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1 Introduction

Testing the unbiased forward exchange rate (UFER) hypothesis, that is the hypothesis that

the forward foreign exchange rate is an unbiased predictor of the corresponding spot exchange

rate, has attracted considerable amount of interest in the literature. The results concerning its

empirical validity have however been rather mixed. For example, Engel (1996) surveyed studies

which have assumed rational expectations and attempted to attribute the forward rate bias to

a foreign-exchange risk premium. His main conclusion was that standard general equilibrium

models are unsuccessful in explaining the magnitude of the risk premium and, also, the empirical

failure of the unbiasedness hypothesis.

The aim of the present paper is to offer a possible explanation for the rejection of the UFER

hypothesis that is often reported in the empirical literature. In particular, we exploit an im-

plication of the consumption capital asset pricing model (CAPM) under structural changes in

consumption to reconcile this empirical evidence with general equilibrium models. The motiva-

tion for this approach is the empirical finding that consumption dynamics can be characterised

successfully by models that allow for structural changes that are driven by a Markov process

(see, e.g., Cecchetti et al., 1990; Hall et al., 1997). When combined with the hypothesis of time-

varying risk premium, such dynamic behaviour for consumption implies that the risk premium

itself is subject to Markov changes in regime.

Allowing for the presence of a Markov switching risk premium leads to a model for the

spot rate and the forward premium whose parameters switch stochastically between regimes. A

difficulty with such a model, however, that the right-hand side variables are correlated with the

disturbances within each regime. It is, therefore, a plausible conjecture that the standard pseudo-

maximum likelihood (S—PML) estimator for Markov switching models (see, e.g., Hamilton, 1994,

ch. 22), which ignores such correlation, is likely be inconsistent. This inconsistency of the S—PML

estimator, combined with the often poor quality of conventional asymptotic inference procedures

even in situations where the estimator is consistent (cf. Psaradakis and Sola, 1998), increases

considerably the probability of misleading inferences being drawn form the fitted model.

As argued in Psaradakis et al. (2002), the difficulties associated with within-regime orthog-

onality failures in Markov-switching models can be overcome by using instrumental variables

(IV), much in the same way as in single-regime models. Using this approach, we consider the

problem of testing the UFER hypothesis using monthly data for the Sterling/Dollar exchange

rate. It is demonstrated that, in the context of a model that allows for a time-varying risk

premium with Markov regimes is used, the UFER hypothesis cannot be rejected provided that

instrumental variables are used to account for the failure of independence between right-hand

side variables and disturbances. Moreover, such a model outperforms the forward rate as a mean

of forecasting the spot exchange rate.

To fix ideas and notation, the next section of the paper outlines a simple theoretical model

for forward exchange pricing and explains how a Markov switching foreign-exchange risk pre-
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mium can arise. Section 3 discusses the results of standard regression-based tests of the UFER

hypothesis and examines the stochastic properties of the risk premium. Section 4 presents our

empirical Markov switching model and a small-scale simulation study of the properties of the

tests of the UFER hypothesis that are used in our analysis. It also reports and discusses the re-

sults from a post-sample analysis that examines whether the model proposed in the paper could

be used to improve forecasts of the spot exchange rate. Section 5 summarises and concludes.

2 Modelling the Forward Exchange Rate

Consider a standard infinite-horizon consumption CAPM model in which the behaviour of the

equilibrium real return r on any asset is governed by the Euler condition

u0(Ct) = βEt[(1 + rt+1)u
0(Ct+1)], (1)

where u(·) is the utility function, Ct is consumption at date t, β is the discount factor, and
Et[·] denotes mathematical expectation conditional on information available at date t. Using a
similar condition for the real ex post return on a foreign asset, and assuming that purchasing

power parity and covered interest parity hold, it is easily deduced that

Et

·µ
Ft − St+1
Pt+1

¶
u0(Ct+1)
u0(Ct)

¸
= 0, (2)

where Ft is the one-period forward exchange rate, St is the spot exchange rate, and Pt is the

price level. Hence, under the assumption that all the variables in (2) are jointly lognormally

distributed, the equation may be rewritten as

ft = Et[st+1] +
1
2Vart[st+1] + Covt[Rt+1, st+1], (3)

where ft = lnFt, st = lnSt, Rt+1 = ln(u0(Ct+1)/Pt+1), and Vart[·] and Covt[·, ·] respectively
denote variance and covariance conditional on information available at date t. The last two

terms on the right-hand side of (3) are typically interpreted in the literature as the sum of the

foreign-exchange risk premium and two Jensen inequality terms associated with Siegel’s paradox

(see, e.g., Obstfeld and Rogoff, 1996, § 8.7.5).
The basis for many empirical investigations of the behaviour of the forward exchange rate

is a simplified version of (3) associated with the so-called UFER hypothesis. The latter states

that

ft = Et[st+1], (4)

and

st+1 = Et[st+1] + ηt+1, (5)

with the public’s expectation about st+1 being equal to Et[st+1] under rational expectations.

Since {st} and {ft} are typically found in practice to be best described as integrated processes
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of order one which cointegrate with cointegrating parameter unity, (4)—(5) are often expressed

as

∆st+1 = α+ β(ft − st) + et+1, (6)

where∆ is the differencing operator defined by∆yt = yt−yt−1. In this representation, the UFER
hypothesis is equivalent to α = 0 and β = 1.1 Under the UFER hypothesis, the logarithm of the

forward rate provides an unbiased forecast of the logarithm of the future spot exchange rate.

A common empirical finding, however, is that β < 1 in (6) (see Engel, 1996). A number of

explanations for the empirical failure of this simple model have been offered in the literature

leading to the conclusion that the UFER assumption is inappropriate probably because of a

breakdown of the rational expectations and/or risk neutrality on the part of economic agents.

In such cases, a common strategy is to investigate a “weaker” form of the UFER hypothesis in

which the forward rate contains a component which varies randomly over time. Thus, (4) is

replaced by

ft = Et[st+1] + vt, (7)

in which the forward exchange rate is the sum of the expected future spot rate and a time-

varying premium component vt which may represent compensation for risk-averse speculators

in the forward market for holding a net position in foreign exchange.2

Many researchers have also shown that the evolution of consumption over time can be de-

scribed well by dynamic models the parameters of which depend on the state of an (exogenous)

finite Markov chain (e.g., Cecchetti et al., 1990; Hall et al., 1997). When combined with the

hypothesis of time-varying risk premia, such dynamic behaviour for consumption implies that

the risk premium itself is subject to Markov structural changes. To illustrate, let us assume that

Ct = µxt +
hX
j=1

ϕj,xtCt−j + σxtζt, (8)

where {ζt} is white noise and {xt} are regime-indicator variables, independent of {ζt}. Assume
further that nature selects regime at date t with a probability that depends on what regime

nature was in at date t− 1, so that {xt} form a time-homogeneous first-order Markov chain on

{0, 1} with transition probabilities

q = Pr[xt = 0|xt−1 = 0], p = Pr[xt = 1|xt−1 = 1]. (9)

1Since this hypothesis is a consequence of the assumption that market participants use available information

efficiently, the hypothesis is sometimes stated in a stronger form in which the forward rate is an unbiased predictor

of the future spot rate and the associated prediction errors are serially uncorrelated.
2In terms of our theoretical model, vt = (1/2)Vart[st+1] + Covt[Rt+1, st+1]. In the remainder of the paper we

shall refer to vt as the risk premium even though, as mentioned before, it also incorporates two Jensen inequality

terms.
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Then, it is not difficult to show that, conditionally on xt = 0, the solution for the forward rate

is

ft = Et[st+1] +
1
2Vart[st+1] + qCovt[R

(0)
t+1, st+1] + (1− q)Covt[R(1)t+1, st+1], (10)

while, conditionally on xt = 1, the solution is

ft = Et[st+1] +
1
2Vart[st+1] + (1− p)Covt[R(0)t+1, st+1] + pCovt[R(1)t+1, st+1], (11)

where R
(i)
t = ln(u0(C(i)t+1)/Pt+1) and C

(i)
t+1 = µi +

Ph
j=1 ϕj,iCt+1−j + σiζt+1 for i ∈ {0, 1}.

This clearly leads to a model with a risk-premium process which is subject to Markov regime-

switching. Hence, one may think of the UFER hypothesis as being represented by (7) but with

{vt} following a stochastic processes with parameters that are subject to Markov changes. As
we shall argue in the sequel, such a characterisation of the foreign-exchange risk premium is

consistent with the empirical evidence obtained from our data set.

3 Testing the UFER Hypothesis

The data set used for our empirical analysis consists of 164 end-of-month observations on the

natural logarithm of the spot and forward (thirty-day rate) Sterling/Dollar exchange rate for

the period from January 1987 to August 2000 (the time series of the spread ft − st is shown
in Figure 1). In agreement with other studies, the spot and forward exchange rates are found

to be integrated of order one and to cointegrate with cointegrating parameter unity (at least at

the 5% significance level). More specifically, the sieve bootstrap t-test for an autoregressive unit

root (in a model with a constant term) proposed by Psaradakis (2001) has a P-value of 0.081,

0.079 and 0.041 for {st}, {ft} and {ft − st}, respectively.3

3.1 OLS and IV Results

Starting with the simple model in (6), Table 1 reports the OLS estimates of α and β, along

with corresponding Eicker—White standard errors. Evidently, the estimate of β differs markedly

from the theoretically correct value of unity and the hypothesis β = 1 is rejected at the 5%

significance level;4 the Wald test statistic for testing the joint hypothesis α = β − 1 = 0 has

a P-value of 0.106. Moreover, the portmanteau Q statistics for the residuals and their squares

indicate the presence of nonlinear temporal dependence in the estimated residuals from (6).

If we allow for a time-varying risk premium, as in (7), then it is well-known that the OLS

estimates in (6) will be inconsistent. IV estimates of the parameters in (6) are obtained using a

constant, ft−1 − st−1, ft−2 − st−2 and ft−3 − st−3 as instruments.5 From Table 1, the equation

3The P-values for the tests were obtained from 999 bootstrap replications and the order of the autoregressive

sieve used was selected from the range {0, 1, . . . , 12} by means of the Akaike information criterion.
4Note that β is not statistically different from zero.
5The choice of the instruments is based on the significance of their coefficients in the reduced-form regressions

and on the outcome of Sargan’s test for instrument validity.
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parameters are not significantly different from their theoretically correct values (α = 0 and

β = 1) on the basis of a Wald test. Interestingly, while the hypothesis β = 1 cannot be rejected,

the confidence interval for β is very wide and contains negative values of β.6

3.2 Stochastic Properties of the Risk Premium

In accordance with the theoretical structure in (10)—(11), we argue that an explanation for these

results may lie with the risk premium being subject to discrete Markov shifts. To investigate

this possibility, we examine the properties of the series {ft− st+1}, which is plotted in Figure 1.
Since, (4)—(5) imply that

ft − st+1 = vt − ηt+1, (12)

ft − st+1 must share the same properties with the combined risk premium plus noise process.

Hence, any Markov-type nonlinearities in the risk premium are likely to be reflected in the

dynamic behaviour of ft − st+1.
To investigate this possibility, we directly test a single-regime AR(1) model for ft − st+1

against an alternative in which the autoregressive coefficient and the innovations variance switch

between two values according to a (time-homogeneous) Markov transition process. Although the

two models are nested, the usual likelihood ratio statistic does not have a chi-squared asymptotic

distribution since, under the null hypothesis of a single regime, the transition probabilities are

unidentified and the information matrix is singular. To overcome these difficulties, we carry out

the test using the standardised likelihood ratio test procedure developed by Hansen (1992). This

procedure requires evaluation of the likelihood function across a grid of different values for the

transition probabilities and for each state-dependent parameter. Here, the range [0.75, 0.99] in

steps of 0.03 (10 gridpoints) is used as a grid for the transition probabilities; for the autoregressive

coefficient and the innovations variance, we use the range [0.1, 0.9] and [0.01, 0.17], respectively,

in steps of 0.1 and 0.01 (9 gridpoints). The value of the standardised likelihood ratio statistic is

4.281, which has a zero P-value under the null hypothesis.7 This is strong evidence in favour of

Markov regime-switching, especially since Hansen’s test is conservative by construction.

It is worth noting that the familiar Akaike information criterion also favours the Markov

switching AR(1) model for ft − st+1 over a single-regime AR(1) model (−686.5 vs −683.2).8
Moreover, the two-regime models outperform the single-regime ones in terms of the residual

diagnostics for non-linear dependence, as can be seen in Table 2.9

6We also estimated the parameters of (6) using the so-called continuous-updating GMM estimator (Hansen et

al., 1996), which is known to be partially robust to weak instruments (see Stock et al., 2002). The GMM estimate

of β is −0.724 with standard error 1.315.
7The P-value is calculated according to the method described in Hansen (1996), using 1000 random draws

from the relevant limiting Gaussian processes and bandwidth parameter M ∈ {0, 1, . . . , 4}.
8Psaradakis and Spagnolo (2003) demonstrated the effectiveness of the Akaike information criterion as a mean

of selecting the number of regimes in autoregressive models with Markov regime switching.
9Diagnostic tests for the switching model are based on standardised residuals computed as in Town (1992).
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4 Markov Switching and the UFER Hypothesis

In the light of the empirical evidence reported in the previous section, we proceed to model

the forward exchange rate under the assumption that the risk premium process is subject to

Markov changes in regime. As explained in Section 2, such an assumption is consistent with a

consumption CAPM model where consumption is subject to Markov regime-switching.

4.1 Empirical Model

Letting {xt} be a time-homogeneous first-order Markov chain on {0, 1} with transition proba-
bilities p = Pr[xt = 1|xt−1 = 1] and q = Pr[xt = 0|xt−1 = 0], we assume that {vt} satisfies the
difference equation

vt = ρxtvt−1 + ωxtεt, (13)

where {εt} is a white noise with zero mean and unit variance, independent of {xt}.10 Then, (5),
(7) and (13) imply that

∆st+1 = (ft − st)− ρxt(ft−1 − st) + ε∗t+1, (14)

where ε∗t+1 = ηt+1 − ωxtεt − ρxtηt.

Equation (14) can provide the basis for a test of the UFER hypothesis. Notice, however, that

st, ft and ft−1 are correlated with the noise term ε∗t+1 (in each regime) through ηt+1 and ηt. It is,

therefore, likely that S—PML estimates of the parameters in (14) will be inconsistent. One way

of overcoming the difficulties associated with within-regime correlation between the regressors

and the disturbance term is to use some form of IV estimation where the reduced-form equations

relating the endogenous regressors to the instruments have state-dependent parameters too.

Our analysis is based on the following system of equations:

∆st+1 = α+ βz∗1t − γxtz
∗
2t + σxtξ1,t+1, (15)

ft − st = δ(1)xt + δ(2)xt (ft−1 − st−1) + δ(3)xt (ft−2 − st−2) + θxtξ2t, (16)

ft−1 − st = λ(1)xt + λ(2)xt (ft−2 − st−1) + λ(3)xt (ft−3 − st−2) + φxtξ3t, (17)

where z∗1t = E[(ft − st)|xt,Ωt], z∗2t = E[(ft−1 − st)|xt,Ωt], Ωt = {(sm, fm), 1 6 m 6 t}, and
E[ξit] = E[ξ

2
it−1] = 0 for i ∈ {1, 2, 3}. In (15), the UFER hypothesis is equivalent to α = 0 and

β = 1.

Estimation and testing in the context of the Markov switching model in (15)—(17) — where

neither the error terms ξ1,t+1, ξ2t and ξ3t nor the Markov chain xt are observed — can be carried

10To ensure covariance stationarity of {vt}, it is also assumed that qρ20 + pρ21 + (1 − p − q)ρ20ρ21 < 1 and

qρ20 + pρ
2
1 < 2 (cf. Francq and Zaköıan, 2001).
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out by using the a variant of the recursive algorithm discussed in Hamilton (1994, ch. 22), which

is presented in the Appendix. This gives as a by-product the sample likelihood function which

can be maximised numerically with respect to (α, β, γ0, γ1, σ0, σ1, δ
(1)
0 , δ

(1)
1 , δ

(2)
0 , δ

(2)
1 , δ

(3)
0 ,

δ
(3)
1 , θ0, θ1, λ

(1)
0 , λ

(1)
1 , λ

(2)
0 , λ

(2)
1 , λ

(3)
0 , λ

(3)
1 , φ0, φ1, p, q), subject to the constraint that p and q

lie in the open unit interval. We refer to estimates obtained from this procedure as IV—PML

estimates. In general, the structure of the instrumenting equations (16) and (17) has to be

determined empirically. In our case, two lags of ft − st and ft−1 − st were found to be highly
significant and enough to produce well-behaved (standardised) residuals.11

In Table 3, we report Gaussian IV—PML estimates of the parameters in (15), along with

corresponding standard errors.12 The fitted model is well-specified, having standardised residuals

which exhibit no signs of linear or nonlinear temporal dependence. The IV—PML point estimate

of β is very close to the value implied by the UFER hypothesis and the hypotheses β = 1 and

α = β − 1 = 0 cannot be rejected at any significance level. Finally, the estimated transition

probabilities suggest that the Markov chain that drives changes in regime is highly persistent,

so if the system is in either of the two regimes, it is likely to remain in that regime.

Figure 2 shows plots of the inferred probabilities of being in the regime represented by xt = 1

at each point in the sample, along with the risk-premium ft−1− st.13 It is clear that there were
several changes in regime. For example, the filter allocates a high probability of state xt = 0 in

the early 1990s, probably caused by the UK’s exit from the ERM following disruption on the

financial markets.

To evaluate the empirical relevance of the use of the IV—PML estimator, we also estimate

the parameters in (14) using the standard algorithm (Hamilton, 1994, ch. 22). Thus, in Table 3

we report S—PML parameter estimates for the model

∆st+1 = α+ β(ft − st)− γxt(ft−1 − st) + σxtξt+1. (18)

As in the IV—PML case, the fitted model appears to be well-defined. The S—PML estimate of

β, however, differs significantly from the value that is consistent with the UFER hypothesis and

the hypotheses β = 1 and α = β − 1 = 0 are rejected at any significance level. We speculate

that the most likely explanation of this result is the inconsistency of the S—PML estimator due

to orthogonality failure. In the following section we carry out some sampling experiments to

investigate the validity of this claim.

11In the following section we carry out some sampling experiments to investigate how weak instruments can

affect the power properties of our test.
12The likelihood function was maximized by using the Broyden—Fletcher—Goldfarb—Shanno variable-metric al-

gorithm with numerically computed derivatives. Estimated standard errors are obtained using the Huber—White

sandwich estimator.
13These are the filter probabilities Pr[xt = 1|Ωt; bϑ], where bϑ is the IV—PML estimate of the structural parameters

in (15)—(17).
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4.2 A Simulation Study

As mentioned earlier, the presence of ft in the right-hand side of (14) and the replacement of

the latent term ft−1 − Et−1[st] by the observed ft−1 − st mean that the S—PML estimator of
the parameters in (18) is likely to be inconsistent. As a means of overcoming the problem,

we proposed to use an IV—PML estimator. In this subsection of the paper, we investigate the

properties of different estimators using a few sampling experiments. The data-generating process

in our simulation study is defined by the equations

ft = Et[st+1] + vt,

vt = ρxtvt−1 + εt, (19)

st = st−1 + ηt,

where, conditionally on xt,"
εt

ηt

#
∼ NID

Ã"
0

0

#
,

"
σ
(11)
xt σ

(12)
xt

σ
(12)
xt σ22

#!
. (20)

As before, {xt} is a time-homogeneous first-order Markov chain on {0, 1} with transition proba-
bilities p = Pr[xt = 1|xt−1 = 1] and q = Pr[xt = 0|xt−1 = 0], so our data-generating mechanism
is consistent with the UFER hypothesis with a Markov switching risk premium. To ensure the

relevance of our simulations, the values of the parameters (ρxt ,σ
(11)
xt ,σ

(12)
xt ,σ22, p, q) are chosen

on the basis of empirical results obtained with the Sterling/Dollar exchange-rate data. The

initial values for st and ft are historical values from our sample, while the initial value for xt is

drawn from its estimated stationary distribution. The experiments proceed by generating arti-

ficial time series for st and ft of length T ∈ {150, 300, 500, 1000}. Then, in each of 1000 Monte
Carlo replications, the OLS and IV estimates of the parameters of (6) and the Gaussian S—PML

and IV—PML estimates of the parameters of (18) and (15)—(17), respectively, are computed, as

well as a t-statistic and a Wald statistic for respectively testing the null hypotheses β = 1 and

α = β − 1 = 0.

4.2.1 OLS, IV, S—PML

Table 4 reports the mean and standard deviation of the empirical distribution of the OLS, IV,

and S—PML estimators of β, along with the rejection frequencies of the corresponding 5%-level

t-type tests for β = 1 and Wald tests for the joint hypothesis α = β − 1 = 0. The OLS and S—
PML estimators are evidently severely biased away from unity, a bias which remains substantial

even in samples of 1000 observations. As a consequence, the corresponding t-tests and Wald

tests falsely reject the null hypotheses β = 1 and α = β − 1 = 0 in almost all Monte Carlo

replications. Using the standard IV estimator does not rescue the UFER hypothesis, with the

bias remaining substantial (probably due to the omitted variable problem) and the test rejection
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frequencies only slowly decreasing with the sample size.14

4.2.2 IV—PML

In addition to providing evidence on the finite-sample properties of the IV—PML estimator, our

Monte Carlo experiments also assess the relevance of the instruments used in our application.

The latter is a worthwhile exercise since standard statistical inference procedures based on IV-

type estimators can be considerably unreliable when marginally relevant (or weak) instruments

are used. The difficulty is that the various procedures that have been proposed in the literature

for detecting weak instruments and carrying out robust hypothesis tests (see Stock et al., 2002)

cannot be used in the context of a Markov switching model.

Building on the suggestion of Stock and Yogo (2002) that the definition of weak instruments

should depend on the purpose to which the instruments are put to, we consider instruments

to be relevant or strong from the perspective of a test of the UFER hypothesis if the actual

probability of Type I error of the test is close to its nominal level. Alternatively, instruments

may be considered to be strong if the bias of the IV—PML estimator (relative to the S—PML

estimator or an IV—PML estimator based on a different set of instruments) is fairly small.

To address these issues, IV—PML estimates of the parameters of (15) are computed in each

Monte Carlo replication using the following sets of instruments:15

(S1) (1, ft−1 − st−1, ft−2 − st−2) for ft − st and (1, ft−2 − st−1, ft−3 − st−2) for ft−1 − st (these
are the instruments used in Section 4.1);

(S2) (1, ft−1 − st−1) for ft − st and (1, ft−2 − st−1) for ft−1 − st;

(S3) (1, ft−1 − st−1, ft−2 − st−1) for both ft − st and ft−1 − st.

In each case, the Monte Carlo mean and standard deviation of the distribution of the IV—

PML estimator of β are computed, along with the rejection frequencies of tests of the hypotheses

β = 1 and α = β − 1 = 0. We also compute the rejection frequencies of tests of the hypotheses
β = 0 and δ

(j)
i = λ

(j)
i = 0 (i ∈ {0, 1}, j ∈ {1, 2, 3}); the latter may be thought of as the

equivalent of the F -test for weak instruments that is often used in linear IV regressions.

From the results reported in Table 5, it is clear that the IV—PML estimator outperforms all

other estimators. Although it is slightly biased in the smaller sample (when the instruments S2

and S3 are used), the bias is a decreasing function of the sample size and the empirical size of

the t-test and Wald test of the UFER hypothesis converges to the nominal 5% value.

14As in the empirical study, estimates of the parameters are obtained using a constant, ft−1− st−1, ft−2− st−2
and ft−3 − st−3 as instruments. We also experimented with alternative sets of instruments with little change in
the simulation results.
15Although we experimented with several alternative sets of instruments, we shall only report results for a few

sets, which should, however, be sufficient to illustrate the main point.
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Turning to tests of the significance of β, δ
(j)
i and λ

(j)
i , when the instruments S1 are used

the hypothesis β = 0 is rejected in almost all Monte Carlo replications, while rejection rates

are not as high when the instruments S2 and S3 are used. A possible explanation may be that

instruments S2 and S3 are weak compared to the instruments S1. This explanation is further

corroborated by the fact that the instruments S1 appear to be jointly significant much more

often than the instruments S2 and S3. In addition, the bias of the IV—PML estimator is smaller

when the instruments S1 are used (especially in smaller samples) and so is the size distortions

of tests of the UFER hypothesis.

In summary, it appears that failure to take into account within-regime correlation between a

regressor and the disturbance term in the Markov switching model will result in almost certain

rejection of the UFER hypothesis, a problem which can be overcome, to a large extent, by the

use of the IV—PML estimator, provided that relevant instruments are used.

4.3 A Forecast Exercise

In this subsection we examine how a model that allows for the presence of a time-varying foreign-

exchange risk premium can be exploited for forecasting purposes. More specifically, assuming

that the UFER hypothesis holds (i.e., α = β − 1 = 0), we investigate whether taking into

account the information contained in the autocorrelation structure of the risk premium yields

improvements in the accuracy of out-of-sample forecasts of the forward exchange rate.

The competing forecasting models under consideration are the following:

(M1) The standard model (6) with no risk premium, which implies that

bsT+1 = fT , (21)

where bsT+1 denotes the one-step-ahead forecast at forecast origin T .
(M2) A model with a linear AR(1) risk premium, i.e. st+1 = ft + γ(ft−1 − st) + et, for which

bsT+1 = fT + bγ(fT−1 − sT ) (22)

where bγ is an IV estimate of γ.
(M3) A model with a Markov switching AR(1) risk premium, as in (14), for which

bsT+1 = fT + (1− bπT ){bqbγ0 + bγ1(1− bq)}+ bπT{(1− bp)bγ0 + bγ1bp}(fT−1 − sT ), (23)

where (bq, bp, bγ0, bγ1) is the IV—PML estimate of (q, p, γ0, γ1) and bπt = Pr[xt = 1|Ωt; bϑ].16
Comparison of M2 and M3 with M1 reveals what the loss in terms of forecast performance

is from using the simple forward rate as a forecast of the future spot rate in the presence of a

time-varying risk premium in the forward market.

16Here we assume that the public’s information consists only of observations on the exchange rates.
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Forecast comparisons are carried out as follows. For each of 12 subseries {(s1, f1), . . . , (s`, f`)}
of the data, with ` ∈ {152, . . . , 163}, we estimate the parameters of the forecasting models and
compute the one-period-ahead forecast and the associated forecast error. Based on these 12

forecast errors, we then compute traditional loss measures, which include the mean squared

error (MSE), the root mean squared error (RMSE), the mean absolute error (MAE), the mean

squared percent error (MSPE), the root mean squared percent error (RMSPE), and the mean

absolute percentage error (MAPE). In addition, we also calculate Theil’s inequality coefficient.

Table 6 summarises the results of the forecast comparisons in terms of ratios of the individual

loss measures. The results are all in favour of the M3. Based on the MSE and the MSPE criteria,

there is a loss of 16% when M2 is used against the M3 specification and 5% against the forward

rate (M1). The other criteria tell the same story. Turning to M3, the results indicate a gain of

10% against the forward rate using the MSE and MSPE, and similar results are obtained using

the other accuracy criteria. In summary, it appears that using linear models as an approximation

to nonlinear one could result in substantially inferior forecast performance.

5 Summary

In this paper, we have considered the problem of testing the unbiased forward exchange rate

(UFER) hypothesis in the presence of structural instability. Our analysis has been based on a

theoretical model which allows for the presence of a time-varying risk premium in the forward

market and Markov regime-switching behaviour in consumption. Under these conditions, the

risk-premium process itself is subject to Markov changes in regime. As a consequence, a model

for the spot rate and premium has parameters that depend on the state of nature and explanatory

variables which are correlated with the disturbances. It is, therefore, reasonable to expect the

standard pseudo-maximum likelihood estimator for Markov-switching models to be inconsistent,

and have argued that valid inference requires the use of an estimator like the instrumental

variables pseudo-maximum likelihood estimator discussed in this paper and in Psaradakis et

al. (2002). Using such inference procedures, we have shown that the UFER hypothesis cannot

be rejected for the Sterling/Dollar forward and spot exchange rates. We have also carried out a

few Monte Carlo experiments which have demonstrated that, even if we account for structural

breaks, failure to take into account the orthogonality failure within regimes will almost certainly

result in the rejection of the UFER hypothesis. Finally, we have shown that the proposed

Markov switching model provides more accurate forecasts of the spot exchange rate than the

forward rate.

6 Appendix: IV—PML Estimation

Estimates of the parameters of regime-switching models are obtained using procedures which

are similar to those described in Hamilton (1994, ch. 22). In the case of IV—PML estima-

11



tion, the regressors are instrumented and the reduced-form regressions for the instruments

have state-dependent parameters. The conditional probability density function of the data

wt = (∆st+1, ft − st, ft−1 − st)0 given the state xt and the history of the system can thus be

written as

pdf(wt|xt,wt−1, ...,w1;ϑ) =
1p
2πσ2xt

exp

(
−1
2

µ
∆st+1 − α− βez1t − γxtez2t

σxt

¶2)

× 1q
2πθ2xt

exp

−12
Ã
z1t − δ

(1)
xt − δ

(2)
xt z1,t−1 − δ

(3)
xt z1,t−2

θxt

!2
× 1q

2πφ2xt

exp

−12
Ã
z2t − λ

(1)
xt − λ

(2)
xt z2,t−1 − λ

(3)
xt z2,t−2

φxt

!2 .
Here, z1t = ft − st, z2t = ft−1 − st, ez1t = δ

(1)
xt + δ

(2)
xt z1,t−1 + δ

(3)
xt z1,t−2, ez2t = λ

(1)
xt + λ

(2)
xt z2,t−1 +

λ
(3)
xt z2,t−2, and ϑ = (α,β, γ0, γ1,σ0,σ1, δ

(1)
0 , δ

(1)
1 , δ

(2)
0 , δ

(2)
1 , δ

(3)
0 , δ

(3)
1 , θ0, θ1,λ

(1)
0 ,λ

(1)
1 ,λ

(2)
0 ,λ

(2)
1 ,λ

(3)
0 ,

λ
(3)
1 ,φ0,φ1, p, q)

0.
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Table 1. Estimation Results for Equation (6)

OLS IV

α 0.000 (0.003) −0.003 (0.003)

β −0.256 (0.623) −1.142 (1.352)

Std. Err. 0.029 0.030

t(β = 1) −2.016 [0.044] −1.584 [0.113]

Wald
(α=β−1=0)

4.488 [0.106] 2.598 [0.273]

Q(12) 5.200 [0.951] 5.799 [0.926]

Q(18) 10.206 [0.925] 9.850 [0.937]

Q2(12) 24.988 [0.015] 23.782 [0.022]

Q2(18) 26.181 [0.096] 26.010 [0.100]

NOTES: Estimated standard errors are in parentheses

and P-values for test statistics are in square brackets.

Q(k) is the residual Ljung—Box statistic at lag k, Q2(k)

is the squared-residual Ljung—Box statistic at lag k, and

t(β = 1) is the t-statistic for the hypothesis β = 1.

Wald is the Wald statistic for testing the hypothesis

α = β − 1 = 0.

Table 2. Diagnostics for Models of the Risk Premium

AR(1) Switching AR(1)

Q(12) 5.122 [0.953] 5.643 [0.933]

Q(18) 11.364 [0.878] 10.782 [0.903]

Q2(12) 29.152 [0.003] 5.355 [0.945]

Q2(18) 30.801 [0.030] 8.894 [0.962]

NOTE: Q(k) is the residual Ljung—Box statistic at lag k, and

Q2(k) is the squared-residual Ljung—Box statistic at lag k.

P-values for test statistics are in square brackets.
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Table 3. Estimation Results for Equation (18)

S—PML IV—PML

α 0.000 (0.002) 0.000 (0.002)

β 0.030 (0.362) 0.822 (0.167)

γ0 0.217 (0.107) −0.923 (0.003)

γ1 −0.162 (0.126) −0.358 (0.012)

σ0 0.020 (0.002) 0.018 (0.002)

σ1 0.036 (0.002) 0.036 (0.001)

q 0.988 (0.011) 0.972 (0.026)

p 0.994 (0.023) 0.986 (0.025)

logL 358.14 1450.9

t(β = 1) −2.679 [0.007] − 1.066 [0.286]

Wald
(α=β−1=0)

25.740 [0.000] 0.060 [0.970]

Q(12) 5.374 [0.944] 7.088 [0.852]

Q(18) 8.407 [0.972] 10.378 [0.919]

Q2(12) 9.163 [0.689] 13.665 [0.322]

Q2(18) 11.743 [0.860] 16.099 [0.586]

NOTE: See notes to Table 1.

Table 4. Results of Monte Carlo Experiments: OLS, IV, S—PML

Rej. Freq.

T Bias Std. Dev. t-test
(β=1)

Wald
(α=β−1=0)

OLS 150 −0.994 0.085 1.000 1.000

300 −0.995 0.059 0.998 1.000

500 −0.995 0.045 1.000 1.000

1000 −0.995 0.032 0.995 1.000

IV 150 −1.025 0.378 0.540 0.432

300 −0.995 0.515 0.362 0.401

500 −0.965 0.464 0.425 0.429

1000 −0.993 0.452 0.402 0.411

S—PML 150 −0.979 0.115 1.000 1.000

300 −0.975 0.080 0.999 1.000

500 −0.975 0.060 0.994 0.999

1000 −0.973 0.042 0.991 1.000
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Table 5. Results of Monte Carlo Experiments: IV—PML

Rej. Freq.

IV—PML T Bias Std. Dev. t-test
(β=1)

Wald
(α=β−1=0)

t-test
(β=0)

Wald
(δ
(j)
i =λ

(j)
i =0)

S1 150 −0.081 0.127 0.073 0.068 0.990 0.981

300 −0.065 0.081 0.057 0.060 1.000 0.990

500 −0.006 0.042 0.053 0.058 1.000 1.000

1000 −0.001 0.004 0.049 0.054 1.000 1.000

S2 150 −0.242 0.512 0.129 0.137 0.632 0.851

300 −0.137 0.313 0.088 0.090 0.689 0.883

500 −0.113 0.112 0.070 0.079 0.798 0.892

1000 −0.051 0.031 0.061 0.065 0.851 0.930

S3 150 −0.231 0.459 0.106 0.112 0.723 0.691

300 −0.089 0.258 0.060 0.081 0.738 0.701

500 −0.044 0.154 0.053 0.061 0.813 0.835

1000 −0.009 0.018 0.046 0.057 0.872 0.891

Table 6. Out-of-Sample Forecast Comparisons

MSE MAE RMSE MSPE MAPE RMSPE Theil

M1 0.00101 0.02342 0.03180 0.00765 0.06148 0.24796 0.03840

M2 0.00106 0.02497 0.03265 0.00805 0.06563 0.25619 0.03939

M3 0.00092 0.02251 0.03042 0.00688 0.05798 0.24080 0.03622
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Figure 1: Premium (ft − st+1) and Spread (ft − st).
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Figure 2: Inferred probability of being in the regime characterized by xt = 1.
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