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Abstract: Standard financial techniques neglect extreme situations and regards large market shifts as too unlikely to matter. This 

approach may account for what occurs most of the time in the market, but the picture it presents does not reflect the reality, as the 

major events happen in the rest of the time and investors are ‘surprised’ by ‘unexpected’ market movements. An alternative fuzzy 

approach permits fluctuations well beyond the probability type of uncertainty and allows one to make fewer assumptions about the 

data distribution and market behaviour. Fuzzifying the present value criteria, we suggest a measure of the risk associated with each 

investment opportunity and estimate the project’s robustness towards market uncertainty. The procedure is applied to thirty-five UK 

companies and a neural network solution to the fuzzy criterion is provided to facilitate the decision-making process. Finally, we 

discuss the grounds for classical asset pricing model revision and argue that the demand for relaxed assumptions appeals for another 

approach to modelling the market environment. 
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1. Introduction 

Investment projects are typically chosen on the basis of a restricted information set. Furthermore, the volatility 

literature claims that stock prices are too volatile to accord with simple present value models [37]. The technique 

applied here models the restricted information and incorporates the price uncertainty into the present value calculations. 

It is suggested that uncertain share prices and dividend yields, associated with a family of possible streams of future 

cash flows, as well as uncertain discount rates can be handled by the introduction of fuzzy variables. The value of a 

fuzzy variable is restricted by a possibility distribution [40,17]. Alternatively, one may use fuzzy numbers with 

corresponding membership functions [39,41,18]. 

As compared with the standard approach, the fuzzy present value is an effective method of project evaluation 

and investment risk appraisal under restricted market information. It allows one to make fewer assumptions about the 

underlying distribution and market behaviour. The solution procedure involves a multiple interval analysis, which 

enables investors to consider a project and take decisions based on varying levels of uncertainty. Further, increasing the 

range of uncertainty modelled in the fuzzy data, one can determine the robustness of the investment risk associated with 

each project. Finally, neural networks yield a mechanism to facilitate the solution of the fuzzy criterion. Once trained to 

evaluate a project, a neural net provides investors with a simple re-evaluation tool when the information available is 

subject to change. 

                                                                 
1 The authors are grateful to Prof. James Buckley for his comments on the initial draft. 
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2. Net present value models  

The present value criterion is familiar, widely adopted and simple to apply. It follows from the literature that 

NPV evaluations are increasingly being used in the UK, along with the readiness to implement more sophisticated 

techniques. 

‘When, ... economic uncertainty was most acutely experienced we saw a significant change in the use of 

certain investment practices in an attempt to handle the adverse effects of such economic factors.’ [30] 

Companies rely not only on one but on several methods and the greatest growth amongst all the evaluation practices is 

found in the adoption of the present value technique, it is concluded in Pike [30] and Sangster [34]. The classic form of 

the criterion may be represented as NPV=
( ) 0
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 , where NCFt stands for the net cash flow in period t, I0 

represents the initial cash outlay, R denotes the cost of capital, and N is the number of periods in the project.  

Crisp NPV modifications: The standard formula has been continuously revised. Nickell [27] discusses the 

impact of costs of adjustment, while Precious [31] handles the effect of capital and labour market rationing in the 

context of rational expectation models. More recently, Dixit, Pindyck and Sodal [16] deal with investment 

irreversibility and the timing of the initial outlay. They show that the firm objective to maximise the expected present 

value of stochastically fluctuating net benefits has to be calculated at the time the project is evaluated. As a result, 

NPV=D(V0,V)(V-C)=E[e-RT](V-C) depends on a random start time T. Here, the value function {Vt} is a stationary 

Markov process representing the project benefit measured as the present value at the time the cost is incurred, V0 is the 

project benefit at t=0, V stands for an arbitrary threshold, C indicates a constant sunk cost, R denotes a constant 

discount rate, and D is the expectation of the discount factor depending on V0 and V. The start time T equals the time at 

which the benefit VT reaches the threshold V. T is a random variable and its distribution can be determined from the 

known probability law of the evolution of Vt . The first order condition for the threshold V* maximising NPV is 
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 , where ξD denotes the elasticity of the discount factor D with respect to V*. The 

authors conclude that if the firm used a simple net-present-value rule, it would invest sooner and the discount factor 

would be larger. It is shown that the optimal rule implies a trade-off between a larger versus a later net benefit and can 

be interpreted as a markup formula based on the elasticity of the discount factor. Clearly, a method that permits more 

elasticity in the discount factor, will take some account of irreversibility. 

Further, Stulz [38] argues that the mainstream approach to capital budgeting focuses on the special case where 

the volatility of the project’s cash flows does not affect the value of the firm. The author proves that such risk matters, 

as each project has a cost equal to the impact of the project on the firm’s total risk and consequently the net present 

value must be decreased by this cost. Total risk affects all the firm’s decisions, including the choice of investment 
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projects and the choice of capital structure. Consequently, capital budgeting and capital structure decisions must be 

consistent. 

In conclusion, various mo difications eliminate some of the problems associated with the standard criterion. It has 

been realised that the removal of any of the perfect market assumptions reduces the effectiveness of the method and 

typically destroys the foundations of generally accepted investment-selection techniques. 

‘Having capital budgeting rules that lead to correct decisions in the presence of capital market 

imperfections would lead to a situation where modern finance theory can be applied consistently in firms 

and in a way that increases their value.’ [38] 

The effort in this article is not to cope with a specific drawback of the present value technique but to simply permit in 

the model structure as much uncertainty as the market could possibly suffer. The outcome is an effective method under 

restricted information, uncertain data and market imperfections. Whatever reason one has for modifying the classic 

result, the allowances provided by the fuzzy criterion will cover these specific circumstances and will include the 

modified value, as well as a number of other possible values. The calculation based on the standard criterion may be 

adjusted, as in [38], because of the impact of a project on the investor’s total risk; or re-optimised due to irreversibility, 

as in [16]. The fuzzy present value method takes account of these and also lots of other possibilities, employing fuzzy 

cash flows and fuzzy discount rates and increasing the flexibility of the involved calculations. Our effort lies on the 

bridge towards a new paradigm of investment selection. Aluja [1] reasons that the perception of concepts inherent or 

surrounding the investment process, whose character is not principally measurable, is best handled by nonnumeric 

mathematics emerging from the theory of fuzzy sets. In response, we further develop here the technique presented in 

Hunter and Serguieva [20], introduce fuzzy dividend yields and a second type of calibration, suggest measures of the 

investment risk and its robustness, work out the neural network solution, and extend the number of companies from five 

to thirty-five. The classical method is broadly adopted in practice and managers are comfortable with it, which suggests 

why it might be sensible to accept the fuzzy version to take account of more general forms of uncertainty. 

Fuzzy approaches to investment selection: Fuzzy logic enables research in areas involving a high level and 

diverse forms of uncertainty. Such problems are the norm in finance. 

‘The initial development of the theory of fuzzy sets was motivated by the perception that traditional 

techniques of systems analysis are not effective in ... modelling the pervasive imprecision and uncertainty 

of the real world. ... More recently, the arrival of the information revolution has made the world of 

business, finance and management a magnet for methodologies ... such as neurocomputing, genetic 

computing and fuzzy logic.’ (L. Zadeh, Foreword to [5]) 

Thus, financial analysts and decision-makers are provided with effective modelling tools in the absence of complete or 

precise information and the presence of human involvement. Bojadziev and Bojadziev [5] demonstrate a number of 
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potential applications of fuzzy techniques in finance. In particular, the authors consider, under close and under 

conflicting expert opinions, an investment-planning model that produces aggressive or conservative policies. Fuzzy 

zero-based budgeting is implemented to construct a conservative or an optimistic budget. Östermark [28] uses a fuzzy 

control model to manage a portfolio in a fuzzy dynamic environment in the presence of financial constraints. The author 

employs one riskless and n risky assets, models the factor imprecision using fuzzy sets and solves a fuzzy linear 

tracking problem using the Kalman filter. Next, Ng and Gan [26] construct a fuzzy dynamic hedging strategy under 

transaction costs. The goal is to insure investments in the Nikkei 225 Stock Index against market decline with Nikkei 

Sock Index Futures traded on SIMEX, while allowing full participation on the upside and maximising expected returns. 

The authors design a fuzzy logic trading system in order to resolve the trade-off between frequent rebalancing and 

increased transaction costs. 

Proceeding closer towards the subject of this article, in one of the first publications on fuzzy set application to 

finance, Buckley [6] introduces the fuzzy analogous of the following financial calculations: future value, continuous 

interest, effective rate and regular annuities. He also provides two formulas for the fuzzy present value computation, 

depending on whether the cash amount is positive or negative. The author uses a fuzzy interest rate and fuzzy cash 

amounts and applies the standard arithmetic of fuzzy numbers: all the results are fuzzy numbers. Further, he derives 

fuzzy future and present values and fuzzy annuities under a fuzzy number of interest periods: the results need not be 

fuzzy numbers. Finally, two criteria for investment project evaluation are considered, net present value and internal rate 

of return. It is proved that the standard fuzzy arithmetic provides a complicated result for the former and no fuzzy 

extension for the latter method. In a subsequent article, LiCalzi [13] works in a broader framework and considers 

general accumulation and discount models characterised by their properties rather than specific functions. He derives 

the necessary and sufficient conditions for the future and present values to be compact fuzzy intervals (invertible fuzzy 

intervals) when the cash amount, the time and the interest/discount rate are compact fuzzy intervals (invertible fuzzy 

intervals). The author reasons that there should be only one present value definition and that the doubling in Bucley [6] 

is rather in the computational strategies required by the invertible fuzzy intervals employed. Further, [13] presents the 

natural extension of the accumulation and discount models to the cash flow case, where a different interest/discount rate 

can be associated to each cash amount. Finally, the author considers financial choice criteria and shows that the net 

present value is easily generalised, but it is not possible to prove the existence of the internal rate of return in broader 

terms. Later on, Buckley [7-10] develops a new technique for solving fuzzy equations, based on multiple interval 

analysis. The approach is quite effective and successfully applied to linear, nonlinear and differential equations and 

systems of equations. Particularly, [9] demonstrates how the technique enables a fuzzy solution to the internal rate of 

return criteria. Lastly, in a recent article, Kuchta [21] suggests fuzzy equivalents to a range of methods for investment 

project appraisal. She starts with the revenue per dollar and the payback procedures, continues through the net present 
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and net future values and the net-present-value utility, and concludes with the standard and a modified internal rate of 

return. Likewise the previous authors, she considers fuzzy numbers as unequivocally determined by the set of their level 

cuts, but the main contribution consists in the alternative fuzzification of the project duration. While it is usually 

presented as a discrete fuzzy set with a membership function defined by a collection of positive integers, in [21] the 

duration is a real fuzzy number allowing for the project to finish at any moment, not only at the end of an 

interest/discount period. 

Here, we apply the general technique for evaluating fuzzy expressions from [7-10] to the NPV problem and 

model uncertain market expectations using fuzzy dividend yields, fuzzy share prices and a fuzzy constant discount rate. 

Next, we take into account the gradually consolidating for the last two decades idea amongst financial economists that 

where stock markets are concerned, one should consider time-varying rather than constant rates [14]. A fuzzy time-

varying discount rate and the fuzzy log present value are introduced to handle the problem. Still, if we compare the 

earlier fuzzy NPV studies and our work, the major difference is found in the emphasis we place on the empirical results. 

While the articles quoted in the preceding paragraph are strictly theoretical, here we evaluate thirty-five projects 

investing in shares of UK companies traded on the London Stock Exchange. However, it is the analysis of the empirical 

results that facilitates the consequent formulation of the investment risk and the project robustness towards market 

uncertainty. Also, the intuition that projects with a small and a highly robust investment risk are preferable further 

assists the definition of an alternative ranking technique. Thus the fuzzy criterion evolves into a considerably 

informative and advantageous to investors method. In conclusion, the theoretical and the empirical results are fairly 

balanced, with the driving force being the investors benefit. 

Finally, neural networks and fuzzy sets have been recently applied in a complementary and synergetic way and 

have coalesced to form the concept of soft computing. The effort of Kuo, L. Lee and C. Lee [22] is an illustration of 

such synergetic application to finance. They develop a stock-trading decision support system, integrating neural nets 

and fuzzy Delphi methods, and implement it to the Taiwan stock market. The result shows that without and under 

transaction costs the integrated model outperforms the single neural network. Another neuro-fuzzy example is the 

approach applied by Pan, Liu and Mejabi [29] to S&P500 forecasting. They develop a hybrid system where a fuzzy 

membership array is embedded in a neural network. Thus, inherent advantages of the resulting structure are both the 

ability of learning new patterns using the network training techniques and the interpretability of the weights and the 

transfer functions in the net. The out-of-sample forecasts of the hybrid system up to 24 months ahead without updating 

the model are compared with these of several regressions2 and the neuro-fuzzy system is found to perform substantially 

better in terms of the root mean squared error. Our effort in this article to combine the advantages of the neural and 

                                                                 
2 OLS, AR(1), AR(2), EARCH(1), AR(1)+EARCH(1), AR(2)+ARCH(2), AR(2)+EARCH(2), and ARIMA(1,1,0). 
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fuzzy methodologies consists in building a three-layer feedforward network to solve the fuzzy investment criterion. We 

apply a modified Levenberg-Marquart backpropagation algorithm to impose certain sign restrictions on the weights in 

the net and to ensure that its output approximates the fuzzy solution. All the input vectors in the training set are 

presented to the neural net concurrently and its performance is evaluated over a separate test set. As a result, investors 

are provided with an effortless instrument for risk re-evaluation, any time they need to update and reconsider a project. 

 

3. Investment project evaluation using a fuzzy criterion with a constant discount rate  

For all intense and purposes, as the market evaluation of a company is based on its shares, the analysis is 

restricted to common stocks, as it is traditional in the finance literature. The stock’s rate of return is defined by 
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where 0tP  denotes the ex-dividend share price at the end of period t0 and 1t0DY +  is the next period’s dividend yield. The 

forward solution for 0tP  under constant returns is determined by 
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which reveals that the estimated stream of future cash flows of projects investing in constant-return stocks at t0 is 

( 1t0P + 1t0DY + ,..., Nt0P + ( Nt0DY + +1)). The initial outlay of such projects is the share price at t0, 0tP . For simplicity, we 

will consider that the initial outlay is paid in the period in which the projects are evaluated, t0=0, and P0 is observed and 

known with certainty. The assumption of constant rates of return requires a project-evaluation technique using a 

constant discount rate R. 

Notations: Before proceeding with the fuzzy criterion description, we will introduce some necessary notations. 

Let the positive real triangular fuzzy numbers to be substituted in (2) for Pt, DYt and R, be respectively tP
~

, tYD
~

 and 

R~ . The notations µ(xPt| tP
~

)=(Pta/Ptb/Ptc), µ(xDYt| tYD
~

)=(DYta/DYtb/DYtc) and µ(xR| R~ )=(Ra/Rb/Rc) will stand for the 

triangular membership functions of tP
~

, tYD
~

 and R~ . The graph of µ(xPt| tP
~

) is a triangle with base on the interval 

[Pta,Ptc] and vertex at the point xPt=Ptb, where 0<Pta<Ptb<Ptc. The membership functions µ(xDYt| tYD
~

) and µ(xR| R~ ) are 

described correspondingly. The weak α-cut tP
~

(α) of the fuzzy share price tP
~

 is defined by 
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i  and denoted as tP
~

(α)=[ )(Pt α , )(Pt α ], 0≤α≤1. Again, tYD
~

(α) and R~ (α) are 

specified by analogy. When the time series of fuzzy share prices is considered, P~ ={ tP
~

}, 1≤t≤N, then P~ (α) is the 

Cartesian product of tP
~

(α), P~ (α)=∏
=
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(α), 0≤α≤1. In a similar way, the Cartesian product YD~ (α)=∏
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0≤α≤1, forms the α-cut of the dividend-yield time series, YD~ ={ tYD
~

}, 1≤t≤N. Further, we denote the stream of future 

cash flows by A~ =( 1A
~

,..., tA
~

,..., NA
~ ), where tA

~
= tP

~
tYD

~
, 1≤t≤N-1, and NA

~ = NP
~

( NYD
~

+1). Then, the α-cut A~ (α) is 

introduced by A~ (α)=∏
=

N

1t
tA

~
(α), 0≤α≤1. Consequently, the condition P∈ P~ (α) and DY∈ YD~ (α) is equivalent to 

A∈ A~ (α), 
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Next we present fuzzy-variable notations. The positive real fuzzy variables whose values are to be Pt, DYt and R 

are denoted as tP
(

, tYD
(

and R
(

, respectively. Their values are restricted by the following triangular possibility 

distributions,  

Poss[ tP
(

=xPt]=µ(xPt| tP
~

) , Poss[ tYD
(

=xDYt]=µ(xDYt| tYD
~

) , Poss[R
(

=xR]=µ(xR| R~ ) . (4) 

When interrelations (4) hold, then 

tP
~

(α)=[ )(Pt α , )(Pt α ]={xPt|Poss[ tP
(

=xPt]≥α}, 0≤α≤1 , (5a) 

tYD
~

(α)=[ )(DYt α , )(DYt α ]={xDYt|Poss[ tYD
(

=xDYt]≥α}, 0≤α≤1 , (5b) 

R~ (α)=[ )(R α , )(R α ]={xR |Poss[R
(

=xR]≥α}, 0≤α≤1 . (5c) 

Again, if the share-price time series and the dividend-yield time series are considered, then 

πP=
Nt1

min
≤≤

{Poss[ tP
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)} is the joint possibility distribution of tP
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)} is the joint possibility distribution of tYD
~

, 1≤t≤N. The 

corresponding result for the stream of future cash flows presented as fuzzy variables, A
(

=( 1A
(

,..., tA
(

,..., NA
(

), is  

πA=
Nt1

min
≤≤

{Poss[ tA
(

=xAt]}=min{πP ,πDY},  (6) 

assuming that tP
(

 and tYD
(

 are non-interactive. 

Fuzzy present value: We apply the two methods of evaluating fuzzy algebraic expressions presented in [8-10]. 

First, if positive real triangular fuzzy numbers tP
~

, tYD
~

 and R~  are substituted for Pt, DYt and R in (2), then FNVP
~

 is 

the triangular-shaped fuzzy number providing a set of values that belong to the present value with various degrees of 

membership. The graph of the triangular-shaped membership function µ( FNPVx | FNVP
~

)=(PVFVa/PVFVb/PVFVc) of the 

fuzzy present value is 0 outside [PVFVa,PVFVc] and 1 at FNPVx =PVFVb, while µ( FNPVx | FNVP
~

) is continuously 

increasing from 0 to 1 on the interval [PVFVa,PVFVb] and continuously decreasing from 1 to 0 on [PVFVb,PVFVc]. For 

t0=0, we form the Cartesian products P~ (α) and YD~ (α), and find the α-cut FNPVΩ (α), 
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FNPVΩ (α)={
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Then, the first solution is defined by the following membership function: 

µ( FNPVx | FNVP
~

)=sup{α| FNPVx ∈ FNPVΩ (α)} . (7b) 

Second, if one uses  positive real fuzzy variables with triangular  possibility distributions tP
(

, tYD
(

and R
(

, whose 

values are to be Pt, DYt and R, correspondingly, then FVVP
(

 is the fuzzy variable, whose values are possible solutions to 

(2). Form πP  and πDY, and find the joint possibility distribution FVPVπ , 

FVPVπ =min{πP ,πDY,Poss[R
(

=xR]} , (8a) 

assuming that tP
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(

 are non-interactive. Then, the triangular-shaped possibility distribution of the second 

solution is described by 
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The comparison between FNVP
~

 and FVVP
(

 produces the following result. 

Poss[ FVVP
(

= FVPVx ]=µ( FNPVx | FNVP
~

) , (9a) 

FNVP
~

(α)= FNPVΩ (α)={ FVPVx |Poss[ FVVP
(

= FVPVx ]≥α} ,0≤α≤1 . (9b) 

Consequently, the two solutions are identical. We have presented both of them, as the first solution FNVP
~

 provides the 

basis for the computational algorithm, and the second solution FVVP
(

 gives us the opportunity to justify the uncertainty-

modelling technique implemented. When one considers various levels of uncertainty, it is natural to find the present 

value of the investment project, using values of share prices, dividend yields and the discount rate, all at the same level 

of uncertainty. Thus, the project is evaluated at various levels of uncertainty. For each level of uncertainty in the data, 

the fuzzy method provides present values at the corresponding level of uncertainty. The values of Pt, DYt and R at the 

same level of uncertainty are defined by their fuzzy-variable presentation and belong to the sets  

{xPt|Poss[ tP
(

=xPt]≥α}, {xDYt|Poss[ tYD
(

=xDYt]≥α}, {xR|Poss[ R
(

=xR]≥α}, 0≤t≤N, 0≤α≤1 . 

However, these sets are identical to tP
~

(α), tYD
~

(α) and R~ (α) in the fuzzy-number presentation. Then, the set of 

present values at the corresponding level of uncertainty is delimited by the second solution, 

{ FVPVx |Poss[ FVVP
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 for Pt∈ tP
~

(α), 

DYt∈ tYD
~

(α), R∈ R~ (α), 1≤t≤N, 0≤α≤1, thus producing the α-cut FNPVΩ (α) of the first solution FNVP
~

. 
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Data: Monthly (DataStream) data on share prices and dividend yields are employed for the period January 1975 

– January 2000. The application covers thirty-five UK companies from various sectors and within diverse range of 

market capitalisation. They are selected for their positive and less than one price to book value at the beginning of the 

investment projects, which reveals undervaluation and potential investment attractiveness. Table 1 provides the 

company list and basic information. The discount rate employed is the average for the length of the projects 3-month  

UK treasury bill rate. 

Table 1: Companies covered in the application 
Company sector market capitalisation (end-of-project), £m

BASS Restaurants, Pubs & Breweries 7,616.94
BBA GROUP Engineering – General 2,186.50
BENTALLS Retailers - Multi Department 26.79
BLUE CIRCLE INDUSTRIES Building & Construction Materials 2,912.45
BOC GROUP Chemicals – Commodity 6,530.61
BOOTS CO. Retailers - Multi Department 5,445.32
BP AMOCO Oil – Integrated 121,241.85
BRITISH AMERICAN TOBACCO Tobacco 7,654.29
BUNZL Business Support Services 1,553.66
COATS VIYELLA Other Textiles & Leather Goods 292.00
DIXONS GROUP Retailers – Hardlines 7,103.14
GOODWIN Engineering Fabricators 5.65
GREAT UNIVERSAL STORES Retailers - Multi Department 3,641.28
HANSON Building & Construction Materials 3,383.77
INCHCAPE Vehicle Distribution 242.97
LEX SERVICE Vehicle Distribution 436.58
MARKS & SPENCER Retailers - Multi Department 8,464.95
NORTHERN FOODS Food Processors 609.23
PILKINGTON Building & Construction Materials 926.97
RANK GROUP Leisure Facilities 1,516.28
RMC GROUP Building & Construction Materials 2,218.21
SAINSBURY (J) Food & Drug Retailers 6,707.54
SCOTTISH & NEWCASTLE Restaurants, Pubs & Breweries 2,684.77
SMITH (WH) GROUP Retailers - Soft Goods 1,200.80
SMITHS INDUSTRIES Aerospace 2,912.40
TARMAC Building & Construction Materials 1,126.40
TATE & LYLE Food Processors 1,820.48
TAYLOR WOODROW Other Construction 510.63
TI GROUP Engineering – General 2,401.66
TRANSPORT DEVELOPMENT GROUP Rail, Road & Freight 161.18
UNILEVER Food Processors 13,261.69
UNITED BISCUITS HOLDINGS Food Processors 1,255.64
WHITBREAD Restaurants, Pubs & Breweries 3,102.43
WIMPEY (GEORGE) House Building 415.45
WOLSELEY Builders Merchants 2,725.25

 

Calculations: The support tP
~

(0)=[ )0(Pt , )0(Pt ] of the triangular membership function of each tP
~

, 1≤t≤N, is 

2.5% wider than the 99% normal-distribution confidence interval. This permits a broader range of possible values when 

modelling the uncertain price Pt. Further, tP
~

(1)=Pt and the triangles are isosceles, except for the cases when the 

calibration produces )0(Pt ≤0. Then, )0(Pt =eps is accepted. The procedure is repeated for tYD
(

, 1≤t≤N, and for R
(

, 

where R~ (1)=mean(Rt). Thus, we assume no negative and zero share prices, dividend yields and discount rates. This is 

not a requirement of the method, but rather a feature of the investment projects considered. The calculations involve the 

following relation, where the same discount rate is applied to all companies. 
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Consequently, the information that distinguishes the projects and affects their present values in Jan. 1975 comprises the 

streams of future cash flows from Feb. 1975 till Jan. 2000. Remember also relations (3) and (6). As an illustration,  

Figures 1 to 4 present the results3 for four of the companies having different risk characteristics.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results interpretation: The character of the fuzzy cash-flow stream affects the form of the fuzzy present value. 

Most importantly, there exists a unique for each company αcritical, the level where the initial-outlay line crosses the 

present-value membership function. Since α is the degree of membership of a value to the set of the project’s present 

                                                                 
3 For better visualisation, only the dividends Dt=P tDYt, 1≤t≤N, are included in the graphics of the cash-flow streams but not the final price PN. 
4 See [35] for the complete set of graphics.  
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values, then the level of uncertainty is calculated by u=1-α, and correspondingly ucritical=1-αcritical. A project is profitable 

at any u<ucritical, while there is a chance of being unprofitable when u≥ucritical. For example, an investment in BBA 

GROUP at a level of uncertainty u<0.755 has a set of possible present values all bigger than the current shares price, 

consequently all possible net present values are positive. Any uncertainty equal or above ucritical=0.755 will force the 

corresponding set of possible NPVs to include zero and negative values. Thus, a critical level of uncertainty is 

associated with each project. (See Table 2.) For BOOTS CO., ucritical=0, the NPV set includes zero and negative values 

and the project is unprofitable at any level of uncertainty. On the opposite, BP AMOCO has ucritical=1 and the 

investment there is profitable at any u. Furthermore, if one selects the risk and decides in favour of a project at u≥ucritical, 

when 0<ucritical<1, there is a chance of getting an even more profitable project, as the possible NPV set at a higher level 

of uncertainty is wider and includes larger positive values. This can be considered as a kind of risk reward. 

Table 2: Critical levels: constant discount rate and normal calibration 
company αcritical ucritical 

BASS 0.772 0.228 
BBA GROUP 0.245 0.755 
BENTALLS 0.528 0.472 
BLUE CIRCLE INDUSTRIES 0.000 1.000 
BOC GROUP 0.000 1.000 
BOOTS CO. 1.000 0.000 
BP AMOCO 0.000 1.000 
BRITISH AMERICAN TOBACCO 0.901 0.099 
BUNZL 0.839 0.161 
COATS VIYELLA 0.000 1.000 
DIXONS GROUP 0.656 0.344 
GOODWIN 0.421 0.579 
GREAT UNIVERSAL STORES 0.942 0.058 
HANSON 0.507 0.493 
INCHCAPE 1.000 0.000 
LEX SERVICE 0.000 1.000 
MARKS & SPENCER 0.944 0.056 
NORTHERN FOODS 0.339 0.661 
PILKINGTON 0.026 0.974 
RANK GROUP 0.658 0.342 
RMC GROUP 0.479 0.521 
SAINSBURY (J) 1.000 0.000 
SCOTTISH & NEWCASTLE 0.487 0.513 
SMITH (WH) GROUP 0.986 0.014 
SMITHS INDUSTRIES 0.584 0.416 
TARMAC 0.000 1.000 
TATE & LYLE 0.190 0.810 
TAYLOR WOODROW 0.937 0.063 
TI GROUP 0.000 1.000 
TRANSPORT DEVELOPMENT GROUP 0.000 1.000 
UNILEVER 1.000 0.000 
UNITED BISCUITS HOLDINGS 0.000 1.000 
WHITBREAD 0.765 0.235 
WIMPEY (GEORGE) 1.000 0.000 
WOLSELEY 0.000 1.000 

 
The fuzzy present value provides investors with solutions on various levels of uncertainty. There are different 

agents on the market, individual investors and huge investment funds as the ext remes, with diverse risk tolerance. They 

will consider the same project in divergent ways, as the risk or the level of uncertainty they are willing to accept is 

different. For example, uacceptable can be below or above ucritical, and while some agents will presumably profit from the 

project, others will regard it as too risky and more likely unprofitable. 
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4. Measuring the investment risk and its robustness 

The results in the previous section show that a critical level of uncertainty is associated with each project. The 

solution procedure applied allows for finding the set of the project’s present values that corresponds to all the share 

prices, dividend yields and discount rates possible at some level of uncertainty. This set is situated at the same level of 

uncertainty. Therefore, there is a critical level of uncertainty, ucritica, embodied in the market data we use to evaluate the 

project and this level delimits the project’s investment risk. We suggest 1-ucritical=αcritical ∈ [0,1] as a risk measure. The 

following reasons support such suggestion. First, the lower the critical level of uncertainty at which there is a chance for 

the project being unprofitable, the higher the investment risk. Second, αcritical is the membership level of the fuzzy net 

present value, below and at which it is certain that the solution includes negative and zero values, and above which the 

project is definitely profitable. Now, a new interpretation can be given to the results in Table 2, ucritical≡the critical level 

of uncertainty embodied in the market data, αcritical≡the investment risk of the project. Moreover, evaluating the same 

projects under increased uncertainty of the market environment and comparing the resultant critical values one will 

derive an estimate of the investment risk robustness. To model increased market uncertainty, we apply a calibration 

procedure based on the 95% t6 confidence interval rather than the normal interval, thus producing fatter-tail possibility 

distributions. Table 3 below compares the critical values. 

Table 3: Critical levels in the constant discount rate case: normal and t6 calibration 
N-calibration t6-calibration  

company αNcritical uNcritical αt6critical ut6critical 
BASS 0.772 0.228 0.820 0.180 
BBA GROUP 0.245 0.755 0.527 0.473 
BENTALLS 0.528 0.472 0.822 0.178 
BLUE CIRCLE INDUSTRIES 0.000 1.000 0.000 1.000 
BOC GROUP 0.000 1.000 0.000 1.000 
BOOTS CO. 1.000 0.000 1.000 0.000 
BP AMOCO 0.000 1.000 0.529 0.471 
BRITISH AMERICAN TOBACCO 0.901 0.099 0.920 0.080 
BUNZL 0.839 0.161 0.880 0.120 
COATS VIYELLA 0.000 1.000 0.000 1.000 
DIXONS GROUP 0.656 0.344 0.713 0.287 
GOODWIN 0.421 0.579 0.575 0.425 
GREAT UNIVERSAL STORES 0.942 0.058 0.952 0.048 
HANSON 0.507 0.493 0.573 0.427 
INCHCAPE 1.000 0.000 1.000 0.000 
LEX SERVICE 0.000 1.000 0.000 1.000 
MARKS & SPENCER 0.944 0.056 0.955 0.045 
NORTHERN FOODS 0.339 0.661 0.543 0.457 
PILKINGTON 0.026 0.974 0.769 0.231 
RANK GROUP 0.658 0.342 0.897 0.103 
RMC GROUP 0.479 0.521 0.543 0.457 
SAINSBURY (J) 1.000 0.000 1.000 0.000 
SCOTTISH & NEWCASTLE 0.487 0.513 0.674 0.326 
SMITH (WH) GROUP 0.986 0.014 0.991 0.009 
SMITHS INDUSTRIES 0.584 0.416 0.639 0.361 
TARMAC 0.000 1.000 0.000 1.000 
TATE & LYLE 0.190 0.810 0.668 0.332 
TAYLOR WOODROW 0.937 0.063 0.981 0.019 
TI GROUP 0.000 1.000 0.563 0.437 
TRANSPORT DEVELOPMENT GROUP 0.000 1.000 0.661 0.339 
UNILEVER 1.000 0.000 1.000 0.000 
UNITED BISCUITS HOLDINGS 0.000 1.000 0.000 1.000 
WHITBREAD 0.765 0.235 0.806 0.194 
WIMPEY (GEORGE) 1.000 0.000 1.000 0.000 
WOLSELEY 0.000 1.000 0.000 1.000 

 



 13 

Results interpretation: Raising the market uncertainty, we logically obtain decreased critical levels ucritical. For 

all the projects, the relation u t6critical≤u Ncritical holds, which indicates that the chance of a project being unprofitable now 

occurs at lower levels of uncertainty embodied in the data. If a project was profitable at any u or uNcritical=1, then it may 

still stay profitable and ut6critical=1. It is the case with the following stocks: BLUE CIRCLE INDUSTRIES, BOC 

GROUP, COATS VIYELLA, LEX SERVICE, TARMAC, and UNITED BISCUITS HOLDINGS. These companies 

perform really well and the investment is believed to be rewarding despite the increased uncertainty in the environment. 

On the other hand, the critical level may decrease below 1, which is the case with BP AMOCO (u t6critical=0.471), TI 

GROUP (ut6critical=0.437) and TRANSPORT DEVELOPMENT GROUP (ut6critical=0.339). Such companies perform 

relatively well but their results are not quite robust and this affects the profitability of the corresponding projects. For 

example, investing in BP AMOCO was gainful at any level of uncertainty and uNcritical=1; now there is some possibility 

for the project being unprofitable at levels equal or above ut6critical=0.471. Further, if the critical level before increasing 

the uncertainty was strongly between zero and one, 0<uNcritical<1, then the strong inequality u t6critical<uNcritical holds. Most 

of the companies fall in this category. Such projects are not the most favourable but still show positive results at levels 

below ut6critical. The final outcome depends to some extent to the predictability of the market environment. To find out to 

what extent means to identify the project robustness towards the market uncertainty. Finally, if an investment was 

unrewarding at any level before and uNcritical=0, it logically stays unprofitable now and ut6critical=0. Such examples are 

BOOTS CO., INCHCAPE, SAINSBURY (J), UNILEVER, and WIMPEY (GEORGE). The companies do not perform 

quite well and investment there is not believed to be gainful even in a less uncertain environment. 

When the investment risk results, αcritical, are considered, then the relation αt6critical≥αNcritical is revealed, implying 

that the increased uncertainty causes the investment risk to rise. It will be helpful to find out the extent of this 

dependence or to identify the risk robustness towards market uncertainty. No investor will be interested in unprofitable 

projects, where αNcritical=αt6critical=1. It is why Table 4 only includes companies with αNcritical<1 and suggests  

∆α=αt6critical-αNcritical (11) 

as a measure of the risk robustness. It is accepted that 0≤∆α<0.1 represents highly robust projects, 0.1≤∆α<0.25 

indicates investments with medium risk robustness and 0.25≤∆α<0.5 investments with low risk robustness, while 

0.5≤∆α implies no robustness at all. The companies are first ordered in correspondence with their αt6critical, as the 

increased-uncertainty case better represents the reality. However, when choosing between projects with close 

investment risks, the more robust investments are preferable, leading to rearrangement according to the second 

criterion, ∆α. For example, RMC GROUP is preferable to NORTHERN FOODS, BBA GROUP and BP AMOCO, 

because the project is more robust, although with slightly higher investment risk. By analogy, HANSON is preferable to 

NORTHERN FOODS, BBA GROUP, BP AMOCO and TI GROUP. Also, SCOTTISH & NEWCASTLE is preferable  

 



 14 

to TATE & LYLE and TRANSPORT DEVELOPMENT GROUP. DIXONS GROUP is preferable to TRANSPORT 

DEVELOPMENT GROUP, etc. Consequently, the table suggests an order corresponding to the project’s attractiveness 

to investors. It is important for investors to pick out projects having not only a small but also a highly robust investment 

risk. The fuzzy present value provides them with the necessary information and facilitates their decision. 

Table 4: Investment risk robustness: the constant discount rate case 
company investment risk ∆α risk robustness 

BLUE CIRCLE INDUSTRIES 0.000 0.000 high 
COATS VIYELLA 0.000 0.000 high 
BOC GROUP 0.000 0.000 high 
LEX SERVICE 0.000 0.000 high 
TARMAC 0.000 0.000 high 
UNITED BISCUITS HOLDINGS 0.000 0.000 high 
WOLSELEY 0.000 0.000 high 
RMC GROUP 0.543 0.064 high 
HANSON 0.573 0.066 high 
NORTHERN FOODS 0.543 0.204 medium 
GOODWIN 0.575 0.154 medium 
BBA GROUP 0.527 0.282 low 
BP AMOCO 0.529 0.529 none 
TI GROUP 0.563 0.563 none 
SMITHS INDUSTRIES 0.639 0.055 high 
SCOTTISH & NEWCASTLE 0.674 0.187 medium 
TATE & LYLE 0.668 0.478 low 
DIXONS GROUP 0.713 0.057 high 
TRANSPORT DEVELOPMENT GROUP 0.661 0.661 none 
WHITBREAD 0.806 0.041 high 
BASS 0.820 0.048 high 
BENTALLS 0.822 0.294 low 
PILKINGTON 0.769 0.743 none 
BUNZL 0.880 0.041 high 
BRITISH AMERICAN TOBACCO 0.920 0.019 high 
GREAT UNIVERSAL STORES 0.952 0.010 high 
MARKS & SPENCER 0.955 0.011 high 
RANK GROUP 0.897 0.239 medium 
SMITH (WH) GROUP 0.991 0.005 high 
TAYLOR WOODROW 0.981 0.044 high 

 
Figures 5 to 8 illustrate how the increased uncertainty affects the cash-flow streams and shifts the present values. The 

four companies are correspondingly representative for the four zones of risk robustness: high, medium, low and none. 
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Remember that the standard method will not quite distinguish between the above projects, as they all have a 

positive crisp net present value. The generally accepted technique will not tell us how to choose between projects with 

close crisp net present values. It will not reveal whether projects with higher NPV are less robust and less preferable. In 

conclusion, the standard results are not quite informative and can be misleading. 

 

5. Investment project evaluation using a fuzzy criterion with a time -varying discount rate  

Since early 1980s, when several authors raised the topic that stock prices are too volatile to be rational forecasts 

of future dividends discounted at a constant rate, regression tests have convinced many financial economists that stock 

returns are time-varying rather than constant [14]. The assumption of time-varying returns transforms the price-dividend 

relation (2) into nonlinear and a loglinear approximation is required, where the analogous of the level return 1t0R +  in (1) 

will be the log return ( ) 




 +

=+≡ +++
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000
00

t

1t1t1t
1t1t P
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lnR1lnr . Let 1t0p +  and 1t0dy +  stand for the log share price and 

the log dividend yield, correspondingly. Then, ( )10t
000

dy
t1t1t e1lnppr +++−= ++  and using a first-order Taylor 

approximation of the last term, one obtains 

( ) 0000 t1t1t1t pdy1pkr −ρ−++≈ +++  . (12) 

Here, ( ) ( ) ( )ρρ−ρ−ρ−≡ ln1ln1k  and 
dye1

1
+

≡ρ  are parameters of linearisation, and dy  is the average log dividend yield. 

Solving (12) forward for 0tp  produces a linear equation for the log stock price under the assumption of time-varying 

stock returns, 
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It is  analogous to equation (2) for the level stock price in the constant-return case. To continue with the analogy, we 

now consider projects investing in time-varying-return stocks at t0 and equate the log present value 0tlpv  of such 

projects with the log-current-price estimation in (13). The level-log transformation causes the following form of the 

stream of future cash flows, ( )( )N0t
000

dy
Nt1t1t e1lnp,,dyp ++++ +++ K , and the log initial outlay is the log share price at t0, 

0tp . We assume t0=0 and p0 known with certainty. The projects are evaluated under a time-varying discount rate rt and 

they are profitable when lpv0>p0 . 

Notations and fuzzy solutions: First, we will briefly introduce a few more notations. The linearisation 

parameters, k and ρ, are considered crisp. The real fuzzy numbers to be substituted for pt, dyt and rt in (13) are 

correspondingly tp~ , tyd~  and tr~ . The level-log data transformation causes triangular-shaped rather then triangular 

membership functions, 

µ(xpt| tp~ )=(p ta/ptb/ptc)=µ(xPt| tP
~

) , µ(xdyt| tyd~ )=(dyta/dytb/dytc)=µ(xDYt| tYD
~

) , µ(xrt| tr~ )=(rta/rtb/rtc)=µ(xRt| tR
~

) . (14) 

Next, one can describe α-cuts, ( ) ( ) ( )[ ]
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and dy∈ ( )αyd~  is equivalent to a∈ ( )αa~ . Finally, the real fuzzy variables whose values are to be p t, dyt and rt in (13) are 

denoted as tp( , tyd
(

and tr
(

, respectively, and their possibility distributions are described by Poss[ tp( =xpt]=µ(xpt| tp~ ), 
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(
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, 0≤α≤1. 

Now, for t0=0, form the Cartesian products ( )αp~ , ( )αyd~  and ( )αr~ , and find the α-cut ( )αΩ fnlpv , 
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Then the first solution for the fuzzy log present value is defined by its membership function, 

µ( fnlpvx | fnvp~l )=sup{α| fnlpvx ∈ ( )αΩ fnlpv } . 

Next, form πp , πdy and πr , and find the joint possibility distribution fvlpvπ =min{πp,πdy,πr}, assuming that tp( , 

tyd
(

and tr
(

 are non-interactive. Then, the triangular-shaped possibility distribution of the second solution is described by 

Poss[ fvvpl( = fvlpvx ]=sup{ fvlpvπ | fvlpvx = ( )( )[ ] N
N

N

1t
ttt

1t prkpdy1 ρ+−++ρ−ρ∑
=

− } . 

The solutions are identical and the relation fnvp~l (α)== ( )αΩ fnlpv ={ fvlpvx |Poss[ fvvpl( = fvlpvx ]≥α}, 0≤α≤1, holds, where  

( ) ( ) ( )[ ] ( ) ( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( )( ) ( )[ ] ( )
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. 

Calculations: The same 35 projects are evaluated, but the assumption of a time-varying discount rate enforces 

the employment of N fuzzy numbers tr~  with tr~ (1)=ln(Rt), 1≤t≤N, and not the average but all the monthly treasury-bill-

rate data are involved. The calculations are performed for t6 calibration and the results are presented in Table 5. 

Table 5: Critical levels for t6 calibration: constant and time-varying discount rate 
constant discount rate time-varying discount rate  

company αt6critical ut6ritical αlogcritical ulogcritical 
BASS 0.820 0.180 1.000 0.000 
BBA GROUP 0.527 0.473 0.696 0.304 
BENTALLS 0.822 0.178 1.000 0.000 
BLUE CIRCLE INDUSTRIES 0.000 1.000 0.000 1.000 
BOC GROUP 0.000 1.000 0.000 1.000 
BOOTS CO. 1.000 0.000 1.000 0.000 
BP AMOCO 0.529 0.471 0.904 0.096 
BRITISH AMERICAN TOBACCO 0.920 0.080 1.000 0.000 
BUNZL 0.880 0.120 1.000 0.000 
COATS VIYELLA 0.000 1.000 0.000 1.000 
DIXONS GROUP 0.713 0.287 1.000 0.000 
GOODWIN 0.575 0.425 0.925 0.075 
GREAT UNIVERSAL STORES 0.952 0.048 1.000 0.000 
HANSON 0.573 0.427 0.673 0.327 
INCHCAPE 1.000 0.000 1.000 0.000 
LEX SERVICE 0.000 1.000 0.000 1.000 
MARKS & SPENCER 0.955 0.045 1.000 0.000 
NORTHERN FOODS 0.543 0.457 0.656 0.344 
PILKINGTON 0.769 0.231 0.919 0.081 
RANK GROUP 0.897 0.103 1.000 0.000 
RMC GROUP 0.543 0.457 0.739 0.261 
SAINSBURY (J) 1.000 0.000 1.000 0.000 
SCOTTISH & NEWCASTLE 0.674 0.326 0.775 0.225 
SMITH (WH) GROUP 0.991 0.009 1.000 0.000 
SMITHS INDUSTRIES 0.639 0.361 0.959 0.041 
TARMAC 0.000 1.000 0.000 1.000 
TATE & LYLE 0.668 0.332 0.778 0.222 
TAYLOR WOODROW 0.981 0.019 1.000 0.000 
TI GROUP 0.563 0.437 0.664 0.336 
TRANSPORT DEVELOPMENT GROUP 0.661 0.339 0.736 0.264 
UNILEVER 1.000 0.000 1.000 0.000 
UNITED BISCUITS HOLDINGS 0.000 1.000 0.000 1.000 
WHITBREAD 0.806 0.194 1.000 0.000 
WIMPEY (GEORGE) 1.000 0.000 1.000 0.000 
WOLSELEY 0.000 1.000 0.092 0.908 

 

Results interpretation: Below the log critical level of uncertainty, u<u logcritical, all the log present values are 

greater than the initial outlay p0 . Consequently, vp~l (α)>p0 for αlogcritical<α≤1 and the project is profitable. At levels 

equal or above ulogcritical, the project may be unprofitable. We have not further increased the uncertainty modelled in the 
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t6 data, only introduced a variable discount rate, but the comparison between the constant t6 and the time-varying t6 

results reveals characteristics similar to an increased-market-uncertainty case: ulogcritical≤ut6critical≤u Ncritical and 

αlogcritical≥αt6critical≥αNcritical. The chance of a project being unprofitable now occurs at lower levels of uncertainty 

embodied in the data and the investment risk is higher. 

When one assess the projects under t6 calibration and a time-varying discount rate, he or she approaches the real 

market conditions. This allows an improved evaluation of the investment risk and its robustness. Table 6 includes 

companies with αlogcritical<1 and repeats the procedure from Table 4 with the new results. The projects are first ordered 

according to their investment risk in the time-varying case, then the arrangement is refined corresponding to the 

robustness indicator. Under the new circumstances, we slightly change the qualifying conditions. Now, 

0≤∆αlog=αlogcritical-αNcritical<0.1 represents highly robust projects, 0.1≤∆αlog<0.3 indicates investments with medium risk 

robustness, 0.3≤∆αlog<0.6 implies investments with low risk robustness, and 0.6≤∆αlog reveals no robustness at all. 

Table 6: Robustness of profitable projects 
company investment risk αlogcritical-αNcritical robustness 

BLUE CIRCLE INDUSTRIES 0.000 0.000 high 
BOC GROUP 0.000 0.000 high 
COATS VIYELLA 0.000 0.000 high 
LEX SERVICE 0.000 0.000 high 
TARMAC 0.000 0.000 high 
UNITED BISCUITS HOLDINGS 0.000 0.000 high 
WOLSELEY 0.092 0.092 high 
HANSON 0.673 0.166 medium 
NORTHERN FOODS 0.656 0.317 low 
BBA GROUP 0.696 0.451 low 
TI GROUP 0.664 0.664 none 
RMC GROUP 0.739 0.260 medium 
SCOTTISH & NEWCASTLE 0.775 0.288 medium 
TATE & LYLE 0.778 0.588 low 
TRANSPORT DEVELOPMENT GROUP 0.736 0.736 none 
SMITHS INDUSTRIES 0.959 0.375 low 
GOODWIN 0.925 0.504 low 
BP AMOCO 0.904 0.904 none 
PILKINGTON 0.919 0.893 none 

 
A major aspect of the fuzzy criterion is its ability to identify projects with a small and highly robust investment risk. 

According to the above table, the best companies to invest in are BLUE CIRCLE INDUSTRIES, BOC GROUP, 

COATS VIYELLA, LEX SERVICE, TARMAC and UNITED BISCUITS HOLDINGS. The projects are profitable at 

any level of uncertainty and the investment risk is zero. Moving on, some risk is involved, and it is  where the risk 

robustness meters. Some companies may look well at first glance, but investigating the risk robustness one reveals how 

the corresponding projects change from definitely or almost gainful to almost unprofitable. This is the case with BP 

AMOCO, PILKINGTON, TRANSPORT DEVELOPMENT GROUP and TI GROUP, and more or less with TATE & 

LYLE and BBA GROUP. On the other hand, HANSON, RMC GROUP and SCOTTISH & NEWCASTLE, although 

still risky, are quite robust and much preferable. Figures 9 to 12 illustrate each range of the robustness scale. Do not 

forget that the standard method will be in favour of all projects in Table 6, as they have a positive crisp net present 

value and may be a high one. So the standard procedure will not quite distinguish between eventual investments and  
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6. Using neural networks to evaluate the fuzzy criterion 

The objective is to train a neural network to evaluate investment projects according to the fuzzy present value 

criterion. We apply a technique for solving fuzzy equations and evaluating fuzzy expressions using neural networks 

suggested by Buckley, Eslami and Hayashi [11] and further explained in Buckley and Feuring [12]. The time-varying-

rate case is considered, as it is the most adequate one, and the three-layer feedforward neural net to be employed is 

presented in Figure 13. Its output for bias terms θj, sigmoidal transfer functions g(x)=(1+e -x)-1 and weights wji,uji,zji,vj is  

lpvnn= ( )∑ ∑
= =






 θ+++

m

1j

N

1i
jijiijiijij dyzrupwgv  . (15) 

 
 

Fig. 13: Neural net architecture to solve the log present value problem 
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The input neurons distribute the inputs - log share prices p1,...,pn, log discount rates r1,...,rn, and log dividend yields 

dy1,...,dyn - to the neurons in the second layer. N is the length of the projects. The input to node one in the second layer 

is ( )∑
=

θ+++
N

1i
1ii1ii1ii1 dyzrupw  with output ( ) 





 θ+++∑

=

N

1i
1ii1ii1ii1 dyzrupwg . This is similar for nodes number 2 through m. 

Therefore, the input to the output node, which is the same as its output lpvnn, is given in (15). For each project the net is 

to be trained, using values of p i in the interval [ ( )0pi , ( )0pi ], ri in [ ( )0ri , ( )0ri ] and dyi in [ ( )0di , ( )0di ], so that  

lpvnn≈lpv=∑
=

−ρ
N

1i

1i [(1-ρ)(dyi+pi)+k-ri]+ρnpn .  (16) 

The training set consists of 362 vectors and the goal is a mean square error of 0.0001. We use the Neural Network 

Toolbox 3.0 for MATLAB 5.26 and choose the training function trainlm based on the Levenberg-Marquart 

technique, because it is the fastest backpropagation algorithm available. All the input vectors in the training set are 

presented to the network concurrently, as batching of concurrent inputs is computationally more efficient. The 

Levenberg-Marquart algorithm has higher storage requirements than the other training functions and to avoid running 

out of memory, we choose N=12. The same thirty-five companies are evaluated but now in one-year projects, from 

January 1999 till January 2000. After training, we will input the α-cuts of the triangular-shaped fuzzy numbers ip~ , ir~  

and iyd~ , and perform interval arithmetic within the net. Thus, the output will be the corresponding α-cut of the 

triangular-shaped nnvp~l . In order the fuzzy output vp~l nn to be an approximation to the solution fnvp~l  described earlier, 

certain sign restrictions have to be introduced on the weights in the net. As ∂lpv/∂pi>0, ∂lpv/∂dyi>0 and ∂lpv/∂ri<0, then 

the weight constraints should produce ∂lpvnn/∂pi>0, ∂lpvnn/∂dyi>0 and ∂lpvnn/∂ri<0. (See [11,12].) Any of the following 

two sets of sign constraints will be satisfactory. 

wji≥0, uji<0, zji≥0, vj≥0, 1≤i≤N, 1≤j≤m, (17a) 

wji<0, uji≥0, zji<0, vj<0, 1≤i≤N, 1≤j≤m. (17b) 

Figures 14 to 17 illustrate the fnvp~l  solution for four of the one-year projects and one may verify that the fuzzy log 

present values for all the companies are positive in January 1999. (See [35].) Consequently, we will apply (17a), 

because the constraint v j≥0 provides for a nonnegative output lpvnn. 
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The input of ( ) ( )[ ]αα ii p~,p~ , ( ) ( )[ ]αα ii r~,r~  and ( ) ( )[ ]αα ii yd~,yd~  produces the output 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]( ) =




 θ+αα+αα+αα=αα ∑ ∑

= =

m

1j

N

1i
jiijiiijiiijijnnnn yd

~
,yd

~
zr~,r~up~,p~wgvvp~l,vp~l  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]( ) =




 θ+αα+αα+αα= ∑ ∑

= =

m

1j

N

1i
jijiijijiijiijiijiijij yd

~
z,yd

~
zzr~u,r~up~w,p~wgv  

( ) ( ) ( )( ) ( ) ( ) ( )( ) =









 θ+α+α+αθ+α+α+α= ∑ ∑ ∑

= = =

m

1j

N

1i

n

1i
jijiijiijijijiijiijij yd

~
zr~up~w,yd

~
zr~up~wgv  

( ) ( ) ( )( ) ( ) ( ) ( )( ) 














 θ+α+α+α






 θ+α+α+α= ∑ ∑∑ ∑
= == =

m

1j

N

1i
jijiijiijij

m

1j

N

1i
jijiijiijij yd

~
zr~up~wgv,yd

~
zr~up~wgv , (18) 

since (17a) holds and g is monotonically increasing and positive. The Neural Network Toolbox 3.0 allows 

customisation of many of the functions, thus giving the user control over the initialising, simulating and training 

algorithms. We have modified trainlm to provide the satisfaction of the sign constraints. Next, the net is trained to 

approximate (16) and one obtains the following result, having in mind (16) and (18). 

( ) ( )[ ] ( ) ( ) ( )( ) ( ){ } ( ) ( ) ( ) ( )( ) ( ){ } ( )



 αρ+α−+α+αρ−ραρ+α−+α+αρ−ρ≈αα ∑∑

=

−

=

−
N

N
N

1i
iii

1i
N

N
N

1i
iii

1i
nnnn p~r~kp~yd

~
1,p~r~kp~yd

~
1vp~l,vp~l  

After training, we simulate the net for each project using 39 test vectors, while no element of the training set is included 

in the test set. For all companies, ( ) ( ) ( ) ( )( )α−αα−α=−
αα

nnfnnnfnjjj
vp~lvp~lmax,vp~lvp~lmaxmaxetargtnetmax ≤0.021, 

1≤j≤39, where α∈{0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}. It is a good 

approximation, and we may conclude that fnnn vp~lvp~l ≈ . In fact, in most cases jjj
etargtnetmax − ≤0.01. (See Table 7.) 

Results interpretation: Let us consider the situation when an investment decision has to be taken within certain 

period of time. First, fuzzy data are modelled using the information available at the beginning of the period and a neural 

network is trained to approximate the fuzzy log present value of the project. Next, the decision-maker is provided with 

the trained network and at any moment he or she acquires new information, the net is simulated with modified inputs. 

For example, he or she has just  confirmed the news  that a company is willing to  approve a merge considered  recently 

                                                                                                                                                                                                                       
6 The programmes we use in Sections 2, 3 and 4 are also realised in MATLAB and presented in [35]. 
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Table 7: Neural net performance 

company mse (training), 10-5 
jjj

etargtnetmax −  (test) 

BASS 9.87969 0.0129 
BBA GROUP 8.76903 0.0099 
BENTALLS 8.62142 0.0096 
BLUE CIRCLE INDUSTRIES 1.40298 0.0086 
BOC GROUP 7.44909 0.0095 
BOOTS CO. 0.09898 0.0018 
BP AMOCO 0.35005 0.0019 
BRITISH AMERICAN TOBACCO 3.49424 0.0062 
BUNZL 3.29825 0.0098 
COATS VIYELLA 9.66064 0.0210 
DIXONS GROUP 2.35558 0.0055 
GOODWIN 9.58095 0.0210 
GREAT UNIVERSAL STORES 6.08490 0.0137 
HANSON 0.53559 0.0036 
INCHCAPE 9.38748 0.0139 
LEX SERVICE 0.12500 0.0014 
MARKS & SPENCER 2.59878 0.0115 
NORTHERN FOODS 0.19096 0.0021 
PILKINGTON 1.61479 0.0067 
RANK GROUP 6.51450 0.0123 
RMC GROUP 1.48070 0.0068 
SAINSBURY (J) 3.15770 0.0063 
SCOTTISH & NEWCASTLE 9.55638 0.0141 
SMITH (WH) GROUP 1.91102 0.0089 
SMITHS INDUSTRIES 4.23372 0.0186 
TARMAC 9.80010 0.0141 
TATE & LYLE 0.69747 0.0047 
TAYLOR WOODROW 4.53601 0.0140 
TI GROUP 3.84633 0.0125 
TRANSPORT DEVELOPMENT GROUP 0.19929 0.0039 
UNILEVER 1.20821 0.0054 
UNITED BISCUITS HOLDINGS 9.67377 0.0110 
WHITBREAD 9.25426 0.0208 
WIMPEY (GEORGE) 2.33830 0.0152 
WOLSELEY 0.58552 0.0048 

 
and this  will shift its share price from month x onwards of the investment project. If the fuzzy data initially modelled 

only moderate possibility of a merge sometime during the project, now they should present high merge possibility and a 

price shift in month x. In result, the data are less uncertain, the new neural-net output gives a tolerable investment risk 

and the project is accepted. 

 

7. Future research 

The fuzzy NPV criterion involves evaluation of the present value of a stream of uncertain future cash flows 

using a constant or time-varying uncertain discount rate. Then the resultant fuzzy value is compared with the known 

crisp initial outlay, thus producing an estimate of the investment risk. If one considers investing in the stock market 

now, then the initial outlay is equal to the current share price and the uncertain future cash flows comprise future 

dividends and the final price. Apparently, the present value of the future dividends and the final price produces a 

current-price estimate. Consequently, the method includes fuzzification of an asset pricing technique. We focused 

earlier on the present value calculations and used a fuzzy discount rate constructed from the prevailing risk-free rate by 

making allowances for a risk premium and shifts in response to shocks in some economic indicators. However, the 
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general procedure can be applied to any asset pricing model.7 In this context, it is relevant to explore briefly the grounds 

for and the influence of the fuzzification of the capital asset pricing model (CAPM). 

Conventionally, the CAPM is formulated as E[Ri]=Rf+βi(E[RM]-Rf), where E[Ri] is the expected rate of return on 

asset i, Rf is the risk-free rate of return, βi stands for the asset’s beta, and E[RM] denotes the expected rate of return on 

the market portfolio. One will instantly notice that the model only holds under certain assumptions. In his seminal 

article [36], Sharpe admits that the assumptions are ‘highly restrictive and undoubtedly unrealistic’. They include the 

following: (i) all investors have homogenous expectations for the returns on the available assets and there exists a 

common joint normal probability distribution, (ii) all investors are risk averse and maximise the expected utility of their 

end-of-period wealth, (iii) any investor can take a long or short position of any size in any asset and can borrow or lend 

any amount at the same risk-free interest rate. Each presumption is prone to criticism and a number of CAPM 

extensions have been developed in order to relax some of the restrictions. Starting with (i), Lintner [23] shows that 

under heterogeneous investor expectations the expected returns and covariances in the standard CAPM can be 

expressed as complex weighted averages of investor expectations. Fama [19] investigates the empirical distribution of 

daily returns on NYSE and finds it symmetrical but fat-tailed and with no finite variance. The conclusion is that 

investors can use some measures of dispersion rather then the variance. Moving to the second assumption, Merton deals 

in [25] with the static single-period nature of the model and suggests that under continuous trading the returns and the 

changes in the opportunity set can be described by continuous-time stochastic processes. He derives a three-fund 

separation theorem, where the return on the third fund is perfectly negatively correlated with changes in the interest rate 

and allows investors to hedge against unfavourable intertemporal shifts in the risk-free rate and correspondingly in the 

opportunity set. Finally, the third assumption is often considered most restrictive. Black [4] derives a new structure of 

the model, first with no risk-free asset, and then under restricted risk-free borrowing. In the former case, he uses the 

expected return on the minimum-variance zero-beta portfolio E[Rz] instead of the return on the risk-free asset, while in 

the latter case the derived model includes both E[Rz] and Rf. In conclusion, the CAPM defenders argue that the 

simplifications are acceptable for the cause of quantifying and pricing the risk, they claim that the model is 

‘approximately true’ and predicts ‘relatively well’. However, one should not forget that the CAPM is derived in a 

hypothetical world and a number of empirical studies have already rejected it [2,3,24,32]. Finally, in [33] Roll 

concludes that the model is non-testable, as the market portfolio is unobservable. 

The above review reveals the demand for relaxed assumptions and the need for bringing the standard CAPM 

closer to reality. We find that in general such a need appeals for another approach to modelling the market environment. 

Instead of simplifying the way the real market works and getting results perfectly logical in theory but questionable in 

                                                                 
7 See [35] for an extended discussion on the grounds for fuzzification of the capital asset pricing model and the arbitrage theory pricing approximation. 
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practice, one can find a representation of market data incorporating as much uncertainty as the real environment 

possibly embodies and work out a solution based on real not abstract data. Thus, the data will not be bound by normal 

probability distributions and the calculations will involve all forms of potential uncertainty (compare the mean-variance 

case). As a result, the necessity for market-behaviour assumptions will significantly diminish. Fuzzy sets have proved to 

provide exceptionally adequate description of real-world data. For example, a fuzzy risk-free rate will reflect the fact 

that varied investors can borrow at varied risk-free rates and will indicate that the borrowing and the lending risk-free 

rates may differ for the same investor. It will communicate to some extent that the risk-free resource is not fully 

divisible or unrestrictedly available and will also help in coping with the single-period nature of the model by making 

allowances for intertemporal shifts in the risk-free rate. Further, a fuzzy beta and a fuzzy market return will reveal the 

heterogeneous investor expectations and will critically weaken the requirement for a common joint normal probability 

distribution. They will also express to some degree the reality that the market portfolio is unobservable and not all the 

assets are fully divisible or available. Finally, they will make allowances for discrepancies between ex ante and ex post 

returns. 

The need for classical model revision and the grounds for new types of models are well recognised. The 

mathematics underlying the standard financial techniques neglects extreme situations and regards large market shifts as 

too unlikely to matter. Such techniques may account for what occurs most of the time in the market, but the picture they 

presents does not reflect the reality, as the major events happen in the rest of the time and investors are ‘surprised’ by 

‘unexpected’ market movements. The fuzzy approach allows for market fluctuations well beyond the probability type of 

uncertainty permitted by the standard financial methods. It does not impose predefined data or market behaviour, there 

is only an attempt to model as much uncertainty as the environment can possibly embody, thus producing better 

estimates of the investment risk. 
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