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• We introduce a novel network evolution process that models a network of citations.
• Links are made from new nodes tom random nodes and l neighbours of each one.
• The degree distribution is scale-free and the power-law exponent is (2l + 1)/l.
• By selecting l and m the clustering can be tuned between 0 and 1.
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a b s t r a c t

We introduce a network evolution process motivated by the network of citations in the
scientific literature. In each iteration of the process a node is born and directed links are
created from the new node to a set of target nodes already in the network. This set includes
m ‘‘ambassador’’ nodes and l of each ambassador’s descendants wherem and l are random
variables selected from any choice of distributions pl and qm. The process mimics the
tendency of authors to cite varying numbers of papers included in the bibliographies of the
other papers they cite. We show that the degree distributions of the networks generated
after a large number of iterations are scale-free and derive an expression for the power-law
exponent. In a particular case of themodel where the number of ambassadors is always the
constantm and the number of selected descendants fromeach ambassador is the constant l,
the power-law exponent is (2l+1)/l. For this examplewe derive expressions for the degree
distribution and clustering coefficient in terms of l and m. We conclude that the proposed
model can be tuned to have the same power law exponent and clustering coefficient of a
broad range of the scale-free distributions that have been studied empirically.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Networks, in recent years, have become ubiquitous in the modelling of complex systems. Many fields of study, including
for example biology [1], economics [2], and epidemiology [3], employ network based models to mimic the large numbers
of agents that interact in the systems they study. It is often found that with the aid of an appropriate network model, the
macroscopic behaviour of a complex systemcan be reproducedwith very fewassumptions beingmade about the constituent
agents themselves. Typically the system being modelled will be reduced to a set of vertices and a set of vertex pairs called
edges. Vertices and edges may represent things like web pages and the hyper-links between them [4], people and their
friendships [5], or transport hubs and the transport links between them [6]. In many cases the structure of the network
exhibits non-trivial statistical properties such as a high level of clustering, short average path lengths and small numbers
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(a) The reference graph of a real paper. (b) A typical set of nodes selected in one iteration
of the model.

Fig. 1. (a) Shows the sub-network know as the reference graph of a real paper. The nodes represent the papers it cites and the edges represent the citations
between them, it is highly clustered andmany of the nodes are descendants of others. Source: Ref. [23]. (b) Shows a typical sub-network structure of nodes
that the proposed model links to, in this case three nodes are selected initially and 3, 5, and 6 of their descendants are also selected, the dotted lines
represent the other links between descendants.

of highly connected vertices. An example that is frequently used to illustrate these properties is the network of citations in
the scientific literature. Here we present a stochastic model that closely resembles this network but also has the potential
to have many other applications.

A crude but arguably effective measure of the worth of a scientific paper is the number citations made to it from other
existing scientific articles. Empirical studies have shown that the number of articles with k citations (i.e. cited by k other
articles) is proportional to k−3 [7,8]. This distribution has certain properties we might expect, namely that the vast majority
of papers written have few citations, creating little or no impact on future research, whereas a very small number of papers
are extremely significant and have a very large number of citations. Bymodelling each paper as a node (vertex) and drawing
directed edges from each paper to the papers it cites, it has been shown that the correct degree distribution is reproduced
using preferential attachment; the process of creating nodes sequentially and linking them to nodes selected randomly with
probability proportional to their degree (originally discussed in Ref. [9] although the termwas coined later in Ref. [10]). The
implication of this result is that authors of scientific articles are more likely to choose to cite articles that are already well
cited rather than ones that have few or no citations. The attractiveness of highly connected nodes can be explained by a
number of processes for example redirection [11], where nodes are selected randomly and a link is formed between one of
its neighbours and a new node, and random walk models [12–14] where the new node is linked to the nodes occupied by
random walkers on the network.

There is a growing literature offering more accurate representations of the way in which the citation network develops,
much of this work can be found in the fields of Scientometrics, Bibliometrics, Informetrics and Webometrics [15–17]. A
significant amount has been written concerning models that not only agree with the empirical data regarding degree
distributions but also agree with other properties, for example in Ref. [17] the evolution of the citation network model
is motivated by a coupling with the network of co-authors, other models account for the effect of time on the probability of
receiving a citation [18,19]. Themodel in Ref. [20] introduces tunable clustering (quantified by the clustering coefficient [21])
by extending the preferential attachment model with an additional Triad Formation (TF) step. For each node that is
introduced to the network, a node is selected by preferential attachment and linked to, then each neighbouring node is
selected with probability p and also linked to from the new node, resulting in a triangle (triad) of edges. The forest fire
model described in Ref. [22] extends the Triad Formation model by selecting multiple neighbours of the initially selected
node, the process continues by then linking to a number of the neighbours of those neighbours and so on, at each stage a
random variable from the binomial distribution determines the number of neighbours selected. In Ref. [23] the forest fire
model, along with other models that attempt to mimic the network of citations in even greater detail, is tested against
empirical data. The authors also examine the way the articles cited by any one paper, call it i, relate to one another forming
a sub-network called a reference graph of i (see Fig. 1(a)). They observed that a clique structure is prevalent, i.e small groups
of nodes that all link to each other, and incorporated this finding into their own model.

Much of the literature suggests that the high levels of clustering found in citation networks is a consequence of each
author’s choice to cite papers that are found in the bibliographies the other papers they cite. This has been observed empir-
ically [24], and modelled using a TF process where the initial nodes are selected randomly (rather than preferentially) [25].
A power-law degree distribution was found with an exponent that varies depending on the Triad Formation probability p,
however, this model does not exhibit the exponential out-degree distribution observed in the data [26].

The models mentioned above and those considered in this paper belong to the class of evolving directed clustered scale-
free networks that have applications beyond citation networks, the world-wide web being another well studied example. In
these models the distributions of in-degree and out-degree are treated separately, often driven by a preferential linking
mechanism where the probability of adding an edge from a node i is proportional to the out-degree of i, similarly the
probability that the link will end at node j is proportional to the in-degree of j [27]. Correlations between the in-degree and
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Fig. 2. The new node j attaches to 2 randomly selected nodes i1 and i2 as well as 2 randomly descendants shown here in black, the dashed lines represent
the new edges that are added in this iteration whereas the solid ones were added previously. This example illustrates one iteration in the growth process
when m = 2 and l = 2.

out-degree of nodes in such networks have been shown to emerge [28]. A detail of citation networks that makes analysis
substantially easier is that the out-degree of a node i is fixed from the moment it is created. Consequently the evolution of
the out-degree distribution can be disregarded,moreoverwe can control the out-degree distribution through an appropriate
parametrization and ultimately answer the question of how the distribution of bibliography sizes affects the topology of the
network.

In this paper we introduce a variant of the TFmodel that uses a different parameter set to those previously studied. Using
the distributions for the number of initial citations and the number of copied citations (which together give the out-degree
distribution) as parameters, we show that the networks created by this process may have power-law in-degree distribution
with any exponent greater than 2, and a clustering coefficient that ranges between 0 and 1. In Section 2 we describe the
stochastic process that iteratively grows the network. We describe a simple case of the model in Section 3 and solve for the
power law exponent of the in-degree distribution in terms of two input parameters. In Section 4we formulate an expression
for the in-degree distribution in terms of two input probability distributions then in Section 5 we find an expression for
the clustering coefficient for the model in Section 3. In Section 6 we present numerical results that confirm the results of
Sections 3 and 4. In Section 7 we discuss the strengths of our models and suggest how this work might be continued.

2. The model

Starting from a finite random network, at each iteration a node j is introduced and directed links are formed between j
and a set of nodes that already exist in the network. Letting pl and qm be the probability distributions of the discrete random
variables l andm, links are formed by the following process:

1. The valuem is selected with probability qm and steps 2 and 3 are repeated am times.
2. The value l is selectedwith probability pl, a node i in the network is randomly selected from thosewhich have out-degree

l or greater, the edge j → i is added. Borrowing the terminology used in Ref. [22] we will refer to i as an ‘‘ambassador’’.
3. l of i’s descendants are randomly selected and directed edges are added from j to each of these.

We are primarily interested in expressing the degree distributions for both incoming and outgoing edges and the clustering
coefficient of the network as the number of iterations grows very large in terms of pl and qm (l,m ∈ N). In the next section
we solve for a simplified model where l and m are fixed (i.e. pr = δrl and qr = δrm), we present the general solution in the
section that follows.

3. Attachment tom random nodes and l of each of their descendants

We examine the network generated by the process described in Section 2 when pr = δrl and qr = δrm, in this section we
derive the degree distribution of this network. In this simplifiedmodel the growth of the network depends only on the fixed
values l andm, thus the process can be described concisely as follows; in each iteration,m ambassador nodes are randomly
selected, l descendants of each ambassador are also selected, then a new node j is attached to each of the selected nodes
(see Fig. 2). We are interested in calculating the probability P(k) of finding a node with in-degree k, in the citation model
this represents the proportion of articles that are cited by k other papers. Let N be the total number of nodes, N increases by
1 with each iteration and every node has an out-degree ofm(l+ 1), the number of edges as N grows large is E = m(l+ 1)N .
Consider a typical node iwith in-degree k. There are two possible eventswhichmay cause the degree of i to increase to k+1:
i can either be selected as one of the m ambassador nodes, or it can be selected as a descendant of another node j. In any
given iteration, i will be selected as an ambassador with probability m/N . Alternatively j will be selected as an ambassador
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with probabilitym/N and then iwill be one of the l selected descendants of jwith probability l/m(l + 1). Let P(i; k) denote
the probability that in one iteration a node i with degree k is selected. Since there are k potential ancestors to i,

P(i; k) =
m
N


1 +

lk
m(l + 1)


. (1)

It is possible for the same node to be selected two or more times in one iteration, for example if two of the selected
ambassador nodes are a distance of one or two edges fromeach other. Since this possibility becomes less likely asN increases
we do not account for it in our calculations. Let Ik be the number of nodes with in-degree k. For k ≥ 1, Ik changes over time
according to the rate equation

∂ Ik
∂N

=
m
N


1 +

l(k − 1)
m(l + 1)


Ik−1 −


1 +

lk
m(l + 1)


Ik


. (2)

The first term on the right hand side accounts for the creation of a node of in-degree k that occurs when one of the new
edges attaches to a node of in-degree k − 1, the second term accounts for the destruction of a node of in-degree k when it
is attached to by one of the new edges. For k = 0 the rate equation is

∂ I0
∂N

= 1 −
m
N
I0. (3)

We are interested in finding Pin(k) the probability of a node having in-degree kwhenN is very large. By assuming P(k) grows
linearly with N when N is large, we substitute Ik = NPin(k) into Eq. (2) to find

l + 1 + m(l + 1)
l

+ k

Pin(k) =


m(l + 1) − l

l
+ k


Pin(k − 1) (4)

for l ≠ 0. From Eq. (3) we also find

Pin(0) =
1

1 + m
(5)

and thus the in-degree distribution is expressed

Pin(k) =
1

m + 1
Γ [(2l + 1 + m(l + 1))/l]Γ [k + m(l + 1)/l]
Γ [m(l + 1)/l]Γ [k + (2l + 1 + m(l + 1))/l]

. (6)

For large enough values of k, Pin(k) has power-law form

Pin(k) ∼ k−γ where γ =
2l + 1

l
. (7)

4. Solution to the general model

Let Pout(s) denote the proportion of nodes in the network that have out-degree s. Note that at the time of its creation, the
out-degree of a node is fixed and, unlike its in-degree, does not change over time. Therefore, for sufficiently large networks,
Pout(s) is equal to the probability of creating a node with out-degree swithin a single iteration. This can be written

Pout(s) =

∞
n=1

qnP


n

i=1

xi = s


(8)

where the xi are integer random variables that equal l + 1 with probability pl.
To calculate the in-degree distributionwe again construct a rate equation from the probability that the degree of a typical

node i will increase in one iteration. Let Tl be the number of nodes have out-degree greater or equal to l − 1, for the node
i to be randomly selected as the ambassador in step 2 it must be one of these nodes. The probability that this is the case,
multiplied by the probability that i is the one node randomly selected from the Tl nodes available, forms the probability that
i is the ambassador given that l is the number of descendants chosen in step 2. Summing over all values of l returns Pa(i) the
probability that any node i is selected as an ambassador, thus

Pa(i) =

∞
l=1

pl
Tl
N

×
1
Tl

=
1
N

. (9)

Suppose i has in-degree k, and that as per step 2 only nodes with out-degree l or greater can be selected as an ambassador.
Suppose also that the ambassador is an ancestor of i and has out-degree s where s ≥ l (see Fig. 3). The expectation of the
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Fig. 3. At each time-step i can be selected as the initial node, alternatively one of the black nodes may be selected and then i is selected as one of its
descendants.

number of nodes that satisfy these conditions is kPout(s). The probability that each one is selected is 1/N given by Eq. (9).
Once selected, the probability that of the s descendants i is one of those selected in Step 3, is l/s. Taking the product and
summing over all l and all possible values of s returns Pd(i; k) the probability that any node i with degree k is selected as a
descendant, therefore

Pd(i; k) =
k
N

Φ (10)

where

Φ(p, q) =

∞
l=1

∞
s=l

lplPout(s)
s

. (11)

The probability of a node iwith degree k being linked to during step 2 or 3 of the process is Pa(i) + Pd(i; k). Summing again
over all possible values ofm, the probability that the degree of iwill increase by 1 during any iteration is

P(i; k) =
⟨m⟩

N
(1 + kΦ) (12)

where

⟨m⟩ =

∞
m=1

mqm. (13)

The associated rate equation is constructed in exactly the same way as Eq. (2), thus

∂ Ik
∂N

=
⟨m⟩

N
[(1 + (k − 1)Φ)Ik−1 − (1 + kΦ)Ik]. (14)

Letting Pin(k) = Ik/N be the proportion of nodes that have in-degree at large N , Eq. (14) becomes
1 + ⟨m⟩

⟨m⟩Φ
+ k


Pin(k) =


1 − Φ

Φ
+ k


Pin(k − 1). (15)

The rate equation for I0 solves to find P(0) = 1/(1 + ⟨m⟩) and thus

Pin(k) =
1

⟨m⟩ + 1
Γ [(1 + ⟨m⟩)/⟨m⟩Φ]Γ [k + (1 − Φ)/Φ]

Γ [(1 − Φ)/Φ]Γ [k + (1 + ⟨m⟩)/⟨m⟩Φ]
. (16)

For large values of k, Pin(k) has a power-law form

Pin(k) ∼ k−γ where γ = 1 +
1

⟨m⟩Φ
. (17)

5. Clustering

The clustering coefficient of a node i is defined as the number of edges between the neighbours of i divided by the number
of pairs of nodes from the neighbours of i. If node i has d neighbours (ancestors and descendants) then this is

Ci =
2Ei

d(d − 1)
(18)
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where Ei is the number of edges between the neighbours of i. Let E(k) be the expectation of Ei when i has in-degree k, also
letΘ(k) be the expectation of the number of times i has been selected as the ambassador node during step 2 of any previous
iteration. From Eqs. (9) and (10) we see that the kth edge is (k − 1)Φ times more likely to be added as a result of one of i’s
neighbours being an ambassador rather than i being selected as an ambassador itself, so

Θ(k) =

k−1
i=0

1
1 + iΦ

. (19)

We find C̄ , the mean of Ci over all nodes i in the network we studied in Section 3 where pr = δrl and qr = δrm. This is the
sum over all k of the product of Pin(k) given by Eq. (6), and C(k) the expectation of the clustering of a node of degree k.
The contribution to Ei made by each neighbour j of i depends on the way in which the link was originally created, there are
four cases to be considered. The first is where the link i → j was added when i was introduced to the network, in this case
the expected contribution to Ei is the number of edges in the reference graph of i (see Fig. 1). The second case is where i
was selected as an ambassador and l edges are added to Ei. In the third case Da edges are counted for those that were added
when iwas selected as a descendant of the ambassador jwhere the link from j to iwas originally formedwhen iwas selected
as an ambassador in a previous iteration. Lastly, Dd edges are counted for those that were added when i was selected as a
descendant of the ambassador jwhere the link from j to iwas formed when iwas originally selected as a descendant. Then

E(k) = E(0) + Θ l + (k − Θ)


Θ

k
Da +

1 − Θ

k
Dd


. (20)

When a node i is added to the network, Ei includes the edges between each ambassador node and its descendants as well
as the edges between those descendants. The probability that an edge exists between two descendants of the same node is
C(0) so the expectation of Ei is

E(0) = m

l +


l
2


C(0)


. (21)

Combining this with Eq. (18) and solving gives

C(0) =
2l

(m − 1)(l + 1)2 + 2l
. (22)

In the instance where an ambassador node j is selected and i is linked to as one of j’s descendants, the new node will link to
a further l− 1 neighbours ofm(l+ 1) − 1 possible descendants of j, those that are also neighbours of iwill be counted in Ei.
If j originally formed a link with i by selecting i as an ambassador, then l of i’s descendants are also descendants of j, hence
the expectation of the number of neighbours of i that are linked to is

Da =
l(l − 1)

m(l + 1) − 1
. (23)

If j originally formed a link with i by selecting i as the descendant of some other node, the expected number of links between
j and any of i’s neighbours is 1 + (l − 1)C(0) so the expectation of the number of i’s neighbours linked to is

Dd =
[1 + (l − 1)C(0)](l − 1)

m(l + 1) − 1
. (24)

Combining Eqs. (18)–(20), (22)–(24) gives an expression for the clustering of a node of in-degree k in terms of m and l
(l,m ≥ 1), multiplying by Pin(k) given by Eq. (6) and summing over all k gives the mean clustering for the entire network.
The clustering coefficient tends to 0 asm grows large. As l grows large the clustering also tends to 0 except whenm is equal
to one, in which case it tends to 1 (see Fig. 4).

6. Numerical results

It should be emphasized that the results found in previous sections are mean field approximations as N tends to infinity,
it therefore cannot immediately be assumed that the derived results will be a fair description of any individual network
grown following the proposed process. We consider the following:

1. Correlations between out-degree of a node and the in-degree of its descendants. Specifically in Eq. (10) where it is
assumed that the out-degree of the neighbours of node i (i.e the black nodes in Fig. 3) follow the distribution Pout(s)
regardless of the in-degree of i. In reality this might not be the case; imagine, for example, a node j with relatively large
out-degree and i as one of its descendants, selecting j as an ambassador in future iterations is relatively unlikely to result
in selecting i again unless the new node also has large out-degree (more specifically a large value of l in step 2 of the
iteration), so the expectation is for i to have few ancestors each with large out-degree (the opposite is true if the out-
degree of j is small). The effect of this has not been considered analytically, instead we show numerically that in practice
there is no significant deviation from the mean field result.
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Fig. 4. Using the formulae in Section 5 the average clustering coefficient is plotted on the vertical axis for the first 4 values ofm, against l on the horizontal
axis. The clustering tends to zero as l grows large for all values ofmwith the exception ofm = 1.

Fig. 5. The correction function F(ξ) in Eq. (25) for the simplest case of the model. Here m = 1, l = 1 and an initial condition of three nodes, one with
out-degree 2 connected to the other two. The dashed line represents the analytical prediction from Ref. [29].

2. Finite size corrections. For finite networks of size N , the existence of a largest degree kmax means the power-law degree
distribution must fail around the largest values of k. These effects have been investigated for particular classes of
preferential attachment based network [14,29]. Once the asymptotic mean field solution P(k) is known, the solution
to average degree distribution on a network of size N is

Nk(N) ≃ NP(k)F(ξ) where ξ = k/kmax. (25)

From the generated data (discussed below) we observe in Fig. 5 a similar form of scaling function F(ξ) as observed in
Refs. [14,29]. The function F(ξ) can be derived by considering the average of all possible values of Nk(N) for every N
starting from an initial value for N1(1), under the specific circumstances however, the initial conditions must be chosen
carefully for each possible choice of our parameters. It is impractical to derive F(ξ) for every possibility here, instead we
show that the model passes a suitable goodness-of-fit test even when finite size effects are neglected.

In the numerical tests we grew a network in three phases, initially a small number of nodes with large out degree are
created (the degree must be large enough to allow Tl to be non-zero for all l), then a phase of creating new nodes with a
random number of out links to randomly selected nodes already in the network, finally the process described in Section 2 is
applied for a large number of iterations. To assess the goodness-of-fit of the results in Eqs. (6) and (16)we compare the degree
distribution of a simulated network of size N to the distribution given by drawing N values from a pseudo-random number
generator adapted to output the value kwith probability given by Eq. (16). The degree distribution of the simulated network
is then compared against the mean field prediction Eq. (16) using a suitable measure of similarity, in this case we choose
the Kolmogorov–Smirnov statistic. Lastly, over a large number of trials (we chose 103) the pseudo-random distribution is
measured against the model, the p-value for this test is the proportion of trials in which the simulated data is closer to the
model (i.e. a lower KS statistic) than the random data. Here we have followed the methodology of Ref. [30], developed for
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Fig. 6. Histograms showing the numerically derived frequencies that given p-values were achieved. The networks in the figure to the left use the
parameters pr = (1/3)(δr1 + δr2 + δr3) and qr = (1/3)(δr2 + δr3 + δr4) and the networks in the figure to the right use the parameters pr = δr1
and qr = δr1 , each network has N = 103 .

Fig. 7. The number of nodes I(k) of in-degree k for each value of k, results here are taken from the simulation of the model when pr = δr3 and qr = δr4 ,
the dotted line shows the predicted result derived from Eq. (6), the right hand figure shows that the log-binned values agree very well with the prediction
with the exception of the largest values of k. This network contained 6 × 103 nodes, the first 300 were added randomly.

use in empirical studieswhere the data are not likely to be as clean as those generated in a computer simulation. The authors
suggest that a p-value greater than 0.1 is evidence enough for the model to be accepted. We ran this test for 103 networks
generated first using the pair of distributions pr = (1/3)(δr1 + δr2 + δr3) and qr = (1/3)(δr2 + δr3 + δr4) then another 103

networks using pr = δr3 and qr = δr4. Fig. 6 shows the proportion of these trials that achieved particular p-values, while
the p-value varies greatly, only a very small proportion are less than 0.1.

We ran the simulation for a large number of different distributions pl and qm and found that the numerical results agreed
with the analytically derived formulae, Figs. 7 and 8 show two typical examples. The log-binned values are the means of
Ik over a ranges of k that increases logarithmically with k. In these examples the first bin is just the first value of I1, the
second is the mean of I2 and I3, the third is the mean of the next 4 values and so on. We were able to compute the clustering
coefficient only for networks no more than approximately 103 nodes, we found that for networks where the out-degree of
the nodes is large the simulated result tended to be higher than the analytical result, this exposes the assumption in the
analytical calculations that ambassador nodes will not be close to each other in the network. This discrepancy gets smaller
as the network grows larger as one would expect.

7. Remarks

There are two particular strengths of this model that are worth highlighting. The first is tunability; the feature that a
wide range of results for the clustering and power-law exponent can be achieved by inputting the appropriate parameter
values. In the simplified model l can be tuned to achieve any exponent between 2 and 3, by adjusting m the clustering is
tunable to a restricted range of values (see Fig. 4). It is not difficult to find distributions in the full model that allow the
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Fig. 8. The in-degree from the simulation of the model when pr = (1/3)(δr1 + δr2 + δr3) and qr = (1/3)(δr2 + δr3 + δr4), the dotted line shows the
predicted result given by Eq. (16). This network contained 106 nodes, the first 103 were added randomly.

clustering to be tuned to any value between 0 and 1, however as we showed in Section 4 the exponent in the distribution
depends on bothm and l. Tunable networks are particularly useful to study processes on networks such as epidemic spread;
since the results they obtain depend largely on the topologies of the underlying networks, adjustability allows the extent
of the effects of clustering and degree distribution to be analysed in greater detail [31]. The second strength of this model
is its generality; the property that there are a wide range of parameter values that can be used as input to the model. As
there are no restrictions on the probability distributions involved it is possible to choose those that most closely match the
empirical data. A possible analysis would involve approximating the distributions p and q by measuring the distribution of
the number of citations in the bibliography of each paper in a dataset and the distribution of citations that are also included
in the bibliographies of other cited papers.
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