability on each side) is sufficient to

FIG. 3. Joint depolarization with rescaled Bloch sphere. Here
Fig. 2 is replotted with R converted to the equivalent depolarization
rate on either preparation (R < 1) or measurement (R > 1). The
curve that starts lower corresponds to R > 1, the one starting higher
to R < 1. The vertical axis labels the noise required on the CSIGN

gate to remove its entangling power with respect to the rescaled
Bloch sphere.

make the CSIGN separable with respect to rescaled cubes. If we
choose φ = 1/2(I + X) and ψ = 1/2(I + Z) we find that the
output of Eq. (17) is proportional to (we drop normalization):

I ⊗ I + (1 − 2p)RX ⊗ I + I ⊗ Z + (1 − 2p)

R
X ⊗ Z,

where p is the probability of locally applying a Z operator. All
terms in this operator commute, so it is easy to diagonalize.
Two of the eigenvalues are

(1 − 2p)

(
R − 1

R

)
,

(18)

(1 − 2p)

(
1

R
− R

)
,

which cannot both be positive if p 	= 1/2 unless R = 1.
This is very much analogous to our later findings for
local dephasing on rescaled cubes. In fact, the positivity
of Eqs. (18) is necessary just for positivity for the output.
Hence for R 	= 1 we cannot even have a valid proba-
bilistic theory unless the local dephasing on the CSIGN is
total.

VIII. RESCALED CUBES

The trade-off investigated in the previous section can also
be explored in the situation where measurements are both
restricted in direction and noisy. In magic-state architectures
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FIG. 4. Local depolarization noise required to remove CSIGN

entangling power with respect to rescaled Bloch spheres. R = 1
corresponds to no rescaling. We see that adding noise to the
measurements in the device (R > 1) allows the CSIGN gate to become
separable with respect to the rescaled state space with slightly less
noise.

it could for example be the case that a small amount of noise
on the measurements or preparations could reduce the noise
required to make the CSIGN gate separable with respect to
the rescaled cubes. The noise models that we consider in this
section are mixtures of Pauli operators, so by the arguments
presented earlier it is sufficient to consider only one such input
state.

There are two values of the rescaling parameter that
have particular significance: values of R � 1/

√
2 represent

a rescaled cube that contain all the privileged pure “magic
states” along the “T ” and “H” directions [21], and values of
R � 1/

√
3 represent a rescaled cube that contain all the pure

magic states in the “T ” directions. Hence we will pay special
attention to R values of 1/

√
2 and 1/

√
3. A rescaling value

of R = 1/
√

3 also has further significance: it represents the
local depolarizing rate required to disentangle (in the usual
quantum setting) a Bell state. Hence as pure Bell states are
cube-separable, this means that for 1 � R > 1/

√
3 our device

can in principle also have access to entangled Bell diagonal
states.

A. Local depolarization for rescaled cubes

To analyze local depolarization of rescaled cubes consider
the sequence of transformations: (A) a rescaling by R > 0
(corresponding to noise on the measurements or preparations),
(B) followed by a CSIGN, (C) followed by a local noisy
depolarization operation (characterized by a rescaling r < 1),
(D) followed by undoing the rescaling R. Let us pick two input
pure cube states with Bloch vectors (x,y,z) and (A,B,C) to go

FIG. 5. Local depolarization with rescaled Bloch sphere. Here
Fig. 4 is replotted with R converted to the equivalent depolarization
rate on either preparation (R < 1) or measurement (R > 1). The
curve that starts lower corresponds to R > 1, the one starting higher
to R < 1. The vertical axis labels the noise required on the CSIGN

gate to remove its entangling power with respect to the rescaled
Bloch sphere.

into this sequence of transformations. This gives the following
sequence of operators:⎛

⎜⎜⎝
1 RA RB RC

Rx R2xA R2xB R2xC

Ry R2yA R2yB R2yC

Rz R2zA R2zB R2zC

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

1 R2zA R2zB RC

R2xC R2yB −R2yA Rx

R2yC −R2xB R2xA Ry

Rz RA RB R2zC

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

1 rR2zA rR2zB rRC

rR2xC r2R2yB −r2R2yA r2Rx

rR2yC −r2R2xB r2R2xA r2Ry

rRz r2RA r2RB r2R2zC

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

1 rRzA rRzB rC

rRxC r2yB −r2yA r2x/R

rRyC −r2xB r2xA r2y/R

rz r2A/R r2B/R r2zC

⎞
⎟⎟⎠ .

Our goal is hence to work out for a fixed value of R the
maximum r (i.e., the minimal local depolarization) required
before the last state in the sequence is cube separable for a given
choice of x,y,z,A,B,C ∈ ±1. Let us pick x,y,z,A,B,C =
+1. The final state in the sequence becomes⎛

⎜⎜⎝
1 rR rR r

rR r2 −r2 r2/R

rR −r2 r2 r2/R

r r2/R r2/R r2

⎞
⎟⎟⎠ . (19)
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FIG. 6. (Color online) The horizontal axis corresponds to R, the
vertical to r . The decreasing curve corresponds to Eq. (20), the
increasing curve to (21). The valid region must lie below both
these curves—above them gives negative probabilities of outcomes.
The dotted line is the line R = r .

Again we need to make sure that all probabilities are positive.
We numerically identified the following two probabilities as
being important. Consider the probability of getting the down
outcome on both sides upon measuring X ⊗ Y :

1
4 (1 − r2 − 2rR) � 0 ⇒ √

1 + R2 − R � r (20)

and the probability of getting the up on the first particle and
down on the second particle upon measuring X ⊗ Z:

1

4

(
1 + rR − r − r2

R

)
� 0

⇒ R − 1 +
√

(R − 1)2 + 4/R

(2/R)
� r. (21)

Both inequalities are plotted in Fig. 6. The first bound
decreases monotonically as R increases. Hence we know
that choosing R > 1 cannot lead to a tightening of the
bound that we have already obtained for R = 1. Hence we
may restrict our attention to rescaling factors corresponding
to R � 1. The peak r that satisfies both these inequalities
corresponds to the intersection of the two curves, and is given
by 1 − r = 39.2919%, at 1 − R = 47.9927%. However, the
maximal r local-depolarizing level at which the CSIGN is
still quantum- is 1 − r = 1 − 1√

3
= 42.2649%. Hence even

if 1 − r = 39.2919% could correspond to a valid LHV model
(which we do not believe from numerical investigations), the
reduction in the fault tolerance upper bound would be marginal
and comes at the cost of a fair amount of noise on the qubit
preparations.

We in fact believe from numerical investigation that Eq. (20)
corresponds to a valid LHV model only for R �≈ 0.544 9335,

corresponding to an r value of 1 − r = 40.609 5268%. How-
ever the R values of 1/

√
2,1/

√
3 are covered by this region.

At R = √
1/2 ≈ 0.7071 we require a local depolarization

rate of 1 − r = 1 − (
√

3 − 1)/
√

2 ≈ 48.24%, and at R =√
1/3 ≈ 0.5773 we require a local depolarization rate of

1 − r = 1 − 1/
√

3 ≈ 42.27%. This last figure means that a
stabilizer based computation with access to pure magic states
in the T direction becomes classically simulatable if the CSIGN

gates and Pauli qubit preparations are subject to 42.27%
local depolarization. This figure is effectively worse than
bounds obtainable from ordinary quantum separability: at local
depolarization rates of 1 − r = 1 − 1/

√
3 the CSIGN already

loses the ability to quantum entangle input qubit states.

B. Joint depolarization for rescaled cubes

For a total joint-depolarizing noise model the equivalent of
Eq. (19) is

⎛
⎜⎜⎜⎝

1 rR rR r

rR r −r r/R

rR −r r r/R

r r/R r/R r

⎞
⎟⎟⎟⎠ . (22)

The probability of measuring down,down for a measurement
of X ⊗ Y is given by

1

4
(1 − r − 2rR) � 0 ⇒ r � 1

2R + 1
. (23)

Numerical investigations helped us to identify this as a key
inequality. Another useful (but not as important) inequality
is the probability of getting up,down upon measurement of
Y ⊗ Z. This is given by

1

4
[1 − r − (r/R) + rR] � 0 ⇒ r � 1

1 + (1/R) − R
. (24)

Both these inequalities are plotted in Fig. 7. Equation (23)
shows that we may only reach cube separability with less noise
if R < 1. Numerics show that the inequality (23) is achievable
by a LHV model for values of R down to 1 − R = 1 − 1√

2
≈

29.29%, i.e., a noise value of

r = 1√
2 + 1

⇒ λ = 1 − 1√
2 + 1

≈ 58.58%. (25)

This value of R means that all pure magic states are admitted.
Hence for a stabilizer based computation with access to pure
magic states, a local depolarization rate on Pauli preparations
of 29.29% and a joint depolarization rate of 58.58% on
the CSIGN gates are sufficient to make the device efficiently
classically simulatable. We can also allow the machine access
to slightly entangled noisy Bell states: as Bell states are
separable with respect to unscaled cubes, Bell states locally
depolarized at a rate of 1 − R will be separable with respect
to the rescaled cubes. However, local depolarization rates of
1 − 1/

√
2 are not sufficient (1 − 1/

√
3 is required) to make a

Bell state quantum separable.
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FIG. 7. (Color online) The horizontal axis corresponds to R,
the vertical to 1 − λ = r , where λ is the joint depolarization rate.
The decreasing curve corresponds to Eq. (23), the increasing curve
to (24). The valid region must be below both these curves—above
them gives negative probabilities of outcomes. The intersection point
of the two curves is not achievable by a LHV model according to
numerical investigations. The intersection point is given by (R,r) =
[1/

√
3,

√
3/(2 + √

3)] ≈ (0.58,0.46).

C. Local dephasing for rescaled cubes

It turns out that for any R 	= 1 the noisy CSIGN fails to be
separable with respect to the rescaled cubes. The equivalent of
Eq. (19) is

⎛
⎜⎜⎜⎝

1 (1 − 2p)R (1 − 2p)R 1

(1 − 2p)R (1 − 2p)2 −(1 − 2p)2 (1 − 2p)/R

(1 − 2p)R −(1 − 2p)2 (1 − 2p)2 (1 − 2p)/R

1 (1 − 2p)/R (1 − 2p)/R 1

⎞
⎟⎟⎟⎠ .

There is no LHV model that can match such a state—any
product decomposition must have only 1s in the corner
elements, but then the (1,2) and (4,2) elements must be
identical, which they are not if R 	= 1, unless the dephasing
is total (i.e., p = 1/2). Another way of seeing this is that for
measurements of Z ⊗ X giving down,up or down,down the
probabilities are given by

1
4 [1 − 1 + (1 − 2p)R − (1 − 2p)/R] � 0, (26)

1
4 [1 − 1 − (1 − 2p)R + (1 − 2p)/R] � 0. (27)

These inequalities cannot be satisfied if R 	= 1 unless the
dephasing is total (i.e., p = 1/2). As these are conditions for
a probability distribution, this means that no valid generalized
theory can be constructed on R 	= 1 rescaled Bloch cubes for
a CSIGN with any partial amount of local dephasing.

IX. CONCLUSIONS AND DISCUSSION

We have explored the consequences of redefining the single-
particle-state space as the set of normalized positive operators
with respect to restricted measurements. This modification
allows the consideration of nonquantum states and a different
notion of entanglement, which can then be fed into classical
simulation methods for noisy quantum computers that rely on
limited entanglement, such as [10].

Measurements restricted to Pauli axes give a “cube” state
space. We find that it is possible to write down noisy
quantum gates that are (a) quantum entangling and (b) non-
Clifford operations, but are separable with respect to the
modified cube-state space. Hence the method appears to
provide efficiently classically simulatable regimes that are not
covered straightforwardly by existing methods (all qubit states,
including non-Clifford ones, are contained within the cube).
The operations represented by the Choi-Jamiolkowski states
in Eq. (7) are also not entanglement breaking, and so they also
can certainly generate multiparticle entanglement. However, it
may be the case that repeated application of such operations
cannot generate arbitrary long-range quantum entanglement.
The precise differences in multiparticle quantum-entangling
abilities of cube-separable operations are something that
warrant further investigation. Bell states are cube separable
and so, in principle, they can be included as a resource in the
device, and this may help give the device an ability to generate
multiparty entanglement.

The approach has strong links to studies of generalized
theories and the issue of nonlocality and noncontextuality
versus efficient classical simulation. Indeed most of the
technical calculations presented in this paper can be seen as
attempts to construct a nonquantum theory where the dynamics
are taken from noisy quantum theory but the single-particle-
states spaces are different to quantum. For some noise models
we find that we cannot modify the quantum-state space for
anything less than maximal noise on the quantum dynamics
(e.g., for the locally dephased CSIGN gate).

One motivation for this work was to understand whether
this approach can be useful for deriving upper bounds to
noisy nonclassical computation thresholds. In relation to cube
separability, examples such as the operations represented by
Eq. (7), and the fact that pure Bell states are cube separable,
suggest that for some noise models it should be possible to
obtain tighter bounds. However, for machines restricted to
Pauli measurements, and for the natural noise models that we
have considered, there is little or no demonstrable reduction
in the threshold upper bounds that can be obtained via the
HN method or application of the Gottesman-Knill theorem.
Nevertheless, the approach may be of conceptual interest
as it provides an alternative view of the nonclassicality of
magic-state quantum computers—instead of magic-state or
conventional quantum entanglement being viewed as the non-
classical resource, the ability to generate nonlocal correlations
or nonpositive dynamics of the cubes is seen as essential to the
nonclassicality.

In the case where measurements are not restricted to a par-
ticular direction but they are slightly noisy, we have obtained
curves showing the trade-off between noise on measurements
and the gate noise required to make the CSIGN separable with
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respect to the rescaled Bloch sphere. In these cases we do
observe that adding small amounts of depolarization noise to
the measurements does require less noise on the CSIGN gates
to induce separability, although the effect is slight (e.g., Figs. 3
and 5). However it is interesting to note that adding noise to
qubit preparations does not have the same effect, in contrast it
requires more noise on the CSIGN gates. It is also interesting to
note that for rescaling factors R 	= 1 a locally dephased CSIGN

gate cannot give dynamics in a valid generalized probabilistic
theory unless the dephasing is maximal.

Many of the questions raised can be naturally generalized to
higher dimensions: Our restricted measurement sets have been
constructed by selecting a single measurement and generating
a full set using a group of single-particle unitaries, and this
process can extend naturally to higher dimensions. In particular
when the sets of measurements are both tomographically
complete and “operator compatible” it will also hold that
nonclassical computation requires the ability to generate non-
local correlations. This applies to all fault tolerance schemes
that use only generalized Pauli measurements in higher
dimensions.
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APPENDIX A: RELEVANT LOCAL HIDDEN
VARIABLE MODELS

In this section we mostly ignore normalization factors, and
represent product cube states by notation such as⎛

⎜⎜⎝
1 1 1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠ , (A1)

where the dots “.” indicate that the element is the product of
the element at the beginning of the row and top of the column.
We construct a number of LHVs in sequence. Later LHVs
often are built using earlier ones. Most of these models were
developed by trial and error in order to match the inequalities
needed for the output of the noisy CSIGN gate to give valid
probabilities for Pauli measurements:

(1)⎛
⎜⎜⎝

1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠

+1

2

⎛
⎜⎜⎝

1 −1 −1 −1
−1 . . .

−1 . . .

−1 . . .

⎞
⎟⎟⎠ ,

(2)

⎛
⎜⎜⎝

1 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠ ∝

∑
q,r,s,t∈±1

⎛
⎜⎜⎝

1 1 −1 q

1 . . .

−1 . . .

r . . .

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

1 −1 1 s

−1 . . .

1 . . .

t . . .

⎞
⎟⎟⎠ ,

(3)

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ ∝

∑
p,q,r,s∈±1

⎛
⎜⎜⎝

1 p q r

−q . . .

−p . . .

s . . .

⎞
⎟⎟⎠ ,

(4) Joint depolarizing noise LHV:

⎛
⎜⎜⎝

1 1/3 1/3 1/3
1/3 1/3 −1/3 1/3
1/3 −1/3 1/3 1/3
1/3 1/3 1/3 1/3

⎞
⎟⎟⎠

= 1

3

⎛
⎜⎜⎝

1 1 1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠ + 2

3

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(5) LHVs required for later local dephasing model:

⎛
⎜⎜⎝

1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠ + 1

2

⎛
⎜⎜⎝

1 1 1 1
−1 . . .

−1 . . .

1 . . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠ + 1

2

⎛
⎜⎜⎝

1 −1 −1 1
1 . . .

1 . . .

1 . . .

⎞
⎟⎟⎠ ,
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(6) LHV for local dephasing. The following is a valid LHV provided that 1 − 2(1 − 2p) − (1 − 2p)2 � 0 is satisfied:⎛
⎜⎜⎜⎝

1 1 − 2p 1 − 2p 1

1 − 2p (1 − 2p)2 (1 − 2p)2 1 − 2p

1 − 2p (1 − 2p)2 (1 − 2p)2 1 − 2p

1 1 − 2p 1 − 2p 1

⎞
⎟⎟⎟⎠

= [1 − 2(1 − 2p) − (1 − 2p)2]

⎛
⎜⎜⎜⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞
⎟⎟⎟⎠ + (1 − 2p)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ (1 − 2p)2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

(7) LHV for local depolarizing. The following is a valid LHV provided that 1 − 2(1 − p) − (1 − p)2 � 0 is satisfied:⎛
⎜⎜⎝

1 1 − p 1 − p 1 − p

1 − p (1 − p)2 (1 − p)2 (1 − p)2

1 − p (1 − p)2 (1 − p)2 (1 − p)2

1 − p (1 − p)2 (1 − p)2 (1 − p)2

⎞
⎟⎟⎠

= [1 − 2(1 − p) − (1 − p)2]

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ + [(1 − p) − (1 − p)2]

×

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ + 3(1 − p)2

⎛
⎜⎜⎝

1 1/3 1/3 1/3
1/3 1/3 −1/3 1/3
1/3 −1/3 1/3 1/3
1/3 1/3 1/3 1/3

⎞
⎟⎟⎠ .

APPENDIX B: NOISELESS CSIGN IS NOT A
CUBE-POSITIVE OPERATION FOR STATE

SPACES BIGGER THAN THE BLOCH SPHERE

Let us pick input pure cube states x = 1,C = −1,z = A =
1,y = B = 1 for a noiseless CSIGN gate. Applying this choice
to Eq. (11) gives −1/2, which is not a valid probability. So
the theory is not self-consistent if the CSIGN is admitted as a
two-cube operation acting on all cube states. This tells us that
we would need to add noise to the CSIGN not only to make
the output cube separable, but even just to make the output
correspond to a valid probability distribution when measured
using Pauli operators.

In fact the same argument can be made to go a little further.
One might consider more general situations in which other sets
of measurements (in addition to the X,Y,Z measurements) are
used to define the set of allowed operators—perhaps by pick-
ing an additional projective measurement in some direction
and considering what measurements would be obtained by
allowing the Clifford group (or another group containing it)
to act upon it by conjugation. This group could then be the
allowed single qubit unitaries in a proposal for a quantum
computer. The set of measurements obtained using this group
would then define a set of “states” that encloses the Bloch
sphere. However, as the following argument shows, if this set

of states is required to (a) contain the Bloch sphere within
it, and (b) Pauli measurements are allowed, then the only
consistent set allowing the CSIGN gate is the Bloch sphere
itself. Equation (11) gives the requirement

1
4 (1 + xC − yB − zA) � 0 (B1)

as this needs to be a valid probability. But let us fix V =
(C,−B,−A) to be any unit vector from the Bloch sphere (as
our set of allowed states contains the Bloch sphere, we can
do this, as A,B,C can be the components of any unit vector).
Denoting v = (x,y,z), we have

1 + v · V � 0. (B2)

But the only way that this can be true for all possible choices of
V is if v is a vector of less than unit norm, i.e., the Bloch sphere.
Hence we see that the CSIGN gate cannot output only positive
states for any set of single particle states that is strictly bigger
than the Bloch sphere, and hence cannot even be separable.

APPENDIX C: RESCALED BLOCH SPHERE SYMMETRY
SIMPLIFICATIONS

Consider the following sequence of transformations: (A)
pick two pure quantum states from the Bloch sphere ψ and
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φ, (B) rescale by a factor R > 0 in accordance with the
noise on the measurements or preparations, (C) apply a CSIGN

gate C, (C) apply the noise model N under consideration,
(D) apply the inverse of the rescaling. The total sequence
is: (T −1

R ⊗ T −1
R ) ◦ N ◦ C ◦ (TR ⊗ TR)(ψ ⊗ φ). Local unitaries

after this transformation will not affect the positivity or PPT
characteristics of the output.

Let us consider applying local rotations about the Z axis on
each particle. All noise models that we will consider commute
(as CP maps) with the application of rotations about the Z

axis—we will only consider local depolarizing, dephasing, or
joint depolarizing. As local rotations about the Z axis also

commute with T −1
R , TR , and the CSIGN gate, this means the

rotations can be pushed all the way through onto the input
states. Hence we are free to pick ψ and φ up to arbitrary
rotations about the Z axis. We will hence use this freedom to
choose input pure states with no Y component.

Under the noise models each Pauli product term in the
expansion will acquire a factor 0 � r � 1, which can in
principle vary for different Pauli terms. However, for the
purposes of the following argument we may simply set it
to be constant, as it would be for the joint depolarization
noise model. Then the sequence of transformations will be
represented as

⎛
⎜⎜⎝

1 R cos(φ) 0 R sin(φ)
R cos(θ ) R2 cos(θ ) cos(φ) 0 R2 cos(θ ) sin(φ)

0 0 0 0
R sin(θ ) R2 sin(θ ) cos(φ) 0 R2 sin(θ ) sin(φ)

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

1 R2 sin(θ ) cos(φ) 0 R sin(φ)
R2 cos(θ ) sin(φ) 0 0 R cos(θ )

0 0 R2 cos(θ ) cos(φ) 0
R sin(θ ) R cos(φ) 0 R2 sin(θ ) sin(φ)

⎞
⎟⎟⎠

→

⎛
⎜⎜⎜⎝

1 rR2 sin(θ ) cos(φ) 0 rR sin(φ)

rR2 cos(θ ) sin(φ) 0 0 rR cos(θ )

0 0 rR2 cos(θ ) cos(φ) 0

rR sin(θ ) rR cos(φ) 0 rR2 sin(θ ) sin(φ)

⎞
⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎝

1 rR sin(θ ) cos(φ) 0 r sin(φ)

rR cos(θ ) sin(φ) 0 0 r
R

cos(θ )

0 0 r cos(θ ) cos(φ) 0

r sin(θ ) r
R

cos(φ) 0 r sin(θ ) sin(φ)

⎞
⎟⎟⎟⎠ .

Partial transposition on the second system applies a minus sign to the third column, and so our goal is to show that for both
choices of sign the operators:⎛

⎜⎜⎜⎝
1 rR sin(θ ) cos(φ) 0 r sin(φ)

rR cos(θ ) sin(φ) 0 0 r
R

cos(θ )
0 0 ±r cos(θ ) cos(φ) 0

r sin(θ ) r
R

cos(φ) 0 r sin(θ ) sin(φ)

⎞
⎟⎟⎟⎠

are positive. A few observations concerning symmetries are
helpful in this regard: (a) adding π to θ changes the sign
of the sin(θ ) and cos(θ ). But it can be verified that this can
also be achieved by applying a final local unitary Y ⊗ Z.
Similarly φ changing by π is equivalent to applying Z ⊗ Y .
As unitaries don’t change the spectra, we may restrict our

attention to θ,φ ∈ [0,π ], (b) similarly it can be shown that
applying Z ⊗ I is equivalent to changing � := θ − π/2 to
−�, and I ⊗ Z is equivalent to changing � := φ − π/2 to
−�, and hence without loss of generality we may restrict
attention to θ,φ ∈ [0,π/2].
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