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Relations among fidelity, cross-form-factor (i.e., parametric level correlations), and level velocity
correlations are found both by deriving a Ward identity in a two-matrix model and by comparing exact
results, using supersymmetry techniques, in the framework of random matrix theory. A power law decay
near Heisenberg time, as a function of the relevant parameter, is shown to be at the root of revivals recently
discovered for fidelity decay. For cross-form-factors the revivals are illustrated by a numerical study of a
multiply kicked Ising spin chain.
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Fidelity decay presently attracts considerable attention
[1]. It measures the change of quantum dynamics of a state
under a modification of the Hamiltonian. In quantum in-
formation, fidelity measures the deviation between a
mathematical algorithm and its physical implementation.
From a different point of view, important insight into the
properties of the underlying systems is provided by the
studies of correlations between spectra of random and/or
chaotic Hamiltonians which differ by a parameter-
dependent perturbation [2]. Since statistical properties of
fidelity decay in random or chaotic systems involve both
spectra and eigenfunctions of the original and perturbed
Hamiltonians, the existence of any connections between
fidelity and purely spectral correlations is not a priori
obvious.

Random matrix theory (RMT) has been successful in
describing quantum many-body systems and as a model for
the spectral properties of single particle systems whose
classical analogue is chaotic [3]. Within RMT fidelity
was analyzed in linear response approximation [4] and
both fidelity [5–7] and parametric correlations [8] were
calculated exactly using the supersymmetry method. An
unexpected fidelity revival at Heisenberg time was encoun-
tered [5] within RMT and confirmed in a dynamical
coupled spin chain model [9].

Earlier, differential relations between parametric spec-
tral correlations and parametric density correlations were
established [10,11]. By relating the latter to the fidelity
amplitude via Fourier transform, we show in this Letter
that the existence of these relations opens a crucial insight
into the properties of fidelity decay. By analyzing the
characteristic features of the parametric correlations in
the time domain, the cross-form-factor, we discover a
new, simple interpretation of the previously puzzling phe-
nomenon of revival [5]. These relations follow directly
from the basic definitions and symmetries of the under-
lying matrix models, being essentially Ward identities. We
show that they are valid under very general assumptions.
No explicit (e.g., supersymmetric) calculation is required;

however, they rely on the universality of the parametric
spectral correlations at the scale of mean level spacing. We
thus explain the origin of various relations connecting
spectral and wave-function correlations, and establish a
unified framework for their analysis and generalizations.
A relation between fidelity decay and level velocity corre-
lation function is given. The latter is important from the
experimental point of view, being used for independent
access to system parameters. We confirm the general re-
sults comparing fidelity decay and cross-form-factors in
RMT. We illustrate our analytical results with a numerical
study of a multiply kicked Ising spin chain.

We consider Hamiltonians modeled by N � N matrices

 H���� � H � �V=2; (1)

where H and V are independently drawn from ensembles
of the same symmetry. In particular, V is drawn from the
Gaussian orthogonal ensemble (GOE), the Gaussian uni-
tary ensemble (GUE), or the Gaussian symplectic en-
semble (GSE) ensembles of RMT, labeled � � 1; 2; 4.
The ensemble average over both is indicated by angular
brackets. It is convenient to fix the variances as hHijHkli �

D�1hVijVkliwhereD is the mean level spacing ofH��0� in
the energy region of interest. In the RMT case, D � �2=N
in the center of the spectrum. The mean level spacing is
then � independent up to corrections of order 1=N. By
construction,H���� is in the same symmetry class asH for
any �.

The parametric two-level correlation function is defined
as

 

~R��E
�; E�; �� �

X
n;m

h��E� � ��n ������E
� � ��m����i:

(2)

It is mapped onto a dimensionless energy scale, where the
mean level spacing is rescaled to unity. One has

 

~X ��r; �� � lim
N!1

D2 ~R��E�; E�; ��; (3)
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which solely depends on the difference r � �E� � E��=D.
The cross-form-factor is obtained as a Fourier transform

 

~K ��t; �� �
Z �1
�1
�1� ~X��r; ��	e2�{trdr; t > 0: (4)

Time t is measured in units of Heisenberg time tH � D�1.
Fidelity decay is expressed via the echo operator [1]

 M�t; �� � exp�{2�tH����=D	 exp��{2�tH����=D	:

(5)

Its expectation value with a given state is the fidelity
amplitude and its average

 f��t; �� �
1

N
trhM�t; ��i (6)

is a measure for the difference in the two time evolutions as
a function of �.

The functions in Eq. (3) were calculated exactly with the
supersymmetry method [8] for � � 1; 2; 4. The Fourier
transforms are (see also [12])
 

~K1�t; �� �
Z t

max�0;t�1�
du

Z u

0
dv

2t2�t� u��1� t� u�

�v2 � t2�2

�
exp��2�2�2�2ut� t� t2 � v2	��������������������������������������������������������������
�u2 � v2��u2 � 2u� 1� v2�

p ;

~K2�t; �� �
exp��2�2�2t1���t�1��

2�2�2t
sinh�2�2�2t2���t�1��;

~K4�t; �� � t2
Z �1

�1
du

Z 1�juj

0
dv
�u� t�2 � 1

�t2 � v2�2

�
v��u� 1� t� exp���2�2�t2 � v2 � 2tu	�����������������������������������������������������������������

��u� 1�2 � v2	��u� 1�2 � v2	
p ;

(7)

with Heaviside’s � function. For � � 0 the cross-form-
factors reduce to the standard form factors K��t� [3], i.e.,
~K��t; 0� � K��t�. In Fig. 1 we show ~K��t; �� versus time t
for two values of �. For � � 0:1, the correlations vanish as
t! 1. A second peak develops in the GSE case for � � 1
at t � 2. The singularity at t � 1 persists. For the GOE and
for the GUE cases finite peaks appear at t � 1 but not at
multiples thereof. For all ensembles another peak appears
for small times t
 1. Its location scales asymptotically
with ��2.

The peak appearing at t � 1 for large � clearly indicates
that here the correlations decay more slowly as a function
of � than at all other times t. We study this in more detail
by an asymptotic analysis in � of the exact integral ex-
pressions (7). We calculate the weight W��t; �� �

�2
R
t���2

t���2
~K��t0; ��dt0 of the peaks at t � 1 and, for the

GSE, also at t � 2. In contrast to the peak height the
weight is well defined for all times for all three ensembles.
We find

 W��1; �� / �
�2�4���=� �O���8=�� (8)

and W4�2; �� / �
�6. The weight of the first peak t � 0

scales as ��2 independently of the ensemble. These decays
are governed by power laws in �while they are exponential
for all other times. We shall see below that the behavior of
the cross-form-factor at t � 1 is directly related to fidelity
revivals, which for the GSE also occur at t � 2.

For the classical ensembles K��t� is nonanalytic at t � 1
[3]. The degree D�g; x� of nonanalyticity of a function g�x�
at x is defined as the smallest integer D for which the Dth
derivative g�D� is discontinuous at x. For the form factor
we find D�K4; 1� � 0, D�K2; 1� � 1, and D�K1; 1� �
D�K4; 2� � 3. For typical times we find D�K�; t� � 1,
because K��t� is analytic. We thus arrive at a relation
between the asymptotic behavior of W��t; �� for large
perturbation to the degree of nonanalyticity of K��t�which
reads

 W��t; �� / ��2D�K�;t� � � � � ; t > 0: (9)

We conjecture that this relation also holds for arbitrary
� � 1; 2; 4.

We use the multiply kicked Ising (MKI) spin chain
proposed in [9,13] to illustrate the revival in the cross-
form-factor. The MKI spin chain is a periodic 1D array of
L spins 1=2 with antiferromagnetic nearest-neighbor Ising
interaction of unit strength and periodic boundary condi-
tions. Each spin receives periodically two different kicks of
instantaneous magnetic field pulses. The time-reversal

FIG. 1 (color online). Cross-form-factor (black) and fidelity
[gray (red)] versus time for two different values �. The results
for the three Gaussian ensembles � � 1; 2; 4 are given as thick
solid, thin solid, and dashed lines, respectively.
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breaking Floquet operator of the system is UMKI �

UIU
�1�
K UIU

�2�
K , where UI is the time evolution operator of

the unkicked spin chain and U�n�K � exp��{
P
j
~b�n� � ~�j�

(n � 1; 2) describes each magnetic pulse with a dimen-
sionless magnetic field ~b�n�. Here ~�j are the Pauli operators
for particle j. The translational symmetry ( ~�j ! ~�j�1)
foliates the space in different symmetry sectors. For the
choice ~b�1� � �0; 1; 1� and ~b�2� � �1:4; 0; 1:4� the spectral
statistics in most symmetry sectors display excellent agree-
ment with the GUE. We introduce an additional magnetic
pulse of strength � in z direction as a perturbation. We
define U� � UMKI exp�{�

PL�1
j�0 �

z
j� and calculate the

cross-form-factor of UMKI and U� using direct diagonal-
ization, omitting the problematic sectors. The perturbation
strength � can be calculated from � using the correlation
functions of the perturbing operator [1]. Details are given
elsewhere.

In Fig. 2 we compare results of this model with RMT
results of Eq. (7). We see good agreement with the theo-
retical result, up to statistical fluctuations, measured by the
imaginary part. In particular the peak at t � 1 is observed.

We now derive the announced differential relations
connecting the cross-form-factor with fidelity, deferring
the reader to a follow-up paper for more details.
Consider a general 4-point parametric correlation function
F��;	��z1; z2� � hF ��;	��z1; z2;H�; H��i defined as

 F��;	��z1; z2� �

��
1

z1 �H�

�
��

�
1

z2 �H�

�
	�

�
: (10)

The definition of the angular brackets is now expanded to
denote either the average over an arbitrary matrix ensemble
with measure d
�H� or the energy averaging over a spec-
tral window of an individual quantum chaotic system. We

do not require d
�H� to be Gaussian or even rotationally
invariant. The distribution of V, on the other hand, is
required to be Gaussian in order to ensure the existence
of the announced differential relations at finite order [see
Eq. (16) below]. The Fourier transform of fidelity ampli-
tude corresponds to F��;�� and parametric spectral corre-
lator corresponds to F��;��, with a summation over double
indices. Introducing H1;2 via ��H1;2 �H�����, Fourier
transforming the matrix � functions and integrating over
V, the averages are rewritten as
 

hF i �
Z
d�1d�2d
�H�dH1dH2

� etr�{�1�H1�H��{�2�H2�H����2D2=4����2��1�
2	F ; (11)

where the symmetry class of the matrices �1, �2 corre-
sponds to the symmetry class of H, and multiple factors of
2� are absorbed into the definition of d�1;2.

The invariance of the flat integration measures dH1;2

with respect to independent shifts in H1 and H2 implies

 

�
tr
�
@
@H1

�
@
@H2

�
2
F ��;��

�
� �htr��1 ��2�

2F ��;��i

(12)

The full measure in Eq. (11) is also approximately
invariant under a simultaneous shift of H1 and H2. The
violation of this symmetry stems from the noninvariance of
d
�H� under the shifts ofH. However, universality implies
that the correlation functions depend on such shifts only
through the average density of states and level velocity
variance [8]. This dependence is thus manifested only on
time scales much shorter than tH, which is of interest here.
In invariant unitary RMT ensembles universality under
shifts was shown in [14]. Although not yet proved in
general, no violations of this universality are known. In
particular, universality follows automatically in models
which allow for field theoretical representations of corre-
lation functions [15]. With these caveats we can set

 

�
tr
�
@
@H1

�
@
@H2

�
2
F ��;��

�
� 0 (13)

and combine with Eq. (12) to

 4
�

tr
@
@H1

@
@H2

F ��;��

�
� htr��1 ��2�

2F ��;��i: (14)

Using

 

�
tr

@
@H1

@
@H2

F ��;��

�
�

@2

@z1@z2
F��;��; (15)

 htr��1 ��2�
2F ��;��i � �

4�

D2

@

@�2 F��;�� (16)

and Fourier transforming F, we finally show that

FIG. 2 (color online). The cross correlation function for the
MKI model with L � 18. Filled (empty) triangles correspond to
the real (imaginary) part of the cross correlation. The statistical
error (measured by the imaginary part) is small enough to
observe clearly the peak. The theoretical expectation Eq. (7) is
plotted as a thick curve.
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@

@�2
~K��t; �� � �

4�2t2

�
f��t; ��; (17)

under very general assumptions. The averaged fidelity
amplitude has been calculated in Ref. [5] for the GOE
and the GUE. For the GSE,

 f4�t; �� �
Z �1

�1
du

Z 1�juj

0
dv
�u� t�2 � 1

�t2 � v2�2
jvj��u� 1� t�

�
�t2 � v2 � 2tu� exp���2�2�t2 � v2 � 2tu	�����������������������������������������������������������������

��u� 1�2 � v2	��u� 1�2 � v2	
p :

(18)

A direct comparison of the exact expressions for ~K��t; ��
obtained in the present contribution and of the ones for
f��t; �� in Ref. [5] and in Eq. (18) confirms the validity of
Eq. (17) in the universal RMT regime (although we stress
that it is valid for any disordered or chaotic model which
exhibits a separation of scales between the oscillatory local
and smooth global behavior of spectral statistics).

Relation (17) allows us to view fidelity revival at
Heisenberg time tH as being rooted in the algebraic decay
of the cross-form-factor. Furthermore, due to the estab-
lished relations, power law decay as a function of � must
also hold for fidelity at tH and, for the GSE, at 2tH. This
could also have been derived directly from the exact
equations.

In Fig. 1, we show the fidelity amplitude. Similar to the
behavior of the cross-form-factor, a peak at t � 1 appears
for all three ensembles [5], and for increasing � the peaks
become more and more pronounced. In the GSE case, a
second peak emerges at t � 2. This peak was not seen in
the numerics of [5] as it was beyond numerical accuracy.

Relation (17) is, essentially, a Ward identity associated
with the action (11). It immediately allows one to establish
a connection between fidelity amplitude and the Fourier
transform of the level velocity correlator C�t; ��, which is
related to ~K by a Ward identity �4�2t2C�t; �� �
�@2=@�2� ~K�t; �� (see, e.g., [16]). As seen from Eq. (11),
~K is a function of �2; it follows from (17) after a short
calculation that

 �C�t; �� �
�
2� 4�2 @

@�2

�
f�t; ��: (19)

To summarize, we established relations between cross-
form-factor and level velocities on the one hand and fidel-
ity decay on the other hand. They hold in any system
displaying universality of spectral correlations. The
present formalism can be used to construct a whole family
of Ward identities relating apparently unconnected corre-
lation functions. One instance is generalizations of the
‘‘optical theorem’’ found in [11], which relates fidelity

amplitude for small perturbations to the spectral form
factor K��t�. Further, the results presented here do not
apply to crossover regimes, where V changes the symmetry
ofH. One such relation was obtained using supersymmetry
methods in [10]. A broader set of differential relations,
generalizing those of [10], can be obtained by utilizing
different transformation properties of the action Eq. (11)
under symmetry-preserving and symmetry-violating shifts.
Details of these and other hierarchies of relations will be
presented elsewhere.

Our findings make it possible to explain features of one
quantity via the other, i.e., the characteristics of fidelity
decay in terms of the cross-form-factor or vice versa. In
particular, the revivals of both quantities are linked in this
way. We studied in detail the decay laws of the correspond-
ing peaks. Further peaks are not possible. The very occur-
rence of the peaks in the cross-form-factors is neither
trivial nor intuitive and will be discussed in elsewhere.
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