
 1 

An embedded FE model for modelling reinforced concrete slabs in fire 

Xinmeng Yu
*
 and Zhaohui Huang 

Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK  

ABSTRACT  

It is evident from a series of tests on simply supported reinforced concrete slabs that the failure of 

the slabs at large deflections is due to the formation of individual large cracks. This failure mode 

was also observed in the Cardington full-scale fire tests. Previous research indicates that the global 

behaviour of concrete slabs subject to large deflections can be well predicted by the smeared 

cracking model; however, the model cannot quantitatively predict the openings of individual cracks 

within the slabs at large deflection. For the discrete approach it is usually assumed that the cracks 

are formed along element edges, therefore continuous re-meshing is required during the analysis. 

Consequently, the results are mesh-dependent and the computing cost is high. In recent years, mesh 

independent finite element procedures, such as embedded (EFEM) and extended (XFEM) 

approaches, were widely used for modelling of the crack initiation and growth in structural 

members. However, most of the meshless models developed are either based on in-plane loading 

conditions or confined to thin shells with assumed full-depth cracks, which form apparent 

displacement jumps within an element.  

For a reinforced concrete slab, out-of –plane load causes coupled stretching and bending of the slab, 

cracks are usually initiated at discrete positions and then propagated, until at last some individual 

full-depth cracks are formed. Pure stretching or assumed full-depth cracking is inadequate for 

modelling this kind of failure. Therefore, in this research, a non-linear layered procedure with 

embedded weak discontinuity is developed to quantitatively model the progressive tensile failure of 

reinforced concrete slabs subjected to large deflections. The current model inherits the advantage of 

smeared approach, and at the same time, introduces the opening width of crack explicitly by taking 

the advantage of the better description of the kinematic characteristics of EFEM approach. A series 

of validations have been conducted against test data at both ambient and elevated temperatures, and 
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the research shows that the model developed in this paper is not sensitive to the FE mesh size and 

the aspect ratio of the slab. The results predicted by the model developed agreed well with the test 

data in terms of deflection and crack open width, and also agreed well with those modelled by the 

smeared model. Hence, this new approach provides a numerical method to predict the load capacity 

as well as to identify the occurrence and severity of crack failure in reinforced concrete slabs 

subjected to extreme loading conditions, such as fire.  

 

Keywords: Reinforced concrete slab; Tensile failure; Embedded FEM; Weak discontinuity; 

Numerical modelling; Fire condition; Layered slab FE model.  
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An embedded FE model for modelling reinforced concrete slabs in fire 

Xinmeng Yu and Zhaohui Huang 

1. INTRODUCTION 

Previous research indicates that under fire conditions the survivability of a composite structure 

largely depends on the performance of concrete floor slabs, which are key structural components. 

This critical structural member is expected to undergo large deformation, far beyond the design load 

given by yield line theory. This is due to the development of secondary load carrying mechanisms, 

such as membrane action, after conventional strength limits have been reached.  

Recently a series of small-scale reinforced concrete slabs were tested at elevated temperatures at the 

University of Manchester [1] and University of Sheffield [2]. The test slabs were uniform loaded 

with four edges simply supported.  The maximum temperature of 900°C was reached in the test 

slabs [1]. It is evident that the failure of the slabs at large deflections is due to individual large 

cracks formed within the slabs.  All tests showed that membrane action occurs, with compressive 

membrane stress occurring around the perimeter and tensile membrane stress occurring in the 

middle of the slab.  The observed failure mode of all the slabs consisted of the formation of 

individual large cracks [1]. This failure mode of concrete floor slabs subject to large deflections was 

also observed in Cardington full-scale fire tests [3].  

In the past decade, a significant amount of research has been conducted into the numerical 

modelling of structural behaviour of reinforced concrete slabs under fire conditions [4-9]. These 

models are all based on the continuous failure approach in which the smeared cracking method was 

adopted for modelling of concrete failure. It is evident that the models can simulate global 

behaviour of concrete slabs subject to large deflection with good accuracy. However, this approach 

cannot quantitatively predict the opening of individual cracks within the slabs. As discussed above, 

it is clear that when a big crack is formed in the concrete floor the criterion of structural integrity is 

violated, but the stability of structures may still be maintained. Recently Izzuddin and Elghazouli 

[10, 11] developed a numerical procedure for the non-linear analysis of axially restrained lightly 

reinforced concrete beams under both ambient and fire conditions. This model is based on the 

assumption of a single crack at mid-span, with a particular emphasis on failure assessment in 
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respect of the rupture of steel reinforcement. Also the influence of bond-slip between reinforcing 

steel and concrete on the overall member response (leading to the ultimate failure state) is 

considered in the model. However, the model is still primarily focused on the structural load 

capacity of concrete members in fire. Hence, it is important to develop a numerical procedure in 

which both structural stability and integrity of the floor slabs can be assessed.  

Traditionally a discrete cracking model can be used successfully for modelling of the formation and 

propagation of cracks within the structural members when the crack path is known in advance, 

either from experimental evidence, or because of the material composition of the structure (such as 

in laminated composites).  In these cases, the finite element mesh can be constructed such that the 

crack path coincides with the element boundaries.  Such a cohesive crack can be modelled by 

inserting interface elements between the continuum elements along the potential crack path.  To 

allow for a more arbitrary direction of crack propagation, interface elements can be inserted 

between all continuum elements or a re-meshing procedure could be used to accommodate crack 

propagation.  However, this approach suffers from a certain mesh bias, since the direction of crack 

propagation is not entirely free, but restricted to inter-element boundaries. The computing cost is 

also very high.  

In recent years, there has been great interest in the development of mesh-independent (or meshless), 

finite element procedures for the modelling of crack initiation and growth in structural members. 

This is done by enriching a standard Finite Element Method (FEM) with extra degrees of freedom 

(DoF) without violating the fundamentals of continua FEM theory.  These models use either the 

Embedded Finite Element Method (EFEM) or extended Finite Element Method (XFEM). The 

EFEM is based on Assumed Enhanced Strain (AES). The enrichment is usually the amplitude of the 

opening of the crack, and the assumed traction continuity condition across the discontinuities 

ensures that the enrichment can be condensed out at element level, so the application of this method 

into normal FEM is straight forward. EFEM provides a better kinematic description for 

discontinuous displacement fields than the pure continuum models in which the displacement jump 

is smeared uniformly over the entire element. However, this method still has some limitations, such 

as the stress/strain on both sides cannot be evaluated accurately when they are split by discontinuity 

[12]. For XFEM approach, the enhancement is based on the Partition of Unity (PU) concept, which 

defines the percentage contribution from the node to a particular position [13]. The approximation 
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and enrichment functions are node-based, so the extra DoF cannot be eliminated at element level. 

The localized modes are then collected from the extra DoF at nodes according to the approximation 

functions applied. In XFEM, the strains/stresses on both sides of a stress-free crack are fully 

decoupled, thus superior kinematic properties can be better captured than EFEM [12]. However, at 

present the main applications of XFEM approach are limited in either in-plane behaviour of 

structural members (achieved by very fine mesh with high computing cost), or confined to thin 

shells with assumed full-depth discontinuities within an element [13-15] based on regularized 

displacement discontinuity.  

Normally, reinforced concrete slabs are subjected to out-of plane loading conditions, therefore the 

deformations of the slabs are coupled with stretching in-plane and bending out-plane. The cracks 

within the slabs are usually initiated at discrete positions and then propagated. The main object of 

this paper is to develop a non-liner layered procedure in which the opening of the cracks within the 

floor slabs can be quantatively identified and, at the same time, the large deflections also can be 

well predicted. Therefore, the layered procedure developed previously by Huang et al [4] is 

enhanced with embedded weak discontinuity in which the strain is assumed to be discontinuous in 

cracked layers, but the displacement of the element is still assumed to be continuous. In this model 

the opening width of the cracks and the deformation of the integrated solid portion can be explicitly 

expressed. This development inherits the advantage of smeared approach, and at the same time 

introduces the opening width of crack explicitly by taking the advantage of the better description of 

kinematic characteristics of EFEM approach.  

Concrete, as a quasi-brittle material, is inhomogeneous and anisotropic. In most circumstance, the 

crack path meanders through the cement paste and the aggregate mixture. The fracture zone of 

concrete is always characterised by micro-cracks. Hence, directly applying fracture mechanics 

theories based on homogeneous materials for modelling concrete cracking is not easy task. It would 

be better to describe this fracture by crack band [16], or fracture process zone (FPZ). Depending on 

the scale of observation or application, quasi-brittle materials, including concrete, fibre composites, 

mortar, etc., the FPZ can be enormously varied. As a compromise between reality and simplicity, 

quasi-brittle fracture may be described by the cohesive crack model. The FPZ at the crack front is 

modelled as a fictitious line crack transmitting cohesive (crack-bridging) stresses [17]. The aim of 

the work given in this paper, as the first phase of research on the modelling of integrity failure of 
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floor slabs, is not to address the localized stress intensity mechanics, but to quantitatively identify 

the opening width of the cracks within the slabs without forfeiting the capability of predicting the 

global behaviour of reinforced concrete slabs subjected to out-of-plane load.  

2.  NON-LINEAR LAYERED PROCEDURE WITH EMBEDDED WEAK 

 DISCONTINUITIES 

2.1 Previous layered slab element model  

A non-linear layered procedure has been developed at the University of Sheffield for the modelling 

of reinforced concrete slabs under fire conditions [4]. In this model, concrete slabs were modelled 

as an assemblage of finite plate elements. The elements used were the quadrilateral 9-noded 

higher-order isoparametric elements described by Bathe [18]. The plate elements were sub-divided 

into several layers representing concrete and distributed reinforcing steel as shown in Fig. 1. The 

main assumptions of the layered approach can be summarised as follows [4]:  

 The slab elements are considered to be composed of plain concrete layers and reinforcing steel 

layers, as shown in Fig. 1, and there is no slip between layers. 

 Each layer can have a different but uniform temperature.  The initial material properties of 

each layer may be different, and the stress-strain relationships may change independently for 

each layer.  

 The reinforcing steel bars in either of the orthogonal mesh directions are modelled by an 

equivalent, smeared, steel layer with stiffness only in the direction of the reinforcement.  The 

thickness of the steel layer can be set so that the cross-sectional area of this layer is equal to the 

total area of its reinforcing bars.  There can be multiple reinforcing layers in each longitudinal 

and transverse direction.  Perfect bond is assumed between the reinforcing steel layers and the 

surrounding concrete.  

 Concrete layers are in a state of plane stress, and concrete is considered to be orthotropic after 

cracking. 

In this model smeared cracking method was adopted for modelling of concrete failure and both 

material and geometric non-linearities were taken into account.  
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2.2 Additional assumptions for the current model 

It is obvious that once one or more cracks are formed within the element, the basis of the FE 

formula in the continua is violated. In order to enrich the layered procedure developed by Huang et 

al. [4] with weak discontinuities some further assumptions are made as follows:  

 After concrete cracking in each layer the crack discontinuity is enhanced by two orthogonal 

in-plane crack openings as extra degrees of freedom.  

 A biaxial failure envelope is used to identify the initiation of crack. Once a crack is initiated in 

a certain layer the directions of principal stresses and strains in that layer are fixed by the crack 

orientation. It is also assumed that the crack propagates from the initiating point to adjacent 

layers with the same crack orientation. 

 A uniform cohesive cracking interface is assumed, which is governed by linear or bilinear 

traction-displacement softening curves.  

 In order to represent the influence caused by the stress variation in high-order elements, each of 

the orthogonal openings is decomposed onto integration points as virtual independent 

sub-cracks with the same orientation and length, determined by the first initiation of crack [see 

Fig. 2]. The magnitude of each sub-crack is governed by the corresponding stress and strain 

status at each corresponding integration point. The total opening width of each layer in the 

element is then approximately determined by summation from all integrating points.  

 The total strain ( ) in the direction normal to the crack is decomposed into continuous (~ ) and 

discontinuous strains ( ̂ ). The continuous strain associates with the deformation of the 

continuous (un-cracked) element. The discontinuous strain describes the relative motion 

between two sides of the crack interface. This is a general technique of EFEM. The standard 

FEM is applied for the continuous strain and the discontinuous strain is transformed from the 

crack opening width (e) by means of scalable effective length of the element ( effl ), which is the 

projection of the element on the normal to the crack direction [16, 19]. That is,  

  ˆ~                                                                 (1) 

 effle /ˆ                                                                 (2) 
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where,   is the scale factor of the effective length and equal to the total number of integration 

points within the element. The usage of   extends the element effective size concept from 

constant strain linear element to high order element, which can be assumed to be an assemblage 

of constant strain patches. Thus, coarser FE mesh can be used. 

The coupling between the continuous solid and the discontinuous interface is enforced by 

means of the traction continuity condition across the crack interface. This provides an extra 

equation to condense the extra DoF (e) out from the stiffness matrix at element level. This 

condition can be expressed as  
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where eDft nnt   is a general expression of the surface traction along the cohesive crack by 

assuming a linear or bi-linear stress-displacement softening curve (further explanation is given 

in Section 2.3.5), tf  is the tensile strength of concrete, nnD is the slope of the softening curve, 

and E is Young’s modulus. Substituting Eqns. (1) and (2) into (3), the opening width, e is 

obtained as 
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2.3 Development of the current model 

2.3.1 Assumed Enhanced Strains (AES) 

Fig. 3 shows an element (ABCD) with a crack band where n is the normal to the crack interface 

direction, O is the central point of the element. The effective length 
n

effl is the size of the element 

transformed from ABCD to abcd with equivalent area. According to Eqn. (2), the equivalent 

discontinuous strain is 
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n

effnn ele   /ˆ                                                          (5) 

If the opening in n-direction does not exist or is closed, then 0ne . Similarly, the equivalent 

discontinuous strain for the s-direction crack (if any) is 

 ss

s

effss el/eˆ                                                             (6) 

This can be expressed in compact matrix form as  

 eMε en ˆ                                                                   (7) 

where, 
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The extra zeroes in Eqns. (8) and (9) are used to make the enhanced strain and the continuous strain 

have the same number of components. So the matrix form of the continuous portion of strain in 

local (n-s) coordinate system can be expressed as 

 eMεTε en  
~                                                             (11) 

where ε  is the total Green-Lagrange strain at any point in the element and can be expressed as [4]: 

 dBd
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in which z is global coordinate; mB , bB  and sB  are generalized strain-displacement matrices 
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related to linear small displacement, respectively; b

LB is strain-displacement matrix related to large 

displacement; and d  is total displacement vector. The details of mB , bB , sB  and b

LB  can be 

found in Reference [4].  

T is the strain transformation matrix from global (x-y) to local (n-s) coordinates. Therefore, the 

continuous strain in global (x-y) coordinate system can be represented as 

   eMTεeMεTTε eex

11~                                                 (13) 

2.3.2 Force equilibrium across the crack interface 

In Section 2.2, the extra degrees of freedom, e, is introduced as internal unknown parameters. 

Hence, extra equations are needed to solve these unknowns. The most natural requirement is that 

the traction vector across the crack should be equal to the stress tensor contracted with the crack 

normal at each integration point [19]. This traction continuity condition can be expressed as  

 ntn f eDσM ˆ}{                                                           (14) 

where, T

stntnssnn }    { σ  is the stress vector in local n-s directions,  Ts

t

n

tt fff }{ is the 

tensile strength vector of concrete, D̂  is the reference stiffness of the cohesive crack interface (see 

Section 2.3.5), and 
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where n  and s  are 1 for opened crack and 0 for undamaged or closed interface in n and s 

directions, respectively. 

Assuming 'D  is the constitutive matrix of the continuous solid in local (n-s) coordinates, hence 

Eqn. (14) becomes 

   eDεD'M ˆ tn f                                                         (16) 
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Substituting Eqns. (11) (12) into (16), that is 

     eDeMdBTD'M ˆ te f
                                                (17) 

Using a linear or bi-linear strain softening curves (see Section 2.3.5) so that the derivative of D̂  is 

zero. A simple rearrangement of the differentiation of Eqn. (17) leads to the relationship between 

the rate equation of crack separation ( e ) and the nodal displacements ( d ) as shown in Eqn (18). 

The derivation is given in the Appendix.  

   dBTD'MMD'MDe 


1
ˆ



 e                                              (18) 

where, 
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2.3.3 Element stiffness matrix consistent with AES and traction continuity condition 

Due to the fact that the crack interface is so shallow compared with the element dimension (the 

stress tends to zero with the increment of opening width) it is assumed that the external forces are 

all taken by the continuous portion of the element [19]. Thus, the internal nodal forces in the 

cracked element are evaluated from the standard relation  

  V

T dVσBf int                                                              (20) 

The tangent stiffness of an element with embedded discontinuity [19] can be constructed by 

expressing the separation rate in terms of displacement rate as shown in Eqn. (18) and substituting 

into the rate form of the basic equation, Eqn. (20). 

This process leads to 

  
V

T

V

T dVdV σBσBf 
int                                                     (21) 

The second term on the right hand side of Eqn. (21) is [4] 
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 dKσB 
V

T dV                                                            (22) 

where, K  is geometric matrix.  

Using Eqns. (12) (13) and (18) the first term on the right hand side of Eqn. (21) can be expressed as 

(the derivation is given in the Appendix)  
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





 




  


 dVdV

V
ee

T

V

T



1
1 ˆ                  (23) 
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V V

wTT dVdV                                                (24) 

where, 
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

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1
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ee

w                                   (25) 

  V

wTw dVBDBK                                                           (26) 

where D is the continuous constitutive matrix in the global coordinate system, which can be 

transformed from the local constitutive matrix D'. It is assumed that the integral concrete is 

isotropic, homogeneous and linearly elastic [4]. A correction factor k=6/5 is used to consider the 

effects of the parabolic shear stress distribution in z direction. From Eqns. (21) (22) and (24) the 

tangent stiffness matrix of the slab element with embedded discontinuities is obtained as 

 KKK  w

T                                                             (27) 

It is obvious that the stiffness matrix w
D  should vary between  0  and  D . When the opening of 

the crack tends to traction free, 0D ˆ , then 0D w . In order to make sure DD w , w
D  should 

be positive, which means 0MD'MD  e
ˆ .  
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2.3.4 Integration of the element tangent stiffness matrix and internal nodal force vector 

In this study Gauss Quadrature is employed to evaluate the stiffness matrix of slab elements. For the 

non-linear analysis of 9-noded element, 9 Gauss integration points are used, as recommended by 

Bathe [18]. Therefore, all stresses and strains, and the material constitutive matrices, correspond to 

Gauss integration points. Since the elements are divided into layers in the z-direction as illustrated 

in Fig 1, the integrations with respect to z are replaced by summation of the integral over the layers.  

Rewriting Eqn. (19) as  
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Substituting Eqn. (28) into Eqn. (26), as follows  
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where p is the total number of layers, q = 9 is the total number of integration points, and 
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where itoph ,  and iboth ,  are the top and bottom coordinates of the i-th layer in z direction. The detail 

of formation of K  can be found in Reference [4]. Hence, using Eqn. (27) element tangent 

stiffness matrix, TK , can be formed.  
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The similar procedure can be used to calculate the internal nodal force vector, intf , as follows, 

  

  

 



 












































p

i

q

j

ij

T

ij

i

ij

T

ij

i

j

p

i
A

i

T

i

i

A
i

T

i

i

V

T

b

s

b

Lm

JDethhweight

dAhdAh

dVz
k

1 1

,22,31

1

,22,31

int

3

σMσM

σMσM

σ
00

B0

B0

BB
f

M



                                (31) 

where 6/5k  for considering the influence of the non-uniformity of the shearing stress [4].  

2.3.5 Constitutive relationship 

2.3.5.1 The cohesive law 

In this research Mode I crack model is adopted for simplicity. The initiation of cracks is based on 

bi-axial concrete failure envelope [4]. After cracking, linear elastic material properties are assumed 

in the continuous solid, but linear or bi-linear softening curves (see Fig. 4) is assumed on the crack 

interface. Because of the orthotropic assumption after cracking, the principal stress and strain 

directions are assumed to be fixed with the crack orientation. The reference stiffness matrix D̂  is a 

2x2 diagonal matrix, that is  

 
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where, nnD  and ssD are the tangent stiffness of the orthogonal cohesive crack interfaces in n and s 

directions, respectively. Let     e,ef  be the loading or unloading function, in which   is 

the maximum normal opening width attained. Then 0f  indicates loading (growing damage) 

and 0f  indicates unloading (crack closing). For loading, nnD  and ssD  are derivatives of the 

softening function. For unloading, nnD  and ssD  are replaced by secant stiffness [20]. For 
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assumed orthogonal cracks, the rate of traction ( sn t,t  ) across the cohesive crack interface can be 

calculated using 
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where, sn e,e   are the rate form of cohesive crack openings.  

If the opening exceeds the traction free open width (according to the softening curve) the tangent 

reference stiffness is set to zero. In this research, for simplicity, if cracks are closed in both of the 

directions then the undamaged material stiffness is regained.  

2.3.5.2 The fracture energy 

In the cohesive interface, the softening curve is governed by the fracture energy, which is a material 

property. In CEB-FIP model code [21], the fracture energy ( FG , in N/m), which is based on 

work-of-fracture method, is a function of the compressive strength of concrete ( cf , in positive MPa) 

and the maximum aggregate size ( ad , in mm). Bazant et al. [22] proposed a new fracture energy 

formulation in which the water-cement ratio ( /w c ) is also taken into account. The fracture energy 

is expressed as  

 

0.46 0.22 0.30

02.5 1
0.051 11.27

c a
F

f d w
G

c




     
       

    
                                  (34) 

where 0 1.0   for rounded aggregates, and 0 1.44   for crushed or angular aggregates. This 

formulation is adopted in this research.  

Because of the fracture in a reinforced concrete is somewhat different from in plain concrete. In 

cracked reinforced concrete structures, reinforcement imparts some load (stress) to the concrete 

between cracks via bond action so that this effectively leads to above-zero tensile stress existing in 

cracked concrete [23]. The mechanism, commonly known as tension stiffening, is usually assumed 

to be limited to a volume on concrete within 7.5 bar diameters from the reinforcement centre [21]. 
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Therefore, in this research this mechanism is taken into account in a very simple way. That is, the 

fracture energy is arbitrary raised by 10% for concrete within the tension stiffening zone.  

2.3.6  Extension of the current model to elevated temperatures 

It is reasonable to keep the fracture energy constant during the numerical procedure at ambient 

temperature. However, the fracture energy of concrete changes at elevated temperatures. This 

should be considered in the model for fire conditions. In order to extend implementation of the 

model described above to elevated temperatures, the fracture energy is associated with temperature 

according to CEB-FIP model code 1990 [21], that is 

 )003.006.1()( 20 TGTG T

FF                                                   (35) 

where, T is the temperature in C0 .  

In addition to the fracture energy, the thermal strains of the materials ( T ) at elevated temperature 

are considered as another strain component, that is,  

 T  ˆ~                                                              (36) 

Because the thermal strain is constant in each step of numerical analysis, Eqn. (36) can be rewritten 

as 

  ˆ~  T                                                              (37) 

Therefore, the crack opening width at elevated temperatures can be obtained by a slight 

modification of the assumption in Eqn. (4) as  
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The numerical procedure presented above has now been incorporated into Vulcan to model the 

structural behaviour of reinforced concrete slabs in fire conditions. The Newton-Raphson iteration 

procedure is employed. The total loading or temperature rise for which the response of the structure 
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is to be traced is divided into a number of steps. It is assumed that changes in the loads or 

temperatures occur only at the beginning or end of a step. During any step the external loads and 

temperatures in the layers of all elements are assumed to remain constant.  

3. VALIDATIONS 

In order to demonstrate the capability of the formulation described above to model reinforced 

concrete slabs under both ambient and fire conditions, total 7 two-way simply supported reinforced 

concrete slabs tested at the University of Manchester [1] and University of Sheffield [2] were 

modelled in this paper.  

3.1 Modelling of the slabs tested at ambient temperature 

The details of the four tested slabs [1] used here are listed in Table 1. All four slabs were loaded via 

an air bag so that uniform load distribution could be achieved. Two rectangular slabs (1.8m x 1.2m) 

and two square slabs (1.2m x 1.2m) were modelled in this study. The tested material properties were 

used as input data for the modelling. The fracture energies were calculated according to Eqn. (34). 

The equivalent thickness of the reinforcement layers were calculated from real area of steel rebar 

used in the test specimens. In order to investigate the mesh sensitivity of the current model some of 

the slabs were also modelled using different meshes. The comparisons of the results predicted by 

the current model with different meshes and previous smear model [4], together with the test results 

are show in Figs. 5-8. It is evident that the predictions of the current model agreed well with test 

results and the predictions of the smear model [4]. Therefore, the current model can predict well the 

global behaviour of slabs in term of deflection. Also it can be seen that the current model is not 

mesh sensitive in term of deflection. It is obvious that steel reinforcement plays a very important 

roll in the load capacity of reinforced slabs subject to large deflection. In order to investigate the 

mesh sensitivity on the stress of the reinforcement, Fig. 10 shows the stresses of reinforcing steel at 

the integration point nearest to the centre of M1-Slab (Point 9 in Fig. 9) for different meshes. It can 

be seen from the figure that the reinforcement stresses generated by two meshes are almost the same. 

The small difference is due to the integration points of the two meshes not being at exactly the same 

position within the slab. However, the results present further strong evident to confirm that the 

current model is not mesh sensitive in terms of the stress as well.  
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In order to examine the ability of the current model to predict the crack openings within the 

reinforced concrete slabs at large deflections, a detail analysis was carried out on the slab specimen 

M1. The M1 slab was modelled with 36 elements and each of the elements was sub-divided into 17 

layers. During the analysis the cracks within the slab was progressing layer by layer from the initial 

crack position. The cracking pattern on the bottom and top surfaces of the M1 slab at the load of 

20kN/m
2
 is shown in Figs. 11 and 12, respectively. It is evident that the cracking on the bottom 

surface was along the yield line layout. The layout of the cracking along the thickness direction of 

the slab at the position of element#15 (see Fig. 11) is shown in Fig. 13. It can be seen that the crack 

along the long span direction decreased from the bottom to top layers, and there was no crack (with 

zero open width) on the top later. However, a vertical crack formed along the short span direction in 

which the opening widths of bottom layer and top layer were 2.28mm and 1.7mm, respectively. 

This can be confirmed by the test observation [1], in which only one large crack appeared in the 

short span on the top surface of the slab (see Fig. 14).  

3.2 Modelling of the slabs tested at elevated temperatures 

The details of the three test slabs [1, 2] used in this validation are listed in Table 2. All the slabs 

were uniformly loaded during the test. Linear temperature distribution between the top and bottom 

surfaces was assumed in the model. The layered temperatures were then calculated according to the 

measured surface temperature data. The tested material properties at ambient temperature were used 

in the modelling. Figs. 15-17 show the comparisons of the central deflections of the slabs predicted 

by the current model against test results, together with the predictions of previous smear model [4]. 

It can be seen that reasonable agreements between the current model’s predictions, test results and 

smear model’s predictions were achieved. This again confirms that current model can predict well 

the global behaviours of reinforced concrete slabs in fire.  

The predicted cracking pattern of the test slab MF1 [1] is shown in Fig. 18. It is evident that a large 

through crack was formed along short span of the slab in which the opening width of the crack is 

about 62mm.  The cracking pattern of Slab M1 observed in the test is shown in Fig. 19. It can be 

seen that the maximum crack opening along the short span was about 75mm. This comparison 

further validates the ability of the non-linear procedure proposed in this paper for modelling 

integrity failure of reinforced concrete slabs subjected to extreme loading conditions, such as fire.  



 19 

4. CONCLUSIONS  

In this research, a new layered slab element model has been developed to model the structural 

behaviour of reinforced concrete slabs subject to large deflections. This model enhanced the 

previous non-linear layered procedure developed at the University of Sheffield [4] with embedded 

weak discontinuities in order to trace the crack openings in reinforced concrete slabs. In this 

approach, the total strain is decomposed into continuous and discontinuous strains. The continuous 

strain is associated with the deformation of integrated part of the elements and the discontinuous 

strain is converted from the opening width of the crack by means of the effective length of the 

element. The magnitude of the crack opening is modelled by extra degrees of freedom, which are 

governed by the traction continuity conditions across the uniform cohesive crack interface. In order 

to account for the stress variation in the element, the discontinuity is decomposed into virtual 

sub-cracks which are governed by the corresponding stress and strain states at each integration point. 

The validations show that the model can predict the global behaviour of slabs at both ambient and 

elevated temperatures with reasonable accuracy, and at the same time individual crack openings 

within the slabs can be identified. The predicted cracking pattern agreed well with the experiment 

results. Thus the current model provides an excellent numerical approach for assessing both 

structural stability and integrity of floor slabs under fire conditions. It is evident that this approach 

is not sensitive to mesh discretization and aspect-ratio of slabs.  

It should be pointed out that in the current model the bond characteristics between steel mesh and 

concrete are not taken into account, and perfect bounding was assumed in the model. Hence, further 

research is needed to include the bond characteristic between concrete and reinforcing steel into the 

current model.  
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APPENDIX 

(1) Derivation of Eqn. (18) from Eqn. (17)  

From Equation (12), let 

 NLL BBB                                                              (A1) 

where  
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LB is the linear-small-displacement strain-displacement relationship matrix; NLB is the non-linear 

large-displacement strain-displacement relationship matrix. For the former, its derivative is zero, for 

the latter, because of the special form of the b

LB  [4] as shown in Eqns. (A4) and (A5),  
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hence, 

         )(2)()()( dBdBdBdBdBdBdBdB dddddddd NLLNLNLLNLL       (A6) 

Or, expressed in rate form, 

     dBdBBdBdBdB   NLLNLLd 22                                     (A7) 

Using Eqns. (A1) to (A7), and Eqn. (17), then Eqn. (18) is derived as follows, 
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(2) Derivation of Eqn. (23) from Eqns. (12) (13) and (18)  

The first term on the right side of Eqn. (21) can be expressed as 
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Substituting Eqn. (13) into the Eqn. (A9), then 
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Substitute Eqn. (12) into Eqn. (A10) and using Eqns. (A1) to (A7), one can be obtained as 
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Finally, substitute Eqn. (18) into Eqn. (A11) the Eqn. (23) is derived as follows  
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TABLES 

Table 1. Details of test slabs at ambient temperature [1]. 

Test specimen M1 M2 M3 M4 

Size (m) 1.8 x1.2 1.2 x1.2 1.8 x1.2 1.2 x1.2 

Size in support (m) 1.7 x 1.1 1.1 x 1.1 1.7 x 1.1 1.1 x 1.1 

Thickness (mm) 18.2 19.1 22.0 20.1 

Diameter of steel bar (mm)  2.42 2.42 1.53 1.53 

Spacing of steel bar (mm) 50.8 50.8 25.4 25.4 

Yield strength of steel yf (MPa) 732 732 451 451 

Concrete strength cuf  (MPa) 41.3 38 35.3 35.3 

Concrete cover (mm) 5 5 5 5 

Water-cement ratio 0.3 0.3 0.3 0.3 

Maximum aggregate size (mm) 6 6 6 6 

Yield line load (kN/m2) 8.52 13.80 6.35 8.17 

 

Table 2. Details of test slabs at elevated temperatures [1, 2]. 

Test specimen FT10 [2] FT20 [2] MF1[1] 

Size (mm) 920 x 620 920 x 620 1800 x 1200 

Size in support (mm) 850 x 550 850 x 550 1700 x 1100 

Thickness (mm) 24 26 19.7 

Diameter of steel bar (mm) 0.71 0.71 2.43 

Spacing of steel bar (mm)   50.8 

Yield strength of steel yf (MPa) 250 250 722 

Concrete strength cuf  (MPa) 39 40 43.2 

Concrete cover (mm) 7.5 7.5 5 

Water-cement ratio 0.47 0.47 0.3 

Maximum aggregate size (mm) (mm) 4 4 6 

Yield line load (kN/m2) 2.49 5.17 9.52 
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FIGURE CAPTIONS  

Fig. 1 Division of reinforced concrete slabs into plate elements. 

Fig. 2 Individual crack is decomposed into independent virtual sub-cracks at integration points 

within the element.  

Fig. 3 Effective length n

effl  of an element with a crack band in n-direction.  

Fig. 4 Linear and bi-linear tensile softening curves of concrete.  

Fig. 5 Comparison of predicted and measured central deflections of Slab-M1 [1] using different 

meshes.  

Fig. 6 Comparison of predicted and measured central deflections of Slab-M2 [1] using different 

meshes.  

Fig. 7 Comparison of predicted and measured central deflections of Slab-M3 [1] using different 

meshes.  

Fig. 8 Comparison of predicted and measured central deflections of Slab-M4 [1].  

Fig. 9  Integration positions in an element adjacent to the centre of the slab. 

Fig. 10 Comparison of predicted reinforcement stresses at the integration point closest to the centre 

of Slab-M1 [1] using different FE meshes.  

Fig. 11 Predicted cracking pattern of the bottom layer of the Slab-M1 at the load of 20kN/m
2 

 (all 

units in mm).  

Fig. 12 Predicted cracking pattern of the top layer of the Slab-M1 at the load of 20kN/m
2
 (all units 

in mm).  

Fig. 13 Crack opening through the thickness of Slab-M1 at central position (Element#15) at the 

load of 20kN/m
2
 (all units in mm).  

Fig. 14 Tested cracking pattern of the top surface of the Slab-M1 [1].  

Fig. 15 Comparison of predicted and measured central deflections of Slab - FT10 [2]  

Fig. 16 Comparison of predicted and measured central deflections of Slab-FT20 [2].  

Fig. 17 Comparison of predicted and measured central deflections of Slab-MF1 [1].  

Fig. 18 Predicted cracking pattern of the bottom layer of the Slab-MF1 at 800 °C of reinforcement 

temperature (all units in mm). 
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Fig. 19 Tested cracking pattern of the top surface of the Slab-MF1 [1].  
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Fig. 5 
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Fig. 7 
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Fig. 9 

 

 

Fig. 10 

 

100 

200 

300 

400 

500 

600 

700 

800 

0 

0 2 4 6 8 10 12 14 16 18 20 22 

Reinforcement Stress (MPa) 

Load (KN/m2) 

36 Elements 

60 Elements 

fyield=732 MPa 

1 

2 

3 6 

5 

4 7 

8 

9 

Centre of slab 

Elements 

Integration 

points (1-9) 



 32 

 

Fig. 11 
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Fig. 13 
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Fig. 15 
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Fig. 17 
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