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SUMMARY

In this paper we develop an a posteriori error analysis of a coupling of finite elements and boundary
elements for a fluid-structure interaction problem in two and three dimensions. This problem is
governed by the acoustic and the elastodynamic equations in time-harmonic vibration. Our methods
combine integral equations for the exterior fluid and finite element methods for the elastic structure. It
is well-known that due to the reduction of the boundary value problem to boundary integral equations
the solution is not unique in general. However, due to superposition of various potentials, we consider
a boundary integral equation which is uniquely solvable and which avoids the irregular frequencies
of the negative Laplacian operator of the interior domain. In this paper, two stable procedures are
considered; one is based on the non-symmetric formulation and the other one is based on a symmetric
formulation. For both formulations we derive reliable residual a posteriori error estimates. From the
estimators we compute local error indicators which allow us to develop an adaptive mesh refinement
strategy. For the two dimensional case we perform an adaptive algorithm on triangles and for the
three dimensional case we use hanging nodes on hexahedrons. Numerical experiments underline our
theoretical results. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

The problem under consideration consists of determining the dynamics in a fluid Ω+ and
displacements in an elastic body Ω due to a given excitation in the fluid Ω+, using an FE/BE
coupling method. Here, Ω is a bounded region in IRd (d = 2, 3), with boundary Γ, and
Ω+ := IRd \ Ω̄. We consider the scattering of time-harmonic acoustic waves by a bounded
elastic obstacle, immersed in a compressible, inviscid, homogeneous fluid. For this type of
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problem, the displacement field u in the domain Ω and the pressure field p in the fluid are
unknown.

In Bielak et al. [1, 2, 3] and Hsiao et al. [4] FE/BE coupling methods for an elastic body are
presented to solve the scattering problem, using standard integral representations in the infinite
exterior region occupied by the fluid. These methods, however, suffer from the same common
defect associated with the integral formulations for purely exterior regions; namely, there is
a discrete set of frequencies for which the method fails. Two techniques have been used in
applications to remedy this situation. One was developed by Burton and Miller [5], combining
linearly the surface Helmholtz integral equation and its normal derivative, derived from Green’s
second theorem. This method always leads to unique solutions if a certain coupling constant α
has a nonvanishing imaginary part. An earlier procedure, given by Brakhage and Werner [6],
used far less frequently, represents the solution in the exterior region as a linear combination
of a single layer and a double layer potential, with the coupling constant α again required to
have a nonvanishing imaginary part. Kress [7] investigated how to choose the parameter α
in order to minimize the condition number of the discrete system derived from the integral
equation, finding that the value α = i/k is an optimal value, where k is the wavenumber of
the acoustic waves in the fluid Ω+.

With respect to the numerical implementation of the FE/BE coupling for a fluid-structure
interaction problem, we refer to the work of Bielak et al. [2], Chang and Demkowicz [8] and
Gatica et al. [9]. Bielak et al. [2] present numerical results for the two dimensional case of
a symmetric variational formulation, which is obtained using the procedures of Brakhage-
Werner and Burton-Miller simultaneously. Chang and Demkowicz present the hp-numerical
implementation of a variational formulation obtained by the procedure of Burton-Miller and
an adaptive hp-method based on a residual error estimate that depends only on the pressure
in the fluid for a scattering problem in a hollow sphere. Gatica et al. present a mixed finite
element method for a fluid-solid interaction problem posed in the plane. Here, a coupling of
primal and dual mixed finite element methods is applied to compute both the pressure of the
scattered wave in the linearized fluid and the elastic vibrations that take place in the elastic
body.

This paper presents the implementation and analysis of a residual a posteriori error estimate
of the FE/BE coupling methods for two and three dimensional cases and focuses on two stable
variational formulations, the symmetric formulation (V P1) and the non-symmetric formulation
(V P2). With Theorems 4.2 and 4.3 we show reliability of the residual error estimator for
formulation (V P1) and (V P2) respectively. The efficiency of the error estimator is shown
by Theorem I.7 in the Appendix for (V P1). For (V P2) it can be shown analogously and is
omitted for brevity. We call them stable formulations, because they lead to unique solutions if
the coupling constant α has a nonvanishing imaginary part. The non-symmetric formulation
stems from the procedure of Brakhage-Werner and the symmetric formulation from using the
procedures of Brakhage-Werner and Burton-Miller simultaneously.

The sesquilinear forms corresponding to the variational formulations (V P1) and (V P2) are
in general not positive definite but satisfy a G̊arding’s inequality, since they are of the form
(D + K) where D is a positive definite and K is a compact sesquilinear form. This allows to
apply abstract results for existence and uniqueness of a variational problem, as well as for the
stability and convergence analysis of the FE/BE coupling method. The sesquilinear form D
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FE/BE FOR A FLUID-STRUCTURE INTERACTION PROBLEM 3

induces an energy norm for the problem.
We prove the reliability of a new residual a posteriori error estimate for the stable

formulations, which guarantees a quasi-optimal bound of the error in the energy norm induced
by D (Theorems 4.2 and 4.3). Based on these a-posteriori error estimates, we define local
indicators and present adaptive algorithms for the mesh refinement of the coupling procedure.
The residual error estimates are formulated in the L2-norm using standard techniques for FE
methods, see e.g. Johnson et al. [10], Stewart et al. [11] and techniques for FE/BE coupling
methods e.g. Carstensen and Stephan [12, 13, 14]. To prove its reliability we use arguments of
duality, see e.g. Costabel and Stephan [15].
Throughout the rest of the paper we utilize the standard terminology for Sobolev spaces, so

| · |r,Ω and ‖ · ‖r,Ω stand for the seminorm and norm in the Sobolev spaces Hr(Ω). We write
‖ · ‖m,Ω instead of ‖ · ‖m whenever the corresponding domain is important to distinguish.

2. The Fluid-Structure Interaction Problem

Let Ω ⊂ IRd (d = 2, 3) be a bounded, simply connected domain with a closed polyhedral
boundary ∂Ω = Γ and its exterior complement given by Ω+ := IRd\Ω̄. We assume that all
waves are steady-state (time harmonic) with angular frequency ω. If Ω is a linear elastic
body, and/or the solid is subject to a time-harmonic driving force F(x, t) = f(x)e−iωt, the
displacement u is governed by the reduced elastodynamic equation

div σ(u) + ω2ρu = f

where div σ(u) := µ∆u+(λ+µ)∇(∇·u) is the Lame operator, λ and µ are the Lamé constants
and ρ is the density of the body. Let the traction operator σ(u)n be defined by

σ(u)n := 2µ
∂u

∂n
+ λn∇ · u+ µn ×∇u.

σn denotes the normal component of σ(u)n, i.e.,

σn = nT σ(u)n. (1)

Ω+ represents an inviscid, compressible and homogeneous fluid with density ρ0 and speed of
sound c0. The scalar pressure field in the fluid is denoted by P (x, t) = p(x)e−iωt. In the fluid
Ω+ an incident acoustic field P 0(x, t) = p0(x)e−ikt is given. The objective is to determine
the stationary acoustic field of the scattered pressure p(x) for x ∈ Ω+, which satisfies the
Helmholtz equation

∆p+ k2p = 0,

where k = ω
c0

denotes the wave number, together with the radiation condition

p(x) = O(|x|−(d−1)/2),
dp

d|x|
(x) − ikp(x) = o(|x|−(d−1)/2), |x| → ∞. (2)

Moreover the pressure is in static equilibrium with the normal traction on the solid boundary:

σ(u)n = −(p+ p0)n,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



4 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

and the normal displacements of the solid and the fluid are equal on the surface. Hence

ρ0ω
2u · n =

∂p

∂n
+
∂p0

∂n
.

For more details about the governing equations see [4, 16]. Finally, the fluid-solid interaction
problem can be formulated as follows: For a given incident field p0 ∈ C1 which satisfies the
equation ∆p0 + k2p0 = 0 almost everywhere in Ω and Ω+, find u ∈ C2(Ω) ∩ C1(Ω ∪ Γ) and
p ∈ C2(Ω+) ∩ C1(Ω+ ∪ Γ) satisfying

div σ(u) + ρω2u = f in Ω, (3a)

∆p+ k2p = 0 in Ω+, (3b)

σ(u)n = −(p+ p0)n on Γ, (3c)

ρ0ω
2u · n =

∂p

∂n
+
∂p0

∂n
on Γ, (3d)

p satisfies the radiation condition (2) in Ω+, (3e)

where n is the normal on Γ exterior to Ω. The occurrence of resonance frequencies for the
interior problem of the Helmholtz equation is typical for problem (3). However we can avoid
this phenomenon by taking the representation proposed by Brakhage and Werner in [6], see
also [2, 17, 7]. This is formulated as follows: For α ∈ C with Imα 6= 0 we use a complex
continuous function φ defined on the boundary Γ to represent p(x) by

p(x) = Sφ(x) + αDφ(x) ∀x ∈ Ω+, (4)

where S is the single layer potential defined for x ∈ Ω+ by

S(φ)(x) =

∫

Γ

φ(y)γk(x, y) dsy , (5)

D is the double layer potential defined by

D(φ)(x) =

∫

Γ

φ(y)
∂γk(x, y)

∂ny
dsy, (6)

and γk : IRd × IRd → IR is the fundamental solution of the Helmholtz equation given by

γk(x, y) :=























i

4
H1

0 (k|x− y|), for d = 2,

1

4π

eik|x−y|

|x− y|
, for d = 3.

(7)

Taking the limit x → Γ of (5) and (6) and their normal derivatives yields the following jump
relations:

Sφ± = V φ, Dφ± =
(

K ±
I

2

)

φ,

∂

∂n
Sφ± = (K ′ ∓

I

2
)φ,

∂

∂n
Dφ± = −Wφ,
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where the upper-indices “−” or “+” indicate from which direction (interior or exterior) the
limit is taken and V , K, K ′ and W are the integral operators (see e.g. [18]) defined for x ∈ Γ
by

V (φ)(x) :=

∫

Γ

φ(y)γk(x, y)dsy , K(φ)(x) :=

∫

Γ

φ(y)
∂γk(x, y)

∂ny
dsy,

W (φ)(x) := −
∂

∂nx

∫

Γ

φ(y)
∂

∂ny
γk(x, y)dsy , K ′(φ)(x) :=

∂

∂nx

∫

Γ

φ(y) γk(x, y)dsy.

The boundary integral operators V and
(

K ′ − I
2

)

are not invertible if k2 is an eigenvalue of

the interior Dirichlet Problem for the negative Laplace operator; and
(

K + I
2

)

and W are not
invertible if k2 is an eigenvalue of the interior Neumann Problem for the negative Laplace
operator. This implies that the reduction of boundary value problems to boundary integral
equations using these operators is not unique. However, if the representation (4) is used, the
corresponding boundary integral equations are uniquely solvable.
Taking the limit x→ Γ from Ω+ and applying the jump relations we get that, for all x ∈ Γ,

p(x) = V φ(x) + α
(

K +
I

2

)

φ(x), (8a)

∂p(x)

∂n
=

(

K ′ −
I

2

)

φ(x) − αWφ(x). (8b)

Inserting the above equalities in the transmission conditions of (3) and using the following
notation

a0(u,v) :=

∫

Ω

σ(u) : grad v̄ dx, b(φ,v) := 〈
(

V +
(

K +
I

2

))

(φ)n, v̄〉,

a1(u,v) :=

∫

Ω

uv̄ dx, b′(v, φ) := 〈
(

V + α
(

K ′ +
I

2

))

(v) · n, φ̄〉,

a(u,v) := a0(u,v) − ρω2a1(u,v), c(φ,v) := −〈φn, v̄〉,

c′(v, φ) := −〈v · n, φ̄〉 d(φ, ψ) :=
1

ρ0ω2
〈
((

K ′ −
I

2

)

− αW
)

φ, ψ̄〉,

we can formulate the following stable variational formulations for the problem (3) (see [2, 4]);
the first is a non-symmetric formulation, and the second is a symmetric formulation. In the
non-symmetric formulation the unknowns are the displacement u and the function φ, whereas
in the symmetric formulation one considers σn as one additional unknown in the problem. For
φ ∈ H1/2(Γ) and ψ ∈ H−1/2(Γ) the dual product 〈φ, ψ̄〉 is given by 〈φ, ψ̄〉 =

∫

Γ φ(x)ψ̄(x) dsx.

Non-symmetric formulation (V P1). For given f ∈ [H1(Ω)]d, p0, ∂p
0

∂n ∈ H1/2(Γ) find

(u, φ) ∈ H1 := [H1(Ω)]d ×H1/2(Γ) such that

a(u,v) + b(φ,v) = −(f ,v)0 − 〈p0 n, v̄〉,

c(u, ψ) + d(φ, ψ) = −
1

ρ0ω2

〈∂p0

∂n
, ψ̄

〉
∀(v, ψ) ∈ H1.

In short: Find (u, φ) ∈ H1 such that

A1(u, φ;v, ψ) = F1(v, ψ) ∀(v, ψ) ∈ H1, (V P1)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

where

A1(u, φ;v, ψ) := a(u,v) + b(φ,v) + c(u, ψ) + d(φ, ψ),

F1(v, ψ) := −(f ,v)0 − 〈p0 n, v̄〉 −
1

ρ0ω2

〈∂p0

∂n
, q̄
〉

.
(9)

Symmetric formulation (V P2). For given f ∈ [H1(Ω)]d, p0, ∂p
0

∂n ∈ H1/2(Γ) find (u, σn, φ) ∈

H2 := [H1(Ω)]d ×H1/2(Γ)×H1/2(Γ) such that

2a(u,v)+ c(σn,v)+ b(φ,v) = −2(f ,v)0 − 〈p0n, v̄〉,

c′(u, χ)+ + d(φ, χ) = − 1
ρ0ω2 〈

∂p0

∂n , χ̄〉,

b′(u, ψ)+ d(ψ̄, σ̄n)+ = 1
ρ0ω2 〈p

0 + α∂p
0

∂n , ψ̄〉

∀(v, χ, ψ) ∈ H2.

In short: Find (u, σn, φ) ∈ H2 such that

A2(u, σn, φ;v, χ, ψ) = F2(v, χ, ψ) ∀(v, χ, ψ) ∈ H2, (V P2)

where

A2(u, σn, φ;v, χ, ψ) :=2a(u,v) + b(φ,v) + b′(u, ψ)

+ c(σn, v̄) + c′(u, χ) + d(φ, χ) + d(ψ̄, σ̄n)

F2(v, χ, ψ) :=− 2(f ,v)0 − 〈p0n, v̄〉 − 〈
∂p0

∂n
, χ̄〉 + 1

ρ0ω2 〈p
0 + α

∂p0

∂n
, ψ̄〉.

The above variational formulations are in general not positive definite, here the sesquilinear
forms A(·, ·) are of the form A = D + K where D is positive definite and K is compact.
Then, the existence of a unique solution of the weak formulations (V P1) and (V P2) can be
concluded from the fact that these satisfy a G̊arding’s inequality. This type of problem satisfies
the Fredholm alternative: either the variational problem has a unique solution or there exists
a nontrivial solution of the homogeneous problem. Hence the existence of the solution follows
if one can show uniqueness.

Proposition 2.1 ([1]) Given f ∈ [H1(Ω)]d, p0 ∈ H1/2(Ω), ∂p0

∂n ∈ H−1/2(Ω), if α ∈ C and
α 6= 0 then for every k ∈ IR the formulations (V P1) and (V P2) have a unique solution
(u, φ) ∈ H1 and (u, σn, φ) ∈ H2 respectively.

3. FE/BE Coupling Method

In order to derive the a posteriori residual error estimate we consider a regular decomposition
Th of Ω ⊂ IRd d = 2, 3 into non-overlapping elements τ of diameter hτ , where h := maxτ∈Th

hτ .
We assume that Th is quasi-uniform with mesh size h > 0 and shape-regular. Let SΓ,h̃ the set

of faces s of elements τ ∈ Th which are contained in Γ with mesh size h̃. We also assume that
SΓ,h̃ is a regular mesh. Let P1 denote the set of polynomials of degree ≤ 1. Let Wh ⊂ H1(Ω)
be the space of continuous and piecewise polynomials with respect to a decomposition of Ω
defined by

W
h := {η ∈ C0(Ω) : η|τ ∈ P1 for every τ ∈ Th}

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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FE/BE FOR A FLUID-STRUCTURE INTERACTION PROBLEM 7

and let B
h be the vector space of continuous and piecewise polynomials with respect to a

decomposition of the boundary Γ defined by

B
h := {η ∈ C0(Γ) : η|s ∈ P1 for every s ∈ SΓ,h̃}.

Let us define the following spaces that correspond to the formulations (V P1) and (V P2),

Hh
1 := [Wh]d ×B

h, Hh
2 := [Wh]d ×B

h ×B
h.

We get the following discrete formulations of (V P1) and (V P2), respectively: Find (uh, φh) ∈
Hh

1 such that
A1(u

h, φh;vh, ψh) = F1(v
h, ψh) ∀(vh, ψh) ∈ Hh

1 . (V P h1 )

Find (uh, σhn, φ
h) ∈ Hh

2 such that

A2(u
h, σhn, φ

h;vh, χh, ψh) = F2(v
h, χh, ψh) (vh, χh, ψh) ∈ Hh

2 . (V P h2 )

The proof of uniqueness and convergence of the solution of the discrete variational problems
(V P h1 ) and (V P h2 ) can be found in [19, 1].

Proposition 3.1. Let (u, φ) solve (V P1). Then there exist h0 > 0 and c > 0 such that for
any h < h0 (V P h1 ) has a unique solution (uh, φh) ∈ Hh

1 and

‖(u, φ)− (uh, φh)‖H1
≤ c

(

inf
vh∈[Wh(Ω)]d

‖u− vh‖21 + inf
ψh∈Sh

‖φ− ψh‖21/2

)1/2

.

Let (u, σn, φ) solve (V P2). Then there exists h0 > 0 and c > 0 such that for any h < h0 (V P h2 )
has a unique solution (uh, σhn, φ

h) ∈ Hh
2 and

‖(u, σn, φ)− (uh, σhn, φ
h)‖H2

≤ c
(

inf
vh∈[Wh(Ω)]d

‖u− vh‖21

+ inf
ψh∈Sh

‖σn − χh‖21/2 + inf
χh∈Sh

‖φ− ψh‖21/2
)1/2

.

4. Residual A Posteriori Error Estimate

We present an a posteriori residual error estimator for the formulations (V P1) and (V P2).
The residual error estimate is formulated in the L2-norm using standard techniques for FE
methods, see [11] and techniques for FE/BE coupling methods e.g. [20, 12, 13, 14]. The derived
error indicators are used later for the implementation of adaptive algorithms. First we present
the analysis for the non symmetric formulation (V P1).
Let Si denote the set of faces of Th which are not contained in SΓ,h̃. For a element τ ∈ Th of

length hτ , we define the set of interior faces of τ by Sτ,i which are not contained in SΓ,h̃ and
the boundary faces of τ contained in SΓ,h̃ by Sτ,Γ. Note that the set of faces of τ is given by
Sτ,i∪Sτ,Γ = Sτ . In the following we denote the space of continuous and piecewise polynomials
on τ and on the face s by W

h(τ) and B
h(s), respectively.

Then for the Clement approximation operator I hold the following approximate properties.
There exist positive constants c1, c2 independent of τ ∈ Th and h, such that for every η ∈ H1(τ)
there exists Iη ∈ W

h(τ) such that

‖η − Iη‖0,τ ≤ c1h|η|1,τ , (10)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

and

‖η − Iη‖0,∂τ ≤ c2h
1/2|η|1,τ . (11)

There also exists a constant c3 > 0 independent of s ∈ SΓ,h̃ and h̃, such that for every

ζ ∈ H1/2(s) there exists Iζ ∈ B
h(s) such that

‖ζ − Iζ‖0,s ≤ c3h̃
1/2‖ζ‖ 1

2
,s. (12)

Remark 4.1. Since the sesquilinear form A1 is self-adjoint except in terms which contain
the operator K, whose adjoint is K ′, we can apply the same uniqueness and existence theory
applied for the formulation A∗

1 and obtain that there exists a unique solution (u, φ) ∈ H of the
following adjoint variational problem

A∗
1(v, ψ,u, φ) := A1(v, ψ;u, φ) = F1(v, ψ) ∀(v, ψ) ∈ H1.

Let H′
1 = H−1(Ω)×H−1/2(Γ). From the above statements we obtain that there are continuous

and invertible operators A1 : H1 → H′
1 and A∗

1 : H1 → H′
1 such that

A1(η, ζ) = 〈A1η, ζ〉H′
1
, A∗

1(ζ, η) = 〈A∗
1ζ, η〉H′

1
,

for all (η, ζ) ∈ H1 ×H1.

Theorem 4.2. Let (u, φ) ∈ H1 be the solution of problem (V P1) and (uh, φh) ∈ Hh
1 be the

solution of the discrete problem (V P h1 ). There exists a positive constant c independent of the
meshsize h such that

‖uh − u, φh − φ‖H1
≤ c

(

Rh1 +Rh2 +Rh3 +Rh4
)1/2

, (13)

where

Rh1 :=
∑

τ∈Th

h2τ‖div σ(u
h) + ρω2uh − f‖20,τ ,

Rh2 :=
∑

si∈Si

hsi‖[[σ(u
h) · n]]‖20,si ,

Rh3 :=
∑

s∈S
Γ,h̃

hs‖σ(u
h) · n+ p0n+ V φh n+ α(K +

I

2
)φh n‖20,s,

Rh4 :=
∑

s∈S
Γ,h̃

hs‖ −
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2

(

( (K ′ −
I

2
)− αW

)

φh‖20,s.

(14)

Proof. First, we apply a duality argument to obtain (16). This argument of duality is
necessary because our bilinear form A1 is not coercive, and therefore it is impossible to use
the orthogonality property of the energy norm to bound the error e by the residual of the
approximate solution (uh, φh).

Let e := (u− uh, φ− φh). From Remark 4.1 it follows that the adjoint equation A∗
1δ = η is

uniquely solvable for every η ∈ H′
1. Moreover the continuity of (A∗

1)
−1 : H′

1 → H1 implies

‖δ‖H1
≤ c‖η‖H′

1
∀(δ, η) ∈ H1 ×H′

1. (15)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Since H1 and H′
1 are dual with respect to the scalar product of L2 := [L2(Ω)]d × L2(Γ), we

have

‖e‖H1
≤ sup

‖η‖
H′

1

≤1

|(e, η)L2 | = sup
‖A∗δ‖

H′
1

≤1

|(e, A∗
1δ)L2 | = sup

‖A∗δ‖
H′

1

≤1

|(A1e, δ)L2 |. (16)

Now, we associate the term (A1e, δ) with the residual of the approximate solution (uh, φh).

(A1e, δ) = A1(e; δ) = A1(u
h, φh; δ)−A1(u, φ; δ) = A1(u

h, φh; δ)−F1(δ).

For l ∈ Hh
1 there holds A1(u

h, φh; l)−F1(l) = 0. Then

A1(e; δ) = A1(u
h, φh; δ)−F1(δ) + F1(l)−A1(u

h, φh; l)

= F1(l − δ)−A1(u
h, φh; l − δ).

Taking l as the L2-projection of δ on Hh
1 and η := (ηv, ηψ) = l − δ ∈ H1, we get

A1(e; δ) = F1(η)−A1(u
h, φh; η). (17)

We use (17) to obtain our error estimator by estimating the residual on every element and on
every face. Applying integration by parts to a0(u

h, ηv)τ for τ ∈ Th we obtain

a0(u
h, ηv)τ =(σ(uh) : ∇ηv)0,τ = −(div σ(uh), ηv)0,τ +

∫

∂τ

(σ(uh)n) · η̄v ds

=− (div σ(uh), ηv)0,τ +
∑

si∈Sτ,i

〈σ(uh) · n, η̄v〉0,si +
∑

s∈Sτ,Γ

〈σ(uh) · n), η̄v〉0,s

=− (div σ(uh), ηv)0,τ +
∑

si∈Sτ,i

〈σ(uh) · n, η̄v〉0,si + 〈σ(uh)n, η̄v〉0.

(18)

Note that the resulting boundary integral over ∂τ is decomposed into integrals on each interior
face and on each boundary face. Inserting (9) and (18) into (17) we get

A1(e; δ) =F1(η)−A1(u
h, φh; η)

=
∑

τ∈Th

(

(div σ(uh), ηv)0,τ + ρω2(uh, ηv)0,τ − (f , ηv)0,τ

)

−
∑

si∈Si

〈[[σ(uh)n]], η̄v〉0,si − 〈σ(uh)n, η̄v〉0

− 〈p0n, η̄v〉0 −
1

ρ0ω2
〈
∂p0

∂n
, η̄ψ〉0 − 〈

(

V − α(K +
I

2
)
)

φh n, η̄v〉0

+ 〈uh · n, η̄ψ〉0 −
1

ρ0ω2
〈( (K ′ −

I

2
)− αW )φh, η̄ψ〉0

=
∑

τ∈Th

(rh1 , ηv)τ + (rh2 , η̄), (19)

where [[·]] denotes the jump over an interior face, rh1 := div σ(uh) + ρω2uh − f is the residual
defined on the interior elements, and (rh2 , η̄) denotes the residuals defined on the boundary

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

elements. Using the Cauchy-Schwarz inequality, (10)-(12) and the Hölder inequality we obtain
an upper bound of (19) in terms of our error estimator

∣

∣

∑

τ∈Th

(rh1 , ηv)τ + (rh2 , η̄)
∣

∣

≤
∑

τ∈Th

‖rh1‖0,τ‖ηv‖0,τ +
∑

si∈Si

‖[[σ(uh)n)]]‖0,si ‖ηv‖0,si

+
∑

s∈S
Γ,h̃

‖ − σ(uh)n− p0n− V φh n− α(K +
I

2
)φh n‖0,s ‖ηv‖0,s

+
∑

s∈S
Γ,h̃

‖ −
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2
( (K ′ −

I

2
)− αW )φh‖0,s ‖ηψ‖0,s

≤ c1
∑

τ∈Th

hτ‖r
h
1‖0,τ |δv|1,τ + c2

∑

si∈Si

‖[[σ(uh)n)]]‖0,sih
1/2
si |δv|1/2,si

+ c2
∑

s∈S
Γ,h̃

‖σ(uh)n+ p0n+ V φhn+ α(K +
I

2
)φhn‖0,sh

1/2
s |δv|1/2,s

+ c3
∑

s∈S
Γ,h̃

‖ −
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2
( (K ′ −

I

2
)− αW )φh‖0,sh

1

2

s ‖δψ‖ 1

2
,s

≤max{c1, c2, c3}
(

∑

τ∈Th

h2τ‖r
h
1‖

2
0,τ +

∑

si∈Si

hsi‖[[σ(u
h)n]]‖20,si

+
∑

s∈S
Γ,h̃

hs‖σ(u
h)n+ p0n+ V φh n+ α(K +

I

2
)φh n‖20,s

+
∑

s∈S
Γ,h̃

hs‖ −
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2
( (K ′ −

I

2
)− αW )φh‖20,s

)1/2

×
(

∑

τ∈Th

|δv|
2
1,τ +

∑

τ∈Th

|δv|
2
1,si +

∑

s∈S
Γ,h̃

|δv|
2
1,s +

∑

s∈S
Γ,h̃

‖δψ‖
2
1/2,s

)1/2

≤max{c1, c2, c3}(R
h
1 +Rh2 +Rh3 +Rh4 )

1/2

×
(

∑

τ∈Th

‖δv‖
2
1,τ +

∑

s∈S
Γ,h̃

‖δψ‖
2
1/2,s

)1/2

≤max{c1, c2, c3}(R
h
1 +Rh2 +Rh3 +Rh4 )

1/2‖δ‖H1 .

Finally, starting from (16), using (15), (19) and the above inequality, we get

‖uh − u, φh − φ‖H1 ≤ max{c1, c2, c3}(R
h
1 +Rh2 +Rh3 +Rh4 )

1/2‖δ‖H1

≤ max{c1, c2, c3}(R
h
1 +Rh2 +Rh3 +Rh4 )

1/2.
�

The Appendix shows the demonstration of efficiency of error estimator (13) for the formulation
(V P1). Now we formulate the error estimator for the symmetric formulation (V P2).
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Theorem 4.3. Let (u, σn, φ) ∈ H2 be the solution of problem (V P2) and let (uh, σhn, φ
h) ∈ Hh

2

be the solution of the discrete problem (V P h2 ). There exists a positive constant c such that

‖uh − u, σhn − σn, φ
h − φ‖H2

≤ c
(

R̃h1 + R̃h2 + R̃h3 + R̃h4 + R̃h5
)1/2

(20)

where

R̃h1 :=
∑

τ∈Th

2h2τ‖div σ(u
h) + ρω2uh − f‖20,τ ,

R̃h2 :=
∑

si∈Si

2hsi‖[[σ(u
h)n]]‖2si ,

R̃h3 :=
∑

s∈S
Γ,h̃

hs‖ − 2σ(uh)n− p0n+ σhnn− (V + α(K +
I

2
) )φh n‖2s,

R̃h4 :=
∑

s∈S
Γ,h̃

hs
∥

∥−
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2
( (K ′ −

I

2
)− αW )φh

∥

∥

2

s
,

R̃h5 :=
∑

s∈S
Γ,h̃

hs
∥

∥

1

ρ0ω2
(p0 + α

∂p0

∂n
)− (V + α(K ′ +

I

2
) )uh · n

−
1

ρ0ω2
( (K −

I

2
)− αW )σhn

∥

∥

2

s
.

Proof. The proof is analogous to the one given in Theorem 4.2 and is therefore omitted for
brevity.

�

In Algorithm 1 we compute the local error indicators by restricting the estimates ηR1
:=

(

Rh1 +Rh2 +Rh3 +Rh4
)1/2

and ηR2
:=

(

R̃h1 + R̃h2 + R̃h3 + R̃h4 + R̃h5
)1/2

to an element τ ∈ Th. We
denote these local error indicator as ητR1

and ητR2
, respectively.

Algorithm 1 Adaptive algorithm for (V P1) and (V P2)

Require: TOL= error tolerance, δ = parameter of refinement

for i = 1, 2, · · · do
1. Compute the Galerkin solution

(uh, φh) for (V P1)

(uh, σhn, φ
h) for (V P2)

of the fully-discrete system, respectively.
2. Compute for each τ ∈ Th the local error indicators

(ητR1
)2 := Rτ1 +Rτ2 +Rτ3 +Rτ4 for (V P1)

(ητR2
)2 := R̃τ1 + R̃τ2 + R̃τ3 + R̃τ4 + R̃τ5 for (V P2)

and set
ηmax := max

τ∈T
ητR,i.

3. Refine any τ ∈ T such that δ · ηmax ≤ ητR,i.

4. Stop if
(
∑

τ∈T (η
τ
R,i)

2
)1/2

≤ TOL.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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12 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

The implementation of this algorithm was performed using the program package
MaiProgs [21]. For the two dimensional case we perform an adaptive algorithm using a
blue-green refinement on triangles and for the three dimensional we allow hanging nodes on
hexahedrons.

5. Numerical Experiments

Consider a square-shaped, homogeneous, isotropic, elastic scatterer made of steel with Ω̄ =
[−1, 1]2 for the two dimensional case or Ω̄ = [−1, 1]3 for the three dimensional case. The
scatterer possesses the following material parameters: Poisson’s ratio ν = 0.28, Young’s module
E = 200GPa and ρ = 7800kg/m3. The scatterer is submerged in sea water and is subject to
a plane incident wave p0(x1, x2) = eikx1 for the 2D case and p0(x1, x2, x3) = eikx1 for the 3D
case. Furthermore, we assume for sea water a density ρ0 = 1020Kg/m3 and a sound velocity
c0 = 1500m/s. In the following let ‖ · ‖W0

, ‖ · ‖1,W0
and ‖ · ‖1,1,W0

denote norms defined by

‖ψ‖2W0
:= 〈W0ψ, ψ̄〉 ∀ψ ∈ H1/2(Γ),

‖(v, ψ)‖21,W0
:= ‖v‖21 + ‖ψ‖2W0

∀(v, ψ) ∈ H1,

‖(v, χ, ψ)‖21,W0,W0
= ‖v‖21 + 〈W0ψ, ψ̄〉 + 〈W0χ, χ̄〉 ∀(v, χ, ψ) ∈ H2,

where W0 is the hypersingular operator with kernel γk=0 (see eq. (7)). In order, to calculate
the error estimators of the formulations (V P1) and (V P2) in the norm of H1 and H2 we use
the equivalent norms ‖ · ‖1,W0

and ‖ · ‖1,W0,W0
, respectively.

Remark 5.1. We remark that for our numerical example we do not know the exact solution
of the system. The error and convergence analysis for the numerical solutions is performed
using estimates of the exact norms of u ∈ [H1(Ω)]2, σn ∈ H1/2(Γ) and φ ∈ H1/2(Γ). These
estimates are obtained by extrapolation using Aitken’s ∆2 process with a sequence of norms,
resulting from an h-uniformly refinement.

2D Case. Firstly, we compare the performance obtained with stable (Imα 6= 0) and non-
stable procedures. In Fig. 1 the convergence of error e is shown for a h-uniform refinement in
(V P1) and (V P2), respectively, using α = 0 and α = i/k and for the wave numbers k = 2, 3.5
and 5. For the formulation (V P1) the error e is given by e := ‖(u, φ) − (uh, φh)‖1,W0

and for
the formulation (V P2) e := ‖(u, σn, φ) − (uh, σhn, φ

h)‖1,W0,W0
, respectively. As expected for

α = 0 the method does not converge and for α = i/k the method converges. We choose the
values k close to a critical frequency of the system (see [22]).
Now we show the residual errors ηR1

and ηR2
as stated in Theorem 4.2 and Theorem 4.3

and apply the adaptive strategy in Algorithm 1. In Fig. 2 the error e using an h-uniform
and adaptive refinement, with their respective residual error estimator ηR1

are displayed for
different wave numbers k. Table I shows the residual error estimator ηR1

and its effectivity
index θ = ηR1

/e calculated for k = 3.5 and k = 5. We see that for k = 3.5, the error e has
a slightly better convergence than the error estimator ηR1

. This difference may be explained
by the lack of regularity of the solution (u, φ) for this wave number. However for k = 5
the equivalence between the error e and ηR1

is entirely confirmed. Note that in both cases
Theorem 4.2 is confirmed.
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Figure 1. 2D: Error e vs. degree of freedom using α = 0 and α = i/k (top: (V P1) case, bottom:
(V P2) case). With α = i/k: k = 2 −+−, k = 5 −•−, k = 3.5 −×−, k = 5 −∗−. With α = 0: k = 2 −�−,

k = 3.5 −�−, k = 5 −•−.

Table I. 2D: Residual error estimator ηR1
and effectivity index θ calculated for k = 3.5 and k = 5

with α = i/k using (V P1).

k = 3.5 k = 5.0

h N ηR1
θ = ηR1

/e ηR1
θ = ηR1

/e

1 26 6.3622 1.2257 29.9753 3.6887
1/2 66 5.5580 1.4366 31.5406 3.4438
1/4 194 4.7024 1.9920 20.8456 2.2508
1/8 642 3.2281 2.3674 13.0691 2.1793
1/16 2306 1.9494 2.5368 7.1497 2.2010
1/32 8706 1.1588 2.6715 3.7212 2.1949
1/64 33794 0.7152 2.9234 1.9314 2.1949
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Figure 2. Errors and residual error estimators ηR1
for the formulation (V P1) with α = i/k using k = 3.5

(top) and k = 5.0 (bottom). −+− e using uniform refinement, −×− e using adaptive refinement, −∗− ηR1

using uniform refinement, −�− ηR1
using adaptive refinement.

Fig. 3 shows the error e := ‖(u, σn, φ) − (uh, σhn, φ
h)‖1,W0,W0

, for the formulation (V P2)
using a uniform and adaptive refinement, with their respective residual error estimator ηR2

for
different wave numbers k. Table II shows the residual error estimator ηR2

and its effectivity
index θ = ηR2

/e calculated for k = 3.5 and k = 5. We can see that the behavior is similar to
the non-symmetric formulation (V P1). As in the formulation (V P1), for k = 3.5 the error e
has a slightly better convergence than the error estimator ηR2

, and for k = 5, the equivalence
between the error e and ηR2

is entirely confirmed. Thus for this formulation, we can say that
Theorem 4.3 is satisfied. Fig. 4 and 5 show different adaptive meshes for both procedures. Note
the similarity of the areas of refinement for both procedures.

3D Case. For the three dimensional case we use hexahedral elements for the discretization
of the domain Ω and squares for the discretization of the boundary Γ. The adaptive method
uses hanging nodes for the construction of the mesh following the one-constraint rule, i.e., one
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Figure 3. Errors and residual error estimators ηR2
for the formulation (V P2) with α = i/k using

k = 3.5 (top) and k = 5 (bottom). −+− e using uniform refinement, −×− e using adaptive refinement,
−∗− ηR2

using uniform refinement, −�− ηR2
using adaptive refinement

edge has at most two smaller neighboring edges on the other element. In Table III we show
the residual error estimator obtained for h-uniform refinement. Here, we confirm the efficiency
and reliability of our residual estimator ηR1

obtained in h-uniform refinement. This confirms
the efficiency of our residual estimator and the predicted order of convergence of our discrete
problem. One can see that our estimate ηR1

is proportional to e, since the effectivity index
θ = ηR1

/e ≈ 0.6 shown in Table III is quasi-constant, so we verify Theorem 4.2 for the three
dimensional version and the non-symmetric formulation (V P1).

Table IV shows the residual error estimator obtained for h-uniform refinement in the three
dimensional case. Here, we confirm the efficiency of our residual estimator ηR2

stated in
Theorem 4.3 and the predicted order of convergence of the discrete solution. We can see
that our estimate ηR2

is proportional to e, since the effectivity index q = ηR2
/e ≈ 1.3 shown

in Table IV is quasi-constant. This verifies Theorem 4.3 for the three dimensional version and
the symmetric formulation. Fig. 6 shows the error for h-uniform refinement using (V P1) and
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16 C. DOMÍNGUEZ, E. P. STEPHAN AND M. MAISCHAK

Table II. 2D: Residual error estimators and effectivity index θ using (V P2) with α = i/k, k = 3.5 and
k = 5.

k = 3.5 k = 5

ηR2
θ = ηR2

/e ηR2
θ = ηR2

/e

1.3556 1.3556 19.2485 2.0610
1.8644 1.8644 23.3774 2.4047
2.6932 2.6932 24.4007 2.5826
3.2610 3.2610 17.3447 2.8555
2.8919 3.5822 9.6990 2.9545
1.7716 3.8935 5.0793 2.9670
1.1263 4.3944 2.6479 2.9846

N = 213 dof N = 488 dof

Figure 4. 2D: Adaptive meshes using (V P1) with k = 3.5 and parameter of refinement δ = 0.8.

N = 562 dof N = 1470 dof

Figure 5. 2D: Adaptive meshes using (V P2) with k = 3.5 and parameter of refinement δ = 0.9.
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Table III. 3D: Residual error estimator ηR1
and effectivity index θ calculated for k = 5.2 with α = i/k
using (V P1).

h N ηR1
θ = ηR1

/e

1 107 78.6972 4.4117
1/2 473 28.6879 1.2164
1/3 1247 17.0375 0.8621
1/4 2573 11.8714 0.7431
1/5 4595 9.2147 0.6955
1/6 7457 7.5367 0.6729
1/7 11303 6.3806 0.6646
1/8 16277 5.5392 0.6666
1/9 22523 4.9021 0.6775
1/10 30185 4.4047 0.6972
1/11 39407 4.0066 0.7267

Table IV. 3D: Residual error estimator ηR2
and effectivity index θ calculated using (V P2) for k = 5.2
with α = i/k.

h N ηR2
θ = ηR2

/e

1 133 126.5869 5.4076
1/2 571 52.9663 2.1531
1/3 1465 32.7106 1.6537
1/4 2959 23.3245 1.4628
1/5 5197 18.1849 1.3803
1/6 8323 14.8992 1.3442
1/7 12481 12.6254 1.3371
1/8 17815 10.9673 1.3529
1/9 24469 9.7105 1.3903
1/10 32587 8.7284 1.4517

(V P2) with their respective residual error estimators ηR1
and ηR2

.

Fig. 7 shows the error using h-uniform refinement and adaptive refinement with the L-Block
Ω := [−1, 1]\([0, 1] × [−1, 1]). After several refinements the error of the adaptive algorithm
is less than the error in the uniform refinement. Note, that for adaptive meshes the residual
error estimator is larger than the estimator obtained for uniform meshes. This appears to
be caused by contribution of hanging nodes. Nonetheless the error for the adaptive scheme is
smaller than for the uniform h -version. Our adaptive algorithm produces a sequence of refined
meshes, which is shown in Fig. 8.
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Figure 6. 3D: Error e and error residual estimators of uniform refinements in [−1, 1]3 with k = 5.2
and α = i/k. −+− e using (V P1), −×− e using (V P2), −∗− ηR1
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Figure 7. 3D: Error e and error residual estimators ηR1
of uniform and adaptive refinements in the

L-Block using (V P1) with k = 5.2 α = i/k and parameter of refinement δ = 0.9.−+− e using uniform
ref., −×− ηR1

using uniform ref., −∗− e using adaptive ref., −�− ηR1
using adaptive ref.

6. Conclusion

This paper develops reliable residual-based a posteriori error estimates for a finite
element/boundary element formulation of the Lamé-Helmholtz coupled problem in 2D and 3D.
This model represents the time-harmonic fluid-solid interaction between an inviscid unbounded
exterior acoustic medium and a bounded elastic solid. We are using two different approaches
to ensure uniqueness of the boundary integral equation part, which have been discussed in the
literature before ([4, 2, 1]), but our work is the first to analyze the residual error estimator in
2D and 3D.
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N = 589 dof N = 3609 dof

Figure 8. 3D: Sequence of meshes for the adaptive strategy using (V P1) with k = 5.2, α = i/k and
parameter of refinement δ = 0.9 on the L-Block.

This work contributes to the development of new numerical schemes for fluid-structure
interactions, in particular, schemes involving the Helmholtz equation. Such schemes are widely
known among engineers and mathematicians to be difficult to treat by standard numerical
methods, due to non-uniqueness caused by the occurrence of resonance frequencies. The results
presented here are a basis for further research on numerical models that involve non-viscous
fluids and/or non-linear elastic solids using finite elements and/or boundary elements.
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APPENDIX

Below we prove the efficiency of the residual error estimator ηR1
for the formulation (V P1) on

quasi-uniform meshes. The ideas of this proof can be found in Verfürth [23] for the indicators
of the FEM part. For the indicators with boundary integral operators, we use some ideas of
Carstensen [24]. For more detail see Domı́nguez [22]. Initially, we present a local upper bound
for the error indicators Rh1 and Rh2 (see (14)).

Lemma I.1. Let τ ∈ Th and Rh1,τ := h2τ‖div σ(u
h) + ρω2uh − f‖20,τ , then there holds

Rh1,τ . ‖σ(uh − u)‖20,τ + h2τ‖u
h − u‖20,τ . (21)

Proof. For the case d = 2, we denote by λτ,1, λτ,2, λτ,3 the barycentric coordinates of the
triangle τ ∈ Th. We define the triangle-bubble function bτ by

bτ :=

{

27λτ,1λτ,2λτ,3 on τ,

0 on Ω \ τ.
(22)

For d = 3 we denote by λτ,1, λτ,2, λτ,3, λτ,4 the barycentric coordinates of a tetrahedron τ ∈ Th.
We define the bubble function bτ by

bτ :=

{

256λτ,1λτ,2λτ,3λτ,4 on τ,

0 on Ω \ τ.
(23)
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In both cases (d = 2, 3) the function bτ has the following properties (see Verfürth [23, p. 10])
with a constant c > 0.

supp bτ ⊂ τ, 0 ≤bτ ≤ 1, max
x∈τ

bτ (x) = 1,

‖b1/2τ u‖0,τ ≤ ‖u‖0,τ ≤ c‖b1/2τ u‖0,τ , ‖∇b1/2τ u‖0,τ ≤ h−1
τ ‖u‖0,τ .

(24)

We define gτ := (div σ(uh) + ρω2uh − f)bτ . Then from (24)

‖div σ(uh) + ρω2uh − f‖20,τ

. ‖(div σ(uh) + ρω2uh − f)b1/2τ ‖20,τ

=

∫

τ

(div σ(uh) + ρω2uh − f)gτ dx

=

∫

τ

(div σ(uh) + ρω2uh)gτ dx−

∫

τ

(div σ(u) + ρω2u)gτ dx

=

∫

τ

(

σ(u− uh) : ∇gτ + ρω2(uh − u)gτ
)

dx

. ‖σ(uh − u)‖0,τ‖∇gτ‖0,τ + ‖uh − u‖0,τ‖gτ‖0,τ

. ‖gτ‖0,τ
(

h−1
τ ‖σ(uh − u)‖0,τ + ‖uh − u‖0,τ

)

. ‖div σ(uh) + ρω2uh − f‖0,τ
(

h−1
τ ‖σ(uh − u)‖0,τ + ‖uh − u‖0,τ

)

.

Dividing the last inequality by ‖div σ(uh) + ρω2uh − f‖0,τ it follows that

‖div σ(uh) + ρω2uh − f‖0,τ ≤ c
(

h−1
τ ‖σ(uh − u)‖0,τ + ‖uh − u‖0,τ

)

.

Finally, raising powers to the square and multiplying by h2τ we obtain (21). �

Next, we estimate the local indicator Rh2,τ related to the jump on s ∈ Si,τ .

Lemma I.2. Let τ ∈ Th then there holds

Rh2,τ :=
∑

si∈τ

hs‖[[σ(u
h)n]]‖20,s . ‖σ(u− uh)‖20,wτ

+ h2s‖u‖
2
0,wτ

, (25)

where wτ are the element neighbors of τ .

Proof. We estimate the indicator Rh2 related to the jump in s ∈ Si with s = ∂τ1 ∩ ∂τ2, where
τ1 and τ2 are the elements that contain the face s. Let ws := τ1 ∪ τ2. For this we need the
following definitions: Considering the two-dimensional case, we define an edge-bubble function
bs (see Verfürth [23][p. 10]) by

bs :=

{

4λτi,1λτi,2 on τi, i = 1, 2,

0 on Ω\ws,

where λτi,1 , λτi,2 are the barycentric coordinates of τi (i = 1, 2) related to the edge s. For
the three-dimensional case, we define a face-bubble function bs with barycentric coordinates
λτi,1 , λτi,2 , λτi,3

bs :=

{

27λτi,1λτi,2λτi,3 on s ∈ Si,

0 on Ω\s.
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In the case d = 2 the function bs has the following properties:

supp bs ⊂ ws, 0 ≤ bs ≤ 1, max
x∈s

bs(x) = 1,

∫

s

bs =
2

3
hs,

c1h
2
s ≤

∫

τ

bs =
1

3
|τ | ≤ c2h

2
s, ‖∇bs‖0,τ ≤ c3h

−1
s ‖bs‖0,τ ∀τ ∈ ws.

(26)

For the case d = 3, bs is the same triangle-bubble function defined in (22), therefore bs satisfies
the properties (24).
We have to prove the following result:

‖[[σ(uh)n]]‖20,s . h−1
s ‖σ(u− uh)‖20,ws

+ hs‖u‖
2
0,ws

. (27)

We define gs := [[σ(uh)n]]bs. Since we use continuous linear functions, the term [[σ(uh) · n]] is
a complex number, then (26) implies that

∫

s

[[σ(uh)n]]gs =
2

3
hs|[[σ(u

h)n]]|2 =
2

3
‖[[σ(uh)n]]‖20,s. (28)

Using Green’s Theorem, (3a), the Cauchy-Schwarz inequality, properties (26), (28) and taking
in account that div σ(uh) = 0 we obtain

‖[[σ(uh)n]]b1/2s ‖20,s =

∫

ws

σ(uh) : ∇gs dx+

∫

ws

div σ(uh) · gs dx−

∫

∂ws

σ(uh)n · gs

=

∫

ws

σ(uh) : ∇gs dx

−

∫

ws

σ(u) : ∇gs dx −

∫

ws

div σ(u) · gs dx+

∫

∂ws

σ(u)n · gs

=

∫

ws

σ(uh − u) : ∇gs dx+ ρω2

∫

ws

u · gs dx

.‖σ(uh − u)‖0,ws
‖∇gs‖0,ws

+ ‖u‖0,ws
‖gs‖0,ws

.h−1
s |[[σ(uh)n]]| ‖bs‖0,s ‖σ(u

h − u)‖0,ws

+ |[[σ(uh)n]]| ‖bs‖0,s ‖u‖0,ws

. ‖[[σ(uh)n]]‖0,s

(

∫

ws

bs

)1/2(

h−3/2
s ‖σ(uh − u)‖0,ws

+ h−1/2
s ‖u‖0,ws

)

. ‖[[σ(uh)n]]‖0,s
(

h−1/2
s ‖σ(uh − u)‖0,ws

+ h1/2s ‖u‖0,ws

)

Dividing the last inequality by ‖[[σ(uh) · n]]‖0,s, raising powers to the square and multiplying
by hs yields (27). Finally, summing over each interior edge of τ result (25) follows. �

Summing the local estimators from Lemma I.1 and I.2 we obtain the following result. Since
‖ · ‖20,Ω =

∑

τ∈Th
‖ · ‖20,τ it follows

Lemma I.3. There holds

Rh1 . ‖σ(uh − u)‖20,Ω + h2max,Ω‖u
h − u‖20,Ω,

Rh2 . ‖σ(u− uh)‖20,Ω + h2max,Ω‖u‖
2
0,Ω,

where hmax,Ω is the maximum length of the regular decomposition Th of Ω.
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Next, we give upper local estimates for the estimators Rh3 and Rh4 . Since we use (2, r)-regular
boundary element Bh families in the sense of Babuška and Aziz, one can assume the inverse
assumption. For more details see e.g. Hsiao and Wendland [25].

Lemma I.4. Inverse assumption: For m ≤ s ≤ 2, |m|, |s| ≤ r there exists a constant
c = c(m, s, r) for all ηh ∈ B

h

‖ηh‖s ≤ cht−s‖ηh‖t ∀η ∈ B
h.

Lemma I.5. Assuming (u, φ) ∈ [H2(Ω)]d ×H3/2(Γ) it follows

Rh3 . hmax,Γ

(

‖σ(u− uh)‖20,Γ + ‖φ− φh‖20,Γ + ‖φ− φh‖2−1,Γ

)

, (29)

where hmax,Γ is the maximum length of the regular decomposition SΓ,h̃ of Γ.

Proof. Noting that p0n = −σ(u)n+
(

V + α
(

K + I
2

) )

(φ)n, we obtain in each s ∈ SΓ,h̃

‖σ(uh)n− p0n− V φh n− α
(

K +
I

2

)

φh n‖20,s

. ‖σ(u− uh)n‖20,s + ‖V (φ− φh)n‖20,s + ‖α
(

K +
I

2

)

(φ− φh)n‖20,s.

(30)

Summing the estimate (30) over all elements s ∈ SΓ,h̃ and due to ‖ · ‖20,Γ =
∑

s∈S
Γ,h̃

‖ · ‖20,s we

obtain

Rh3 . hmax,Γ

(

‖σ(u− uh)n‖20,Γ + ‖V (φ− φh)n‖20,Γ + ‖α
(

K +
I

2

)

(φ− φh)n‖20,Γ
)

.

Since V : H−1/2+s̃(Γ) → H1/2+s̃(Γ) andK : H1/2+s̃(Γ) → H1/2+s̃(Γ) are continuous mappings
for s̃ ∈ [−1/2, 1/2] we have that

‖V (φ− φh)n‖20,Γ . ‖V (φ − φh)‖20,Γ . ‖φ− φh‖2−1,Γ,

‖
(

K +
I

2

)

(φ− φh)n‖20,Γ . ‖(K +
I

2
)(φ− φh)‖20,Γ . ‖φ− φh‖20,Γ.

Thus
Rh3 . hmax,Γ

(

‖σ(u− uh)‖20,Γ + ‖φ− φh‖20,Γ + ‖φ− φh‖2−1,Γ

)

. �

Lemma I.6. Let Ih : C(Γ) → Sh denote the Lagrange interpolation operator then there holds

Rh4 .hmax,Γ‖u− uh‖20,Γ + hmax,Γ‖φ− φh‖21/2,Γ

+
hmax,Γ

hmin,Γ
‖Ihφ− φ‖21/2,Γ +

hmax,Γ

hmin,Γ
‖φ− φh‖21/2,Γ,

(31)

where hmax,Γ and hmin,Γ are the maximum and minimum length of the regular decomposition
SΓ,h̃ of Γ, respectively.

Proof. Noting that 1
ρ0ω2

∂p0

∂n = u · n− 1
ρ0ω2 ( (K

′ − I
2 )− αW )φh we obtain in each s ∈ SΓ,h̃

∥

∥−
1

ρ0ω2

∂p0

∂n
+ uh · n−

1

ρ0ω2
( (K ′ −

I

2
)− αW )φh

∥

∥

2

0,s

. ‖(u− uh) · n‖20,s + ‖
(

K ′ −
I

2

)

(φ− φh)‖20,s + ‖αW (φ− φh)‖20,s.

(32)
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Summing the estimate (32) over all elements s ∈ SΓ,h̃ we obtain

Rh4 .hmax,Γ

(

‖ρ0ω
2(u− uh) · n‖20,Γ + ‖

(

K ′ −
I

2

)

(φ − φh)‖20,Γ + ‖αW (φ− φh)‖20,Γ

)

,

Since K ′ : H−1/2+s̃(Γ) → H−1/2+s̃(Γ) and W : H1/2+s̃(Γ) → H−1/2+s̃(Γ) are continuous
mappings for s̃ ∈ [−1/2, 1/2], we have that

‖αW (φ− φh)‖20,Γ . ‖φ− φh‖21,Γ, ‖
(

K ′ −
I

2

)

(φ− φh)‖20,Γ . ‖φ− φh‖20,Γ. (33)

The triangle inequality gives

‖φ− φh‖21,Γ ≤ ‖φ− Ihφ‖
2
1,Γ + ‖Ihφ− φh‖21,Γ,

since (Ihφ− φh) ∈ B
h we can apply the inverse Assumption I.4

‖Ihφ− φh‖21,Γ ≤ h−1
min,Γ‖Ihφ− φh‖21

2
,Γ ≤ h−1

min,Γ(‖Ihφ− φ‖21
2
,Γ + ‖φ− φh‖21

2
,Γ). (34)

Thus

Rh4 . hmax,Γ

(

‖u− uh‖20,Γ + ‖φ− φh‖20,Γ

)

+
hmax,Γ

hmin,Γ

(

‖Ihφ− φh‖21/2,Γ + ‖φ− φh‖21/2,Γ

)

.
�

Now, we are ready to establish an upper bound for all indicators. Taking into account the
results given in Lemmas I.3 - I.6 it follows the following efficiency result of the error estimator
for the formulation (V P1).

Theorem I.7. Let (u, φ) ∈ H1 be the solution of problem (V P1) and (uh, φh) ∈ Hh
1 be the

solution of the discrete problem (V P h1 ). Then there holds the following efficiency result
(

Rh1 +Rh2 +Rh3 +Rh4
)

. ‖σ(u− uh)‖20,Ω + hmax,Ω‖σ(u− uh)‖20,Γ

+ h2max,Ω‖u− uh‖20,Ω + h2max,Ω‖u‖
2
0,Ω + hmax,Γ‖(u− uh)‖20,Γ

+ hmax,Γ‖φ− φh‖20,Γ + hmax,Γ‖φ− φh‖2−1,Γ

+
hmax,Γ

hmin,Γ
‖Ihφ− φ‖21/2,Γ +

hmax,Γ

hmin,Γ
‖φ− φh‖21/2,Γ,

where hmax,Ω is the maximum length of the regular decomposition Th of Ω and hmax,Γ, hmin,Γ

are the maximum and minimum length of the regular decomposition SΓ,h̃ of Γ, respectively.

Remark I.8. Let us consider quasi-uniform meshes on Ω and their boundary Γ, i.e., meshes
for which there exist constants c1, c2 > 0, independent of the meshsize, such that

1 ≤
hmax,Ω

hmin,Ω
≤ c1, 1 ≤

hmax,Γ

hmin,Γ
≤ c2. (35)

Using regularity assumptions on the solution, i.e., (u, φ) ∈ [H2(Ω)]d × H3/2(Γ) and the
approximation properties of the Lagrangian interpolation operator yield

‖φ− Ihφ‖
2
1/2,Γ . h2max,Γ‖φ‖

2
3/2,Γ,

hmax,Γ‖φ− φh‖20,Γ . h4max,Γ‖φ‖
2
3/2,Γ,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



FE/BE FOR A FLUID-STRUCTURE INTERACTION PROBLEM 25

hmax,Γ‖φ− φh‖2−1,Γ . h6max,Γ‖φ‖
2
3/2,Γ.

According to Carstensen [24, p. 318]) we expect that exists h0 > 0 such that for all h ≤ h0

ch2max,Γ ≤ ‖φ− φh‖21/2,Γ, ch2max,Ω ≤ ‖u− uh‖21,Ω. (36)

Thus, using (35) and (36)

hmax,Γ

hmin,Γ
‖Ihφ− φ‖21/2,Γ + hmax,Γ‖φ− φh‖20,Γ + hmax,Γ‖φ− φh‖2−1,Γ

. h2max,Γ‖φ‖
2
3/2,Γ + h4max,Γ‖φ‖

2
3/2,Γ + h6max,Γ‖φ‖

2
3/2,Γ

. h2max,Γ‖φ‖
2
3/2,Γ

. ‖φ− φh‖20,Γ,

(37)

and

‖σ(u− uh)‖20,Ω + hmax,Ω‖σ(u− uh)‖20,Γ + h2max,Ω‖u− uh‖20,Ω

+ hmax,Γ‖(u− uh)‖20,Γ + h2max,Ω‖u‖
2
0,Ω

. ‖σ(u− uh)‖20,Ω + ‖u− uh‖21,Ω . ‖u− uh‖21,Ω.

(38)

Together with Theorem I.7, (37) and (38) we get

Rh1 +Rh2 +Rh3 +Rh4 . ‖u− uh‖21,Ω + ‖φ− φh‖21/2,Γ.

For formulation (V P2) an analogous efficiency estimate can be shown and is omitted for
brevity.
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