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Abstract 

This paper describes a method for predicting air temperatures within the urban heat 

island at discreet locations based on input data from one meteorological station for the 

time the prediction is required and historic measured air temperatures within the city.  

It uses London as a case-study to describe the method and its applications.  The 

prediction model is based on Artificial Neural Network (ANN) modelling and it is 

termed the London Site Specific Air Temperature (LSSAT) predictor.  The temporal 

and spatial validity of the model was tested using data measured eight years later from 

the original dataset;  it was found that site specific hourly air temperature prediction 

provides acceptable accuracy and improves considerably for average monthly values.  

It thus is a very reliable tool for use as part of the process of predicting heating and 

cooling loads for urban buildings.  This is illustrated by the computation of heating 

degree days (HDD) and cooling degree hours (CDH) for a West-East transect within 

London. The described method could be used for any city for which historic hourly air 

temperatures are available for a number of locations; for example air pollution 

measuring sites, common in many cities, typically measure air temperature on an 

hourly basis. 
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1. Introduction 

 

Urban warming, commonly referred to as the ‘Urban Heat Island’ phenomenon 

(UHI), is a well-established effect. The formation of distinct urban climates is mainly 

attributed to the urban-rural variation of a number of factors commonly linked with 

urbanisation; these include the thermal properties of surfaces, the urban morphology, 

and air pollution levels; (Oke 1987 and 1995). As a result of this variation, larger 

amounts of solar short wave radiation are captured, absorbed and stored in urban 

surfaces than in rural surfaces during the day. In addition, urban canyons are also 

characterised by smaller sky view factors and, thus, lower rates of long wave radiation 

loss during the night.  The evaporative cooling potential of highly impermeable built-

up areas is also limited. Anthropogenic heat emissions are also greater in cities. The 

formation of different types of heat islands and the differences between surface and 

air distribution has previously been described (Oke 1995). 

 

The magnitude of the UHI has been studied mostly in terms of the temperature 

differences between rural and urban locations.  The spatial and temporal distribution 

of the urban heat island intensity varies significantly between cities. In most cases, 

intensities typically peak several hours after sunset rendering the heat island 

essentially a night time phenomenon. There are many studies on the quantification of 

UHI in large cities and reviews on research in Europe and other areas have been 

published (for example Santamouris, 2007, Roth 2007, Memon et al, 2009).   

 

This paper focuses on a temperate climatic region using London as a case-study, 

where temperature differences between core urban and surrounding rural locations of 

several °C are commonly observed. An extensive series of measurements were 

undertaken by (Watkins et al, 2002), illustrating in detail the spatial and temporal 

patterns of London’s heat island. However, the relationship of the local temperature 

distribution with land use and building form is much less well understood 

(Kolokotroni and Giridharan, 2008, Giridharan and Kolokotroni, 2009).  

 

The rise in external ambient temperatures in urban environments, compared to rural 

environments, is associated with a series of interconnected impacts: 
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 Comfort: In buildings without air conditioning, comfort levels during the 

summer will tend to decrease. During the winter comfort will tend to increase.  

 

 Energy: It is possible that in order to meet raised comfort requirements, the 

use of air conditioning systems will increase, followed by a rise in summer 

time energy use.  However, heating loads during winter will tend to reduce.  

 

 Health: There is a well established relationship between higher outdoor 

temperatures and the risk of heat-related mortality. However, the death toll due 

to cold during winter will tend to decrease with higher winter temperatures. 

 

The above listed effects are being studied in the UK by a consortium of 

meteorologists, building scientists, urban modellers, planners, urban and building 

designers and epidemiologists to research how cities can adapt to a changing climate 

(LUCID, 2009). The work involves the development of urban climate models and 

energy models at a variety of scales - city, neighborhood, street and building. The 

suite of models are interrelated and have been described in (Mavrogianni et al, 2010).  

This paper focuses on one of the models; the London Site Specific Air Temperature 

(LSSAT).  It describes the development of the model, present results of its validation 

by comparison with measurements and discuss its results and its application in the 

form of prediction of Heating and Cooling Degree Days. 

 

For the prediction of urban air temperatures there exist a range of models varying in 

complexity and these were briefly reviewed in (Kolokotroni et al, 2006).  These can 

be classified into the following four categories: 

1. Climatology models, for example Taha 1999.  A new model is recently being 

developed for London (Mavrogianni et al, 2010) 

2. Empirical models using heat balance equations and empirically derived 

coefficients, for example the Cluster Thermal Time Constant model (CTTC) 

(Swaid and Hoffman, 1990) and further developed as the CAT model by Erell 

and Williamson (2006) 

3. Computational Fluid Dynamics models, for example (Tabahashi et al 2004) 

4. Statistical regression methods, probability methods and artificial neural 

networks, for example (Mihalakakou et al 2002) 
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The model described in this paper is based on Artificial Neural Network (ANN) 

modelling and falls under category 4 of the above list. A description of the model 

was published in 2009 (Kolokotroni et al, 2009) and a summary is included in 

section 2 of this paper for completeness. Section 3 presents new data in the form of 

measurements carried out in 2008; these data were used  to validate the model. 

Section 4 presents the computation of Heating Degree Days and Cooling Degree 

Hours for January and August for 20 locations on an East-West Transect of London 

for 2 years; 2000 which is the year of the original dataset and 2008 which is the year 

of the validation data.   
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2. The LSSAT model: existing study  

 

This section explains how LSSAT was developed; this was described first in 

(Kolokotroni et al, 2009) but a summary is included here for completeness.   As 

reported before (Watkins, 2002), an extensive measuring campaign took place in 

1999-2000, during which hourly air temperatures were measured in 77 locations with 

the Greater London Area (GLA) for approximately 16 months (to include two 

summers) .  These are the fundamental data to be used here for the development of the 

LSSAT model.  The predictions of these models for a given Fixed Temperature 

Station (FTS) together with the description of the FTS in terms of its urban on site 

characteristics as reported in (Kolokotroni and Giridharan, 2008) can be used to 

extrapolate for other locations and times.   

The LSSAT model is an Artificial Neural Network (ANN)  model and was developed 

using MATLAB 6.5 (2004). In general, the neural network architecture procedures on 

which the model is based could be divided into the following steps: 

1. Design the neural network: select the type of the network and input parameters 

and determine the structure and number of layers and neurons.   

2. Train the network: conduct the learning or training process. 

3. Test and diagnostic check: carry out the simulation result analysis.  

4. Optimization of the neural network by trial and error: compare the different types 

of network models and choose the best one as the final solution.  

The implementation of these steps for the development of the LSSAT model is 

explained in summary in the following paragraphs and is explained more fully in 

(Kolokotroni et al 2009, Zhang 2008). 

For the model, it is important to select an appropriate algorithm which fits the specific 

purpose of the problem in order to get the best performance for the simulation and 

prediction.  The aim of the present work is to simulate urban air temperature as a 

function of weather conditions (these are further explained in the following 

paragraph); therefore the problem belongs to function approximation category. 

Previous work has concluded that two neural network algorithms are suitable: back-
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propagation and radial basis networks. Radial basis networks have a major 

disadvantage; slow operation due to the large number of neural networks to be 

trained, in this case 24 neural network models for each of the 77FTS.  Therefore, 

back-propagation has been considered first which has also been used by other 

researchers studying similar problems (Livada et al 2002 and Mihalakakou et al 

2004). 

Generally, the back-propagation network consists of three parts; input layers, hidden 

layers and output layers. To build such a neural network model, we need to determine 

the input parameters; these are the region’s weather  related parameters.  It has been 

reported by many researchers including work for London (Kolokotroni and 

Giridharan, 2008) that sky and wind conditions are closely related to the formation of 

UHI.  The input parameters to represent these in the modelling are hourly values of 

global solar radiation on a horizontal surface, cloud cover and wind speed as 

measured at the meteorological station (Heathrow).  In addition, hourly values of air 

relative humidity are used as a further input parameter as it has been found that there 

is a negative correlation with UHI intensity (Kim and Baik, 2002).  Finally, the met 

station’s hourly air temperature is the most important input parameter from which the 

FTS air temperature is derived.  These input parameters have been termed off-site 

climate parameters as they represent the general climate of the region.  

The output parameter is the hourly air temperature of the FTS. 

As reported in (Kolokotroni et al, 2009) suitable back-propagation network, training 

method, error goal, maximum training epoch were selected by trial-and-error to give 

best correlation coefficients and minimum mean square error. The selected parameters 

are presented in Table 1. 

The model for one location was first built and tested.  This was carried out as follows: 

there are 77 FTS with the sufficient history data to build the LSSAT models and the 

database can be divided into three parts: 

 

1. Hourly air temperature measured at each FTS, 

2. Hourly air temperature of a convenient meteorological station; in this case 

Heathrow has been chosen because Heathrow’s weather data are routinely used 
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by designers and it is one of the four main met stations referred to by CIBSE 

(CIBSE 2006b) 

3. Hourly weather data provided by the same meteorological station; these include 

hourly values of  

o Air temperature (
o
 C) 

o Air Relative humidity (%) 

o Cloud cover (oktas) 

o Air speed (m/s) 

o Global Solar Radiation on a horizontal surface (W/m
2
) 

 

In order to test the different networks and find the most suitable one, it was decided to 

select one FTS as a sample to test the method. North Road (located 3.2 km (2 miles) 

north of the central point which is the British Museum for the measured data) has 

been chosen due to the following reasons: 

  

1. There is full historical hourly data of this station; from 1999 to 2000, 427 days 

data totally. 

2. The average urban heat island intensity measured in this station for the six hottest 

days among the 427 days (Graves et al, 2001), is nearly the average value among 

all FTS. 

 

From the data available totally for training and testing, three quarters of the data 

(randomly selected) were used for training, and the rest for testing; this is a commonly 

used division for training purposes.  

 

Using function and parameters as presented in Table 1, these were applied to the 24 

hrs of the chosen FTS (North Road) and the prediction result is presented in Table 2 

using three parameters; relative error (RE) in %, the square of Pearson correlation 

coefficient (r
2
) and mean square error (MSE). It can be seen that all hourly networks 

achieve a very good correlation coefficient. Mean square error varied between 0.2 and 

0.6, and relative error varied between 2.7% and 5.6%. The best prediction result is for 

21:00 hrs, while the worst one is for 14:00hrs. In general, the prediction result for 

night time (considered from 19:00 – 06:00) is much better than for the day time 

(considered from 07:00 – 18:00). The mean relative error for night time is 3.46% 

while for day time is 5%, the mean correlation coefficient for night time is 0.99 while 
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for day time is 0.98, the mean square error for night time is 0.33 while for the daytime 

is 0.54. 

 

The procedure described above was repeated for all FTSs and LSSAT models were 

developed for the 77 FTS.  It should be noted that some of the networks perform 

better than others; this is because of data availability for training – in some of the 

stations key periods of data were missing and therefore the network prediction is not 

as accurate as locations where full datasets were available.   
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3. Validation of the model 

3.1. New data: Measurements of air temperature in London in 

2008 

 

As expected, the predictions of LSSAT model are very accurate for 1999/2000 period 

as reported in (Kolokotroni et al, 2009) which is the year of the original measured 

data.  

 

Hourly air temperature measurements were repeated using exactly the same 

equipment and methodology in 2007/8 for a selection of nine locations (including the 

reference cite) with the aim of validating the LSSAT model and also to study whether 

any difference can be observed between 2000 and 2008.  The locations of new 

measurements are shown in Figure 1, which also presents the location of the 

1999/2000 measurements. 

 

Air temperature data were collected on an hourly basis data using Tinytalk loggers 

mounted on lamp post at a height approximately 6m above the ground. Figure 2 

shows a diagrammatic cross-section and a photograph of the air temperature 

measuring device (Watkins et al 2002). The Tinytalk was placed inside a white 

painted solar shield. The 6m height was selected largely on security concerns and 

restrictions imposed by the local authorities.  Also, at this height, they were away 

from local sources of heat (parked cars, etc.), but were accessible from ground level 

for data transcription. At the reference location, identical sensor housings were used, 

but attached to dead trees rather than lighting columns. The data-loggers used were 

battery-powered miniature loggers, 35mm long. These have a quoted accuracy of 

0.2K with a resolution of 0.25K, but all loggers were inter-compared and individual 

calibrations determined so that the data from all loggers could be normalized to the 

mean of the distribution. Thus, mean temperature differences have an accuracy of 

about 0.1-0.2K (a residual inaccuracy that exists because of a very small logger drift 

over time). 
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3.2 Comparison of predictions with measurements 
 

LSSAT was used to predict hourly air temperature for the year for the eight urban 

locations and the reference location (Langley country Park) of the new measurements.  

The input weather data of air temperature, relative humidity, cloud cover, air speed 

and global solar radiation were acquired by the Meteorological Office for Heathrow. 

 

A typical graph for 10 days at the end of July 2008 is shown in Figure 3 as an 

example.  The graph includes hourly air temperatures from Heathrow (met data), 

measured and predicted hourly air temperatures for a central London location. It can 

be observed that there is a variation between predictions and measurements but the 

overall trend is predicted.  The variation on the accuracy of the prediction can be 

attributed to differences in weather conditions between the target and training day due 

to the nature of the model. For example, if the target (prediction) day is cloudy and 

the training day was with clear sky then some inaccuracy will occur.  For further 

development of similar models, it might be better to train the ANN for specific bands 

of external conditions (rather than actual days) and a suitable model would be selected 

depending on the meteorological input data.  

 

The LSSAT  model’s hourly predictions for May 2008 were compared with LondUM 

(climatology model) with encouraging results (Mavroganni et al, 2010).  For the 

hourly predictions, smoothing has been applied by averaging the predictions of three 

consequent predicted hourly values.  This was necessary as the raw predictions were 

noisy; this again could be attributed to differences in weather conditions between the 

target and training hour.   

 

Table 3 presents the results of simple statistical analysis of the predictions for four 

months (January/February and July/August) for the eight locations for which 

measurements are available and the reference location.  The first row shows the 

distance from the centre point and the second a code indicating their relative position 

to the centre (ie NW would indicate that the location is north west to the centre). The 

third row gives the square of the Pearson correlation coefficient (r
2
) between 

measured and predicted values for the whole year.  The following rows give the 
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values of r
2
 for the four months and also separately for day and night. In addition, 

average measured and predicted air temperature is presented for each month.  Blank 

cells exist because measured data was missing.  The cells highlighted with grey are 

based on limited data and therefore less confidence can be put on the values 

presented.  The final rows of Table 3 give information of  Heathrow weather data for 

the years of 2000 and 2008 which is useful to understand the climate difference in the 

two years considered in this study. It gives some background information related to 

analysis presented in section 4. 

 

From the results presented in Table 3, the following can be observed: 

 

 The predicted and measured monthly average temperature compare very 

favourably.  This result gives confidence in the ability of the LSSAT model 

to be used for the prediction of annual and monthly energy demand 

calculations. 

 Monthly correlation coefficients are encouraging, in particular during the 

night which gives confidence in using the LSSAT model to predict UHI 

which is primarily a nocturnal phenomenon.  
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4.  Results and discussion: London HDD and CDH in 
2000 and 2008 
 

Taha (Taha1997) has argued that ‘depending on geographic location and prevailing 

weather conditions, heat islands may be beneficial or detrimental to the urban dweller 

and energy user. Generally speaking, low and mid-latitude heat islands are unwanted 

because they contribute to cooling loads, thermal discomfort, and air pollution 

whereas high latitude heat islands are less of a problem because they can reduce 

heating energy requirements. This is a generalization however; the actual impacts of 

urban climates and heat islands depend on the characteristics of local climates. One 

way of indirectly characterizing these impacts is to examine heating and cooling 

degree-days data.  Taha et al (1997) have shown that with respect to rural surrounds, 

urban areas have fewer heating degree days (HDD) but more cooling degree-days (or 

hours) (CDD-CDH). The work included cities with hot and cold weather conditions 

and it was shown that the effect is larger in hot climates but also observed in cold 

cities. The work also shown that for the cities examined, the effect of HDD and CDD 

modification by urban areas is an increase in cooling loads. The term cooling degree 

hours (CDH) is used for high latitudes because of the low cooling demand in 

comparison to heating. 

 

HDD and CDH were calculated using LSSAT predictions for 23 locations along the 

West-East axis of London.  The results of the calculations are presented in Figures 4-7 

for the months of July/August representing summer and January/February 

representing winter.  The results for the years 2000 and 2008 are shown for 

comparison; calculations are based on hourly air temperature predictions for both 

years.   

 

Figure 4 presents the CDH for July and August in 2008 calculated from air 

temperature predictions using LSSAT; the CDH for Heathrow are 4481 for July and 

3974 for August 2008 calculated from met data; some details on the weather trends 

are shown in Table 3.  For the calculations presented in this paper, a base temperature 

of 12 
o
C was used as this is commonly used in the UK for air-conditioning load 

calculation of generic buildings (CIBSE, 2006). The choice of 12 
o
C as base 

temperature for CDH assumes an all-air cooling system and is based on the air 

temperature at the cooling coil.  For other systems, different base temperatures can be 
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selected; with reference to free-floating buildings in hot climates the base temperature 

could be as high as 25 
o
C.     

 

For comparison across time Figure 6 presents CDH for July and August in 2000 

calculated in exactly the same manner as for 2008.  The CDH for Heathrow are 3475 

for July and 4590 for August 2000 calculated from met data; therefore August was the 

hottest month in 2000 with similar CDHs as July 2008.   

 

For both years, the shape of CDH over London is similar with the highest point 3km 

east of the original measurement centre (British Museum) and is placed in the City of 

London; this is termed thermal centre. In numerical terms for both 2000 and 2008, 

during the hot months of the summer, CDHs drop by 30-35 per km to the east and 

west of the thermal centre for about 15 km.   

 

Figures 5 and 7 present the HDD for January and February in 2000 and 2008 

calculated to the base of 15.5 
o
C.  The HDD for Heathrow are 240 for January and 

253 for February calculated from met data in 2008.  The HDD for Heathrow are 304 

for January and 231 for February for 2000.  Again in this case, February in 2008 and 

January in 2000 were the coldest months. 

 

We can observe that in this case too, the thermal centre is 3km east of the 

measurement centre, and heating demand is higher to the west of the thermal centre.  

In numerical terms, HDD reduce between 1.5 and 3 per km from the thermal centre 

and the offset value will depend on the severity of the weather. 

 

Degree days are used in many cases for calculation of heating and cooling 

consumption of real buildings and notional buildings making some assumption about 

the building’s heat losses/gains and base temperatures. As outlined in (CIBSE 2006), 

assuming  that the building is heated continuously, the monthly heating energy 

consumption can be calculated by 

 



24' 


HDDU
FH  kWh      (1.1)  

    

Where 
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HDD = heating degree days multiplied by 24 to convert to hrs 

= is overall seasonal heating system efficiency, 

 

U’ is overall building heat loss coefficient (kW·K), given by: 

 

1000

3

1

'

VNUA

U



       (1.2) 

 

where  

U is the fabric U-value (W·m
–2

·K
–1

),  

A is the component area (m
2
),  

N is the air infiltration rate in air changes per hour (h
–1

) and  

V is the volume of the space (m
3
). (Note: the numerical factor 1/3 arises from typical 

values of density and specific heat of air, and the conversion to air changes per hour 

(CIBSE 2006)). 

 

In order to calculate the cooling load, the calculation is dependent on the cooling 

system but assuming an all-air air-conditioning system, the base temperature of 12
o
C 

is with reference to the cooling coil; in this way the cooling degree-hours are the 

effective summation of temperature difference across the coil.  Therefore, they can be 

multiplied by the mass flow and these are specific heat of the air and then divided by 

the COP (coefficient of performance) of the chiller to calculate the energy and fuel 

consumption. 

 

Therefore the cooling energy can be calculated by: 

 

 

COP

CDHcm
F

p

C


    kWh 

 
 

where 

CDH = cooling degree hours 

COP= is overall seasonal heating system efficiency, 
 

cp = the specific heat of air kJ·kg
–1

, and  

 

m = the mass flow rate  kg·s
–1

   

 

Both the equation above, indicate that heating and cooling energy consumption is 

proportional to degree days.   For the months of January/February (heating) and 

July/August (cooling) for the year of 2000 and 2008 the ratio of heating and cooling 
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degree days to the degree days of the reference site are presented in Figures 8 and 9.  

It can be observed that depending on the severity of the weather (as indicated by the 

degree days), heating energy consumption in central London is 65-85% of the heating 

required for the same building based outside the urban heat island.  Cooling energy 

consumption is 32-42% higher than cooling energy required for the same building 

based outside the urban heat island.  In terms of environmental impact (CO2 

emissions) the difference is greater for countries (like the UK) where the fuel for 

heating is gas while electricity is used for cooling; the conversion factors currently 

used for benchmarks in the UK are 0.190 kgCO2/kWh for gas and 0.550 kgCO2/kWh 

for electricity (CIBSE 2009). 
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 5. Conclusions 
This paper describes a validated method for predicting air temperatures within the 

urban heat island at discreet locations based on input data from one meteorological 

station for the time the prediction is required and historic measured air temperatures 

within the city.  It uses London as a case-study to describe the method and its 

applications. The described prediction model is termed the London Site Specific Air 

Temperature (LSSAT) and comprises of a suite of Artificial Neural Network (ANN) 

models to predict site specific hourly air temperature within the Greater London Area 

(GLA). The model was developed using a back-propagation ANN model based on 

hourly air temperature measurements at 77 fixed temperature stations (FTS) and 

hourly meteorological data (off-site variables) from Heathrow. The hourly 

meteorological data required for the predictions are air temperature, relative 

humidity, cloud cover, wind speed and global solar radiation. 

 

Comparisons of the LSSAT prediction with measured data in 2008 in eight locations 

(plus reference location in a park outside the city) has shown that the model is capable 

of reproducing the main features of air temperature trends on an hourly basis across 

London and it is highly accurate for monthly average temperatures.  It should be noted 

that the model will not be as accurate for any year as for the training period 

(1999/2000 in this case) irrespectively if the prediction period is before or after.  Its 

accuracy will not be reduced by steadily increasing (or decreasing) temperatures due 

to climate change because such changes will occur throughout the region including 

the location of weather data. However, the accuracy might reduce by abnormal 

weather conditions due to climate change, for example increased cloud cover.   

 

Because of the accuracy in predicting monthly average temperatures, the model can 

be very useful in the calculation of heating and cooling loads for buildings within the 

urban area; in this paper this is demonstrated by calculating Heating Degree Days and 

Cooling Degree Hours for sample base temperatures.  In the sample results presented 

in this paper, it was shown that distance from physical centre or thermal centre of 

London is one of the main factors affecting heating and cooling loads and thus the 

effect of urbanization on energy demand.   
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The described method can be applied to other cities using air temperature data 

historical data in many cases available through air pollution networks or 

meteorological stations within cities.   
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Figure 3: Comparison of hourly predictions with measurements for 10 days at the end 

of July 2008. Heathrow temperature which is used as an input to the LSSAT model is 

shown. 
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Figure 4: Cooling degree hours for July and August in 2008 (base 12 
o
C) calculated 

from air temperature predictions using LSSAT.  The CDH for Heathrow are 4481 for 

July and 3974 for August calculated from met data.  
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Figure 5: Heating degree days for January and February in 2008 (base 15.5 
o
C) 

calculated from air temperature predictions using LSSAT.  The HDD for Heathrow 

are 240 for January and 253 for February calculated from met data. 
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Figure 6: Cooling degree hours for July and August in 2000 (base 12 
o
C) calculated 

from air temperature predictions using LSSAT.  The CDH for Heathrow are 3475 for 

July and 4590 for August calculated from met data. 



28 

 

150

170

190

210

230

250

270

290

310

330

350

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

H
e

at
in

g 
D

e
gr

e
e

 D
ay

s

Distance (Km), West-East Transect

HDD VS distance-2000 (Base 15.5)

Jan

Feb

West East

 
 

Figure 7: Heating degree days for January and February in 2000 (base 15.5 
o
C) 

calculated from air temperature predictions using LSSAT.  The HDD for Heathrow 

are 304 for January and 231 for February calculated from met data. 
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Figure 8:  Ratio of Heating and Cooling Degree Days to Reference Site Degree Days 

for a West-East Transect of London in 2000.  The graphs indicates relative heating 

and cooling energy consumption within the urban heat island compared to the 

reference rural locations based on air temperature prediction using the model LSSAT. 
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Figure 9: Ratio of Heating and Cooling Degree Days to Reference Site Degree Days 

for a West-East Transect of London in 2008.  The graphs indicates relative heating 

and cooling energy consumption within the urban heat island compared to the 

reference rural locations based on air temperature prediction using the model LSSAT. 
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Table 1: Parameters used for the development of the LSSAT model. 

 

 

 

Table 2 Summary of the prediction result for hourly LSSAT models (North Road) 

Time RE r
2
 MSE Time RE r

2
 MSE 

00:00 3.2 0.98 0.3 12:00 5.4 0.99 0.6 

01:00 2.8 0.99 0.2 13:00 5.5 0.99 0.6 

02:00 3.0 0.98 0.3 14:00 5.6 0.99 0.6 

03:00 2.6 0.98 0.2 15:00 5.3 0.98 0.6 

04:00 3.3 0.98 0.3 16:00 5.4 0.99 0.6 

05:00 4.0 0.98 0.4 17:00 5.4 0.98 0.6 

06:00 4.5 0.98 0.5 18:00 4.8 0.99 0.5 

07:00 4.6 0.98 0.5 19:00 4.2 0.99 0.4 

08:00 4.8 0.98 0.5 20:00 3.2 0.99 0.3 

09:00 3.3 0.98 0.3 21:00 2.5 0.99 0.2 

10:00 5.2 0.99 0.6 22:00 5.5 0.97 0.6 

11:00 4.7 0.98 0.5 23:00 2.7 0.99 0.2 

 

 

 

 

 

Back propagation network feed-forward 

Training method Scaled Conjugate Gradient 

Error goal 0.4 

Maximum training epoch 6000 

Hidden layer 1 

Number of neurons in hidden layer 17 
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Table 3: Analysis of comparison between measured and predicted air temperatures for 

nine locations for July/August and January/February 2008  

 

 

 

  Site 

1 

Site 

2 

Site 

3 

Site 

4 

Site 5 Site 

6 

Site 

7 

Site 

8 

Ref 
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w
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d
 R

o
ad

 

H
u
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ey
 

R
o
ad

 

L
an

g
le

y
 

P
ar

k
 

 Distance 

(km) 

0 1.6 1.6 4.8 4.8 6.4 9.6 16 29 

 Transect C SE NW EE NN SW NE WW WW 

Annual r
2
 - - - - 0.87 0.88 0.88 0.88 0.91 

July r
2 
 0.42 0.71 0.60 - - 0.70 0.55 0.65 0.76 

 Day r
2 

 0.26 0.52 0.34 - - 0.45 0.41 0.44 0.56 

 Night r
2  

 0.58 0.79 0.83 - - 0.84 0.75 0.89 0.84 

 Avg meas 

temperature 

19.1 19.4 19.1 - - 19.0 18.9 18.4 17.4 

 Avg pred 

temperature 

19.6 19.4 18.7 - - 19.7 19.0 18.7 17.4 

August r
2
 0.46 0.71 0.56 - - 0.70 0.65 0.63 0.74 

 Day r
2 

 0.18 0.40 0.23 - - 0.35 0.38 0.29 0.49 

 Night r
2  

 0.78 0.86 0.88 - - 0.84 0.77 0.88 0.88 

 Avg meas 

temperature 

18.2 18.4 18.4 - - 18.8 17.8 17.5 16.8 

 Avg pred 

temperature 

18.3 18.4 18.1 - - 18.4 18.0 17.5 16.8 

January r
2
 - - - - 0.62 0.72 0.70 0.72 0.81 

 Day r
2 

 - - - - 0.61 0.84 0.75 0.82 0.83 

 Night r
2  

 - - - - 0.93 0.92 0.92 0.92 0.91 

 Avg meas 

temperature 

- - - - 6.9 7.3 6.5 6.4 5.5 

 Avg pred 

temperature 

- - - - 6.8 7.0 6.8 6.4 5.8 

February r
2
 0.50 0.53 0.45 0.55 0.62 0.72 0.70 0.72 0.81 

 Day r
2 

 0.48 0.53 0.52 0.61 0.54 0.72 0.69 0.68 0.78 

 Night r
2  

 0.71 0.82 0.81 0.71 0.82 0.75 0.90 0.75 0.82 

 Avg meas 

temperature 

- - - - 6.9 7.3 6.5 6.4 5.5 

 Avg pred 

temperature 

- - - - 6.8 7.0 6.8 6.4 5.8 

           

Heathrow 2008 Jan Feb Jul Aug 2000 Jan Feb Jul Aug 

 Avg air temp 7.8 6.5 18.0 17.3  5.7 7.2 16.6 18.2 

 Wind speed 5.9 4.2 4.4 4.9  3.1 3.7 2.6 3.0 

 Cloud cover 5.4 3.6 4.7 5.9  5.6 5.6 5.8 5.0 

 Avg Sol Rad  30 72 212 146  31 58 172 179 
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