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Abstract

In this paper, we investigate how an embedded pure network structure arising in many
linear programming (LP) problems can be exploited to create improved sparse simplex
solution algorithms. The original coefficient matrix is partitioned into network and non-
network parts. For this partitioning, a decomposition technique can be applied. The
embedded network flow problem can be solved to optimality using a fast network flow
algorithm. We investigate two alternative decompositions namely, Lagrangean and Ben-
ders. In the Lagrangean approach, the optimal solution of a network flow problem and
in Benders the combined solution of the master and the subproblem are used to com-
pute good (near optimal and near feasible) solutions for a given LP problem. In both
cases, we terminate the decomposition algorithms after a preset number of passes and
active variables identified by this procedure are then used to create an advanced basis for
the original LP problem. We present comparisons with unit basis and a well established
crash procedure. We find that the computational results of applying these techniques to
a selection of Netlib models are promising enough to encourage further research in this
area.

1 Introduction

Large scale linear programming models which arise in many practical applications have sparse
coefficient matrices and display alternative embedded structures such as Generalized Upper
Bound (GUB), pure network and generalized network. It is well known that exploiting a spe-

cial structure within a linear programming (LP) problem can lead to remarkable improvement



in the computational solution of LP problems; for instance see Brown and Olson [7]. When
an LP model includes a subset of constraints and variables which together define a network
flow problem [1], such a network structure appearing within the problem is called an embedded
network and the remaining constraints are called side constraints. There is no restriction on
the form of the rows and columns that do not possess a network property and prevent the
LP problem from being directly solved by specialized network algorithms. For very large LP
problems whose coefficient matrices are made up of a high proportion of rows and columns
of the embedded network structure, the direct solution using the classical simplex method
is generally expensive and may be impractical on a restricted computer platform. The idea
of exploiting the network structure for solving linear programs has a growing importance in
mathematical programming since network flow problems can be solved much faster using spe-

cialized network algorithms [35] rather than the state-of-the-art LP codes.

For Linear Programming problems with Embedded pure Network structures (LPEN), three
classes of solution methods have been discussed in the literature. The first category is spe-
cialized simplex algorithms for solving embedded network linear programs. These methods
are based on the partitioning of the basis. Glover and Klingman [20, 21] introduced a proce-
dure called the Simplex Special Ordered Network (SON) algorithm. McBride [37] extended
the SON procedure for solving embedded generalized network problems. Chen and Saigal
also introduced a primal algorithm [11]. The second category consists of methods for solving
network flow problems where the side constraints have a special structure. These are singly
constrained network flow problems see [8, 19], multicommodity flow problems see [1] and lin-
ear relaxations of integer programming problems see [2]. Glover et al. [19] have reported that
singly constrained transshipment network flow problems can be solved 25—30 times faster than
the state-of-the-art (at the time of publication of their paper) LP code APEX-IIL. The third
category consists of methods which are based on a decomposition strategy which draws upon
Lagrangean relaxation and surrogate constraint methods see [8, 9, 27, 15, 41]. Venkataraman
[41] introduced a surrogate constraint approach to solve constrained network problems and
compared his results with a subgradient optimization approach. Recently, Fourer and Hsu
[15] have also investigated this approach which is based on the solution of the Lagrangean
dual problem.

In this paper, our aim is to create an advanced basis for the LPEN problem by using two
alternative decomposition methods. The rest of this paper is organized in the following way.
In section 2, an embedded pure network flow problem is stated. In section 3, we present a
broad algorithmic framework for creating an advanced basis and solving an LPEN problem.
In section 4, we consider a Lagrangean relaxation of the LPEN problem and introduce a mul-

tiplier adjustment algorithm. In section 5, we consider a variation of the above approach in



which side constraints are aggregated prior to Lagrangean relaxation. A near optimal (and
near feasible) solution yielded by the Lagrangean relaxation method is used to create an ad-
vanced basis for the original LP problem. Two procedures for creating such an advanced basis
are described in section 6. In section 7, an alternative way of constructing such an advanced
basis by using the Benders decomposition method is presented. The computational results

are reported in section 8 and section 9 contains our conclusions in a summary form.

2 Problem Statement

A mathematical model of a network describes a system where the flow of some resource is
conserved; the system is organized into a set of sites called nodes where a resource may be
distributed or accumulated. The resource may be transferred within the system from one site
to another following a set of directed arcs. A pure network is a network where for every arc,
one unit of flow on the arc decreases the amount of resource at the origin node by one unit
of resource and increases the amount of resource at the destination node by one unit. We
consider the primal LP problem with simple upper bounds in the standard form:

Minimize ¢! z,

subject to
Az = b, (2.1)
<z < u,

where A € R™*" and ¢, z,l,u € R™ and b € R™. An embedded pure network structure within
an LP problem refers to a subset of rows of the coefficient matrix such that each column
intersecting with these rows contains at most two non-zero entries (in these rows) and of
opposite sign, that is at most one +1 and one —1 in each column. After such a subset has
been identified, the LP problem can be interpreted as satisfying the conservation of flow at
the nodes of a certain network defined by network rows and other conditions on flows as
specified by the non-network rows. Assume that a submatrix of network rows and columns
of A is detected by an appropriate embedded network detection method (for instance see
[6, 24, 25]). Using the node-arc incidence matrix N to represent the pure network structure,

the LP problem (2.1) can be restated in the decomposed form as,

Py:
Minimize 29 = ¢'* 2’ + " ",
subject to
Nz' =V, (2.2)
Sz’ + Ta" = b,
<z <,

" < " < u.



In (2.2), subsets of rows and columns, submatrices and vectors are defined as

m =m1+ mg, n = N1+ Ny,

N = [nm] € Rm>xm G — [Sij] € Rm2X™m T — [tij] € Rma2xn2,

cd, o' l',u e R, ", 2", 1", " € R, ¥ € R™ and V" € R™.
In many real life problems, I’ and I" are usually zero and inequalities ' < o/, z" < 4" are
turned into the equations z' + s’ = ', " + s" = u", where s’,s” > 0 and s’ € R™, s" € R™.
The vector z' represents the network variables that have at least one non-zero element in the
corresponding column of N. The second constraint set is referred to as side constraints and

the vector z" defines the non-network variables.

3 Solving the LPEN Problem with Advanced Basis

For large-scale LP problems, it is well known that using an advanced basis improves the
performance of sparse simplex method [26], [32]. The calculation of the initial basis is of
great importance as it determines to a large extent the amount of computation that is re-
quired to solve the problem to optimality. In this paper, our motivation is to construct an
algorithm which exploits the embedded pure network structure in the LP problem to create
an advanced basis. Once preprocessing and scaling procedures are applied, we extract the
embedded network structure in the coefficient matrix of the LP problem (see [24, 25]). We
then apply two different decomposition methods; Lagrangean relaxation and Benders decom-
position to create an advanced starting point. The Lagrangean relaxation procedure creates
a pure network flow model by adding the non-network constraints into the objective function
with Lagrangean penalties. A series of minimum cost network flow problems are then solved
iteratively by assigning trial values to the Lagrangean multipliers at each iteration. The
Benders procedure decomposes the LP problem into a master and a subproblem. At each
iteration, a cut obtained by solving the subproblem is introduced into the master problem
and then solved again iteratively. The overall algorithmic framework is described below.

Solution of the LP with Embedded Pure Network Structure
Step 1 (Preprocessing and scaling)

Apply a preprocessing procedure to reduce the size of the problem and a scaling
procedure to increase the number of essential rows and columns that have only +1

non-zero elements.
Step 2 (Network detection)

Detect the network structure out of the set of essential rows and columns. Decom-

pose the problem into network and non-network structures as shown in (2.2).



Step 8 (Solve the decomposition problem and create a starting basis)

Either apply Lagrangean relaxation followed by the multiplier adjustment
procedure (see section 4) and construct a triangular crash basis.

Or apply Benders decomposition (see section 7), then construct a starting
basis by merging bases extracted from the solution of the master problem and

the subproblem.
Step 4 (Complete sparse simplex solution)

Process the given LPEN problem applying the primal, dual or primal-dual

simplex algorithm using the starting basis obtained above.

Having constructed a basis in the manner described in section 6, it is introduced as a starting
basis to our experimental system FortMP [12] which is a general simplex solver. At this stage,
the choice of the pivotal algorithms (primal, dual or primal-dual) plays an important role since
one of these may be faster than the others for solving the given problem. Fourer and Hsu
[15] suggested the dual-primal finishing strategy which avoids infeasibility thereby eliminating
the need for Phase 1 in the two-phase simplex method. They claimed that this strategy is
superior to the other simplex pivotal algorithms in terms of the number of iterations and CPU
time. In our computational work, we have investigated the pivotal algorithms; primal, dual

and primal-dual as sparse simplex completion strategies.

4 A Lagrangean Relaxation of the LPEN Problem

4.1 Lagrangean Relaxation and Lagrangean Dual Problem

From a computational point of view, decomposition is a well established approach for solving
structured mathematical programming problems. In this approach, a large scale mathematical
programming problem is decomposed into simpler problems where constraints are partitioned
into two categories. Constraints in the first category are retained as binding constraints and
constraints in the second category are removed (relaxed), grouped together as side constraints
and penalized for violation. Relaxation of these side constraints makes the corresponding sub-
problem easier to solve than the original problem and this approach has become well known
as Lagrangean relaxation. In the domain of combinatorial optimization, the Lagrangean re-
laxation method was first introduced by Held and Karp, who applied this technique to the
travelling salesman problem [28]. Since then, this method has been widely used to solve other

classes of constrained optimization problems (3, 13, 22, 23].

For the problem Pj, we group and relax side constraints Sz’ + Tz"” = b"; weigh them us-



ing the Lagrangean multipliers A\. The problem is then restated as Lagrangean relaxation

Pryy:
? Minimize z,(yy = ATb” +(C’T - /\TS) z'+ (c"T - /\TT) z",
subject to
Nz' =V, (4.1)
I'<g < u/’
"< "< u//,

A € R™2 and unrestricted.

In (4.1), the Lagrangean multipliers A penalize the violation of the corresponding side con-
straints introduced in the objective function. It is easily seen that the relaxed problem Pr )
is a pure network flow problem z’ in which the feasibility of z” can be trivially satisfied,
whereas Py is a general LP problem. This network flow problem is solved efficiently by special

algorithms such as the network simplex algorithm.

The Lagrangean function z7(y) is convex, piecewise-linear and continuous; these important
structural properties make the Lagrangean problem easy to solve. However, the Lagrangean
function is not everywhere differentiable. It is differentiable whenever the optimal solution of
the Lagrangean subproblem is unique. It is, however, subdifferentiable everywhere in the con-
vex hull of the problem. Let (7, A, 01,71, 02,72) be dual variables corresponding to constraints
n (2.2). The dual of the original LP problem F; is then formalized as

Dy :
Maximize b'77 + 6"T A + l’T01 + l”ng _ ule _ U”T772,
subject to
NT7T+STA+O']_—T’]_ZC” (4‘2)

TTN+ 09 — 1m0 =,

01,02,M1,7M2 2 0.
The dual problem of Pr,) is the same as Dy with different right hand side values. The
Lagrangean dual problem of Py with respect to the side constraints is to find the set of
Lagrangean multipliers A* that maximizes the Lagrangean function zr(y). The objective

function of Lagrangean dual problem is as follows
Pp:
2} (y+) = MAax) {min(z/,zu) (c’ - /\TS) ' + (c” - )\TT) :v”} , (4.3)

where the Lagrangean multipliers A are computed by solving the LP problem



zz()\*) = Maximize w,
subject to (4.4)

In (4.4), f; is the objective value of Py and ¢ is the subgradient of the jth basic solution
fj — clTxl] + c"Tx”J, gj =y — S — Ty (4'5)

and K denotes the number of all basic solutions of the Lagrangean problem.

We may consider the Lagrangean problem P,y and its relationship with the original problem
P,. For any vector A of the Lagrangean multipliers, the optimum value zz( N of the Lagrangean
function is a lower bound on the optimal objective function value z; of the original primal
optimization problem Py, that is, zz()\) < z; for all A. There exists a set of Lagrangean multi-
pliers A* for which the objective value of the Lagrangean relaxation zz( ) attains the optimal
value of the original problem Py, that is, zz()\*) = zj. It is worthwhile to note that when
applying the Lagrangean relaxation method to linear programs, the first property has long
been known, but Geoffrion [18] observed that the latter property does not hold for integer
programs in general. For some choice of the Lagrangean multiplier vector A, if the solution
of the Lagrangean relaxation (z’,z") is feasible in the optimization problem and satisfies the
complementary slackness conditions involving non-negative primal {z',z",s’,s"}, and non-
negative dual {01, 02,71, 72} variables with the property z'oy = 2”09 = s'm; = s" o9 = 0, then

(z',z") is an optimal solution to Pp.

Fourer and Hsu [15] used a master problem given in (4.4) with a trust region constraint
to solve the Lagrangean dual problem in (4.3). In our procedure, we solve Pry) only by a
multiplier adjustment approach which finds a good (near optimal) solution for the original LP
problem as it progressively improves the lower bound. The multiplier adjustment method is
a specialized procedure that solves the Lagrangean dual problem by exploiting the structure
of a particular model. It is sometimes called Lagrangean dual ascent as it can be viewed as
an ascent procedure which guarantees a monotone bound improvement. Fisher et al. [14]
and Guignard et al. [22] gave applications of this method to an assignment problem and an

allocation problem.

Developing a multiplier adjustment procedure is considered to be an art; different problems
require different multiplier adjustment algorithms. It is an iterative method and starts with an
initialized set of Lagrangean multipliers. The initialization of multipliers is dependent on the
underlying model structure and affects the quality of the final bound. At each iteration, only
a small subset of multipliers is examined and one or more multipliers of violated constraints
is adjusted. The calculation of the multiplier adjustment amount is also problem specific.

At iteration k of the multiplier adjustment method, a set of ascent directions is determined



such that the effect on the optimum value of the Lagrangean dual problem by a movement
along a direction is evaluated. The common improvement on multipliers is made by the rule;
XL = Ak ¢, 0% where ¢F is an ascent direction and ¢ is the step size. The step size, t;, can
be chosen either to maximize zp\k 4, g5y Or to take to the first point at which the directional

derivative changes.

The ascent direction involves changes to multipliers corresponding to violated constraints

which is made generally with the following rules:
e if g;¥ < 0, then reduce the multiplier \;*
e if g;* = 0, then do not change the multiplier AR
e if g;* > 0, then increase the multiplier A;*.

The determination of the set of directions and order in which directions are scanned are
problem specific and affect the final bound. If the set of ascent directions is empty, in other
words all constraints are satisfied, or the set has no improving direction, the procedure is

terminated even though an optimal solution is not found.

4.2 Solving the Lagrangean Relaxation (Network) Problem

Consider the problem Ppyy in (4.1). It actually consists of two subproblems; network and
non-network. Thus, solving the kth Lagrangean relaxation problem involves a network part
which provides the solution for network variables z’ and a trivial non-network subproblem
which finds the solution for non-network variables z".

The non-network subproblem is solved simply by setting the side variables to bounds in

their feasibility ranges according to their reduced costs as
(") = (1;")" if e~ (Ak)TTj > 0, (4.6)
(&) = ()" if o — (M) Ty <0,
where T); denotes the jth column of the matrix T'. The network subproblem can be solved by

the primal or dual network simplex algorithm. For our computational work, we use MINET

a minimum cost network flow solver developed by Maros [31, 35].

The multiplier adjustment heuristic solves iteratively a sequence of network linear programs
with different values of A. Even though the solution (z',z"”)* is an optimal solution for the
Lagrangean relaxation problem at the kth iteration, it is not guaranteed that it is a feasible
solution of the original LP problem. To improve the current lower bound, the algorithm finds

another direction and updates the multipliers. The procedure is stated below.



Multiplier Adjustment Algorithm
Step 1 (Initialization)

Let k£ = 0, assign Lagrangean multipliers an initial value, say A% = 0.
Step 2 (Solve subproblems)

Solve the network subproblem and find the network flows (z')¥. Apply rule (4.6) to
bound restrictions on the non-network variables to determine their solution values.
If there does not exist a feasible solution for the network subproblem, then terminate

the algorithm and conclude that the original LP problem has no feasible solution.
Step 3 (Compute gradients)

Calculate gradients for each side constraint. Check gradients; if all side constraints
are satisfied, that is g;¥ = 0, then stop the algorithm and conclude that a feasible

solution to the original problem has been found.

Step 4 (Calculate the adjustment)
T T
Compute AX = min {c"]c — ()\’“) Sj, " — ()\k) Tj} .
Step 5 (Update the Lagrangean multipliers)

Choose a set of violated constraints. Update the Lagrangean multipliers A\;* of the
violated constraints as A;*T1 = A% + AN,

Step 6 (Update the problem)

Let £k =k 4+ 1, construct another minimum cost network flow problem with new

multipliers and go to step 2.

It is worthwhile to mention here that, for £ = 0, the problem represents the network compo-
nents of the embedded network LP problem since the side constraints are all ignored (A = 0).
Hence, the objective value of the network subproblem and the objective value of the LP

problem Py are the same. Fourer and Hsu [15] called this the zero-multiplier method.

5 Aggregation of the Side Constraints

In mathematical programming, aggregation techniques consist of a set of methods for solving
optimization problems by combining data, using an auxiliary model which is reduced in size
and complexity relative to the original model. They have been developed to help form the
most appropriate reduced models that provide good approximations to the original problem
[40].



In order to perform a row or a column aggregation, a set of constraints or variables are
replaced with a single row or a single column. If a set of rows is multiplied by different
weights and aggregated to a single constraint, this is known as a weighted aggregation. If
a row is selected such that it dominates a set of rows, the choice of this row is called an

aggregation by dominance. The same terminology applies to columns.

In this section, we consider another approach which quickly finds a near optimal solution
of the LPEN problem by aggregating the side constraints. Instead of solving the problem
with the original side constraints, the Lagrangean relaxation problem with respect to the
aggregated side constraints is used to find a starting basis. The weight vector consisting of
only ones is used to aggregate the non-network constraints. We apply a basic heuristic to
aggregate side constraints in the given embedded network problem in (2.2). Variables which
appear in a given side constraint ¢ are either network variables or non-network variables
and can be classified into two subsets as I;(N) = {j| a;; # 0, j is a network variable} and

Ii(N) = {j| ai; # 0, j is a non-network variable}.

The side constraints are aggregated into three groups using the following criteria;

e the group of rows which have only network columns, that is I;(IN) = 0. Let this be

defined as the subset R; of the row indices i,

e the group of rows which have only non-network columns, that is I;(N) = (). Let this be

defined as the subset Ry of the row indices 17,

e the group of rows which have both network and non-network columns, that is I;(N) #
and I;(N) # 0. Let this be defined as the subset R3 of row indices i.

The aggregated embedded LP problem becomes a minimum cost network flow problem with
only three side constraints and is set out below.
AP, :

Minimize zy = ¢/* 2’ + " 2"
subject to

Nz' =V,
and the following aggregated constraints
Ry:

) ( ) s,,-) 2 = b,

i€R1 \jeL;(N) i€R

In vector notation, this can be written as S1z’ = 1, where

10



S = lz Sily Z 3in1] and B = Z b;".

i€ER; i€ER; 1€ER;
Ry:
n n
9N (DRI PR
1€Ry \jel;(N) 1€ERy

In vector notation, this can be written as Thz" = B2, where

T = Z tit, e, Z tin, | and By = Z b,
1€ERy i€ER» i€ Ry
R3:
> { > (sijx,-'+t,~,-xj”)} =y b,
i€Rs \ jEL;(N)UI;(N) i€ R3

In vector notation, this can be written as S3z’ + T3z"” = 33, where

S3 = lz Sil, s Y Sim Dty Y tz'm] and B3 = > b".

3 13 =
1€ER3 1€ER3 i€ Rg3 i€R3 i€R3

<z <,

lll S xll S U”.

The multiplier adjustment procedure explained in section 4.2 can now be applied to solve
the following Lagrangean relaxation of the aggregated embedded network flow problem in

which there are only three multipliers to be adjusted.

APryy:
( )Minimize 210y = MBr+XeBe+AsBs+c T o'+ g —A1S17' — X Taz" A3 (S3a’ + Taz"),
subject to
Nz' =V,
! < ! < u/,

lll S xll S U”,

and vector AT = {\(, Ao, A3} is unrestricted.

6 Creating An Advanced Basis

6.1 Discussion of Crash Procedures

The role of an advanced basis and the framework for solving LPEN problems have been in-

troduced in section 3. In this section, we review some well known approaches for creating

11



advanced bases. In general, crash procedures are designed to create an initial basis to provide
an advanced starting point [10, 32]. The simplest way to find an initial basis is to enlarge
the problem by adding artificial and slack variables and create a basis which is made up of
these logical variables. This leads to well known all-logical (unit) basis. The objective at this
stage is to drive artificial variables to zero (make as many as possible non-basic) in order to
obtain a feasible solution to the original problem. It is well known that a starting basis with
multiple structural variables needs fewer iterations and less time to find an optimal solution
compared to the all-logical basis. Alternative heuristic procedures for creating an advanced
basis have been described in the literature (see for instance Carstens [10], Bixby [5], Maros
and Mitra [32] and Gould and Reid [26]).

The triangular crash procedures find a basis matrix which has as many structural variables as
possible in such a way that the resulting basis matrix has a triangular form with a zero free di-
agonal. There are two types of triangular bases which can be extracted from the LP constraint
matrix. The first one is the lower triangular basis in which non-zeros are located in and below
the main diagonal. The other one is the upper triangular basis in which non-zeros are lo-
cated in and above the main diagonal. If the matrix found by the triangular crash procedures
does not satisfy the full row rank property, then it is usually augmented by logical variables
as necessary to form a non-singular triangular matrix that can be used as a starting basis
for the simplex algorithm. The triangularity of this basis matrix ensures that a factored in-

verse representation of the basis with a minimum number of non-zeros can be trivially created.

The triangular crash procedure was first introduced by Carstens in [10]. He defined the
improvement in the objective value as GAIN and introduced some heuristics for choosing the
possible pivots which lead to improvement in GAIN. The block triangular crash procedure
was first introduced by Gould and Reid in [26]. Maros and Mitra introduced a few crash
heuristics which have been used in the solver FortMP [32, 33, 34]. Our network based crash
procedure uses one of them, namely, Lower Triangular Symbolic Crash designed for Feasibility
(CLTSF), but customizes it by restricting the choice of basic columns to the optimum network

variables.

6.2 Network Based Crash Procedure: CNET1, CNET2

In this section, we consider the embedded network LP problem given in (2.2) and describe
our network based crash procedure for creating an advanced basis. For a given set of trial
values of Lagrangean multipliers, the Lagrangean relaxation problem is itself a minimum cost
network flow problem. Therefore, the basis corresponding to a feasible or an optimal solution
to this problem has a triangular form because of the natural structure of network flow prob-

lems. This leads us to use a lower triangular crash procedure by considering only variables

12



which are basic in the network optimal solution. As there are generally less basic variables
in the optimal solution of network problems than the basis size of the original problem, the
logical variables associated with side constraints are introduced to gain the full row rank and
to construct a non-singular basis for the original problem.

We construct two crash procedures; in the first one our choice is restricted to only net-
work variables and network rows. The starting basis is initialized as the one which consists of
the basic variables of the network problem and the logical variables of the non-network rows.
In other words, all non-network columns and network columns which are not in the optimal
basis of the network problem are excluded. We call this crash procedure CNET1. In the
second method, we take into account the remaining rows and apply the CLTSF procedure to
the non-network rows that are not processed in the CNET1 procedure. Therefore, as many
logical variables corresponding to non-network rows as possible are replaced by structural
variables. We call this procedure CNET2. The main steps of the crash CNET2 procedure are
set out below.

Network Based Crash Algorithm: CNET2

Step 1 Initialize the starting basis for the original problem. It contains all basic variables
of the optimal solution of the network problem and the logical variables of the non-

network rows.

Step 2 Define the set of active rows as all non-network rows and the set of active columns
as all nonbasic columns of the optimal network solution. Exclude the free rows and

fixed columns.

Step 8 Calculate the row and column counts of non-zero entries for active rows and columns

of the coefficient matrix.

Step 4 Make the row selection on the basis of minimum row count. If there is a tie, then break
it as in [32]. If the row selection is successful, then select the pivot column, based on
minimum column count. In case of a tie, break it by [32]. If there is no row to select,
then terminate the algorithm with the current basis that may contain some logical

variables of the non-network rows.

Step 5 Update the basis by exchanging the basic column corresponding to the pivot row
with the selected pivot column.

Step 6 Delete the selected row and column from the active sets and also delete any other

active columns intersecting with the selected row.

Step 7 Update the row and column counts and go to Step 4 to select the next pivot row.

13



7 Benders Decomposition of the LPEN Problem

7.1 Theoretical Framework

This decomposition was introduced by Benders [4] to solve mixed integer programming prob-
lems. Since then, it has been applied to many large scale problems in mathematical program-
ming, especially, for solving two stage as well as multistage stochastic programming problems.
The embedded network flow problem may be considered as a two stage problem in which the
network part is the first stage and the non-network part is the second stage. This has mo-
tivated us to use Benders decomposition to create an advanced basis for solving the original
LPEN problem. In this section, we describe our algorithm based on the Benders decompo-
sition procedure. We consider the embedded pure network problem P, given in (2.2) and
split the original problem into a master Py ster and a subproblem Psy,,. The latter is used
to generate cuts as in the Benders decomposition method. Initially, the P,45ter problem is a

pure network problem stated as

Praster:

e T
Minimize zpr = ¢'” 2/,

subject to
Nz' =V,
I'<zg <.

Let z'* denote an optimal solution of Ppqster, then the subproblem P, is defined as

Pyyp:

Minimize zg = ¢"T z",
subject to

Tz" =b" — Sz'™,

"< g <l

The corresponding dual linear program Dg,, of the subproblem Py, is stated using dual

variables 77 = (71, mo, 3)T as

Dyp:
Maximize m T (8" — Sz'*) — moTu" + m3T1",
subject to
7r1TT < C”,
w1 free,

mg, w3 2> 0.

The feasibility condition of Dy is mTT — ¢" < 0 and 7,73 > 0. The assumption that
Py is feasible requires the feasibility of P, for all values of ' satisfying I’ < z' < o'
and Nz’ = b'. In addition, from duality theory, problem Dg,; is finite if and only if

14



mT (6" — Sz'™) — meTu" + m3T1" < 0. This constraint can be appended to the first mas-
ter problem to ensure that the solution to the new master problem leads to a feasible solution

of the original problem; this constraint is called a feasibility cut.

By considering an upper bound on the objective function of D, the smallest value of this

upper bound is denoted by 6 and used to formulate the master problem in the following way.

. T
Minimize zp; = ¢ 2’ + 6,

subject to
Nz' =V
60— (,R_l*)T(bII _ SiL',) + (7!'2*)T ’ll,” _ (7!'3*)Tl” > 0, (71)
(Wl*)T(bH _ SfE,) _ (7{'2*)TU” + (7('3*)Tl” < 0’ (72)
' <z <,
0 free,

where 7 = {m*, my*, m3*} is the optimal solution of Dy,;. At each iteration of the decom-
position procedure, either an optimality cut (7.1) or a feasibility cut (7.2) is added to the
master problem; if primal infeasibility (dual unboundness) is found for the subproblem, the
feasibility cut is added, if the primal problem is feasible (dual bounded) the optimality cut is
then appended to the master problem. Each optimal solution of the master problem (z'*,6*)
is suboptimal and gives a lower bound on the objective value of the LPEN problem, that is
LB = Tg™* +o* < 2§. When the master and subproblem are both feasible, the solution
(z",2"*) is a feasible solution for the problem (2.2) and creates an upper bound, that is
UB=c"2" + " g" > z§. At each pass of the decomposition, the lower bound is updated,

at the kth pass the lower bound is
k
LBk =T (%) + 0. (7.3)

Initially, the upper bound is set to infinity. If the subproblem at iteration & is solved to

optimality, then a new upper bound may be found by the relation
k k
UBF = min {UB’H, 7 (x') +'T (ac”*) } . (7.4)

When the relative gap satisfies the following property, then the problem is considered to have

been solved with sufficient accuracy [29],

UB* — LB*
= < TOL, (7.5)
|LB*| 4+ 1

and the algorithm is terminated. We use TOL = 10~ % in our computational experiments.
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7.2 Algorithm

It is well known that Benders decomposition converges to an optimal solution in a finite
number of iterations. Instead of solving the entire embedded network flow problem with
Benders decomposition, our aim is to take advantage of a good intermediate solution obtained
by the decomposition algorithm and create an advanced starting point. Our procedure is set
out below.

Step 1 (Construct a master and a subproblem)

Decompose the LPEN problem into a master and a subproblem.
Initialize the maximum number of pass, MAXP.

Repeat for K =0,..., MAXP

{ Step 2 (Solve the master problem)

Solve the master problem by a simplex solver. (When k = 0, use a
network solver). If the solution is infeasible, then conclude that the

entire LP problem is infeasible and go to step 7.
Step 3 (Construct a new subproblem and solve)

By fixing the solution z'* of the master problem and revising the right
hand side, construct Ps,p and then solve this subproblem by the primal,

dual or primal-dual simplex algorithm.
Step 4 (Obtain the lower bound)

Calculate the lower bound using relation (7.3).
Step 5 (Create a cut)

If an optimal solution is found for the subproblem, then
calculate the upper bound using relation (7.4),
check the optimality conditions shown in (7.5).

If the optimality condition is satisfied, then
go to step 7.

Else
create an optimality cut (7.1).

Endif

Elseif the subproblem does not have a feasible solution, then
create a feasibility cut (7.2).
Endif

Step 6 (Update the problem)
Add this cut to the master problem. }
Step 7 (Terminate the algorithm)
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7.3 Constructing an Advanced Basis

Having applied Benders decomposition with a preset number of passes, we use the com-
bined solution of the master (the embedded network flow problem) and the subproblem to
compute a good (near optimal and near feasible) solution for the given LP problem. Let
ok = ((:v’ ¥ (=" )k) denote the solution vector of the master and the subproblem in the kth

pass. This solution may be
e an infeasible,
e 3 feasible or
e 3 feasible as well as optimal

solution of the LPEN problem. We create a starting basis for the original problem in the
following way. If the variable z;* for the ith component appears as a basic variable in the
solution of the master or the subproblem, then we mark its status as basic. If not, it means

that the variable is non-basic, then we analyse the solution values;

Lower bound: If the solution value z;* for the ith component is at its lower bound, that is,

z;* = 1;, then we set its status to non-basic at lower bound.

Upper bound: If the solution value z;* for the ith component is at its upper bound, that is,

z;* = u;, then we set its status to non-basic at upper bound.

The basis factorization procedure INVERT uses this information to create an initial factor-

ization of this basis as a simplex starting point for solving the LPEN problem.

8 Computational Results

8.1 The Collection of Test Problems

We have investigated the computational performance of our algorithms for a number of indus-
trial benchmark problems which are readily available to the scientific community. We have,
therefore, chosen models from Netlib\lp\data [16] and Kennington library which is also a
part of Netlib as well as a collection of multicommodity flow problems [17]. The characteris-
tics of the test problems in terms of the number of constraints, variables and non-zero entries

are summarized in Table 1.
We have detected the embedded pure network structure by using a multi-stage GUB based

algorithm developed by us and described in [24, 25]. The number of network rows detected

by this algorithm and the corresponding network columns are also displayed in Table 1.
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MODEL || ROWS | COLUMNS | NONZEROS || NETWORK | NETWORK

NAME ROWS COLUMNS
bnl2 2325 3489 16124 595 1826¢
cre-a 3517 4067 19054 579 3446
cre-b 9649 72447 328542 675 26033
cre-c 3069 3678 16922 546 2881
cre-d 8927 69980 312626 608 19888
cycle 1904 2857 21322 178 1377
degen3 1503 1818 24646 579 1654
d2q06¢ 2172 5167 21322 376 1662
energy 2236 9799 29063 1009 6017
greenbea 2392 5405 31499 235 1404
ken?7 2426 3602 11981 788 2258
pilot 1442 3652 43220 119 463
pilot87 2030 4883 73152 82 346
sctap3 1480 2480 10734 620 1860
ship121 1151 5427 21597 490 3501
sierra, 1227 2036 9252 618 1945
stocfor2 2157 2031 9492 780 1560
stocfor3 16676 15695 74004 6072 12144
pds-1 1473 3729 8052 876 3322
pds-2 2953 7535 16390 1227 5631
pds-3 4593 12287 26796 2141 10872
pds-4 6372 18194 39523 2728 14465
pds-5 8099 23639 51425 3660 20969

Table 1: The characteristics of test problems and the number of

network rows and network columns.

8.2 Experimental Results

We have developed a FORTRAN implementation of the algorithm described in section 3
and the alternative advanced bases. FortMP [12] is used as a callable subroutine. FortMP
has been developed by the mathematical programming group at Brunel University. It is an
industrial strength mathematical programming system used for both algorithmic research and
in collaborative projects with industry. The computational experiments have been carried out
on a SUN Sparc 10 computer with 256 MB memory. We have used the CPU time and simplex

iterations as alternative performance measures of our procedures. In the network exploitation

procedures, the total solution time is calculated by including the time spent in
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1. the network extraction including scaling,

2. the Lagrangean multiplier adjustment procedure (solving a series of network flow prob-

lems) or Benders decomposition procedure (solving a series of master and subproblems),
3. the basis construction, and
4. solving the entire LP problem by FortMP.

However, the time to input the original LP problem and pre-processing time, which are
common to all runs, are excluded. We present our results for each decomposition method

separately and discuss consolidated results.

Results with Lagrangean Relaxation

The results obtained by the Lagrangean relaxation method are set out in Table 2. We first ap-
ply the multiplier adjustment method to the Lagrangean relaxation of the LPEN problem and
display results under the heading LR: Adjusted Multiplier. We then consider an alternative
relaxed problem in which all non-network side constraints are aggregated. We apply the same
multiplier adjustment method to solve the corresponding network flow problem with at most
three side constraints and the results are displayed under the heading LR: Row Aggregation.
We also consider the zero-multiplier method mentioned in section 4 which is a special case of
the multiplier adjustment procedure where all multipliers are fixed to zero and display results

in the second column, LR: Zero Multiplier.

In these cases, the advanced bases are constructed by applying two network based crash
procedures CNET1, CNET2 discussed in section 6. The test problems are then solved using
these starting bases by applying primal, dual or primal-dual sparse simplex as a finishing
strategy. The results in Table 2 are chosen as the best out of all alternative advanced bases
and different finishing strategies. The maximum number of passes to solve the Lagrangean
relaxation problem is limited to 50 in both cases of applying the multiplier adjustment proce-
dure. We observe that for some LP models, the solution obtained using the basis constructed
after optimizing only the network problem without making any multiplier adjustment (zero
multiplier case) decreases the number of iterations as well as the CPU time comparing with
multiplier adjustment method, for example see energy, stocfor2 and stocfor3. However,
for other cases, for instance models cre-d, d2q06c, pilot87, and cycle, degen3, pilot,
pdsi-5, LR: Adjusted Multiplier and LR: Row Aggregation methods lead to better perfor-

mance.

The results in Table 2 reveal that an LP with an advanced starting point constructed from

the solution of Lagrangean relaxation of the aggregated embedded network problem is solved
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to optimality with fewer iterations and less time than the one from the solution of the original
embedded network problem in most models; for example, see models degen3, pilot and
pds1-5. Since the multiplier adjustment procedure is carried out unless the side constraints
are satisfied or the maximum iteration number is reached, the total solution time is increased

in the Lagrangean relaxation procedure.

LR: ZERO | LR: ADJUSTED LR: ROW
MULTIPLIER || MULTIPLIER | AGGREGATION
| MODELS | TIME ITER| TIME ITER | TIME ITER |
bnl2 38.84 2810 | *37.16 2731 37.77 2810
cre-a *34.65 2624 35.15 2624 | 35.16 2624
cre-b 1063.95 23987 | *1062.76 23900 || 1140.6 21346
cre-c 28.32 2375 28.15 2375 | *27.64 2375
cre-d 1215.96 19702 | *646.15 16552 | 654.95 13577
cycle 14.47 1517 1504 1517 || *11.06 1221
degen3 98.82 4904 | 104.61 5176 | *93.69 4706
d2q06c¢ 443.67 20118 || *429.69 19443 | 437.47 20118
energy *85.32 9295 93.52 9640 88.8 9295
greenbea 103.8 7076 85.72 5494 || *84.66 5494
ken7 12.03 1890 12.44 1927 || *10.84 1591
pilot 506.01 9562 | 509.27 9562 | *489.96 9425
pilot87 2301.03 14135 || *2296.41 14135 | 2480.01 15720
sctap3 261 372 *2.55 372 3.11 372
ship121 482 822 575 1075 | *3.57 726
sierra 313 644 *307 619 3.41 644
stocfor2 *8.12 674 14.74 1281 9.84 816
stocfor3 | *790.19 7232 || 1044.07 10322 | 797.69 7232
pds-1 2.92 361 357 453 | *1.24 449
pds-2 19.81 1168 10.62 1168 || *7.41 1181
pds-3 46.05 1716 45.65 1716 | *16.65 1698
pds-4 134.43 3348 | 133.38 3348 || *52.86 3348
pds-5 219.59 4204 || 216.83 4208 || *86.20 4208

TIME: CPU time in seconds, ITER: The number of simplex iterations to solve the LP with
an advanced basis, *: The best solution time obtained out of all procedures.

Table 2: Results with the Lagrangean relaxation method.
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It is worthwhile to mention that even though increasing the number of multiplier adjustments
might give a better bound, it is still time consuming. In contrast, the aggregated side con-
straint can be satisfied without reaching the preset limit on the number of passes. In some
cases, however, considerable computational time is required to satisfy the aggregate side con-

straint, for example see models cre-b and pilot87.

Results with Benders Decomposition

In Table 3, we present the results of applying Benders decomposition described in section 7.2
to test problems. Since at each pass a master and a subproblem are solved and repeated passes
can be time consuming for large models, we have preset the maximum number of passes to
one. Therefore, only one cut is introduced into the master problem. In Table 3, we break up
the results for total solution time and total iteration number for the master and subproblems

as well as the simplex finishing strategy.

In the last column in Table 3, the total solution time includes the time taken to solve the
master and subproblems, to create an advanced basis and to solve the original LP problem
as well as the time taken to extract the network structure. Considering the results shown in
Table 3, we find that the time spent in solving two master problems does not take the major
proportion of the total solution time. However, for model stocfor3, even though the network
simplex solver can be used for the first pass of the master problem (the pure network flow
problem), solving the master problem with one cut is relatively time consuming.

Time to solve subproblems depends on the size of network structures detected; if the pro-
portion of the network structure is not large, it means that the subproblem is relatively large
and cannot be solved fast. The results for models pilot and pilot87 support this observa-
tion. Since the subproblem is the same as the previous one with only different right hand side
values, the previous basis of the subproblem for a warm start is used.

We also observe that an advanced starting point can always be constructed from the solution
of the entire master (pure network flow problem) and subproblem as in the zero multiplier
method. However, we wish to test whether the advantage of adding the cut can be established

here. Therefore we present the results of restricted Benders decomposition.
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MASTER SUB SIMPLEX TOTAL
PROBLEM PROBLEM | BEND BASIS || SOLUTION
| MODELS || TIME ITER || TIME ITER| TIME ITER| TIME |

bnl2 090 337 | 005 197 || 5577 3407 58.23
cre-a 048 201 || 0.50 40 || 37.56 3108 39.85
cre-b 528 430 | 3.81 72 | 934.44 21977 970.46
cre-c 042 307 | 0.36 44 || 33.80 3401 35.83
cre-d 493 541 | 3.15 56 || 695.69 18475 726.20
cycle 0.01 2 003 5 8.81 477 10.15
degen3 0.83 590 | 0.03 50 8336 4063 89.37
d2q06¢ 059 316 | 10.49 1213 || 481.95 20533 496.07
energy 6.31 1399 | 117 269 | 8591 7794 96.84
greenbea 0.54 39 0.65 61 109.35 6922 111.00
ken?7 334 861 007 47 9.62 1404 14.86
pilot 0.39 30 | 31.68 1804 | 331.22 6322 364.18
pilot87 0.77 35 | 254.45 3020 || 2011.73 10627 2268.15
sctap3 0.76 574 | 0.16 48 || 1118 1928 12.98
ship12l 0.76 299 | 0.1 13 3.68 764 5.46
sierra 1.18 612 0.02 0 3.35 960 5.44
stocfor2 1.63 685 | 0.14 3| 1916 2047 21.93
stocfor3 || 101.50 5389 || 1.79 15 || 1676.65 17416 1833.75
pds-1 143 533 o0.01 0 1.14 209 3.72
pds-2 6.34 1053 | 0.03 0 9.68 926 20.50
pds-3 20.59 1944 | 0.05 of 348 2127 66.21
pds-4 47.33 2884 || 0.07 0 11079 4306 181.06
pds-5 70.94 3271 | 0.1 0l 15321 4562 261.52

TIME: CPU time in seconds, ITER: The number of simplex iterations to solve
the master, the subproblem, and the original LP problem.

Table 3: Results with Benders decomposition with one cut.

Consolidated Results

We compare our network based crash procedures with the unit basis and CLTSF procedure
which has one of the best performances currently reported in the literature, see [32, 34]. We
therefore set out the consolidated results in Table 4 and display the time and the iteration
number to solve the LPEN problem with the advanced basis chosen as the best performance of

the Lagrangean relaxation and Benders decomposition, the crash CLTSF and the unit basis.
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LAGRANGEAN BENDERS CRASH UNIT
RELAXATION || DECOMPOSITION CLTSF BASIS
| MODELS | TIME ITER | TIME ITER | TIME ITER | TIME ITER |
bnl2 *37.16 2731 58.23 3407 57.63 3447 74.42 5409
cre-a *34.65 2624 39.85 3108 51.98 3073 56.38 4514
cre-b 1062.76 23900 || *970.46 21977 || 1124.0 21346 || 1153.62 23987
cre-c *27.64 2375 35.83 3401 43.71 3151 44.88 4256
cre-d *646.15 16552 726.20 18475 || 1181.74 19702 690.47 16552
cycle 11.06 1221 *10.15 477 14.57 1149 11.78 1316
degen3 93.69 4706 *89.37 4063 | 118.66 6724 170.90 10270
d2q06¢ *499.69 19443 496.07 20533 || 463.60 20504 509.57 22952
energy *85.32 9295 96.84 7794 || 88.80 9295 87.03 9902
greenbea *84.66 5494 111.0 6922 85.79 5162 116.68 7536
ken?7 10.84 1591 14.86 1404 *7.58 1207 16.89 2790
pilot 480.96 9425 || *364.18 6322 | 505.91 9411 486.79 9220
pilot87 2296.41 14135 || *2268.15 10627 || 2732.42 19894 || 2588.02 15225
sctap3 %255 372 12.98 1928 3.08 761 550 1370
ship12l 3.57 726 5.46 764 *311 726 5.66 1075
sierra *3.07 619 5.44 960 599 1363 479 1248
stocfor2 *812 674 21.93 2047 1349 1153 18.38 2056
stocfor3 *700.190 7232 || 1833.75 17416 || 1178.61 10123 || 1375.86 16330
pds-1 *1.24 449 3.72 209 402 829 495 814
pds-2 *7.41 1181 20.50 926 32.58 2902 25.81 1785
pds-3 *16.65 1698 66.21 2127 || 120.74 5318 67.22 2656
pds-4 *52.86 3348 181.06 4306 | 743.91 18560 183.92 5144
pds-5 *86.20 4208 261.52 4562 || 1811.53 34958 326.74 6733
| rP | 16B, 21W — || 5B, 4w — || 2B,— — || 0B, 10w — |

RP: Relative performance, B: Best out of all methods, W: Winner against CLTSF crash procedure.

TIME: CPU time in seconds, ITER: The number of simplex iterations to solve the LP problem
with different advanced bases and the unit basis. *: The best solution time.

Table 4: The consolidated results.

In Table 4, the results displayed in column two under the heading Lagrangean relaxation
are obtained as the best out of the two crash procedures CNET1 and CNET2 which can be

claimed to be good crash procedures. However, we cannot make any general conclusion as

to which of the network based crash procedures fully dominates all others. The performance

gain of network based crash procedures appears to be problem specific.

Results in Table 4 reveal that for some models, such as pilot, cre-b, degen3, the solu-

tion time and the number of simplex iterations obtained by Benders decomposition of the
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LPEN with one cut are reduced. However, the crash procedures based on Lagrangean re-
laxation outperform the restricted Benders decomposition. We observe that the best of the
Lagrangean relaxation and Benders decomposition performs better than the crash CLTSF

procedure.

Considering these computational results, we make the following broad observations.

1. Exploiting the embedded pure network structure within large scale LP problems im-
proves the total solution time and number of iterations in most of the cases compared
with the sparse simplex method with the advanced basis and unit basis.

2. The sparse simplex solution time and iteration number are decreased by solving the
LP problem with the advanced basis obtained by our start up procedure which uses
Benders decomposition in a restricted form. However, overall the Lagrangean relaxation

procedure dominates the other procedures.

3. If we apply the best network based crash procedure chosen out of CNET1 and CNET?2,

then this result dominates the performance of the CLTSF in most cases.

9 Conclusions

In this paper, we have shown how the embedded pure network structure in LP problems can
be used to create an advanced starting point to solve the original LP problem by the simplex
method. The computational results show that even for general classes of LP problems this
can be an effective procedure for creating an advanced basis. One way forward is to explore
further the decomposition scheme for creating an advanced basis and the obvious step is to

further refine the Benders decomposition method.
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