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Abstract

In this paper, we present a method for the recognition of human activities.

The proposed approach is based on the construction of a set of templates for

each activity as well as on the measurement of the motion in each activity.

Templates are designed so that they capture the structural and motion in-

formation that is most discriminative among activities. The direct motion

measurements capture the amount of translational motion in each activity.

The two features are fused at the recognition stage. Recognition is achieved

in two steps by calculating the similarity between the templates and the mo-

tion features of the test and reference activities. The proposed methodology

yields excellent results when applied on the INRIA database.
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1. Introduction1

Although the earliest research in studying human movement was pub-2

lished in the 1850s [1], the automatic recognition of human activities [2], [3],3

[4], has emerged only recently as an important research area. The current4

research trend largely originated from a strong contemporary need for the de-5

velopment of applications, such as, automatic monitoring, surveillance, and6

intelligent human-computer interfaces. Human activity recognition is a very7

challenging task due to the great variability with which different people may8

perform the same activity.9

Various approaches on activity representation and recognition have been10

presented during the past few years. One of the most important activity11

recognition techniques appeared in [5]. In that work, a motion template12

was introduced in order to describe a set of activities. Specifically, a binary13

motion-energy image (MEI) and a motion-history image (MHI) were intro-14

duced, which, when taken together, can be used as a two component version15

of a temporal template. Since its introduction, this approach has been widely16

used for the interpretation of human movement in image sequences.17

The above approach was further improved in [6] in which temporal tem-18

plates were extended to 3D in order to achieve viewpoint independence. The19

2D silhouettes were extended to three dimensions (3D) using a visual hull20

[7]. Motion History Volumes (MHV) were introduced to represent human21

actions, which allow different camera configurations.22

A popular group of approaches applied to human activity recognition23

use Hidden Markov Models (HMMs) [8], [9], [10], [11]. In [9], motion and24

shape features were represented using optical flow and eigen-shape vectors,25
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and HMMs were applied for recognition. An object trajectory-based activity26

recognition method using HMMs was introduced in [10], whereas in [11],27

several feature extraction algorithms based on PCA, ICA, and LDA, were28

applied and then followed by HMM modeling for recognition.29

In [12], a method was proposed for human activity recognition based on30

an average template with a multiple-feature vector. The features that were31

used include the width feature as well as spatio-temporal features. Using the32

extracted features, Dynamic Time Warping (DTW) was used in combination33

with the average template to perform recognition.34

In [13], activities were modeled based on their underlying dynamics and35

described as a cascade of dynamical systems. Further, methods were derived36

for the incorporation of view- and rate-invariance into the proposed models in37

order to enable similar activities to be directly clustered together regardless38

of view point or execution speed.39

In [14], an example-based activity recognition was introduced by using40

an activity representation scheme according to which each activity was mod-41

eled as a series of synthetic poses. Recognition was achieved by matching42

the input silhouettes with the key poses using an enhanced Pyramid Match43

Kernel algorithm.44

In [15], each activity was represented by descriptors using Temporal45

Laplacian Eigenmaps. Subsequently, all view-dependent manifolds were au-46

tomatically combined in order to find a representation in the 3D space that47

is independent from style and viewpoint. Dynamic time warping was applied48

for recognition.49

In [16], an activity representation method was proposed which describes50
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the video sequence using a set of spatiotemporal features called video-words.51

This was obtained by quantizing extracted 3D interest points. Then, the op-52

timal number of video-words clusters (VWCs) was determined by grouping53

the redundant video-words. Classification was achieved by using a correlo-54

gram.55

The method we propose in this paper uses both shape-based and motion-56

based features, as the combination of these two types of features can improve57

the efficiency of the recognition process. Our approach is based on activity58

templates, which capture the information in the body postures assumed dur-59

ing each activity, as well as of the observed motion within each activity. After60

activity templates are constructed and the motion is calculated, recognition61

is achieved by means of comparison with the corresponding features that are62

stored in a database of reference activities.63

Recognition takes place in two stages. Initially, a number of best matches64

to the given test activity are calculated and, subsequently, the original selec-65

tion is refined by using a selection process that is tailored to discriminating66

among the best matches of the first recognition stage. Experimental results67

show that this approach is clearly more efficient than the direct recognition68

of a test activity among a diverse set of activities.69

In summary, the contributions of the present paper are:70

• A novel method for template construction based on centered silhou-71

ettes. We found that this construction is preferable to the conventional72

construction based on un-processed silhouettes.73

• The representation of activities in terms of a spatiotemporal profile and74

a motion profile.75
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Figure 1: (a) General block diagram, (b) Detailed block diagram of the recognition process

based on the motion and template information.

• A two-stage method for activity recognition based on discriminative76

weighting that is tailored to the bast matching activities of a given test77

activity.78

The structure of the paper is as follows: in Section 2, the proposed feature79

extraction methodology is described. In Section 3, two-phase activity recog-80

nition using discriminative weighting is presented. The proposed method81

is experimentally assessed for activity recognition in Section 4 and, finally,82

conclusions are drawn in Section 5.83
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2. Feature Extraction For Recognition84

2.1. Overview85

The proposed activity recognition system is outlined in Fig 1(a). The sys-86

tem operates under the assumption that the input to the system is sequences87

of binary silhouettes that depict the side-view of the person conducting the88

activity. In practice, however, there are cases in which the input sequences89

may not depict the side-view of the person. In the experimental results sec-90

tion, we investigate how this possible deviation from the assumed conditions91

affects the recognition performance of our system. Another assumption we92

are making is that activity segmentation from online video streams is per-93

formed using one of the existing approaches that are available in the litera-94

ture. Therefore, in this work we do not propose a new method for separating95

between consecutive activities in online video streams. Such an approach was96

presented in [17] in which temporal segmentation is based on the definition97

of motion boundaries, which is achieved through the computation of global98

motion energy.99

After an initial scaling and centering stage, each activity sequence is tem-100

porally segmented into a number of parts, which define the stages in which101

the activity is performed. Considering the process of evolution of each activ-102

ity, we came to the conclusion that four stages suit the recognition best. The103

first and the last stages normally are the starting and ending poses and on104

many occasions (i.e., when the starting and ending pose is “standing”) they105

do not carry much discriminative information. The middle stages reflect the106

evolution of the activity. Having three stages in total, i.e., one middle stage107

only, would be insufficient. This means that at least four stages are needed108

6



for discriminative representation and feature extraction. On the other hand,109

the maximum number of stages could potentially be five, as an even greater110

number of segments (e.g., six) could not capture further distinct poses in an111

activity. Therefore, the choice in our case was between having four and five112

stages. We found that using four stages is preferable both in terms of com-113

putational efficiency and performance, although the performance difference114

between using four and five stages is marginal.115

Based on this temporal segmentation, motion and shape-based features116

are extracted from the input silhouette sequence. Specifically, for each of the117

four parts in a sequence, a template is constructed and a motion vector is118

calculated in order to quantitatively detect and represent translational mo-119

tion. The four motion vectors are subsequently combined with the activity120

templates at the decision stage in order to achieve efficient recognition. De-121

cisions are made by calculating the distance between the features extracted122

from a test activity and the features extracted from activities in the reference123

database. This process is outlined in Fig 1(b).124

2.2. Preprocessing125

In general, in a video sequence showing the performance of a given ac-126

tivity, the person performing the activity may be standing in an arbitrary127

position and have an arbitrary body pose. For this reason, prior to the cal-128

culation of the template, we scale and center the silhouettes. The scaling129

factor is obtained by calculating the ratio of the size of the foreground object130

in a standard frame over the object’s size in the first frame of each of the131

database sequences. This means that for each activity sequence there is a132

specific scale factor according to which all frames in this sequence are scaled.133
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Symbol Notation

i Frame index

(x, y) Pixel co-ordinates

F Total number of frames

s Activity stage index

a Activity index

N Total number of activities

Ta Spatiotemporal profile for activity a

tas sth stage template for activity a

Ma Motion profile for activity a

mas sth stage motion profile for activity a

Rk kth ranked spatiotemporal profile

rks sth stage template for ranked activity

ws Weight map for stage s

Table 1: Notation

Centering of the foreground object, i.e., of the person conducting the134

activity, is applied after all silhouettes are scaled. Two kinds of centering135

methods were tested: in the first method, horizontal displacements were136

cancelled so that the foreground object is placed in the middle of the frame.137

The same displacement vector was used for all frames in a sequence. In the138

second method, silhouettes were centered on a frame by frame basis. The139

averaged frames corresponding to these two different approaches are shown in140

Fig 2. As seen, unlike the sequence-wise centering, the frame-wise centering141

affects the vertical displacements during the activity.142
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(a) (b)

Figure 2: Different centering approaches for the calculation of average images (sitting

activity). (a) Sequence-wise centering, (b) Frame-wise centering.

2.3. Temporal partitioning of activities143

An activity can be performed in dissimilar ways by different persons, or144

even by the same person. One common difference is the speed with which145

activities are executed. In practice, the speed with which a person is conduct-146

ing an activity may vary even during the execution of the activity itself. The147

great temporal variability in the way activities are performed necessitates the148

deployment of methods that are robust to such variations. For this reason,149

we partition each activity into activity stages and construct representative150

pose templates for each such stage. To this end, we use a simple clustering151

algorithm in order to effectively extract representative pose information. The152

steps of the clustering process are summarized below:153

1. Initially, an activity sequence with F frames is divided into four con-154

tinuous temporal segments; each temporal segment has roughly F/4155

frames. Therefore, the initial temporal segment boundaries are: f1 =156

F/4, f2 = F/2, f3 = 3F/4, f4 = F .157
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2. An average frame As, s = 1, . . . , 4, is calculated from each temporal158

segment.159

3. The sequence is partitioned into new temporal segments. Specifically,160

new boundaries f ′s, s = 1, 2, 3, 4, are calculated between segments s and161

s + 1, s = 1, 2, 3, based on:162

f ′s = arg min
f

[Ds(f) + Ds+1(f)] (1)

where Ds(f) and Ds+1(f) are the Euclidean distances between the163

frames within each of the temporal segments and the segments cor-164

responding average frame:165

Ds(f) =
1

f − fs + N

f∑

i=fs−N

D(Ii, As) (2)

166

Ds+1(f) =
1

fs + N − f + 1

fs+N∑

i=f

D(Ii, As+1) (3)

4. Step 2 is repeated until convergence or until a maximum number of167

iterations is reached.168

Using the above simple technique, a given activity is divided into four169

segments that correspond to four stages of the activity. A template can be170

constructed for each stage. This construction is described next.171

2.4. Template Construction172

We use two main features in our activity recognition algorithm. The first173

is a spatiotemporal template that is mainly aimed to capture pose informa-174

tion in human activities. The second feature is aimed to represent the motion175

that is involved in the activity.176
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Motion Energy Images (MEI) and Motion History Images (MHI) were177

proposed in [5] in order to encode, respectively, the location and the type of178

motion. We propose the use of a similar temporal template in our system.179

The similarity consists in the representation of the activity by means of180

four MEI-like templates. In our case, however, the construction of the MEI181

is based on a centered sequence of silhouettes. This approach makes the182

impact of motion even more apparent on the resulting template, which we183

will call Centered MEI (CMEI). Given an image sequence comprising frames184

Ij, j = 1, 2, . . . , F , the binary CMEI function is defined [5] as:185

Eτ i =
τ−1⋃
j=0

Bt−j(x, y) (4)

where τ is the duration of a movement. In our case, the value of τ is set to186

be the total number of frames in each stage of an activity execution. The187

term Bj indicates the regions of motion according to the Ij and is calculated188

using image-differencing:189

Bj = C(Ij+1)− C(Ij) (5)

where C(·) denotes the centering operation.190

Based on the above calculation, the template, corresponding to the ath191

activity, will comprise of four stage templates tas, s = 1, . . . , 4. This repre-192

sentation can be compactly expressed as:193

Ta = {ta1, ta2, ta3, ta4} (6)

and, henceforth, it shall be referred to as spatiotemporal profile.194
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In Fig 3, the four stage templates are shown for each one of the twelve195

activities in the INRIA database. It can be seen that the resultant templates196

represent the information that changes throughout each activity, i.e., the197

information that carries the most discrimination power. Due to their distinct198

characteristics, the four templates offer a compact activity representation of199

high discriminating capacity.200

The above set of templates, based on the Motion Energy Image of an201

activity sequence, will be subsequently used for activity recognition purposes.202

As will be seen, despite its simplicity, this approach yields very good activity203

recognition performance.204

2.5. Extraction of Motion Information205

In our system, we take into consideration the amount of motion that206

takes place during the performance of an activity. As a measure of motion,207

in this case, we use the movement of the foreground object’s center posi-208

tion. Unlike the template-based approach that was described previously, the209

method we propose for the extraction of motion is calculated based on the210

original sequence, without prior centering of the silhouettes, since any center-211

ing or scaling would affect the measured motion. This process is graphically212

illustrated in Fig 1(a).213

In order to calculate the amount and the direction of motion, we consider214

the sequence of silhouette center coordinates (xai, yai), i = 1, 2, . . . , F , for the215

ath activity, a = 1, 2, . . . , N . Initially, the average center coordinate (x̄a, ȳa)216

is calculated from this sequence. Therefore, for the ath activity, a sequence217

of difference vectors is initially formed:218
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Activity 1 2 3 4

Check Watch

Cross Arms

Scratch Head

Sit Down

Get Up

Turn Around & Walk

Wave

Punch

Kick

Point

Pick Up

Throw

Figure 3: CMEI templates for each of the activities in the INRIA database.
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Figure 4: Graphical representation of motion profiles for each of the activities in the INRIA

database. Each row of vectors represent a motion profile. The motion profile for the first

activity is on the top row.

Za(i) =


 xai − x̄a

yai − ȳa


 (7)

In the sequel, the motion for the ath activity is measured separately for219

the four stages in each activity:220

mas , 1

Fas

∑
i∈Sa

Zas(i), s = 1, . . . , 4 (8)
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where Fas is the number of frames in activity a and Sa is the set of frame221

indices in stage s. As seen, the above motion measurement essentially rep-222

resents the translational motion of the center of the silhouettes with respect223

to the average center of the foreground object for each stage of a particular224

activity. Actually, mas corresponds to the silhouette center motion between225

the first and the last frame of each stage. The contribution of such a feature226

to a system’s recognition efficiency may be small in cases where the person227

performing the activity is standing or in case the person is engaging in an228

activity with very limited motion. However, in cases where the person who229

is conducting the activity is moving, this feature has a very considerable230

contribution to recognition accuracy.231

Based on the above, the motion information, corresponding to the ath232

activity, will comprise of the four stage motion vectors mas, s = 1, 2, . . . , 4.233

This can be compactly written as:234

Ma = {ma1,ma2,ma3,ma4} (9)

and, henceforth, will be referred to as motion profile.235

The four motion vectors for each of the 12 activities in the INRIA database236

are shown in Fig 4. As seen, the motion profile of an activity includes a good237

amount of discrimination power and, by itself, it could be used as a means for238

recognition. Results using this type of information will be presented in the239

experimental evaluation section. The above motion information will be used240

in combination with the CMEI templates of the previous section in order to241

achieve accurate recognition of activities.242
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3. Two-phase Activity Recognition243

3.1. Distance Calculation244

Given a test sequence depicting an unknown activity, our objective is245

to recognize the activity that is being performed by comparison with a set246

of reference activities. Using our system, activity recognition is achieved247

by comparing the spatiotemporal and motion profiles of the unknown test248

activity to those of each of the reference activities. Recognition is achieved249

based on two types of extracted features, namely, the CMEI templates in the250

spatiotemporal profiles and the activity motion profile.251

For the sake of description of our methodology, let us assume that a252

spatiotemporal profile Tg is constructed from an unknown test activity se-253

quence. In order to recognize the index g of the unknown activity, distances254

are calculated between the profile obtained from the unknown test activity255

and the N activity profiles in a reference database. These distances, denoted256

TD, are compactly expressed as:257

TD[a] = d(Tg,Ta) ,
4∑

s=1

d(tgs, tas), a = 1, 2, . . . , N (10)

where d(·) denotes the Euclidean distance, and Ta is the profile constructed258

during the training session for the ath reference activity.259

In a similar way, we can calculate the motion distance MD between the260

motion profile Mg, which was extracted from the test sequence, and the N261

reference motion profiles that correspond to the N activities in the reference262

database:263
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MD[a] = d(Mg,Ma) ,
4∑

s=1

d(mgs,mas), a = 1, 2, . . . , N (11)

Since it is reasonable to expect that TD and MD will have unequal con-264

tributions to recognition performance, the total dissimilarity between a test265

activity and the ath reference activity is defined as:266

D[a] = TD[a] + qMD[a], a = 1, 2, . . . , N (12)

In the above definition, q is a parameter that is aimed to normalize the267

contribution of the two distances during the calculation of the total distance.268

The parameter q depends on the size of the foreground objects in the activity269

video sequences and it is automatically readjusted whenever a change is made270

in the scaling factor in the silhouette preprocessing stage. The value of q is271

practically calculated as the value that equalizes the mean values of structural272

distances and motion distances within the training set of activities.273

In case there are several instances of each activity in the reference database,274

then the distance D[a] in eq. (12) represents the distance between the test275

activity and the instance of the ath activity in the database that yields the276

minimum distance.277

3.2. Discriminative Weighting278

Considering that the issue of temporal variability of activities has been279

addressed by our system with the extraction of four characteristic spatiotem-280

poral templates, the main remaining obstacle in recognizing an activity cor-281

rectly is the existence of different activities that look similar in the reference282
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database. The consequence of the above is that the variation between differ-283

ent activities may appear to be smaller than the variation between different284

instances of the same activity. Therefore, a given test activity may yield285

a fairly small distance even when compared with a different activity in the286

database.287

One of the most popular ways to deal with problems like the above and288

maximize recognition efficiency is by means of subspace projection using289

Linear Discriminant Analysis (LDA) [18]. In such cases, the application of290

LDA requires the conversion of images into long vectors that are subsequently291

used for the calculation of eigenvectors and variance matrices. Since this292

calculation can be difficult, the method in [19] is normally used in order to293

make the problem computationally tractable. Unfortunately, the subspace294

that can be obtained using this method is of dimension equal to the number295

of classes. Since we only have a relatively small number of activities, the296

resultant analysis would be quite restricting and would not generally give297

good performance in the present scenario.298

Another, much simpler, way to maximize recognition efficiency is by ap-299

plying weighting that highlights the differences between activities during the300

calculation of the distances. In this way, the template distance d(tgs, tas) in301

eq. (10) can be replaced by a weighted distance defined as:302

d̃(tgs, tas) ,
∑

x

∑
y

w̃(x, y)|tgs(x, y)− tas(x, y)|, s = 1, . . . , 4 (13)

where w̃(x, y) is the weighting coefficient at template position (x, y). The303

weighting coefficients should be greater in template areas that differ among304
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different activities and smaller coefficients in areas of similarity. Conse-305

quently, if we attempt to design a weight map in order to optimally dis-306

tinguish among different activities, the distribution of energy on the weight307

map will be primarily dependent on activities that are very dissimilar. On308

the contrary, similar activities will make smaller contributions to the weight309

map. Clearly, a weight map calculated as above will be inefficient for dis-310

tinguishing between activities with small differences. Therefore, the problem311

of distinguishing between similar activities cannot be dealt with using the312

above straightforward weight map design.313

In order to overcome this problem, we propose using a two-phase ap-314

proach in which, once all distances are calculated as above, the activities are315

first ranked in order of increasing distance. Subsequently, the K reference316

activities that rank higher, i.e. those that exhibit the greatest similarity with317

the test activity, are used for the design of a weight map that is aimed to318

facilitate discrimination among these K activities. Apparently, we need the319

actual matching reference activity to always be among the K best matches320

in order to be able to recognize the test activity in the second phase of the321

classification process. However, the greater K is, the lower the efficiency of322

the weighted approach will be. In this work, we use K = N/3 = 4, as it was323

found that this choice represents a good compromise between recognition324

efficiency in the two phases of the algorithm. The impact of choice of K in325

the first phase of the algorithm is shown in Table 2. As seen, in the vast326

majority of cases, the actual matching reference activity is among the four327

best matches.328

The weight map calculated based on the K highest ranking activities is329
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Rank

Act No. 1 2 3 4 5 6 7 8

1 72 83 97 100 100 100 100 100

2 83 95 100 100 100 100 100 100

3 87 100 100 100 100 100 100 100

4 98 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100

7 83 97 100 100 100 100 100 100

8 37 53 62 85 98 100 100 100

9 82 87 95 100 100 100 100 100

10 35 57 78 88 100 100 100 100

11 73 87 93 100 100 100 100 100

12 58 60 63 87 92 100 100 100

Table 2: Cumulative match scores for the performance (in percent) of the first phase of

the classification algorithm.

now tailored to the task of distinguishing between activities that, despite330

being different, they look similar to the test activity. This approach is ex-331

pected to be more efficient than discrimination techniques that are based on332

all activities in the database.333

For the calculation of the weight map, we denote the spatiotemporal334

profile of the kth ranked reference activity as:335
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Rk = {rk1, rk2, rk3, rk4}, k = 1, 2, . . . , K (14)

In the above expression, k is index of the the ranked reference activities,336

i.e., R1 is the spatiotemporal profile of the reference activity that exhibits337

the smallest distance with the test activity, R2 exhibits the second smallest338

such distance and so on. We calculate the weight map based on the profile339

coefficients that appear to contribute to the discrimination among the K340

ranked profiles Rks, k = 1, 2, . . . , K, that correspond to the activities that341

are most similar to the test activity.342

We define the total “between” difference vB
s (x, y) in pixel position (x, y)343

between different ranked activities as:344

vBs(x, y) =
1

K2

K∑

k=1

K∑

l=1

|rks(x, y)− rls(x, y)|, s = 1, . . . , 4 (15)

As seen, a separate difference matrix is calculated for each activity stage345

s. Considering the symmetricity of the template differences in eq. (15), the346

above expression can be equivalently written as:347

vBs(x, y) =
1

K2

K−1∑

k=1

K∑

l=k+1

2|rks(x, y)− rls(x, y)|, s = 1, . . . , 4 (16)

Subsequently, for the K ranked activities, we calculate a total “within”348

difference matrix using H different instances of the same activity:349

vs(i, j) =
1

KH2

K∑

k=1

(
H−1∑

b=1

H∑

c=b+1

2|rb
ks(x, y)− rc

ks(x, y)|), s = 1, . . . , 4

(17)
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1 2 3 4

Figure 5: Weight map for a set of best matches comprising of activities: check watch, cross

arms, scratch head, and wave.

In a way that is reminiscent of Linear Discriminant Analysis, when apply-350

ing eq. (13), we can emphasize “between” differences and suppress “within”351

differences by using weighting coefficients calculated based on the ratio of eq.352

(16) and (17). Specifically, the elements ws(x, y) of the weight map can be353

calculated as:354

ws(x, y) =
vBs(x, y)

L + vs(x, y)
, s = 1, . . . , 4 (18)

where L is a small number that is aimed to prevent the denominator of the355

right-hand side from becoming zero (in our experiments we used L = 0.5).356

A weight map determined based on four activities: check watch, cross357

arms, scratch head, and wave, is shown in Fig 5. As can be seen, despite the358

fact that the differences between these activities are very subtle, recognition359

is facilitated by focusing the recognition process on exactly these differences.360

This performance would not have been possible if the weight map calculation361

had been based on all activities in the database.362

22



3.3. Recognition363

Once the weight map has been determined, weighted template distances364

are calculated between the test activity and the reference activity templates.365

The weighted template distance is defined as:366

T̃D[a] = d̃(Tg,Ta) ,
4∑

s=1

d̃(tgs − tas) (19)

and the associated total weighted distance is:367

D̃[a] = T̃D[a] + qMD[a], a = 1, 2, . . . , N (20)

where the value of the parameter q is selected according to the process de-368

scribed in the beginning of this section.369

The system recognizes the test activity based on the minimum total370

weighted distance among all results:371

G = arg min
a

D̃[a] (21)

where G is the index of the recognized activity.372

4. Experimental Results373

In order to evaluate the performance of our system, we tested the pro-374

posed algorithm on the INRIA Xmas Motion Acquisition Sequences (IXMAS)375

Database [6]. The INRIA multi-view database includes 12 daily-life activi-376

ties each performed 3 times by 12 actors. Surrounded with 5 fixed cameras,377

each capturing 23 frames per second, the actors freely choose their position378
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and orientation while they perform the activities. All 12 activities are per-379

formed in the same order, but with a different execution rate, depending on380

the actors. For the evaluation of our method, we used 72 sequences, i.e., 72381

different instances of each activity. Therefore, we used 864 (72× 12) activity382

executions in total.383

In our experiments, we used views “1” and “2” from the INRIA database384

which are different as they are captured using different cameras. For the385

construction of the reference (i.e., training) spatiotemporal profiles and the386

extraction of the reference motion profiles, we used twelve activity sequences,387

which were chosen randomly from these two views (six from each). Each of388

these reference sequences contained all 12 activities. This means that 144389

(12 × 12) activity executions were used for training. The remaining 720390

(60× 12) activity executions were used as test sequences.391

Initially, we applied our baseline method, using template and motion in-392

formation, without applying any weighting on the spatiotemporal profiles.393

The first three columns of Table 3 report results based on the independent394

application of the motion profile, the spatiotemporal Centered MEI profile395

(CMEI), as well as their combination (CMM). As seen, the performance of396

these features when used independently is not always good. However, if they397

are combined using eq. (20), then the resulting method, termed Centered398

MEI with Motion (CMM), exhibits apparent performance improvements, es-399

pecially if compared with the independent use of the motion feature.400

Subsequently, we applied the two-phase process described in Section 3.401

The four best matches for each given test activity were calculated and a402

weight map was designed in order to facilitate recognition among these four403
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Baseline Weighted

No. Action Motion CMEI CMM wCMEI wCMM

1 Check Watch 61.67 70.00 71.67 88.33 91.67

2 Cross Arms 45.00 76.67 83.33 86.67 90.00

3 Scratch Head 46.67 83.33 86.67 81.67 88.33

4 Sit Down 100 96.67 98.33 98.33 98.33

5 Get Up 100 100 100 100 100

6 Turn & Walk 100 98.33 100 100 100

7 Wave 33.33 81.67 83.33 83.33 85.00

8 Punch 21.67 36.67 36.67 68.33 68.33

9 Kick 31.67 81.67 81.67 85.00 86.67

10 Point 43.33 33.33 35.00 61.67 63.33

11 Pick up 76.67 68.33 73.33 80.00 81.67

12 Throw 31.67 56.67 58.33 71.67 76.67

Average 57.64 73.61 75.69 83.75 85.83

Table 3: Activity recognition rates by using motion profiles, CMEI templates, combined

CMM profiles, and discriminate weighting.

matches. Results are reported in the last two columns of Table 3 for the404

weighted CMEI (wCMEI) profile, and the combined weighted CMEI with405

motion, termed wCMM. As seen, the recognition rate is very considerably406

improved when compared with the un-weighted CMM method. Despite its407

simplicity, the combination of the motion profile with the weighted spatiotem-408

poral profile yields excellent performance. Using our current system, the test409

activity sequences are recognized correctly at an average recognition rate of410
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No. Action 1 2 3 4 5 6 7 8 9 10 11 12

1 Check Watch 91.7 3.3 3.3 0 0 0 1.7 0 0 0 0 0

2 Cross Arm 5.0 90.0 3.3 0 0 0 1.7 0 0 0 0 0

3 Scratch Head 5.0 3.3 88.3 0 0 0 3.3 0 0 0 0 0

4 Sit Down 0 0 0 98.3 0 0 0 0 0 0 1.7 0

5 Get Up 0 0 0 0 100 0 0 0 0 0 0 0

6 Turn & Walk 0 0 0 0 0 100 0 0 0 0 0 0

7 Wave 3.3 1.7 6.7 0 0 0 85.0 0 0 1.7 0 1.7

8 Punch 6.7 0 8.3 0 0 0 5 68.3 0 10 0 1.7

9 Kick 0 1.7 0 1.7 0 0 0 3.3 86.7 1.7 1.7 3.3

10 Point 3.3 8.3 5 0 0 0 3.3 13.3 0 63.3 0 3.3

11 Pick Up 0 0 0 8.3 3.3 0 0 1.7 3.3 0 81.7 1.7

12 Throw 5 0 1.7 0 0 0 10 3.3 0 3.3 0 76.7

Table 4: Confusion Matrix of our final system on the INRIA Database.

85.83%, which constitutes a significant improvement on the performance of411

the baseline system. As will be discussed later, this performance also consti-412

tutes an improvement over other recently published methods, such as those413

in [14], [15], [16]. The confusion matrix reporting confusion between activi-414

ties recognized by the proposed wCMM system is shown in Table 4. Table415

4 shows that the system is occasionally prone to confuse the “point” and416

the “punch” activity, which is consistent with the results presented in Table417

3. The less satisfactory performance on these two activities is due to their418

inherent similarity as well as the great variability with which subjects are419

performing the “punch” and “point” activities in the testing set that we use420
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No. Action inter intra

1 Check Watch 88.33 93.33

2 Cross Arms 90.00 91.67

3 Scratch Head 86.67 91.67

4 Sit Down 98.33 98.33

5 Get Up 100 100

6 Turn & Walk 100 100

7 Wave 83.33 88.33

8 Punch 58.33 68.33

9 Kick 80.00 85.00

10 Point 63.33 63.33

11 Pick up 81.67 81.67

12 Throw 73.33 76.67

Average 83.61 86.53

Table 5: Evaluation of the proposed wCMM method under viewpoint variations.

for our experiments.421

In order to test the performance of our system under viewpoint variation,422

two views with moderate differences are chosen. We report results in two423

forms, first we use different views for training and testing, and then we train424

and test using activity sequences from the same view. The results are shown425

in Table 5. As seen, although there is a decrease in recognition performance426

in the cross-view experiment, the decrease is not dramatic and demonstrates427

that our system can work well even when the actual view is different from428

the assumed one.429
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Finally, we compared our wCMM method with a variety of other existing430

techniques for activity recognition. Specifically, the other methods in our431

comparison are the Action Net method [14], the Action Manifolds [15], as432

well as the method in [16]. The recognition performance of our system in433

comparison to the recognition performance of other approaches is shown in434

Table. 6. As seen, our wCMM method outperforms the other methods in435

the comparison for activity recognition, which reinforces our confidence about436

the advantages that our approach offers.437

Method wCMM Action Net [14] Action Manifolds [15] VWCs [16]

View single multiple multiple single multiple

Recognition Rate 85.83 80.6 83.1 80.3 78.5

Table 6: Comparison of our proposed method in comparison to other competing methods

in terms of average recognition performance.

5. Conclusion438

In this paper, we presented a method for the recognition of human activ-439

ities. The proposed approach was based on the construction of a set of tem-440

plates for each activity as well as on the measurement of the motion in each441

activity. Templates were designed so that they capture the structural and442

motion information that is most discriminative among activities. The direct443

motion measurements capture the amount of translational motion in each444

activity. The two features are fused at the recognition stage. Recognition445

is achieved in two steps by calculating the similarity between the templates446
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and the motion features of the test and reference activities. The proposed447

methodology yielded excellent results when applied on the INRIA database.448
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