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Abstract: 

 

We discuss the relation of TEC to a computational model of expert perception, CHREST, based on the chunking 

theory.  TEC’s status as a verbal theory leaves several questions unanswerable, such as the precise nature of internal 

representations used, or the degree of learning required to obtain a particular level of competence: CHREST may 

help answer such questions. 

 

Main text: 

 

The target article presents a unifying framework for perception and action, assuming their representation within a 

common medium.  We discuss the relation of TEC to a tradition of computational modelling based on the chunking 

theory, which also addresses many of TEC’s theoretical concerns; in particular, the notion of active perception 

guided by action sequences.  The basic principles of TEC include: 

 

1. Common coding of perceptual content and action goals. 

2. Feature-based coding of perceived and produced events. 

3. Distal coding of event features. 

 

Principles (1) and (2) argue that action goals should be represented as composite action-events, just as perceptual 

objects are composite perceptual-features, and that integration is required to make perception an active element in 

action planning.  Principle (3) implies that the level of representation is abstracted from that of concrete actions or 

stimuli, facilitating transfer between perception and action. 

 

The chunking theory (Chase & Simon, 1973; Gobet et al., 2001) includes many of these elements and, further, 

embodies them within an established chain of computational models.  The basic elements of the chunking theory are 

that collections of primitive features or actions frequently seen or experienced together are learnt as an independently 

referenced chunk within long-term memory (LTM).  Several chunks may be retrieved and referenced within short-

term memory (STM), and their co-occurrence used to construct multiple internal references.  One such internal 

reference is the association of perceived chunks with action chunks (Chase & Simon, 1973; Gobet & Jansen, 1994).  

These ideas have been extended into a computational model of diagrammatic reasoning, CHREST+ (Lane, Cheng & 

Gobet, 2000, 2001).  One consequence of assuming that chunks underpin human memory is that output actions are 

driven by the perception of chunks in the stimulus; this leads to observable effects in the relative timing of the action 

events. 

 

 

The CHREST (Chunk Hierarchy and Retrieval Structures) computational model of expert perception provides a 

unified architecture for perception, retrieval and action (e.g., see description in De Groot & Gobet, 1996, or Gobet & 



Simon, 2000).  The model employs a discrimination network LTM, a fixed-capacity STM, and input/output devices, 

with timing parameters for all cognitive processes.  Perception in CHREST is a process involving multiple 

interactions between the constituent elements of its architecture.  The process may be summarised as follows.  An 

initial fixation is made of the target stimulus and the features within the eye’s field-of-view retrieved.  These features 

are then sorted through the discrimination network so as to retrieve a chunk from LTM.  This chunk is then placed 

within STM.  The model next attempts to locate further information relevant to the already identified chunk; it does 

this by using any expected elements or associated links of the retrieved chunk to guide further eye fixations.  

Information from subsequent fixations is combined with earlier chunks, within STM, building up an internal image 

of the external world.  If the LTM suggestions for further fixations are not of use, then the eye resorts to bottom-up 

heuristics, relying on salience, proximal objects, or default movements to seek out useful further features. 

 

 

How is this process related to problem solving?  As with the earlier models of chess playing, chunks within LTM 

become associated with relevant action sequences.  One application of the CHREST model is to problem solving 

with diagrammatic representations; for example, solving electric-circuit problems with AVOW diagrams (details 

may be found in Cheng, 1996, 1998); this version of CHREST is known as CHREST+).  As CHREST+ acquires 

information about the two forms of stimuli, it constructs equivalence links between related chunks stored in LTM.  

During perception of a novel problem, CHREST+ identifies known chunks within the problem, and uses these to 

index chunks in the solution representation.  These solution-chunks act as plans, forming the basis from which 

CHREST+ constructs an action-sequence composed of lines to draw.  The level at which the CHREST+ model is 

operating is very much in concord with that assumed by TEC: the input is composed of features, representing the 

tail-end of primitive perceptual processing, and the output is a plan, representing the initiation of output processing.  

Both the input and output chunks are constructed from compositions of features, and both interact with the STM in a 

common representational format. 

 

 

Although internal representations are difficult to investigate, a number of testable predictions may be derived from 

the chunking theory, relating to the relative timing of action sequences (Chase and Simon, 1973; Cowan, 2001; 

Gobet & Simon, 2000).  An example of the process is found when drawing complex shapes, where the latencies 

between drawing actions are partly governed by planning activities, and these planning activities are mediated by the 

state of the drawer’s memory.  A typical series of latencies includes a limited number of isolated local maxima, 

corresponding to longer periods of reflection; although participants are often not aware of their presence, these 

maxima are evident when detailed timing information is gathered.  Such patterns have been shown to correspond 

well with a theory that chunks underlie the planning and memory processes (Cheng, McFadzean & Copeland, 2001), 

and have also been modelled using CHREST+ (Lane, Cheng & Gobet, 2000, 2001). 

 

 

Without detailed modelling of the lower-level empirical evidence presented in the target article, it is not fair to claim 

that computational models such as CHREST embody all of TEC’s central ideas.  However, what is interesting is that 

the aims of EPAM/CHREST, to capture the relatively high-level processes of expert memory in symbolic domains, 

have led to a model of active perception with a similar style to that proposed by TEC.  CHREST may also be used to 

formalise some of the assumptions of TEC and turn them into empirical predictions.  For instance, some of the 

harder areas of TEC to formalise are the form of internal representation, or the amount of exposure to a specific 

domain required to learn a particular association between perceptual and action events.  CHREST itself, with 

detailed timing parameters applicable across many domains, can be used to investigate such questions, using the 

model to derive strong predictions for the temporal information separating the output actions.  
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