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Abstract 

BACKGROUND: Software effort prediction clearly plays a crucial role in software 
project management. PROBLEM: In keeping with more dynamic approaches to 
software development it is not sufficient to only predict the whole-project effort at an 
early stage. Rather, the project manager must also dynamically predict the effort of 
different stages or activities during the software development process. This can assist 
the project manager to re-estimate effort and adjust the project plan, thus avoiding 
effort or schedule overruns. METHOD: This paper presents a method for software 
physical time stage-effort prediction based on grey models GM(1,1) and Verhulst. 
This method establishes models dynamically according to particular types of 
stage-effort sequences and can adapt to particular development methodologies 
automatically by using a novel grey feedback mechanism. RESULT: We evaluate the 
proposed method with a large-scale real world software engineering data set and 
compare it with the linear regression method and the Kalman filter method, revealing 
that accuracy has been improved by at least 28% and 50%, respectively. 
CONCLUSION: The results indicate that the method can be effective and has 
considerable potential. We believe that stage predictions could be a useful 
complement to whole-project effort prediction methods. 

1. Introduction 

Accurate and unbiased software effort prediction is an important contributor to 
effective software project management [1-7]. Whole-project effort prediction is 
clearly important in terms of enabling software developers/managers to make a 
reasonable bid or form a plan of activities – consequently an extensive body of 
research has addressed this facet of project management, see for example [1, 4, 5, 
8-11]. On the other hand, the capability to predict the effort required in different 
stages during the software development process is also important but rather less 
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studied [3, 10, 12-16]. Such a capability enables (or at least should enable) project 
managers to identify potential effort overrun risk during the project and to re-allocate 
resources when necessary. It has been estimated that around 75% of all projects 
overrun their schedules due to inaccurate effort prediction [5]. The development and 
use of software stage-effort prediction methods have the potential to ensure that 
predictions are revisited and revised on an ongoing basis, the result being that the 
accuracy of predictions should improve. 

This is not to say, however, that the accurate prediction of software stage-effort is 
straightforward. The software development process can proceed in a sporadic manner 
despite the best laid plans. It is influenced by many uncertain and 
challenging-to-measure factors, such as individuals’ levels of expertise, project 
difficulty and technical complexity [3, 14, 17, 18]. Moreover, software development is 
largely a continuous and cumulative process. The work of prior stages forms the basis 
of current and subsequent stages, and there is evidence to suggest that there are some 
inherent relationships between the effort of prior and subsequent stages [3, 10, 12, 13] 
– although the nature of those relationships is not yet clear. This lends motivation to 
the idea of using prior stage-effort to predict subsequent stage-effort, a prediction 
process that should be continuous and dynamic in line with contemporary approaches 
to software development. 

The stage-effort prediction problem has been addressed using a variety of data 
analysis methods (see Section 2) – among them, linear regression analysis has been 
popular. In some cases, however, the relationships between different process stages 
was found to be not particularly strong, leading to some instances of large prediction 
error. In particular, predictions made in the early stages of a project tend to be more 
challenging – later-stage predictions can leverage the greater certainty that accrues 
with progress. Early-stage prediction must be performed in the context of 
data-starvation, a context that is not conducive to commonly employed statistical 
methods (such as regression and those based on time-series) and machine learning 
methods which usually require large data samples to determine statistical features of 
the series to build prediction models. 

Grey System Theory (GST), a system engineering theory based on the 
uncertainty of small samples, was first proposed by Deng in 1982 [19]. In keeping 
with the notion of a black box representing a system whose internal workings are not 
visible, a system about which we only know some information (mechanism, 
relationship, structure, connotation and behavior data), is called a grey system. GST 
has a distinct advantage over the techniques described above i.e. it can enable the 
establishment of a prediction model using just a small amount of known data. In the 
context of data-starvation, GST is known to be effective and has been widely applied 
to address real world problems in the domains of energy management [20], mobile 
communication [21], instrument measurement [22], stock price analysis [23], and 
image processing [24, 25]. In addition, Song et al. [26] used GST to address the 
whole-project effort prediction problem in software engineering. They used Grey 
Relation Analysis (GRA) derived from GST to select more effective feature subsets 
and similar projects to support a prediction process. Their results showed that GRA 



 3

can resolve the effort prediction problem with high prediction accuracy. Encouraged 
by this successful work, we now explore the stage-effort prediction problem using 
GST in this research. 

As we know, there are many project life cycle models used in the software 
development domain such as iterative cycles, traditional waterfall models and so forth.  
These in turn are split into different phases e.g. feasibility, high level design and so on.  
Each of these phases can have complex and on occasions ill-defined mappings to 
physical time units (such as week, month, and quarter).  These time units have most 
generality and are clearly very important in project scheduling.  For this reason, in 
this paper, we focus on software physical time unit which for clarity we refer to as 
stage-effort prediction. This is in contrast to prediction based on phases such as in 
MacDonell and Shepperd [12] that used a seven phase classification scheme.  

We propose a method named GV (GM(1,1) and Verhulst). GV takes full 
advantage of two grey models of GST – GM(1,1) and Verhulst – to predict future 
stage-effort in light of the law derived from records of prior stage-effort, and it can 
adapt to particular development methodologies automatically by using a novel grey 
feedback (GFB) mechanism. We validate the method on a large scale software 
engineering data repository and obtain very promising results. 

The remainder of this paper is organized as follows. In the next section we 
discuss related work on, and then present the basic concepts and the prediction 
principles of the Grey Models, followed by the introduction of the proposed 
stage-effort prediction method GV and an example. After that we describe the data 
sets and the experimental method we used. The results are then described and 
discussed, with a concluding discussion presented in the last section.  

2. Related work 

Surprisingly the empirical study of software stage-effort prediction during the 
development process has received limited attention. The authors are aware of only 
four studies that have investigated this issue empirically (one being a previous study 
involving two of the authors [12]). Kulkarni et al. [13] employed a form of 
transformation matrix, referred to as a mini-model, to predict effort for each life-cycle 
phase. By combining the set of distinct-phase mini-models into a single overall model, 
it is possible to determine the output measures from the final phase using input 
measures to the first phase. This method was applied to a military project by Kulkarni 
et al., and while it appeared to be potentially effective, prediction accuracy data was 
not presented. Ohlsson and Wohlin [24] used artifact-based proxies of project scope to 
augment existing within-project prediction and planning processes.  They concluded 
that the approach has potential in making plans, and deviations from those plans, 
more visible, and that it can increase managers’ confidence that predictions are of the 
right order. MacDonell and Shepperd [12] predicted life-cycle phase effort for 16 
software projects using a simple linear regression method. They used prior-phase 
effort data to predict the effort needed for subsequent phases in each of the projects. 
The results showed that the method produced better predictions than those provided 
by the project managers. A study reported by Abrahamsson et al. [27] utilized 
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regression and neural network methods to generate iterative prediction and planning 
models suitable for projects developed using agile methods.  They concluded that the 
approach improves prediction when compared to whole-project efforts and that such 
predictions are stable and convergent, attributes that are essential in terms of effective 
planning. 

A variety of techniques, model inputs, and stage units were used in the studies 
just described. Compared with these studies, our method – GV – has the following 
differences or characteristics:  

1) GV is capable of predicting project effort for physical time stages. The other 
studies depend on the use of the life cycle phase [12, 13, 15] or the iterative 
development cycle [27]; 

2) GV uses the inherent trend embedded in the prior stage-effort to predict. It 
does not need the historical data of outputs to build the model. The other studies 
focused on utilizing the relationships between input and output measures to build the 
models. MacDonell and Shepperd [12] examined the correlations between phases (e.g. 
between design and implementation); Ohlsson and Wohlin [15] mapped artifact-based 
proxies to effort; Abrahamsson et al. [27] used linear regression and neural network 
methods to express the relationships between inputs and outputs; Kulkarni et al. [13] 
also constructed a matrix-based model to reflect relationships between inputs and 
outputs;  

3) GV requires only project effort itself as input. MacDonell and Shepperd [12] 
also used project effort as input. Abrahamsson et al. [27] used several estimated 
predictor variables and the effort of previous iterations as inputs. Ohlsson and Wohlin 
[15] used their artifact-based proxies as inputs, and Kulkarni et al. [13] used object 
measures (e.g. source lines of code, Ada packages, data flows). 

In short, GV is a novel method to address the problem of stage-effort prediction 
in software; in principle, however, it would appear to have potential.  We now 
provide an introduction to grey models and to the GV approach. 

3. Grey Model 

GST uses grey models to make predictions. In this section, we will introduce the 
basis concepts and two grey models used in this paper, respectively. 

3.1. The basis 

Generally, the non-negative raw data sequence has no obvious patterns in 
uncertain circumstances [19], it is difficult to find a proper curve to fit it; but after an 
accumulated generating operation (AGO), the generated sequence will became 
monotone increasing and reflect a strong exponential character. We call this the 
“accumulated generating grey exponential law”. So we can find an optimum 
exponential curve to simulate it. The AGO is defined as follows: 
    Let X(0) be the original non-negative sequence, the AGO sequence X(1) can be 
generated as: 
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For example, let X(0)=(3, 5, 4, 7), then X(1)=(3, 8, 12, 19). If the generating exponential 
character is not obvious, further AGOs may be applied. For returning the data to the 
original condition the inverse accumulated generating operation (IAGO) will be 
applied. So, AGO, and IAGO are a pair of inverse sequence operators. The operation 
of IAGO is defined as follows: 
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In GST, the curves used to fit AGO sequences can be represented by differential 
equations. We refer to these differential equations as Grey Models. There are many 
kinds of grey models available according to the different kinds of AGO sequences, 
such as GM(1,1), Verhulst, DGM, and so on. Among them, the GM(1,1) is commonly 
used to simulate exponential-type sequences, therefore it is suitable to describe any 
monotonic increasing procedure. Verhulst is suggested to simulate sequences with 
saturated trend. The typical curves of these two models [28] are illustrated in Fig. 1. 

Where k denotes the sequence element index and (0) ( )x k  denotes the sequence 

element value. 

 
Fig. 1. Curves of model GM(1,1) and Verhulst 

3.2. GM(1,1) Model 

    A form of single variable and first-order linear dynamic differential equation, the 
definition of the GM(1,1) model is: 

 
(1)

(1)dX aX b
dt

+ =  (3) 

where (1)X  is the AGO sequence of the original sequence, the parameters a and b are 
called the development coefficient and grey action quantity, respectively, which can 
be obtained from the following expression: 
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and 
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Then the sequence (1)X can be written as follows: 
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Where x̂  denotes the prediction of x. (0)ˆ ( 1)x k +  can be obtained by IAGO: 

 (0) (1) (1)ˆ ˆ ˆ( 1) ( 1) ( ),     1,2,...,x k x k x k k n+ = + − =  (9) 

3.3. Verhulst Model 

    The Verhulst model is a form of single variable and second-order differential 
equation. The definition is: 
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The solutions of equation (10) can be expressed as follows: 
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    Notice that in practice the saturated sequence already has some degree of 
exponential form, so the original sequence can be regarded as (1)X  directly, that 
means, we need not apply AGO to (0)X  to obtain (1)X . And (0)X  in Equ. (13) should 
be the IAGO sequence of the original sequence. 

For the Verhulst model, the prediction values of the original sequence can be 
obtained from Equ. (15). 

4. Analysis of software stage-effort sequences 

The characteristics of software stage-effort sequences 1  are influential in 
determining the use of appropriate prediction methods. In this section, we introduce 
some general characteristics of software stage-effort sequences and demonstrate some 
preliminary analysis of subsequences2 and sequence sets3. 

4.1. Overview 

Software stage-effort sequences are records of the software development process. 
Investigation of stage-effort sequence data used in this study reveals that around 97% 
of all projects comprise fewer than 24 stages, where a stage represents one month. So 
software stage-effort sequences are finite and generally quite short in length. In 
addition, in many cases, software stage-effort sequences do not exhibit a regular shape 
over the duration of the project, such as the bell-shaped curve or similar, as we might 
imagine. In fact, they almost have no typical patterns. Fig. 2 provides an illustrative 
depiction of this scenario, using some of the software stage-effort data analyzed in 
this study. 
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Fig. 2. Curves of some software stage-effort sequences 

 

                                                        
1 Sequence: a series of physical time stage-effort values of a software project. 
2 Subsequence: a subset of a software stage-effort sequence for building prediction model. 
3 Sequence set: a collection of software stage-effort sequences. 
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Fig. 3. Stage-effort curves of two projects  

From Fig. 2 we note that at least some of the sequences are very irregular; 
however, because all of the sequences are plotted on this single graph it is difficult to 
identify any consistent patterns within or among them. For ease of observation and 
comment we pick out two curves at random from Fig. 2 and show them in Fig. 3. We 
find that the trend over the whole sequence changes frequently. Within segments of 
the two sequences, however, the trend demonstrates a degree of stability. In the 
absence of any consistent whole-sequence patterns, it may be that subsequences can 
be used to reflect changes in stage-effort and can form the basis for the building of 
accurate effort prediction models. 

4.2. Subsequences 

Usually more recent data points are more important in predicting the next data 
point, so we use recent stage-effort data points to compose each model subsequence. 
How many stage-effort observations should we use to build a prediction model? In the 
early stages of the software development process, the number of stage-effort values 
available is small. A grey model can establish a prediction model with small data 
samples, but usually more data is helpful. On the other hand, a model that employs 
many past observations is not always sensitive to data that is liable to frequent and/or 
significant change, or can incorporate obsolete values in terms of their relevance to 
future predictions. Based on these considerations we use subsequences consisting of 
the most recent three stage-effort data values. 

We find that a subsequence with three elements can be classified into one of four 
classes according to its trend and shape. Fig. 4 portrays the four classes of 
subsequences with characteristics abstracted. 
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Fig. 4. The four classes of stage-effort subsequences 

Considering the sequence representations in Fig. 4 in relation to the model types 
referred to in Fig. 1, we note that curves 1 and 2 are similar to the curves of Verhulst 
and GM(1,1), respectively. It is also evident that curves 1 and 3 and curves 2 and 4 are 
symmetrical pairs. If we flip the class 3 or 4 curve in an up/down direction, the curve 
adopts the form of curve 1 or 2, so they can be dealt with as per curve 1 or 2. So we 
can use GM(1,1) or Verhulst to build an appropriate prediction model dynamically 
according to the types of subsequences identified. 

4.3. Sequence set 

It is more likely that a common law may be found from a sequence set than from 
a single sequence. Appropriately selected and classified historical projects will be 
helpful in software effort prediction [4, 10, 26]. So we group the projects used in this 
study according to their development methodologies and hope to find typical patterns 
in each group. It is reasonable that projects complying with same development 
process model will have similar stage-effort sequence shape. Unfortunately, however, 
even within the same group, it may be difficult to find a “standard” shape (as noted in 
[12]). 

Although prior research has failed to find clear laws by observation [29, 30], 
these works have shown that, using GM(1,1) or Verhulst grey models to make 
predictions using historical project data grouped by development methodology (or 
industry and so on), the mean prediction biases for each group are significantly 
different. These differences can be regarded as accumulate effects of the particular 
methodology applying on the predictions. On the other hand, it indicates the grey 
models don’t differentiate between the methodologies. Adopting a system view, we 
can regard the stage-effort sequences as inputs, the grey models as a process system, 
and the biases as outputs. We can then use the mean biases as feedback to adjust the 
system, to obtain more optimal and consistent outputs. The feedback has relations 
with the development methodologies but its components are not completely clear, so 
we refer to it as “grey feedback” or GFB. Fig. 5 depicts the mechanism of GFB. 

1. 2.

3. 4.

 Up raised  Up concave

 Down concave  Down raised
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Fig. 5. The grey feedback mechanism. 

5. The proposed software stage-effort prediction method GV 

5.1. General method 

In general, GV uses subsequences to build the grey models, and uses sequence 
sets to obtain GFB (grey feedback). The grey models are then used to make 
predictions and GFB is acted on in terms of prediction adjustment, leading to the 
production of an optimal prediction. So GV leverages both local (within sequence) 
and global (sequence set) information to produce predictions. Assume that a live 

project has a stage-effort sequence, { (1), (2),..., ( )},  ( 3)x x x n n ≥ , GV can use the most 

recent three stage-effort values ( 2)x n − , ( 1)x n − , and ( )x n  to predict the effort of 

stage n+1, ( 1)x n + . The prediction procedure of GV includes the following steps: 

Step 1: Construct the model subsequence. Use the most recent three stage-effort data 

values ( 2)x n − , ( 1)x n − , and ( )x n  as model subsequence; 

Step 2: Smooth the subsequence. Use the modified moving average of order 3 to 
eliminate unwanted fluctuations of the subsequence (see subsection 5.2 for 
details); 

Step 3: Determine the subsequence type according to the trend (up/down) and shape 
(raised/concave) (see subsection 5.3 for details); 

Step 4: Establish a grey model dynamically according to the subsequence type and 

produce a preliminary prediction value ˆ( 1)x n +  (see subsection 5.4 for 

details); 
In order to facilitate the following description, we represent Steps 1 to 4 as a 

function: 
 ˆ( 1) _ ( ( 2), ( 1), ( )),  3x n Grey Predict x n x n x n n+ = − − ≥  (16) 

Where the input to the function is the subsequence, and the output is the prediction 
value of stage-effort for the next stage n+1. 
Step 5: Adjust the prediction result using the Stage-effort Adjustment Coefficient 
(SAC) (see subsection 5.5 for details), then obtain the optimal prediction: 
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 ˆ ˆ( 1) ( 1)optx n x n SAC+ = + ×  (17) 

For ease of description, we denote the overall GV prediction procedure (from 
Steps 1 to 5) by a function: 

 ˆ ( 1) ( ( 2), ( 1), ( )),  3optx n GV x n x n x n n+ = − − ≥  (18) 

where ˆ ( 1)optx n +  is the final effort prediction value of stage n+1. Fig. 6 portrays the 

details of the general prediction procedure of GV. 
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SACStage-effort
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Optimum stage-effort prediciton

Calculate SAC (Stage-effort 
adjustment coefficient)

 
Fig. 6. Prediction procedure of GV 

5.2. Modified moving average of order 3 

Smooth transformation can reduce noise-based fluctuations in the sequences. A 
common transformation method is the weighted moving average of order k [31]: 

 1 1 2 2 2 2 3 3 1 1 3 3 4 4 2 2

1 2 2 3 1 3 4 2

... ... ...
, , ,...

... ... ...
k k k k k k

k k k

y y y y y y y y yω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω

+ + + +

+ +

+ + + + + + + + +
+ + + + + + + + +

 (19) 

where 1 2 3( , , , )Y y y y= L is a given sequence, and ωi is the weight. After transformation 

k-2 head and tail data are discarded. This would likely raise problems in software 
stage-effort prediction as in general the stage-effort data of a software project is 
limited, particularly in the early stages of development. The above transformation 
makes small data samples even smaller, perhaps of insufficient size to construct a 
prediction model. Therefore we modify Equ. (19) by reserving the head and tail data. 
For example, the weighted moving average of order 3 used in this paper can be treated 
as: 

 1 1 11 2 2 33
,..., ,...,

4 4 4
k k k n ny y y y yy y − + −+ + ++  (20) 

Specifically, for a sequence of three elements (y1, y2, y3), the transformed sequence is: 
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 1 2 3 2 31 2 2 33
, ,

4 4 4
y y y y yy y + + ++  (21) 

The three elements can form a folding line. The basic shape of the folding line will 
not change after the transformation, and a straight line will still be a straight line after 
the transformation. Fig. 7 illustrates the original and transformed sequences where the 
x-axis denotes the indices of the elements and the y-axis denotes the values. The 
circles represent the original data and the squares represent the transformed values.  
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Fig. 7. Modified moving average of order 3 

From Fig. 7 we can see that the transformed sequence is more regular than the 
original but that the original trend is preserved. 

5.3. Determination of subsequence type 

We assume the subsequence is composed of (y1, y2, y3). The type determination 
procedure includes two stages. Fig. 8 shows in pseudocode the detailed determination 
procedure of subsequence type. 

Procedure: Determine the stage-effort subsequence type 
Input: subsequence, (y1, y2, y3) 
Output: SEQUENCE_TYPE, subsequence type from 1 to 4 
1) if y3 > y1 
2)    // up sequence 
3)     if y2 >(y1+y3)/2                  // raised sequence 
4)         SEQUENCE_TYPE = 1; 
5)     else              // concave sequence or straight line 
6)         SEQUENCE_TYPE = 2; 
7)     end if 
8) else 
9)     // down or horizontal sequence 
10)     if y2 <(y1+y3)/2                  // concave sequence 
11)         SEQUENCE_TYPE = 3; 
12)     else                 // raised sequence or straight line 
13)         SEQUENCE_TYPE = 4; 
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14)     end if 
15) end if 

Fig. 8. Determination of subsequence type procedure 
First, classify the subsequence into up or down classes by comparing y1 with y3. 

If y3 > y1, we say that the subsequence has a total up trend, if y3 < y1, we say it has a 
total down trend, if y3 = y1 (horizontal), we regard it as a down trend (steps 1 and 8 
respectively in Fig. 8). 

We then classify the subsequence into raised or concave classes by comparing y2 
with the median of y1 and y3, i.e., (y1+ y3)/2. 1) For an up class subsequence, if y2 > 
(y1+ y3)/2, we say the subsequence is raised, type is 1 (steps 3, 4); if y2 < (y1+ y3)/2, 
we say it is concave, type is 2. When y2 = (y1+ y3)/2, it is a straight line, we include it 
in the concave class (steps 5, 6). 2) For a down class subsequence (including y3 = y1), 
if y2 < (y1+ y3)/2, we say the subsequence is concave, type is 3 (steps 10, 11), if y2 > 
(y1+ y3)/2, we say it is raised, type is 4. When y2 = (y1+ y3)/2, it is a straight line, we 
include it in the raised class (steps 12, 13).  

5.4. Prediction model 

GV establishes models dynamically according to the types of stage-effort 
subsequence. Considering the subsequence representations in Fig. 4 in relation to the 
model types referred to in Fig. 1, we note that curve 1 is up raised, that is, a saturated 
sequence, so a Verhulst model can be used to represent it. Curve 2 is up concave, that 
is, an exponential sequence, and so is theoretically suitable to be predicted by 
GM(1,1). Curves 3 and 4 are down sequences which cannot use GM(1,1) or Verhulst 
directly, because GM(1,1) and Verhulst require the sequences to have a total upward 
trend. So we must first convert these curves to up style sequences. In fact, as noted, it 
is clear that curves 1 and 3 and curves 2 and 4 are symmetrical pairs. If we flip the 
class 3 or 4 curve in an up/down direction, it adopts the form of curve 1 or 2. We can 
then use GM(1,1) or Verhulst to model and predict. After predicting, we need to flip 
again to ensure that the models match the original sequences. The detailed procedure 
is shown in Fig. 9. In summary, the classes and suitable models for various types of 
original data subsequences are listed in Table 1. 
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GM(1,1)

N

Verhulst

Y

Stage effort prediction

Type 1

Y

N

GM(1,1) Verhulst

N Y

Flip

Smoothed subsequence

Type 2

Type 3

Flip Flip

Flip

Subsequence type

 
Fig. 9. The model and prediction procedure 

 
Table 1 Types and treatments of stage-effort subsequences 

Subsequence 
type  

Class of original subsequence Suitable prediction 
model 

1 Saturated Verhulst 
2 Exponential GM(1,1) 
3 Saturated after up flipping Verhulst 
4 Exponential after up flipping GM(1,1) 

5.5. Obtaining SAC and GFB 

SAC (Stage-effort Adjustment Coefficient) forms a bridge between the grey 
models and particular development methodologies. Using it, GV can fit the particular 
stage-effort sequences better and obtain more accurate results. In prior research [29, 
30], a bias correction method has been used, but it tends to over-fit. In this study we 
make improvements based on the prior work and propose a novel adjustment 
coefficient SAC as follows: 

 
1

GFB
NeSAC

GFB
=

−
 (22) 

where N is the length of a GV model subsequence, in this study, it is equal to three. 
GFB is intended here as a form of grey feedback pertaining to particular development 
methodologies (see subsection 4.3 for details). It can be estimated using the mean 
biases of predictions of historical stage-effort sequences.  

To obtain GFB, we need a set of historical projects that comply with certain 
development methodologies. Each project has a stage-effort sequence and is regarded 
as a live project. First we use Equ. (16) to make predictions stage by stage for each 
project, then compute the bias of each prediction. This process iterates until all 
projects are processed. Finally we average all the biases and assign the result to GFB. 
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The procedure for obtaining GFB is summarized in Fig. 10. 
 

Function: GetGFB, obtain the GFB (grey feedback) from a set of software stage-effort sequences.
Input: a set of stage-effort sequences. 
Output: GFB 
1)  j = 1; 
2)  for each stage-effort sequence { (1), (2),..., ( )},  ( 3)x x x n n ≥  
3)      for each i from 3 to n-1 
4)            ˆ( 1)x i + = Grey_Predict( ( 2),  ( 1),  ( )x i x i x i− − );  //see Equ. (16) 

5)            ˆ( 1) ( 1)( )=
( 1)

x i x iBias j
x i
+ − +

+
; 

6)            j = j + 1; 
7)       end for 
8)  end for 

9)  
1

1

1 ( )
1

j

k
GFB Bias k

j

−

=

=
− ∑ ; 

Fig. 10. The GFB obtaining function 

5.6. An example 

We now demonstrate the complete prediction procedure for a ‘live’ project using 
the GV method. The initial condition is: a live project that has been in progress for 3 
stages (three months), stage-effort values (in person-hours) of 260, 101, 450; and SAC 
= 0.76. The prediction procedure of the effort needed to complete the fourth stage (the 
fourth month) is as follows. 
Step 1: Construct the model subsequence using the three most recent stage-effort 

values. The subsequence is (0) (0) (0) (0)( (1), (2), (3)) (260,101,450)X x x x= = ; 

Step 2: Smooth the subsequence. Use Equ. (21) to transform the subsequence into: 
(0) (0) (0) (0)( (1), (2), (3)) (220, 228,363)X x x x= = ; 

Step 3: Determine the subsequence type. According to subsection 5.3, because 
(0) (0)(1) (3)x x<  and 

(0) (0)
(0) (1) (3)(2)

2
x xx +

< , so (0)X  is an up concave sequence, 

belongs to type 2, and according to Table 1, the suitable prediction model is 
GM(1,1); 

Step 4: Build the prediction model. According to the building procedure of GM(1,1) 
(see subsection 3.2 for details), first apply AGO on (0)X , obtain the AGO 

sequence: (1) (1) (1) (1)( (1), (2), (3)) (220, 448,811)X x x x= = . Then we can get (1)Z , B , 

and NY : 
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(1) (1)

(1)
(1)

(1) (1) (1)

(2) (1)
114(2) 2

181.5(3) (3) (2)
2

x x
z

Z
z x x

⎡ ⎤−
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦⎣ ⎦
⎢ ⎥⎣ ⎦

, 

(0)

(0)

228(2)
363(3)N

x
Y

x
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

, 

(1)

(1)

114 1(2) 1
181.5 1(3) 1

z
B

z
−⎡ ⎤− ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−− ⎣ ⎦⎣ ⎦
, 

the arguments a and b can be obtained by Equ. (4): 
1 -0.4569

ˆ ( )
75.4112

T T
N

a
a B B B Y

b
−⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

So we can get the prediction model of (1)X  by Equ. (8): 
(1) (0) 0.4569ˆ ( 1) (1) 385.0497 165.0497ak kb bx k x e e

a a
−⎛ ⎞+ = − + = −⎜ ⎟

⎝ ⎠
. 

Let k=1, 2, 3, we can get (1) (1) (1) (1)ˆ ˆ ˆ ˆ( (2), (3), (4)) (443,795,1351)X x x x= = . Note that 

(1)ˆ (4)x  corresponds to stage 4 (the stage for which we are predicting). 

Step 5: Make the preliminary prediction. According to Equ. (9), we can get the 

preliminary prediction of stage 4: (0) (1) (1)ˆ ˆ ˆ(4) (4) (3)) 1351 795 556x x x= − = − = . 

Step 6: Apply SAC to the preliminary prediction to obtain the optimum prediction. 
The final prediction value is: 556 556 0.76 422SAC× = × = . 

So the prediction effort for the fourth stage of this project is 422 person-hours. 
After one further month, we obtain the real effort value of the fourth month, then the 
fifth stage-effort value can be predicted by the known effort of stages 2, 3, and 4.  
The procedure is executed like this until the project completes overall. Note that SAC 
is obtained from historical projects, but if no historical projects are available, let SAC 
= 1. 

6. Experiments and analysis 

6.1. Data sources 

The data used in this research are drawn from a large scale software engineering 
data repository4. The data contains information relating to around 1900 projects 
undertaken between 2000 and 2004. The projects come from around 30 countries or 
areas. The main contributing countries are: the United States, Australia, Sweden, 
Canada, New Zealand, and the United Kingdom. The application domains range from 
aerospace, financial, manufacturing, medicine, traffic, and business. The project data 
in the repository are composed of project properties and effort data. The static 

                                                        
4 We regret that the data set is subject to a non-disclosure agreement due to its commercially sensitive nature. 
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properties, such as development methodology, industry, development team, project 
type, experience levels and so on, are collected once at the beginning of each project. 
The databases, platforms, CASE tools used and so on are recorded as changes in each 
occur. Each project is described in terms of a set of concurrent activities which 
comply with a certain methodology. The effort for each live development activity is 
recorded monthly. To obtain a general view, we employ the monthly effort of a project 
(instead of its composite low-level activities) as the figure of interest in each stage in 
the experiments of this study. The former is the sum of the latter for each month.  

As stated previously, GV can adjust itself to suit particular development 
methodologies, so we organized the projects into four data sets drawn from the 
underlying data set according to development methodology. Tables 2 and 3 
summarize the real raw data stored in the repository and show that the number of 
projects per methodology ranges from 45 to 864, the monthly effort ranges from 0 to 
69,233 person hours. Therefore, the data sets are large (by software engineering 
standards) and methodologically diverse. It has long been acknowledged that the 
absence of systematic historical data is a significant obstacle in the software effort 
prediction domain [17, 32], with experiments and evaluations having to rely on small 
data samples [6]. The data sets used in this study enable us to evaluate and calibrate 
the proposed method with data from large numbers and various kinds of projects, and 
should therefore lead to more robust results and reliable conclusions. 

Table 2 Distribution of projects 
dataset Description Count 

1 Combined Dev+ Life Cycle Modules 864 

2 Application Development Overlapping Waterfall 567 

3 SSP – Software Engineering and Release 390 

4 Application Implementation 45 

 
Table 3 Descriptive statistics of project stage-effort (in person hours per month) 

dataset Mean 
Std. 

Deviation
Minimum Maximum Median 

1 729.17 1701.96 0 37765.50 331.25 

2 941.03 3604.13 0 69233.00 312.50 

3 437.74 737.15 0 7892.50 194.00 

4 649.38 1378.09 0 19845.00 260.00 

6.2. Experimental methods 

6.2.1. General method 
    The purpose of the experiments is to evaluate the prediction performance of GV. 
First, we preprocess the four data sets (see subsection 6.2.2 for details), then for each 
of the four data sets, we systematically extract 5 pairs of the training and test data sets, 
and obtain a total of 20-pair training-test data sets. We obtain GFB and SAC on each 
training set and evaluate GV on the test set (see subsection 6.2.3 for details). Finally 
we use a linear regression method and the Kalman Filter method (see subsection 6.2.4 



 18

for details) as benchmarks to compare against the performance of GV. 
6.2.2. Data Preprocessing 
    Inspection of the data sets reveals that there is a lot of noisy and inconsistent data. 
We preprocess the data as follows: 

Delete the extreme5 cost data values from the stage-effort sequences. These 
values are too small or too big when compared with the other effort values. The stages 
with such extreme values are abnormal stages and could not be predicted using a 
generally useful model. For instance, the minimum value of stage-effort is zero and 
this  is considered an extreme value (see Table 3). 
6.2.3. Validation method 

Cross-validation is a method for estimating generalization error based on 
“resampling” [33]. We use a 5-fold cross-validation strategy as the validation 
approach. In 5-fold cross-validation, the dataset D is randomly partitioned into 5 
mutually exclusive subsets, D1, D2, ..., D5, each of approximately equal size. The 

inducer is trained and tested five times. Each time {1, 2, ,5}t∈ L , the subset Dt is 

reserved as the test set, and the remaining subsets D⊖Dt
6 are used as training set.  

We obtain SAC from the training set (see subsection 5.5 for details) and evaluate 
GV on the test set. When evaluating, we regard the projects in the test set as live 

projects, i.e., for each project with stage-effort sequence { (1), (2),..., ( )},  ( 3)x x x n n ≥ , we 

use { ( 2), ( 1), ( )},  where 3 -1x k x k x k k n− − ≤ ≤ , as the input subsequence, and use Equ. (18) 

to obtain the prediction value ˆ ( 1)optx n + . For a project with n stages, we can make n-3 

predictions. For each prediction, we compare the prediction value with the actual 
value to obtain evaluation results. In this study, we use the Bias, MMRE, and 
MdMRE as evaluation measures.  

The Bias establishes whether models are biased and tend to over or under 
prediction. The Bias is defined as follows: 

 ˆi i
i

i

Bias
ε ε
ε
−

=  (23) 

where ε̂  is the prediction value of actual effort ε . 

The Magnitude of Relative Error (MRE) is another common criterion for 
evaluating software effort prediction methods. For a prediction i, the corresponding 
MREi is defined as follows: 

 i iMRE Bias=  (24) 

By averaging MREi over multiple predictions n, Mean MRE (MMRE) is 

                                                        
5 If a value is very large or small compared with its adjacent values in the sequence, then we call it an extreme. 
6 The notation D⊖Dt means set D minus set Dt. 
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obtained: 

 
1

1 n

i
i

MMRE MRE
n =

= ∑  (25) 

MMRE is the most frequently used criterion for evaluating software effort 
prediction methods. However it is known to be sensitive to individual predictions with 
excessively large MREs. We therefore also use the median of MREs for the n 
predictions (MdMRE), which is less sensitive to extreme values, as another measure. 
For both MMRE and MdMRE, a higher value means lower prediction accuracy. 
6.2.4. Benchmark methods 

MacDonell and Shepperd employed a simple linear regression (LR) method in 
[12], and because there is no other work that can be compared, we use LR as a 
benchmark. However, as LR often suffers from a leverage effect of outliers [17] we 
complement it with a further approach. The Kalman filter method (KF) [34] is a 
well-known series prediction method that can deal with noise and outliers robustly 
[35], so we also use the Kalman filter as another benchmark method and determine its 
arguments from the sequences in the training set (the training and test sets KF used 
are same as those used with GV, see subsection 6.2.3 for details). For fairness, we use 
the same data sets and subsequences for the three approaches. 

As many statistical techniques that deal with the prediction of time series data 
require large samples (i.e., long sequences), so they are not suitable to be benchmarks 
here. For example, effective fitting of Box-Jenkins models (often called ARIMA 
models) [36] typically requires at least 50 observations [37]. This is too many for 
most software project stage-effort sequences and cannot be satisfied here. 

6.3. Experimental results 

We conduct the experiments using GV (the GV method), KF (the Kalman filter 
method) and LR (the simple linear regression method) on the 4 data sets. Table 4 to 
Table 6 report the accuracy of the respective methods in terms of MMRE, MdMRE, 
Bias, and the improvements of GV upon KF and LR. 

 
Table 4 MMRE of GV, LR and KF and GV’s improvement upon KF and LR with different data sets 

MMRE (%) 
GV's MMRE improvement 

(%) Dataset 

GV KF LR upon KF upon LR 

1 62.60 80.35 111.29 28.35 77.78 

2 61.44 84.98 131.18 38.31 113.51 

3 61.52 95.69 134.64 55.54 118.86 

4 54.48 77.95 81.63 43.08 49.83 

 
Table 5 MdMRE of GV, LR and KF and GV’s improvement upon KF and LR with different data sets 

MdMRE (%) 
GV's MdMRE improvement 

(%) Dataset 

GV KF LR upon KF upon LR 
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1 46.96 59.02 73.87 25.68 57.30  

2 44.17 53.89 74.59 22.01 68.87  

3 49.81 67.59 85.43 35.70 71.51  

4 42.04 57.01 64.31 35.61 52.97  

 
Table 6 Bias of GV, LR and KF and GV’s improvement upon KF and LR with different data sets 

Bias (%) GV's Bias improvement (%) 
Dataset 

GV KF LR upon KF upon LR 

1 -0.76 -25.73 -29.04 3285.53 3721.05  

2 0.18 -35.83 -34.49 19805.56 19061.11  

3 3.22 -40.42 -50.31 1155.28 1462.42  

4 5.85 -19.73 -20.98 237.26 258.63  

 
From Table 4 to Table 6 we observe that the MMREs, MdMREs and Biases of 

GV are superior to those of KF and LR for all four data sets. Further, GV’s prediction 
accuracies across all data sets exhibit smaller differences. This indicates that GV has 
better consistency and stability on different development methodologies. The small 
bias values also imply that GV can cope with the differences in development 
methodologies to obtain optimal results. We also observe that compared with KF and 
LR, GV’s MMREs are lower by at least 28% and 50%, respectively, MdMREs are 
lower by at least 22% and 53%, respectively, and GV shows very good performance 
with respect to bias, with values that are lower by at least 237% and 259% than KF 
and LR, respectively.  

In statistics, percentiles are used to describe characteristics of distributions. Here, 
we used percentiles to explore the distribution of the absolute residuals of prediction 
accuracy for the three methods with four data sets. Table 7 contains the results. From 
it we can find that, GV has less values than KF and LR for the 5th, 10th, 25th, 50th, 
75th, 90th, and 95th percentiles with all four data sets except for the 75th percentile of 
dataset 4 LR has a less value. This reveals that GV outperformed both KF and LR. 

 
Table 7 Percentiles of absolute residuals of prediction accuracy for GV, KF and LR with all data sets 

Percentiles 
dataset Method 

5 10 25 50 75 90 95 

GV 9.4 20.7 57.7 159.1 363.8 764.8 1160.2  

KF 13.0 24.5 64.7 168.7 409.5 858.4 1302.9  1 

LR 12.8 27.9 75.4 182.4 404.1 804.2 1182.3  

GV 8.2 18.6 52.7 153.2 375.6 788.8 1462.0  

KF 12.0 24.4 69.4 178.9 413.3 877.8 1465.8  2 

LR 12.8 28.2 74.0 186.9 417.4 840.3 1480.4  

GV 4.2 10.4 34.6 94.4 228.7 519.3 801.0  

KF 6.7 17.9 45.6 121.7 286.2 607.5 934.3  3 

LR 7.1 16.3 47.8 128.6 292.8 584.0 901.9  

4 GV 5.3 11.0 34.7 100.4 270.0 540.6 688.0  
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KF 8.5 14.3 37.4 104.8 315.6 588.0 861.6  

LR 5.6 12.5 40.5 106.5 265.6 599.9 914.0  

 
Although we have made some observations based on the data presented in the 

tables above, to rigorously compare the differences between prediction accuracy 
between the three methods we need to perform statistical significance testing. The 
MMREs of the three methods do not follow a normal distribution, so we use 1-tailed 
Wilcoxon Matched-Pairs Signed Ranks tests to examine if there exist significant 
improvements on the MMREs of GV over the other two methods. Table 8 gives the 
testing results.  

From Table 8 we observe that all p-values are less than 0.001. This means that 
the MMREs of GV are significantly lower (and therefore better) than those of KF and 
LR. 
Table 8 1-tailed Wilcoxon Matched-Pairs Signed Ranks test of MMREs of GV vs KF and GV vs LR on 

all data sets 
p-value 

Dataset 
GV vs KF GV vs LR 

1 .000 .000 

2 .000 .000 

3 .000 .000 

4 .000 .000 

 
To summarize, in this study GV outperforms KF and LR on all four data sets and 

demonstrates considerable potential. The reasons lie in the following: 
1) The AGO (accumulated generating operation) procedures of grey models 

make the original stage-effort sequences more regular, so, easier to fit; 
2) The subsequence type recognition procedures makes GV flexible, which 

means GV can capture the various changing trends and further take full advantage of 
two grey models; 

3) The capability of using GFB (grey feedback) from historical projects means 
GV can utilize global domain knowledge to pilot local predictions along correct 
directions, avoiding reliance on just small local data sets and maximizing the 
capability of the method. 

7. Conclusions 

Dynamic software project stage-effort prediction facilitates the evaluation of 
potential effort problems, and could provide early warning information thus ensuring 
that projects are completed within (possibly adjusted) schedules and budgets. In this 
paper we have proposed a novel approach of using Grey Models of Grey System 
Theory to address the software stage-effort prediction problem during the 
development process. The proposed method can predict the future stage-effort using 
the effort of three most recent continuous stages and can suit particular development 
methodologies by using a novel grey feedback mechanism.  

Our experiments have been conducted on a large scale software engineering data 
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repository split into four data sets based on development methodology. Because there 
is no other work that can be compared, we employed the Kalman filter method (KF) 
and the linear regression method (LR) as benchmarks. The results show that the 
proposed GV method outperforms KF and LR in terms of MMRE, MdMRE and Bias 
for all data sets used.  

Finally we pose the question of generalization.  The data sets are drawn from a 
repository of medium to large projects from an international software house. They 
cover a range of application areas such as commerce, government information 
systems, defense and retail.   Of course different organizations may run projects and 
collect data in different ways.  Therefore, it would be interesting to see replication of 
this study in different environments.  Nevertheless this is an encouraging result and 
shows that the method has considerable potential. 
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