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Abstract

Dyson’s integration theorem is widely used in the computation of eigenvalue correlation func-
tions in Random Matrix Theory. Here we focus on the variant of the theorem for determinants,
relevant for the unitary ensembles with Dyson index β = 2. We derive a formula reducing the
(n − k)-fold integral of an n × n determinant of a kernel of two sets of arbitrary functions to a
determinant of size k× k. Our generalisation allows for sets of functions that are not orthogonal or
bi-orthogonal with respect to the integration measure. In the special case of orthogonal functions
Dyson’s theorem is recovered.

http://uk.arXiv.org/abs/0705.2555v2


1 Motivation

Random Matrix Theory (RMT) has many applications in all areas of Physics and beyond (see e.g.
the introduction of [1]). For the class of invariant RMT Dyson’s integration theorem is at the heart
of the method of orthogonal polynomials when computing all eigenvalue correlation functions exactly,
for finite n × n matrices. The resulting expressions are then amenable to the large-n limit, in which
universal RMT predictions follow. In the following we restrict ourselves to the integration theorem for
determinants. Before presenting our generalisation thereof we briefly recall how it reveals all eigenvalue
correlations in the unitary ensembles.

We start by stating Dyson’s integration theorem, as cited in [1] (Theorem 5.1.4). Given K(x, y) is
a real valued function satisfying the following self-contraction property:

∫

dy K(x, y)K(y, z) = K(x, z) ,
∫

dy K(y, y) = c . (1.1)

Then it holds1
∫

dx1 det
1≤i,j≤n

[K(xi, xj)] = (c− n+ 1) det
2≤i,j≤n

[K(xi, xj)] , (1.2)

thus reducing the size of the determinant by one through the integration. The theorem also holds for
orthogonal polynomials in the complex plane or for bi-orthogonal polynomials. A similar statement
is true for quaternion valued kernels with the determinant replaced by a quaternion determinant (or
Pfaffian). We refer to [1] for details as we will only consider the ordinary determinant case here.
Iterating the integration theorem the following holds for an (n− k)-fold integral:

∫ n−k
∏

l=1

dxl det
1≤i,j≤n

[K(xi, xj)] = (c− n+ 1) . . . (c− n+ k) det
n−k+1≤i,j≤n

[K(xi, xj)] . (1.3)

It is this form that we will generalise as it is most useful when computing correlation functions in
RMT. We emphasise that on the right hand side (rhs) the determinant has reduced to size k× k over
the same kernel.

The application of eq. (1.3) to the unitary ensembles goes as follows. Suppose we have a set of
orthogonal polynomials pk(x) = xk +O(xk−1) of order k in monic normalisation satisfying

∫

dx w(x)pk(x)pj(x) = hkδkj . (1.4)

Here w(x) is a positive weight function such that all moments exist. From the polynomials we can
construct orthonormal wave functions

ϕk(x) ≡ h
−1/2
k w(x)1/2pk(x) (1.5)

and the following kernel

Kn(x, y) ≡

n−1
∑

j=0

ϕj(x)ϕj(y). (1.6)

1The symmetry property K(x, y) = K(y, x) stated in [1] is not necessary, as can be seen from the proof there.
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It satisfies Dyson’s theorem above with c = n. In the symmetry class of unitary invariant RMT, the
partition function is given in terms of the joint probability distribution (jpdf) of eigenvalues as

Zn =

∫ n
∏

i=1

dxi w(xi) ∆n(x)
2 . (1.7)

The Vandermonde determinant in the integrand,

∆n(x) = det
1≤i,j≤n

[

xj−1
i

]

= det
1≤i,j≤n

[pj−1(xi)] , (1.8)

can be replaced by a determinant over an arbitrary set of monic polynomials. If we choose the
orthogonal ones we can rewrite the jpdf and thus the partition function after few manipulations as

Zn =

∫ n
∏

i=1

dxi hi−1 det
1≤j,k≤n

[Kn(xj , xk)]. (1.9)

It immediately follows from Dyson’s theorem that Zn = n!
∏n
i=1 hi−1. Moreover, following eq. (1.9) all

k-point eigenvalue correlation functions given by n− k integrations over the jpdf can be immediately
read off:

Rk(x1, . . . , xk) ≡
1

(n − k)!

∫ n
∏

i=k+1

dxi det
1≤i,j≤n

[Kn(xi, xj)] = det
1≤i,j≤k

[Kn(xi, xj)] . (1.10)

In the large-n limit the size of the determinant on the rhs remains fixed, and the kernel can be easily
evaluated using the Christoffel-Darboux identity for orthogonal polynomials on R.

Since in this example the choice of orthogonal polynomials was entirely at our disposal, why should
we choose polynomials that are not orthogonal with respect to the weight function, or the integration
range? The reason is that we are not always able to choose the polynomials to be orthogonal. One
example where such a situation occurs is in the Schwinger model [2]. A second example, being in
a different symmetry class, appears when considering the Ginibre ensemble with real non-symmetric
matrices [3]. Integrating out all real eigenvalues one arrives at the Pfaffian of the so-called D-kernel of
the Gaussian Orthogonal Ensemble [1], integrated over a non-Gaussian weight function in the complex
plane. Consequently the self-contracting property eq. (1.1) is not satisfied then.

For this reason we propose a generalisation of Dyson’s theorem for determinants without imposing
any orthogonality condition, and we restrict ourselves to real integrals for simplicity. The generalisation
to integrals over C is straightforward. A counterpart for integrating Pfaffians of a non self-contracting
bilinear has been proved in [3] in the special case when all variables are integrated out.

2 Results

Let each {φj(p)} and {ψj(q)}, j = 1, . . . , n be a set of linearly independent2, integrable functions, such
that all integrals

∫

dx φi(x)ψj(x) exist. For these two sets we define the following bilinear function:

Qn(x, y) ≡

n
∑

j=1

φj(x)ψj(y) . (2.1)

Then the following holds:

2We note that the functions φj(x) may or may not be linear combinations of the functions ψj(x).
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Theorem 1:

1

C

∫ n−k
∏

l=1

dxl det
1≤i,j≤n

[Qn(pi, qj)] = (n − k)! det
n−k+1≤i,j≤n

[Kn(pi, qj)] , k = 0, . . . , n , (2.2)

where we have set pi = qi = xi, i = 1, . . . , n− k for all integration variables.
The kernel Kn(p, q) on the rhs is given by

Kn(p, q) ≡
1

C

n
∑

a=1

det





∫

dx φ1(x)ψ1(x) · · · φ1(p)ψa(q) · · ·
∫

dx φ1(x)ψn(x)
. . . . . . . . .
∫

dx φn(x)ψ1(x) · · · φn(p)ψa(q) · · ·
∫

dx φn(x)ψn(x)



 , (2.3)

where the sum runs over the a-th column replacing the integrated functions by unintegrated ones.
The normalisation C on the left hand side (lhs) is given by

C ≡ det





∫

dx φ1(x)ψ1(x) · · · · · ·
∫

dx φ1(x)ψn(x)
. . . . . .
∫

dx φn(x)ψ1(x) · · · · · ·
∫

dx φn(x)ψn(x)



 . (2.4)

Thus we have reduced an (n− k)-fold integral over an n× n determinant to a k × k determinant of a
single kernel, consisting of a sum of n× n determinants containing only single integrals.

The rhs of our Theorem 1 can be interpreted as a generalised kernel having 2k variables. If we
define

K(k)
n (p1, . . . , pk; q1, . . . , qk) ≡

1

k!
det

1≤i,j≤k
[Kn(pi, qj)] , (2.5)

these satisfy the following generalised self-contraction property (see eq. (1.1)):

Theorem 2:

∫

dq1 . . . dqk K(k)
n (p1, . . . , pk; q1, . . . , qk)K

(k)
n (q1, . . . , qk; r1, . . . , rk) = K(k)

n (p1, . . . , pk; r1, . . . , rk) ,

∫

dq1 . . . dqk K(k)
n (q1, . . . , qk; q1, . . . , qk) =

(

n

k

)

. (2.6)

In particular the kernel defined in eq. (2.3), K
(k=1)
n (p; q) ≡ Kn(p; q), is self-contracting.

Let us make a few remarks. First, the bilinear Qn(x, y) of the set of functions is in general
different from the kernel on the rhs: Q(x, y) 6= Kn(x, y). In particular it is not self contractive in
general:

∫

dy Q(x, y)Q(y, z) 6= Q(x, z). In the case of orthogonal functions,
∫

dxφk(x)ψj(x) = δkj ,
we obviously get back Qn(x, y) = Kn(x, y). Then Dyson’s theorem applies, as in the example in the
previous section.

Special cases of Theorem 1 were previously known. For k = 0 it goes back to C. Andréief in 1883
as cited in [4], after multiplying with the normalisation C:

∫ n
∏

l=1

dxl det
1≤i,j≤n

[φj(xi)] det
1≤i,j≤n

[ψj(xi)] = n! det
1≤i,j≤n

[
∫

dx φi(x)ψ(xj)

]

. (2.7)

The identity for k = 1 was stated and used in [2] but no explicit proof was given. Furthermore let
us point out that for k = n there are no integrations, thus equating the determinant of the bilinear
function and of the kernel.
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3 Proofs

The proof of Theorem 1 will go in three steps, taking the known result for k = 0 for granted. In step
i) we prove the Theorem for k = 1, relating to the definition (2.3). In step ii) we show that the kernel
Kn(p, q) satisfies the self-contraction property eq. (2.6), Theorem 2 for k = 1. In the last step iii) we
prove Theorem 1 for k = n without integrations. Because of the self-contraction property of Kn(p, q)
we can then apply Dyson’s theorem to the rhs to show all the remaining cases. Theorem 2 for k ≥ 2
will then be shown in the second part.

step i): To prove k = 1, in a first trivial step we can replace the determinant of the bilinear function
as follows:

det
1≤i,j≤n

[Qn(pi, qj)] = det
1≤i,j≤n

[

n
∑

a=1

φa(pi)ψa(qj)

]

= det
1≤a,i≤n

[φa(pi)] det
1≤a,j≤n

[ψa(qj)] . (3.8)

Inserting this into the lhs we can expand both determinants with respect to the last, unintegrated
column:

1

C

∫ n−1
∏

l=1

dxl det
1≤a,i≤n

[φa(pi)] det
1≤a,j≤n

[ψa(qj)] =
1

C

∫ n−1
∏

m=1

dxm





n
∑

j=1

φj(pn)C
φ
j





(

n
∑

l=1

ψl(qn)C
ψ
l

)

=
(n− 1)!

C

n
∑

l,j=0

φj(pn)ψl(qn)Clj

= (n− 1)! Kn(pn, qn) , (3.9)

where pi = qi = xi for i = 1, . . . , n− 1. We have introduced the minors

Cφj ≡ (−)n−1+j det
i6=j

[φi(xk)] and Cψl ≡ (−)n−1+l det
i6=l

[ψi(xk)] . (3.10)

These contain n−1 functions each, and all variables x1, . . . , xn−1 are integrated. Thus for each product
Cφj C

ψ
l we can apply the formula for k = 0 by C. Andréief eq. (2.7), with the resulting minor

Clj ≡ (−)l+j det
i6=j;k 6=l

[
∫

dx φi(x)ψk(x)

]

. (3.11)

In the last step the sum in eq. (3.9) can be precisely written as the sum over determinants in eq.
(2.3), each expanded with respect to the a-th column.

step ii): To derive the self-contraction property for Kn(p, q) we simply insert the definition eq.(2.3),

applying the short hand notation < i, k >≡
∫

dx φi(x)ψk(x):

∫

dq Kn(p, q)Kn(q, r) =
1

C2

∫

dq





n
∑

a=1

det





< 1, 1 > · · · φ1(p)ψa(q) · · · < 1, n >
. . . . . . . . .
< n, 1 > · · · φn(p)ψa(q) · · · < n,n >









×





n
∑

b=1

det





< 1, 1 > · · · φ1(q)ψb(r) · · · < 1, n >
. . . . . . . . .
< n, 1 > · · · φn(q)ψb(r) · · · < n,n >









=
1

C2





n
∑

a=1

det





< 1, 1 > · · · φ1(p)ψb=a(r) · · · < 1, n >
. . . . . . . . .
< n, 1 > · · · φn(p)ψb=a(r) · · · < n,n >







× C

= Kn(p, r) . (3.12)
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Here we simply observe that in each product of determinants the common factors ψa(q) and ψb(r)
can be taken out of the columns a and b respectively, and can then be multiplied into the columns of
the other determinant. In a second step the integral

∫

dq can now be taken inside the b-th column of
the second determinant containing φj(q)ψa(q), resulting into < j, a >. This leads to a column already
present and thus a vanishing determinant, unless we have a = b. The resulting normalisation cancels
one power of C to reproduce the kernel.

step iii): We prove Theorem 1 for k = n when all integrations are absent. It is easily seen when
expanding the kernel inside the determinant on the rhs, using the formula in the last line of eq. (3.9):

det
1≤i,j≤n

[K(pi, qj)] = det
1≤i,j≤n





1

C

n
∑

l,k=0

φk(pi)ψl(qj)Clk





= det
1≤i,k≤n

[φk(pi)] det
1≤l,j≤n

[ψl(pj)] det
1≤l,k≤n

[

1

C
Clk

]

=
1

C
det

1≤i,j≤n
[Qn(pi, qj)] . (3.13)

In the first step we used that the determinant of the matrix product is the product of the determinants.
Furthermore, the minors are just the matrix elements of the inverse matrix, Clk/C = (C−1)lk, and we
used eq. (3.8). Because of ii) we can now apply Dyson’s integration theorem to the determinant of
the self-contracting kernel Kn(pi, qj). Using its normalisation,

∫

dq Kn(q, q) = n which can be trivially
seen, we arrive at Theorem 1 for all k = 0, . . . , n.

It remains to prove Theorem 2 for k ≥ 2. The proof goes as follows. On the rhs of (2.6) we

substitute each of the two kernels K
(k)
n as a determinant of single kernels from their definition (2.5).

Using the standard representation of a determinant, we get:

lhs =
1

(k!)2

∫

dq1...dqk
∑

σ,σ′

(−1)σ+σ′
k
∏

i=1

[

Kn(pσ(i), qi)Kn(qi, rσ′(i))

]

. (3.14)

The fact that Kn(x, y) is self-contractive allows us to do all the integrals over qi, to obtain

lhs =
1

(k!)2

∑

σ,σ′

(−1)σ+σ′
k
∏

i=1

Kn

(

pσ(i), rσ′(i)
)

=
1

k!
det

1≤i,j≤k
K(pi, rj) ≡ K(k)

n (p1, ..., pk; r1, ..., rk). (3.15)

The normalisation of the generalised kernel K
(k)
n follows directly from the normalisation of the single

kernel Kn(p, q) which is n, and the repeated application of Dyson’s integration theorem to a k × k
determinant integrated k times. This way we get the binomial coefficient:

∫

dq1 . . . dqk K(k)
n (q1, . . . , qk; q1, . . . , qk) =

n!

(n− k)! k!
. (3.16)

4 Conclusions

We have shown how to reduce any number of integrations over a determinant of a bilinear function of
non-orthogonal functions to a smaller determinant of a self-contracting kernel containing only single
integrals. This makes the large-n limit feasible in such a general setting at least in in principle, given
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the single integrals can be evaluated. Due to the fermionic nature of the Vandermonde determinant
other applications than the mentioned Schwinger model should exist. Our result gives hope that an
analogous Pfaffian integration theorem with some variables unintegrated also exists.

After writing up this paper we learned from P. Forrester that the first part of our result was derived
independently by Rains [5] in the context of symmetrised increasing subsequences. His alternative
proof is formulated in terms of the Pfaffian of an antisymmetric matrix kernel. In contrast, our proof
illuminates the close relation to Dyson’s theorem.

Acknowledgements: We would like to thank T. Guhr and E. Kanzieper for interesting comments,
and P. Forrester for pointing out references. Part of this work was written up and presented during
the workshop on “Random Matrix Theory: Recent Applications” at the Niels Bohr Academy in
May 2007, and we thank the organisers for the stimulating atmosphere. Financial support by EPSRC
grant EP/D031613/1 (G.A. and L.S.) and European Community Network ENRAGE MRTN-CT-2004-
005616 (G.A.) is gratefully acknowledged.

References

[1] M.L. Mehta, Random Matrices, Academic Press, Third Edition, London 2004.

[2] L. Shifrin and J. J. M. Verbaarschot, Phys. Rev. D 73 (2006) 074008
[arXiv:hep-th/0507220].

[3] G. Akemann and E. Kanzieper, arXiv:math-ph/0703019; E. Kanzieper and G. Ake-
mann, Phys. Rev. Lett. 95 (2005) 230201 [arXiv:math-ph/0507058].

[4] C. Tracy and H. Widom, J. Stat. Phys. 92 (1998) 809 [arXive:solv-int/9804004]

[5] E. M. Rains, “Correlation functions for symmetrized increasing subsequences”,
arXiv:math/0006097v1 [math.CO]

7

http://uk.arXiv.org/abs/hep-th/0507220
http://uk.arXiv.org/abs/math-ph/0703019
http://uk.arXiv.org/abs/math-ph/0507058
http://uk.arXiv.org/abs/solv-int/9804004
http://uk.arXiv.org/abs/math/0006097

	Motivation
	Results
	Proofs
	Conclusions

