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Abstract

Identifying genes that direct the mechanism of a disease from expres-

sion data is extremely useful in understanding how that mechanism works.

This in turn may lead to better diagnoses and potentially can lead to a

cure for that disease. This task becomes extremely challenging when the

data are characterised by only a small number of samples and a high

number of dimensions, as it is often the case with gene expression data.

Motivated by this challenge, we present a general framework that focuses

on simplicity and data perturbation. These are the keys for the robust

identification of the most predictive features in such data. Within this

framework, we propose a simple selective näıve Bayes classifier discovered

using a global search technique, and combine it with data perturbation to

increase its robustness to small sample sizes.

An extensive validation of the method was carried out using two ap-

plied datasets from the field of microarrays and a simulated dataset, all

confounded by small sample sizes and high dimensionality. The method

has been shown capable of identifying genes previously confirmed or as-

sociated with prostate cancer and viral infections.

Keywords: Feature selection, näıve Bayes classifier, simulated annealing,

cross-validation, microarray data.

1 INTRODUCTION

Microarray technology [1] provides an extreme example of small sample-size

data, which is further confounded by very high dimensionality. Given the high

costs of a single experiment, gene expression data are characterised by many

dimensions, involving up to thousands of genes, but only a handful of obser-

vations, the biological samples. Therefore, when training classifiers from these

data in order to identify expression patterns for a disease or a biological con-
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dition, it is extremely difficult not only to distinguish samples from different

conditions but also to pinpoint the genes that mostly contribute to a particular

condition. This problem has been pointed out by various authors in the context

of gene expression data, e.g. [2, 3].

In this paper, we develop a method for extracting a reasonable number of the

most predictive genes in a biological sample, within a classification framework

tailored to small-sample and high-dimensional gene expression data. This will

aid biological knowledge about the distinctive features between the classes as

well as help with the design of the next experiments by identifying the genes of

interest. These results can then be translated in a clinical setting by defining

genes that are diagnostic or prognostic of a clinical condition and for identifying

mechanism of a disease. In all the steps involved in developing our method,

simpler solutions will be advocated in order to increase the generalisability of

the classifier as well as the robustness of the extracted features.

The first step in the direction of making the most of small-sample high-

dimensional data is the choice of a simple classifier, that is a classifier which

is defined by a small number of parameters. Despite the often unrealistic as-

sumptions behind simple classifiers, the smaller number of parameters needed

to characterise them reduces the risk of overfitting the data and, as such, can

bring an increase in the predictive accuracy of the classifier on samples outside

the training data [4]. This fact is supported also by studies in the context of

gene expression data, where simpler classifiers have often shown superior perfor-

mance to more complex classifiers [5, 6, 7]. In this paper, we explore and extend

the näıve Bayes classifier, the simplest classifier within the family of Bayesian

networks. This classifier has been used on various applications, including gene

expression data, due to its simplicity, transparency and efficiency, e.g.[8, 9].

The extremely high dimensionality of gene expression data means that a di-
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mensionality reduction method is needed in combination with the classifier in or-

der to improve its classification accuracy as well as to identify the most predictive

genes. A traditional way of dealing with high dimensionality is by using feature

selection methods, where a subset of features is selected by optimizing some well-

defined criterion [10]. Various feature selection methods have been suggested

for gene expression data. Some of them use optimization criteria that are in-

dependent of the classification model used, the so called filter methods, some

others use the classification accuracy, or other model-based scores, as the opti-

mization criterion, the so called wrapper methods, e.g. [5, 6, 11, 12, 13, 14, 15].

A few studies have attempted a comparison between different feature selection

methods on gene expression data [16, 17, 18].

In our experiments we use a wrapper feature selection approach where the

criterion for the selection of the features is based on the likelihood of the cor-

responding selective näıve Bayes classifier. The likelihood itself is the most

common scoring metric for Bayesian networks. However, this measure is prone

to overfitting by leading to overly-complex models. As our aim is to develop a

simple model by identifying only a small subset of predictive genes, we limit the

feature selection method based on this score to networks with a maximum of k

links. A downside of this approach, and indeed of many feature selection ap-

proaches, is that the choice of k can be difficult and computationally expensive.

An alternative, which does not require to fix the number of features k a priori,

is to use a score function that penalises the inclusion of many links. To this

end, we explore the use of a network score based on the Minimum Description

Length (MDL) to select the optimal subset of features. This is similar to the

Bayesian variable selection approach of [19] in the context of a multinomial pro-

bit regression model: here a prior on the number of predictive features is chosen

which penalises complex models. An MDL-based score has been previously used
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in the context of gene expression data and classification by [20] to select a small

number of cluster centroids that best discriminate between the sample classes.

When only few samples are available, care should be taken also in validating

and assessing the model. When assessing the performance of the classifier, one

has to make sure that the data used to select the features and train the classifier

are not used also at the testing stage [2]. In this paper, we use cross-validation

to measure the performance of our selective näıve Bayes classifier. Furthermore,

to increase the robustness of the method, we repeat the feature selection method

based on a stochastic optimization search a number of times. As a consequence

of this, we are able to assign a confidence measure to the various features and

draw more reliable conclusions about the most predictive features.

To summarise, a robust selective näıve Bayes classifier is proposed for feature

selection. This method builds on a simple selective näıve Bayes classifier, but

using simulated annealing to optimize a score function that favours simpler

models. In addition, the method uses data perturbation in the form of cross-

validation to increase the robustness in the selected features. Section 2 describes

the proposed method in detail. Section 3 describes the datasets used in the

analysis. In Section 4 we test the classification accuracy of the method and in

Section 5 we investigate the quality of the discovered features on two biological

datasets.

2 METHOD

Let x = (x1 · · ·xN ) be the vector of discretized expression levels for the N genes

on one sample. By expression, we mean the log(intensity) of a gene relative to a

common reference signal. Each variable of gene expression is discretized into s

states, with s chosen sufficiently small to limit the number of parameters in the

model. This avoids assuming an overly restrictive continuous distribution over
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the gene variables and has the potential of capturing non-linear relationships.

Let c be the associated class, e.g. the presence or absence of a virus or disease in

the sample. Despite considering the case of binary classes in our experiments,

the methodology described in this paper is not restricted to this special case.

Given a training set containing a number of samples and their known true

classes, the task is to find a rule that will automatically classify a new sample

x to its unknown class.

A näıve Bayes classifier makes the simplifying assumption that each feature

is independent of each other given the class. This corresponds to the network

structure in Figure 1 and to the efficient factorization p(x|c) =
∏N

i=1 p(xi|c).

*****FIGURE 1 ABOUT HERE ******

Under the assumption of uniform priors, a Bayesian estimate of p(xi|c) is given

by

p̂(xip|c) =
1 + n(xip|c)

s + n(c)
,

where s is the number of discretized states of the gene variable Xi, n(xip|c)

is the number of cases in the dataset where Xi takes on its pth unique state

within the samples from class c, and n(c) =
∑s

p=1 n(xip|c) is the total number

of samples from class c. From p̂(x|c), an estimate of p(c|x) is calculated using

Bayes rule and the resulting classification rule assigns the sample x to the class

associated to the highest estimated probability.

In this paper, we simplify the näıve Bayes structure further by only including

features (i.e. links in Figure 1) which result in high scoring networks. As a first

approach, we use the standard likelihood score of a network

[21] to compare networks associated to different subsets of features. For our
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problem, this is given by

Lik-score=
N∏

i=1

q∏
c=1

(s−1)!
(s+n(c)−1)!

s∏
p=1

n(xip|c)! (1)

where q is the number of classes. As this score does not inherently penalise larger

sets of selected links versus smaller ones, we constrained the feature selection

search to a maximum of k links.

An alternative to this is to modify the score by including a penalization

term to the likelihood function. To this end, we have explored the use of an

MDL-based score to select the optimal subset of features in a selective näıve

Bayes classifier. This score has been previously used to learn Bayesian networks

[22, 23]. The main idea behind it is to compute the description length of the

network as the sum of the description length of the model and the description

length of the data given the model. For our problem, this is given by

MDL-score =DLModel+DLData (2)

DLModel =2N log(N + 1) + q(s − 1)N
log M

2

DLData =M
∑

i

H(Xi|C)

where H(Xi|C) = −
∑

p,c n(xip, c) log n(xip|c) and M is the number of biological

samples. More complex networks are expected to lead to a shorter description

of the data given the model at the expense of a longer description needed to

describe the model itself. In this way, the score (2) provides a trade-off between

complexity of the model and goodness-of-fit to the data. Furthermore, the factor

log M
2 in equation (2) is a penalty term based upon the sample size [24]. For

datasets where the sample size is particularly small, this penalty will have a

more pronounced effect.

The next step in our method is to efficiently find the network or set of fea-
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tures that optimizes the score (1) or (2). We make use of a simulated annealing

approach [25] to find the set of features that maximizes the network score. This

global optimization search was made possible by the simplicity of the model and

was chosen with the aim of efficiently tackling the problem of high dimension-

ality without suffering from local optima, which many greedy searches might

suffer from. These include for example the selective näıve Bayes of [26] and the

sequential hill-climb approach of [12]. The main idea behind our method is to

make small changes to the classifier structure and then score the network. The

changes involve using three operators, add, delete and swap, which randomly

add a link, remove a link and swap a link in the classifier, respectively. These

changes can be constrained to networks with a maximum of k links when using

the likelihood score (1). In contrast to this, when the MDL score (2) is used, k

is automatically selected. Finally, note that if there are no links in the network

then only the add operator can be applied whereas if the number of links is

equal to k then only swap and delete can be applied.

The optimization algorithm is documented fully below, where D represents

the input data, the initial annealing temperature is denoted by t0, the cooling

parameter for the temperature by c, the maximum number of scoring function

calls by maxfc and the score of a network by score(nbc), computed either by

the log of the likelihood in (1) or by the MDL in (2). R(0, 1) is a uniform

random number generator with limits 0 and 1.

Input: t0,maxfc,D
fc = 0, t = t0
Initialise nbc to a naı̈ve Bayes

classifier with no links

result = nbc
oldscore = score(nbc)

While fc ≤ maxfc do

For each operator do

Apply operator to nbc
newscore = score(nbc)
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fc = fc + 1
dscore = newscore− oldscore
If newscore > oldscore then

result = nbc

Else If R(0, 1) < edscore/t Then

Undo the operator

End If

End For

t = t× c
End While

Output: result

Algorithm 1 : Simulated annealing for feature selection in näıve Bayes.

For all our experiments, we set t0 to 1. This was based upon the initial scores

when applied to the two datasets investigated in this paper (we have generally

found that a good starting temperature is similar to the changes in score in

the early iterations) and allowed upward transitions in the early and mid-stages

of the learning procedure. maxfc was set to 10000 as this was found through

empirical analysis to ensure that convergence has occurred on the datasets ex-

plored. c was set to 0.999, calculated to make the temperature after maxfc

iterations suitably close to zero in order to ensure that changes resulting in a

worse solution would no longer be retained.

We use m-fold cross-validation to assess the performance of the selective

näıve Bayes classifier. Furthermore, for each fold, we repeat the feature search

10 times, due to the stochastic nature of our simulated annealing (SA) algorithm.

For each of these runs, the frequency count is maintained for each link in all

networks generated on the training data for the corresponding fold and the

classifiers tested on the portion of data taken out. In this way we are able

to produce a confidence measure for each feature in the dataset based on the

different training samples generated by each fold, leading to a more robust

detection of the most predictive features. This is similar to the method used by

[27], where the confidence measure on links in a Bayesian network is achieved
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by bootstrapping the data.

We call this method the Robust Selective Näıve Bayes classifier (RSN) to

emphasise the combination of the feature selection procedure with the confidence

measure associated to each feature. The algorithm below gives a description of

the overall procedure.

Input: m,r,D,M
Initialise all counts in p to 0

and accuracy to 0

For i = 1 to m
D′ = D with M/m samples randomly

removed and placed into U ′

For j = 1 to r
Apply SA on D′ to learn NBC links

For each gene g discovered in NBC

p[g] = p[g] + 1
End g
Use U ′ as test set to assess

the performance of the classifier

accuracy = accuracy + accuracy[U ′]
End j

End i
p = p/(m ∗ r), accuracy = accuracy/(m ∗ r)

Output: p, accuracy

Algorithm 2 : Robust Selective Näıve Bayes classifier

where m is the measure of perturbation (e.g. 10 to randomly delete a tenth of

the data at a time), M is the number of samples, D is the dataset, accuracy

gives the average performance of the classifier using m-fold cross-validation,

where each fold involves r repeats of the stochastic search algorithm (here SA),

and p is a vector of counts for each gene, that is the proportion of times that a

gene has been selected by the RSN method.
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3 THE DATA

In this section, we describe the datasets used to validate and assess the RSN

method. These include two real datasets from the field of gene expression data

and a simulated dataset.

3.1 Prostate Cancer

This dataset has recently been included in the Stanford Microarray Database

and is described in [28]. It consists of 112 samples, 41 of which are from normal

prostate specimens and the remaining 71 from primary prostate tumours and

lymph nodes metastases. We used filtered data containing 1410 genes.

For the RSN classifier, each variable of gene expression was discretised into

four states using a frequency-based method whereby each resulting discrete state

appears an equal number of times.

3.2 B-cell Lymphomas

This dataset consists of a series of 26 arrays from 584 filtered genes measur-

ing gene expression difference across a set of human B-cell lymphomas and

leukaemias [29]. The 584 genes were filtered from a total of 1987, by removing

the genes with missing data. Each probe on the array detected a single gene

transcript. For each sample, we know whether a virus is present or not. This is

what we wish to classify. The data is equally balanced with 50% of cases having

the virus present.

Prior to learning the RSN classifier, the data were discretised into two states,

based upon whether the expression value was positive or negative. The choice

of two states was decided for this dataset with the aim of keeping the number of

parameters as low as possible (due to the extremely small number of samples).
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3.3 Simulated Data

To assess the sensitivity and specificity of RSN, we make use of a simulated

dataset. We have generated the data with the aim of reflecting the sort of

features found within real microarray data. The dataset consists of 100 samples,

50 for each of the two classes, and 1000 features. For 30 of these features, we

have drawn the gene expression profiles associated with the two classes from two

different distributions, respectively, that is we have assumed that these features

differentiate between the two classes. The two distributions were chosen to be

normal, with mean and standard deviations randomly selected from a uniform

distribution with range of [-1,1] and [0.1,1.5], respectively. The ranges were

identified using the predictive genes found in the B-cell data, with the aim

of reflecting the degree of overlapping between the two classes found in real

datasets. The remaining 970 gene expression profiles were drawn from a single

standard normal distribution, that is we have assumed that these features do

not separate the two classes. The mean and variance of this distribution were

also set approximately as the ones found in the B-cell data. Note that the choice

of a normal distribution is appropriate for the microarray data in our studies,

as the gene expression is reported in the log-scale.

4 RESULTS

We validate and assess the performance of the RSN classifier in different ways.

Firstly, we explore the effect of reducing sample size on prediction accuracy by

applying the method to the prostate cancer dataset, where a reasonable number

of samples is available. Secondly, we use the simulated dataset to test how well

our feature selection method detects the most predictive features in the data.

Finally, we assess the classification accuracy of the method and compare it with
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other standard feature selection methods for classification.

4.1 Exploring the effect of sample size on classification

accuracy

We use the prostate cancer dataset to show the effect of sample size on accuracy

of the RSN classifier when compared with the standard näıve Bayes classifier.

We sequentially reduce the size of the data, by randomly deleting a tenth of

the observation. At each step, a selective näıve Bayes classifier is learnt on

the corresponding data and the accuracy estimated using Algorithm 2 (with

m, r = 10). Figure 2 shows the classification accuracy of selective näıve Bayes

models based on the likelihood score (1) and limited to a maximum of 5 links,

50 links, 500 links and the standard näıve Bayes (1410 links), respectively. It

can be seen that the complexity of the model is detrimental to the classifier

performance as sample size decreases.

*****FIGURE 2 ABOUT HERE ******

These results imply that a simple model is preferable when only a small

sample is available as it reduces the risk of overfitting. This was the expectation

and main motivation behind our proposed method.

4.2 Validating the quality of the selected features using

simulated data

We use the simulated dataset in Section 3.3 to validate the power of our feature

selection method. We have generated the data so that 30 genes were differen-

tially expressed between the two classes. The hope is that these genes will be

picked by our method out of the large number of redundant genes.

Figure 3 shows the Receiver Operating Characteristic (ROC) curves for both
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the likelihood-based and MDL-based RSN (Lik-RSN and MDL-RSN, respec-

tively).

*****FIGURE 3 ABOUT HERE ******

We build the ROC curve by considering the proportion of times a gene was

selected as the probability of it being classed as one of the 30 pre-defined most

predictive genes. Hence, sensitivity is the proportion of these 30 genes which

have been correctly identified. We also compare the likelihood-based and MDL-

based RSN with a stepwise version of the likelihood-based RSN (SW-RSN) and

with the well known stepwise linear regression method (SW-LinReg). For the

stepwise approaches, a greedy search algorithm based upon the forward selection

method is used to detect the k features that optimize the corresponding score.

The latter is given by the likelihood score (1) for the SW-RSN method and by

the residual sum of squares error of the regression model built on the subset of

features for the SW-LinReg method (implemented in the S+ function stepwise).

The value of k was set to 5 based on experiments as shown in Figure 2. The

SW-RSN method is similar to the selective näıve Bayes of [26] except that we

do not use an accuracy-based wrapper method.

The plot shows that the global simulated annealing approaches perform bet-

ter than the stepwise approaches, by finding more of the correct features whilst

minimizing the detection of incorrect ones. This is likely to be due to the greedy

search getting stuck in local optima which a simulated annealing optimization

search manages to circumnavigate. The likelihood-based and MDL-based ap-

proaches both show a high accuracy in detecting the true differentially expressed

genes, with the likelihood score slightly outperforming the MDL approach for

this particular choice of k.
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4.3 Classification accuracy of RSN

The results in the previous two subsections show that the RSN method manages

to handle the extreme situation of small sample size due to its simplicity and

is also able to single out the most predictive features in the dataset from the

redundant ones due to its robustness. In this subsection, we apply the RSN

method to two real gene expression datasets, namely the prostate cancer and

the B-cell datasets described in Section 3. Together with these two datasets,

we also generate a third dataset, by sampling 25% of the prostate cancer data

(consisting of only 28 samples). The remaining 75% of the data were used as a

test set to estimate the accuracy of the classifier. This was possible due to the

large number of samples available for this dataset and was done with the aim

of further testing the accuracy of the method on extremely small sample-size

situations. For the other two datasets, we used leave-one-out cross validation

on the B-cell dataset (i.e. m = 26 in Algorithm 2) and 10-fold cross-validation

on the prostate dataset (i.e. m = 10 in Algorithm 2).

Table 1 shows the classification accuracy achieved by RSN using both the

likelihood and MDL scores, along with a number of other well documented fea-

ture selection methods. These include the forward stepwise selective näıve Bayes

(SW-RSN) and forward stepwise linear regression (SW-LinReg), previously de-

scribed, and C5, an updated commercial version of the decision tree generator

C4.5 [30].

*****TABLE 1 ABOUT HERE ******

From Table 1 it can be seen that RSN was better than C5 and SW-LinReg on

all three datasets and comparable to the SW-RSN method overall. The relative

accuracy of RSN (when using the MDL or likelihood score) is particularly good

on the 25% sample of the Prostate dataset. Note that the ratio between the

number of variables and the number of observations is particularly extreme in
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this dataset, with only 28 samples and 1410 predictors. The likelihood-based

and MDL-based RSN methods are comparable under the particular choice of

k = 5 used for the likelihood score. This can be seen as an advantage to the

MDL score, as this does not require the value of k to be chosen a priori.

In addition, we have explored the use of a Tree Augmented Network (TAN)

classifier [31] rather than the näıve Bayes classifier within the same framework

of the MDL-RSN method. Here the näıve Bayes structure is augmented by

allowing also dependencies between the gene variables. This was done with the

aim of testing whether relaxing the assumption of independence of the näıve

Bayes classifier improves the classification accuracy of the method. The method

achieved an accuracy of 73% and 97% on the B-cell and Prostate datasets,

respectively. This shows no significant improvement with the RSN method

under the constraint of simplicity that our framework imposes. Furthermore, a

closer inspection of the network of the TAN classifier reveals no consistent links

between the gene variables, as we explain more in the next section.

5 DISCUSSION

An integral part of the RSN method is that it will output the set of the most

predictive genes found with high confidence during the estimation procedure.

These can then be further analysed to gain new insight into the underlying

biology. This means that the method must strike a balance between discovering

a reasonable number of novel genes and not overfitting the data by learning

classifiers with too many features. In this section, we explore the quality of the

selected features on the prostate and B-cell datasets.

Figure 4 plots the log-likelihood and MDL scores for individual links in the

näıve Bayes network, measured on the full B-cell data.

*****FIGURE 4 ABOUT HERE ******
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The genes are ordered based on their MDL score. The plot shows how, de-

spite the small number of observations, the two scores manage to differentiate

amongst genes. A few genes on the right hand side of the plot are found with a

high score and as such they are identified as the best candidate for future inves-

tigation. This is promising as it implies that our results should only generate a

small number of high confidence genes for classifying the data.

By repeating the network learning 10 times for each cross-validation exper-

iment, we are able to get a confidence level on each gene. Figure 5 plots the

proportion of times a gene from the B-cell and prostate cancer dataset, respec-

tively, was selected out of the total runs (260 for the B-cell and 100 for the

Prostate). For the B-cell dataset all the genes with a proportion greater than

zero (in total 21) are plotted in the figure, sorted in descending order. For the

Prostate dataset, we only show those with a proportion greater than 0.5, out of

the 103 genes that were found with a non-zero proportion.

*****FIGURE 5 ABOUT HERE ******

As one can see, only a few genes were consistently picked out in a high proportion

of classifiers, with a large fraction of genes never selected by the method (i.e.

with zero frequency). This means that the method does manage to home in on

a small number of interesting genes, that can then be further investigated from

a biological perspective. Note that the different shape of the two histograms for

the two datasets is mainly due to the fact that not all the genes with proportion

greater than zero are plotted on the prostate dataset. Figure 6 compares the

results of the full prostate dataset with the list of genes found by the 25%

Prostate dataset. It plots the average percentage of overlap between the top

20 genes found on the full dataset and the genes found on subsamples of the

full data. The average is computed over four 25% samples of the full dataset.

For a fixed frequency f , the overlap is defined by
n25%(f)

20
, where n25%(f) is
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the number of the top 20 genes on the full dataset which are found amongst

the genes on the 25% data that have frequency greater than f . The plot shows

how the degree of overlap increases from about 20% as the frequency decreases.

About 80% of the genes found on the small dataset with a non-zero frequency

include the top 20 genes of the full dataset. Note that the total number of genes

found with non-zero frequency was on average 47 on the four 25% subsamples.

These results show also the importance of genes selected with a low frequency

as potentially interesting for further biological investigation and strenghten the

case for data perturbation as a mean for the identification of these features.

*****FIGURE 6 ABOUT HERE ******

The RSN method makes the assumptions that the genes are independent

given the class by using a näıve Bayes classifier and that simulated annealing

finds a good solution to the optimization problem. We have tested the effect of

both assumptions on the feature selection method. As for the first assumption,

we have compared the features selected by RSN with the features selected by the

same method but based on a TAN classifier. This classifier allows dependencies

between the genes as already explained in Section 4.3. The comparison showed

that there is an 81% and 96% overlap between the genes in Figure 5 and the

same number of top genes found by the TAN classifier on the B-cell and Prostate

datasets, respectively. Furthermore, the links between the gene variables were

found with a very low frequency, less than 0.02 on the B-cell dataset and one

single link with frequency 0.01 on the Prostate dataset. An inspection of the

correlation between gene pairs in the two datasets revealed a relatively low

correlation. The absolute correlation between gene pairs is on average 0.23 and

0.2 on the B-cell and Prostate datasets with only 7% and 4% of genes with

correlation greater than 0.5, respectively. Overall, these results suggest that

relaxing the assumption of independence between the genes brings no significant
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change to the identification of the predictive features, when the aim is to learn a

simple classifier from a very small number of samples and when the correlation

between the genes is relatively low.

As for the second assumption, we have measured the consistency of simulated

annealing within the different cross-validation folds in order to measure how

often the same set of genes was selected in the optimization search. Figure 7

plots the percentage of times a gene is selected within each separate CV fold.

*****FIGURE 7 ABOUT HERE ******

We measure this on the four genes with the highest frequency count and three

genes with low frequency found on the B-cell dataset. The plots show a high

consistency of simulated annealing, both for the top genes, where the consistency

is across folds, and maybe more interestingly, this is also the case for the bottom

genes, where each gene is selected only on a very small number of folds. We

have also looked at how often the same set of genes was selected together by

the simulated annealing algorithm across the different folds. As expected, the

consistency was lower: 16% of all networks generated were found to contain

all of the top four links in Figure 7, whilst 38% contained three of them, 35%

contained just two and 11% contained only one.

The genes identified with high confidence by our method are expected to

be the ones that separate the two classes best. To test for this, we have mea-

sured the separation of the class means in terms of the class dispersion, using a

standard Fisher’s method [32], and compared the score achieved by the features

selected by our MDL-RSN method with the one obtained from a set of randomly

drawn features. The latter was measured as an average across 100 random sam-

ples. Figure 8 plots this measure of separability on the two datasets, as genes

with decreasing confidence level are considered. The plot shows how overall

the selected genes differentiate the two classes better than random genes. As
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expected, the separability measure between the two classes increases with the

dimension of the problem given the limited data available.

*****FIGURE 8 ABOUT HERE ******

The genes identified by our method as positively or negatively associated

with the presence of latent herpesvirus infection of B-cell tumours and of prostate

cancer (x-axes of Figure 5) were further investigated for biological significance.

On the B-cell dataset, the selected genes have not been systematically identified

before, therefore the presence or absence of a gene in the classifier will require

further experimental validation. Nevertheless, a number of the genes have been

previously associated with viral infections (marked in Figure 5 with asterisks),

suggesting that the classifier has indeed identified biologically relevant genes.

Some of the genes encode proteins known to interact directly with virus pro-

teins and genes. For example, BCL2/adenovirus E1B 19kDa interacting protein

2 (U15173), which was found in 64% of the classifiers, is a known pro-apoptotic

protein that interacts with the adenovirus E1B protein [33], whereas the nucle-

ase sensitive element binding protein 1 (M85234) is known to activate Simian

virus 40 DNA replication [34] and JC virus replication [35]. Other genes have

known roles in the interferon response to virus infection. For example, the

proteasome subunit beta type 8 (Z14982) is part of the interferon inducible im-

munoproteosome [36] and the damage-specific DNA binding protein 1 (U32986)

is a cellular protein essential for the targeted degradation of STAT1 by several

paramyxoviruses and is also targeted by hepatitis B virus X protein (HBx) to

interfere with its cell growth functions [37]. Finally several genes have known

roles in the cell mediated immune response to pathogens. CD48 (BC016182) is a

co-receptor for strong natural killer cell adhesion [38] and beta-2-microglobulin

(AK026463) forms a complex with MHC Class I molecules for presentation of

viral peptides to the immune system [39]. Together these data demonstrate that
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the classifier has identified genes involved with unlinked, diverse stages of viral

infection suggesting their identification by chance is unlikely. The roles of the

remaining genes in infection are unknown.

On the prostate cancer dataset, the top scoring EST (expressed sequence

tags), with GENEBANK ID AA055368 and consistently identified in 79% of the

experiments, is from caveolin-1, a prominent prostate cancer marker

[40]. Interestingly, the third EST, with GENEBANK ID AA487560 and a score

of 0.69, comes from a different part of the same gene. It is positive that our

method has managed to identify both parts of the same gene. Amongst the high

scoring ESTs there is also the SLUG gene (N64741) with a known repressor role

in breast cancer [41]. It would be interesting to investigate this further and

see whether this gene is related also to prostate cancer in males. Furthermore

TCF7L1 (AA180237) is a well characterised cancer inducing transcription factor

[42]. Finally, there are at least two ESTs from uncharacterised genes that our

analysis shows to have strong connections to prostate.

The computational runtime of the method depends on the number of folds

for cross-validation as well as the number of repeats of the stochastic method.

Approximately, the cross-validation part requires 5 minutes per fold. In our

experiments, we had 26 folds on the B-cell dataset and 10 on the Prostate

dataset. In addition, we have run simulated annealing 10 times on each fold.

Therefore, the overall runtime was near to 20 hours for the B-cell dataset and 8

hours for the Prostate dataset. However, we have only repeated the simulated

annealing 10 times for each fold to illustrate its consistency. Given the high

consistency shown by the results, it is not necessary to perform this step for

further analysis, though it might be worth having reassurance of its consistency.

We would like to point out that if the type of analysis discussed in this paper

can be used to home in on interesting genes early on in the experimental phase,

21



then a huge amount of time will be saved.

6 CONCLUSION

In this paper, we have proposed a method capable of identifying features that are

highly predictive in classifying high-dimensional data when only very few sam-

ples are available. In particular, we have focussed on the recent application of

microarray technology. Given the high costs of a single microarray experiment,

gene expression data are characterised by many variables, involving up to thou-

sands of genes, but only a handful of observations, the samples. As such, these

data are prime examples of extremely small sample-size but high-dimensional

data.

We have used two gene expression datasets and a simulated dataset to val-

idate and assess the performance of our method. The method was developed

following certain criteria that we believe should be considered when analysing

extremely small and high-dimensional data. First of all, we have chosen a simple

classification method, involving only a small number of parameters to estimate,

with the aim of reducing the risk of overfitting the data. Secondly, we have

tailored the feature selection method to penalise the selection of too many fea-

tures, either by putting a constraint on the maximum number of features or by

using a score that incorporates a penalization term for overly complex models.

This second approach is particularly appealing as it avoids the choice of the

maximum number of features allowed for selection, which is often a difficult

and expensive task. Thirdly, we have used simulated annealing to select the

optimal set of features in the dataset. We have generally found that a global

optimization technique such as this performs better than a greedy search, as

the latter can easily get stuck in local optima. Finally, we have repeated the

learning many times as well as perturbing the data, in order to obtain a more

22



robust set of predictive genes.

The results show an improvement of our method as compared to other more

standard techniques. When using this method, only few genes were consistently

identified with high confidence. These were further validated from a biologi-

cal perspective. A number of the prostate cancer and B-cell genes identified

have been previously associated with prostate cancer and viral infections, re-

spectively. Other less well-known genes from the B-cell dataset, found in a high

proportion of the classifiers, are being investigated in a further study.

The small number of interesting genes identified by the method are the basis

for the design of the next set of biological experiments. The identified features

and the more substantial new data could then be used to build and test a

final classifier. Future work will also involve incorporating existing biological

knowledge into the prior of the Bayesian classifier as well as extending the

model to handle temporal information.
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Tables

B-CELL PROSTATE 25% PROSTATE
MDL-RSN 73% 96% 88%
Lik-RSN(5) 68% 96% 91%
SW-RSN(5) 73% 95% 83%
SW-LinReg(5) 62% 93% 74%
C5 38% 84% 87%

Table 1: Comparison of the RSN classifier to other feature selection methods
on the three datasets.
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Figures

Figure 1: The näıve Bayes classifier.
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Figure 2: The classification accuracy of RSN models based on the likelihood
score and increasing values of k, on datasets with sequentially reduced sample
size.
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Figure 3: ROC curves on simulated data comparing different versions of the
RSN method and the standard stepwise linear regression.
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Figure 4: The log-likelihood and MDL scores for individual links in the B-cell
dataset.
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Figure 5: Frequency of links discovered by MDL-RSN on the B-cell and Prostate
datasets. All links with frequency greater than zero are shown for the B-cell
dataset, whereas only the links with frequency greater than 0.5 are shown for
the Prostate dataset. The asterisks refer to those genes that were previously
associated with viral infection or prostate cancer.
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Figure 6: Average percentage of overlap between the top 20 genes found by
MDL-RSN on the full prostate dataset and the genes found by the same method
on four 25% subsamples of the data with frequency greater than a specified cut-
off.
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Figure 7: Consistency of simulated annealing (SA) within the different CV-
folds for the four top genes (left) and the three bottom genes (right) selected by
MDL-RSN on the B-cell dataset.
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Figure 8: Measure of separation of the class means in terms of the class disper-
sion for the features selected by MDL-RSN, in decreasing value of confidence
(solid line), as compared with a same number of features randomly drawn (dot-
ted line).
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