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SUMMARY

Repo-Man targets protein phosphatase 1 g (PP1g) to
chromatin at anaphase onset and regulates chromo-
some structure during mitotic exit. Here, we show
that a Repo-Man:PP1 complex forms in anaphase
following dephosphorylation of Repo-Man. Upon
activation, the complex localizes to chromosomes
and causes the dephosphorylation of histone H3
(Thr3, Ser10, and Ser28). In anaphase, Repo-Man
has both catalytic and structural functions that are
mediated by two separate domains. A C-terminal
domain localizes Repo-Man to bulk chromatin in
early anaphase. There, it targets PP1 for the dephos-
phorylation of histone H3 and possibly other chro-
mosomal substrates. An N-terminal domain localizes
Repo-Man to the chromosome periphery later in
anaphase. There, it is responsible for the recruitment
of nuclear components such as Importin b and
Nup153 in a PP1-independent manner. These obser-
vations identify Repo-Man as a key factor that coor-
dinates chromatin remodeling and early events of
nuclear envelope reformation during mitotic exit.

INTRODUCTION

Mitotic exit comprises a complex series of events that include

sister chromatid segregation, mitotic spindle disassembly,

nuclear envelope (NE) reformation, and chromosome deconden-

sation. Many of these events are driven by inactivation of mitotic

kinases and dephosphorylation of their substrates. For success-

ful division, these disparate events require a strict temporal and

spatial coordination (Güttinger et al., 2009).

In organisms with an open mitosis, NE reformation requires

coordination between structural changes in chromatin and

recruitment of nuclear pore complex (NPC) and membrane

components to the surface of the segregating chromosomes.

The process begins in late anaphase with the binding of NPC

proteins to chromosomes. It is completed with the recruitment

and fusion of membranes during telophase.
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The coordination of chromatin decondensation with nuclear

reassembly during mitotic exit is not well understood. One

key step is dephosphorylation of proteins modified by CDKs

and other mitotic kinases (De Wulf et al., 2009). Some of these

phosphatases are constitutively active; however, recent studies

have shown that activation of specific phosphatases is also

required for mitotic exit (Queralt and Uhlmann, 2008; De Wulf

et al., 2009).

During mitotic exit, protein phosphatase 1 (PP1) is involved in

histone dephosphorylation (Hsu et al., 2000) and NE reassembly

at the M/G1 transition (Steen et al., 2000). PP1 mutants in

Drosophila show a mitotic delay with spindle organization

defects, abnormal sister chromatid segregation, and excessive

chromosome condensation (Axton et al., 1990; Chen et al.,

2007). In Drosophila, reassembly of the NPC is blocked by the

specific PP1/PP2A inhibitor okadaic acid (OA) (Onischenko

et al., 2005). How this change in PP1 activity is regulated during

anaphase is currently unknown.

Repo-Man was identified as a nuclear protein that is a specific

regulatory subunit for PP1g (Trinkle-Mulcahy et al., 2006). Repo-

Man disperses in the cytoplasm as cells enter prophase but

relocalizes abruptly to the chromatin at anaphase onset (AO).

We previously found that CDK1-CyclinB can phosphorylate

Repo-Man in vitro and that CDK inactivation by roscovitine

causes the rapid relocalization of Repo-Man to the chromo-

somes. We identified the Repo-Man/PP1 complex as respon-

sible for inactivation of a regulator of chromosome architecture

(RCA) in anaphase (Vagnarelli et al., 2006). Thus, Repo-Man is

a candidate factor involved in preparing mitotic chromatin for

the transition to interphase.

Here we show that Repo-Man/PP1g is indeed an anaphase-

activated protein phosphatase that is regulated via Repo-Man

phosphorylation. We also identified an unexpected role for

Repo-Man as a factor that targets Importin b to chromatin

during anaphase. This occurs via a direct interaction between

the Repo-Man N-terminal region and Importin b that is nega-

tively regulated by Repo-Man phosphorylation and does not

require PP1 binding. Our studies thus reveal that Repo-Man

has a dual role in nuclear reassembly during mitotic exit. It

prepares the chromatin for decondensation by removing

mitosis-specific chromatin marks and also targets early compo-

nents of the reforming NE to the surface of the telophase

chromosomes.
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Figure 1. Repo-Man Phosphorylation Regulates the Localization and Activity of the Complex

(A) Purified GST-Repo-Man161–659 was phosphorylated in vitro by cdc2/cyclinB.

(B) Localization of GFP:Repo-Man and derivative mutants in prometaphase/metaphase. (1–3) Repo-ManWT, (4–6) Repo-ManT412A, (7–12) Repo-ManTA3; DNA

(red), GFP:Repo-Man (green), alpha-tubulin (white).

(C) Diagram of Repo-Man protein indicating (yellow) the region used for (A) and the sites where phospho null mutations were generated.

(D) Quantitation of the experiments described in (B). OA, okadaic acid. For each condition n = 50.

(E) DT40 cells carrying a LacO array integrated in a single chromosome site were transiently transfected with GFP:Laci-Repo-ManWT (green) and RFP-PP1g (red).

Repo-Man and PP1 do not colocalize in metaphase (1–4) but do colocalize in interphase (5–8). (9–12) TrAP:Repo-ManTA3 (stained green with anti-Repo-Man

antibody) recruits RFP-PP1g (red) to chromosomes in metaphase.

(F) DT40 cells transfected with Repo-ManTA3 mutant show decreased levels of H3Ser10ph, diffuse localization of INCENP, and chromosome alignment defects.

Repo-ManTA3 (white), INCENP (green), H3Ser10ph (red), DNA (blue). (1–5) untransfected cell; (6–10) transfected cell. (11–13) Cell transfected with GFP:Repo-

ManWT (11) or Repo-ManTA3 (12 and 13). Repo-Man (green), alpha-tubulin (red), and DNA (blue).
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RESULTS

CDK/Cyclin B Regulates Repo-Man Localization
and PP1 Binding
Repo-Man is phosphorylated during mitosis (Cantin et al., 2008;

Dephoure et al., 2008; Malik et al., 2009; Mayya et al., 2009;

Olsen et al., 2010), and we previously showed that the protein
Develop
can be phosphorylated in vitro by CDK1-Cyclin B (Vagnarelli

et al., 2006). We used mass spectrometry on a bacterially

expressed Repo-Man fragment encompassing the PP1-binding

domain after in vitro phosphorylation with CDK1-cyclin B to map

potential phosphorylation sites and determine their conse-

quence for the formation and regulation of the complex (Fig-

ure 1A). This analysis identified threonine 412 (T412) as the
mental Cell 21, 328–342, August 16, 2011 ª2011 Elsevier Inc. 329



Figure 2. Repo-Man Interacts with Histones and Nuclear Pore Complex Components

(A) Diagrams of TrAP:tagged Repo-ManWT and Repo-ManRAXA (PP1-nonbinding mutant).

(B) Proteins identified by mass spectrometry in the indicated pull-down experiments.

(C) Summary of SILAC results; the log2 ratio between Repo-Man plus roscovitine (anaphase) and Repo-Man minus roscovitine (prometaphase) is plotted against

the log2 ratio between Repo-Man and GFP (control)—both from roscovitine-treated cells. Nup153 was only observed in the cell cycle experiment (y axis).

(D and E) FLIM/FRET analysis for H2B:mRFP and GFP:Repo-Man.

(D) Color-coded representation of the lifetime for GFP:Repo-Man or GFP alone (donors) in the absence or presence of H2B:mRFP (acceptor).

(E) Histogram of the lifetime values measured in the different experiments. Error bars, average ± SD.

(F and G) Repo-Man premature localization to the chromosomes causes dephosphorylation of histone H3. DT40 cells were transfected with Repo-ManWT,

Repo-ManTA3, or GFP alone. Twenty-four hours later, cells were fixed and stained with the indicated antibodies.
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main residue phosphorylated by CDK1-cyclin B in vitro. Indeed,

phosphorylation of this residue, together with others, was re-

ported in a mass spectrometry atlas of mitotic phosphoproteins

(Dephoure et al., 2008; Mayya et al., 2009).

Phosphorylation of T412 regulates Repo-Man localization in

early mitosis. When this site is mutated to alanine, a fraction of

Repo-ManT412A binds prematurely to chromosomes while cells

are still in prometaphase/metaphase (Figures 1B, 4–6, and 1D).

To test whether other phosphorylated sites contribute to

Repo-Man localization, we mutated two other conserved

putative CDK sites to A: one near the N terminus (T34A), and

the other close to T412 (T419A) (Figure 1C). This triple mutant

(referred to as Repo-ManTA3) shows a more prominent localiza-

tion to the chromosomes in prometaphase (Figures 1B, 7–12,

and 1D). Importantly, the localization of Repo-ManTA3 and

Repo-ManT412A is indistinguishable from wild-type Repo-Man

after AO.

For some PP1 regulatory subunits, it has been demonstrated

that phosphorylation of residues proximal to or within the

PP1-binding sites can influence complex formation (Terrak

et al., 2004; Kim et al., 2010; Liu et al., 2010). We therefore estab-

lished a system to test whether Repo-Man binding to PP1 is

regulated by phosphorylation in vivo in early mitosis.

Repo-Man fused to GFP:Laci recruits RFP-PP1g to an array of

LacO repeats at a single chromosomal locus in interphase DT40

cells (Figure 1E, 5–8). However, we could not detect RFP-PP1g

colocalization with GFP:Laci-Repo-Man in prometaphase/meta-

phase (Figure 1E, 1–4). These findings suggest that dephosphor-

ylation of residues around the RVTFmotif (PP1-binding site) may

be required for PP1 binding to Repo-Man. Indeed, Repo-ManTA3

does recruit RFP-PP1g to chromosomes in early mitosis (Fig-

ure 1E, 9–12).

We hypothesized that bound PP1g might dephosphorylate

other sites on Repo-Man and that this might be required to allow

Repo-Man to relocalize to anaphase chromosomes. To test this

hypothesis, we generated a Repo-ManTA3 mutant where the

PP1-binding site was mutated to RAXA (Repo-ManTA3RAXA).

This blocks PP1 binding (Trinkle-Mulcahy et al., 2006). This

mutant did not localize on the chromosomes in prometaphase-

metaphase (Figure 1D). Moreover, inhibition of PP1/PP2A

activity by OA also reduced the chromosomal localization of

the Repo-ManTA3 mutant (Figure 1D).

This phosphoregulation of Repo-Man:PP1 in mitosis is func-

tionally significant. Recent findings revealed H3Thr3 phosphory-

lation to be essential for localization of the chromosomal

passenger complex (CPC) to centromeres in mitosis (Kelly

et al., 2010;Wang et al., 2010; Yamagishi et al., 2010). Therefore,

premature localization of Repo-Man:PP1 to chromosomes

would be expected to interfere with CPC function. Indeed,

INCENP was diffuse on the chromosomes in cells expressing

Repo-ManTA3 (Figure 1F, 6–10). Also, nonaligned chromosomes

were observed in transfected cells with a bipolar spindle (Fig-
(F) Prometaphases of untransfected (1, 5, 9; 3, 7, 11) or transfected (2, 6, 10; 4, 8,

(3, 4, 7, 8); GFP:Repo-ManTA3 (white) and DNA (red). (13–15) Cells were stained wi

Repo-ManTA3 (white). Arrows indicate the phospho-Aurora A staining.

(G) Quantitation of the staining from the experiments in (F). Error bars, average ±

(H) FACS analyses of DT40 cells transfected with the indicated constructs. The x

percentage of transfected cells; Median, median expression level.

Develop
ure 1F, 12–13). Similar results have been obtained in another

recent study (Qian et al., 2011).

These experiments reveal that Repo-Man phosphorylation

both promotes Repo-Man dissociation from the chromatin until

AO and ensures that Repo-Man cannot bind PP1 and target it

to substrates in early mitosis. Thus, Repo-Man/PP1 phospha-

tase holoenzyme is specifically activated on chromatin at AO.

Identification of Repo-Man-Binding Partners
in Anaphase
In order to isolate Repo-Man interactors duringmitotic exit, DT40

cells stably expressing TrAP-tagged (Samejima et al., 2008)

hRepo-ManWT or PP1-nonbinding mutant hRepoManRAXA (Fig-

ure 2A; see also Figure S1C available online) were blocked in

mitosis with colcemid, and then forced to exit from mitosis by

addition of the CDK inhibitor roscovitine. We previously showed

that hRepo-Man can recognize physiologically relevant targets

in chicken cells during mitotic exit because overexpression of

hRepo-ManRAXA can rescue anaphase chromatid segregation

in DT40 cells conditionally lacking condensin (Vagnarelli et al.,

2006).

DT40 cultures treated with colcemid overnight had a mitotic

index of 70%–85% with Repo-Man diffuse in the cytoplasm.

Addition of roscovitine for 150 caused a rapid relocalization of

Repo-Man to the chromatin (Vagnarelli et al., 2006). Proteins

solubilized from the chromosome fraction were purified using

streptavidin beads and an S-protein column (Figure S1D), then

analyzed by mass spectrometry.

Repo-ManWT, but not Repo-ManRAXA, pulled down PP1g and

b (Figure 2B). Among other Repo-Man-associated proteins, the

highest number of peptides was obtained from histones, Impor-

tin b, and NPC components NUP50 and NUP153.

A second set of pull-down experiments used SILAC to identify

Repo-Man interactors whose binding was enriched in anaphase

versus prometaphase. We also assessed specificity by

comparing Repo-Man-expressing cells with a cell line express-

ing only TrAP:GFP (Figure S1E). The results were plotted as

a two-dimensional diagram, on which anaphase-specific

Repo-Man-interacting proteins appear in the upper right quad-

rant (Figure 2C). There, we found PP1g and b, Importin a, and

Importin b. NUP153 was enriched in the anaphase fraction, but

not identified in the other pull-down experiment. This analysis

confirmed that the interaction of Repo-Man with PP1 is more

stable in anaphase and requires dephosphorylated Repo-Man

(Figure 1E and Figure S1B).

These experiments thus revealed interactions of Repo-Man

with Importin b and NUP153 during anaphase.

Repo-Man Binds Chromatin in Close Proximity to H2B
and Directs Histone H3 Dephosphorylation
Our pull-down results suggest that Repo-Man is a chromatin-

associated protein, as shown recently for Xenopus Repo-Man
12) cells stained with antibody (green) to anti-H3T3ph (1, 2, 5, 6) or H3Ser10ph

th antibody to H3Ser10ph (green) and anti-phospho-Aurora A (red); DNA (blue);

SD. ***p < 0.001.

axis depicts the GFP fluorescence of the transfected population. % Total, the
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(Peng et al., 2010). A FLIM-FRET approach confirmed that Repo-

Man binds close to H2B on chromatin. We observed a significant

fluorescence lifetime decrease for GFP:Repo-Man in the pres-

ence of H2B:mRFP (Figures 2D, 3 and 4, and 2E), but no effect

on the lifetime of the control GFP (Figures 2D, 1 and 2, and

2E). This decrease corresponds to an EFRET of 22% for Repo-

Man. Therefore, Repo-Man and H2B are in close proximity

during interphase in vivo. In other control experiments we de-

tected no significant FRET between GFP:Repo-Man and the

chromatin protein dsRed-BAF or between GFP:HP1a and

H2B:mRFP (Figure 2E).

PP1 is believed to be responsible for H3S10 dephosphoryla-

tion in anaphase (Hsu et al., 2000); however, the relevant

PP1-targeting subunit is not known. To test whether Repo-

Man/PP1 can dephosphorylate the major mitotic phospho-sites

on histone H3 (Thr3, Ser10, and Ser28), we exploited the Repo-

ManTA3 mutant that localizes to chromosomes and binds PP1 in

prometaphase.

Targeting Repo-ManTA3 to prometaphase chromosomes in

transient transfections decreased H3 phosphorylation at

Ser10, Thr3 (Figures 2F and 2G), and Ser28 (data not shown).

Overexpressed wild-type Repo-Man also lowered H3 phosphor-

ylation at T3 and S10, even though the protein does not localize

stably to chromosomes. However, expression of the mutant

protein at a similar level (Figure 2H) caused a significantly greater

decrease in H3 phosphorylation (p < 0.001 for both S10 and T3).

The activity of Repo-ManTA3/PP1 observed in this experiment

does not reflect general nonspecific dephosphorylation of

mitotic phosphoproteins. The mitotic phosphorylation of Aurora

A (Bayliss et al., 2003; Eyers et al., 2003; Hirota et al., 2003) was

maintained in mitotic cells transfected with Repo-ManTA3 even

when H3Ser10 phosphorylation was lost (Figure 2F, 13–15).

Moreover, Repo-Man depletion by RNAi caused a persistence

of H3Ser10ph and H3Thr3ph in postmitotic cells (see below).

We conclude that Repo-Man binds to nucleosomes and

directs PP1 to dephosphorylate histone H3 at the three major

mitotic phospho-sites.

Repo-Man Binds Importin b and Targets It to Anaphase
Chromosomes
Consistent with the specific interaction between Repo-Man and

Importin b observed in anaphase cell lysates (Figure 2C),

GFP:Repo-ManWT and Importin b partially colocalize at the

periphery of anaphase chromosomes in cells (Figure 3A, 1–4).

To determine whether this was due to direct binding, we first

identified a minimal fragment of Repo-Man (residues 1–135

from the Repo-Man N terminus) that colocalizes with Importin

b on anaphase chromosomes (Figure 3A, 5–8). Both full-length

Repo-Man (data not shown) andGST-Repo-Man1–135 expressed

in bacteria bind directly to His-Importin b in vitro (Figure 3C, 1).

Importantly, this binding is independent of Repo-Man’s function

as a PP1-targeting subunit. Repo-Man1–135 lacks the RVTFmotif

and cannot bind PP1. Furthermore, full-length Repo-ManRAXA

mutant, which cannot bind PP1 (Trinkle-Mulcahy et al., 2006)

and has a dominant-negative effect displacing PP1 from

anaphase chromatin (Figure 3B, 2), also colocalizes with Impor-

tin b at the chromosome periphery (Figure 3B, 3 and 4).

Both Repo-Man and Importin b are diffuse in prometaphase/

metaphase, so to confirm their interaction in vivo, we fused
332 Developmental Cell 21, 328–342, August 16, 2011 ª2011 Elsevie
Repo-Man to GFP:Laci in order to tether it at a discrete site.

This Laci fusion construct was expressed in DT40 cells carrying

a LacO array integrated at a single locus. As predicted by our

proteomic analysis, Importin b was highly enriched at sites of

GFP:Laci-Repo-Man binding in anaphase cells (Figure 3D, 5–8)

but was not detected at GFP:Laci-Repo-Man foci in prometa-

phase/metaphase cells (Figure 3D, 1–4). Similar results were ob-

tained when the N-terminal fragment GFP:Laci-Repo-Man1–135

was expressed in cells carrying a LacO integration on a single

chromosome. GFP:Laci-Repo-Man1–135 colocalized with Impor-

tin b in telophase cells (Figure S2A, 5–8), but never in prometa-

phase/metaphase cells (Figure S2A, 1–4).

These results suggest that the Repo-Man binding to Importin

b is regulated in a cell cycle-specific manner. Repo-Man has

several putative CDK phosphorylation sites within its N-terminal

regions, a number of which are phosphorylated in vivo (Cantin

et al., 2008; Dephoure et al., 2008; Malik et al., 2009; Olsen

et al., 2010) (Figure S1A). Indeed, phosphorylation of purified

GST-Repo-Man1–135 by purified cdc2/cyclinB reduced its

binding in vitro to Importin b by 50% (Figure 3C, 2 and 3). Consis-

tent with this, premature localization of the Repo-ManT412A or

Repo-ManTA3 phospho-site mutants was sufficient to target

both Importin b (Figure 4A, 5–8) and Nup153 (Figure 4B, 5–8)

to chromosomes before AO. This premature targeting was not

seen with wild-type Repo-Man (Figures 4A, 1–4, and 4B, 1–4).

The results thus far reveal that Repo-Man binds directly to Im-

portin b independent of its binding to PP1 and that the binding is

negatively regulated by CDK phosphorylation.

Repo-Man Has Two Independent Chromatin-Targeting
Domains
Importin b, NUP50, and NUP153 are all recruited to chromatin

very early during anaphase (Dultz et al., 2008). At this time, most

Repo-Man localizes diffusely on the chromatin, although careful

inspection also reveals the protein in foci that overlap with Impor-

tin b at the chromosome periphery (Figure 5B, 1). This colocaliza-

tion was also observed in anaphase human cells using specific

antibody to detect endogenous Repo-Man (Figure 5C).

How can a protein that localizes to bulk chromatin in anaphase

and directs the global dephosphorylation of histone H3 also

function in recruiting Importin b to the periphery of anaphase

chromosomes? In order to gain insight into the underlying mech-

anism,we assessed the localization of several truncated forms of

Repo-Man in anaphase DT40 cells (Figures 5A and 5B).

This analysis revealed that Repo-Man has two independent

anaphase-specific chromosome-targeting domains. C-terminal

Repo-Man403–1023, which excludes the PP1-binding RVTF motif

(Figure 5A), is diffuse in metaphase but then localizes homoge-

neously on anaphase chromatin without enrichment at the

periphery (Figure 5B, 3). All further truncations of this region of

the protein failed to localize to chromatin in anaphase (data not

shown). N-terminal Repo-Man1–397 (which also excludes the

RVTF motif) is also diffuse in metaphase but localizes to foci at

the chromosome periphery in anaphase (Figure 5B, 2). A further

truncation, Repo-Man1–135, also targets to the chromosome

periphery (Figure 5B, 4) and colocalizes with Importin b during

anaphase (Figure 3A, 5–8). Importantly, the same localization

was observed after expressing N-terminal and C-terminal

Repo-Man in HeLa cells (Figure S3A).
r Inc.



Figure 3. Repo-Man Binds Importin b, and the Binding Is Regulated by Repo-Man Phosphorylation

(A) Anaphase DT40 cells were transfected with GFP:Repo-ManWT (1–4) or Repo-Man1–135 (5–8) (green) and stained with an antibody recognizing the endogenous

Importin b (red). DNA is white.

(B) Anaphase cells transfected with GFP:Repo-ManRAXA (PP1-nonbinding mutant) (green), RFP-PP1g (blue), and stained for Importin b (red); DNA is white.

(C) in vitro binding of Repo-Man1–135 and Importin b. (1) GST, GST-Repo-Man1–135 purified from E. coli, incubated with His-Importin b, and captured with Ni

beads. (2) GST-Repo-Man was in vitro phosphorylated with CDK1-Cyclin B before performing the binding experiment as in (1). Upper, Coomassie; lower,

autoradiograph. (3) Quantitation of the amount of Repo-Man in the pellet fraction from the Coomassie and from the autoradiograph (32P). U, unbound fraction; B,

bound fraction.

(D) DT40 cells carrying a LacO array integrated in a single locuswere transiently transfected withGFP:Laci-Repo-Man (green) and then stained for Importin b (red).

(1–4) Prometaphase cells show no colocalization betweenGFP:Laci-Repo-Man and Importin b. (5–8) In anaphase cells GFP:Laci-Repo-Man (green) and Importin

b (red) colocalize at the integration site (white arrows).
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Figure 4. Repo-ManTA3 Is Sufficient to Trigger Deposition of Importin b and Nup153 on the Chromosomes Independently of Mitotic Exit

(A and B) DT40 cells transfected with GFP:Repo-ManWT (A and B, 1–4) or GFP:Repo-ManTA3 (green) (A and B, 5–8) and stained (red) for Importin b (A) or Nup153.

Insets in (B) show a blowup of the indicated regions of enrichment for Repo-Man and Nup153.

(C) DT40 cells transfected with GFP:Repo-ManWT (green) (1–4) or GFP:Repo-ManTA3 (green) (5–12) and stained with antibodies (red) against MEL-28 (1–8) or

LaminB1 (9–12).

Developmental Cell

Dual Functions of Repo-Man during Mitotic Exit
How can a single protein have two different targeting motifs

that function at the same cell cycle stage? Indeed, the function

of these motifs is temporally resolved during mitotic exit. We

transiently transfected constructs expressing GFP:Repo-
334 Developmental Cell 21, 328–342, August 16, 2011 ª2011 Elsevie
Man1–397 or GFP:Repo-Man403–1023 together with H2B:mRFP

into DT40 cells and imaged cells every minute starting during

prometaphase. These analyses showed that Repo-Man403–1023

targets to the chromatin within 1 min after AO, reaching
r Inc.
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a maximum intensity between 3 and 4 min (Figure 5D). In

contrast, Repo-Man1–397 starts accumulating at the periphery

of the chromosomes only later during mitotic exit (3 min after

AO) (Figure 5E), but before the appearance of Lamin A (Fig-

ure S3E). Its recruitment increases during telophase and is

completed in the reforming nuclei (Figure 5E and Movies S1

and S2).

Both N-terminal andC-terminal Repo-Man are nuclear in inter-

phase. Three observations argue against the trivial hypothesis

that the colocalization of Repo-Man with Importin b in anaphase

simply reflects ongoing nuclear import. First, live cell analysis

reveals that the two proteins colocalize on anaphase chromo-

somes 4 min prior to detectable nuclear import (Figure S2B).

Second, a GFP:Laci-SV40-NLS fusion protein does not recruit

Importin b in telophase even when it is highly concentrated at

a chromosomal LacO array (Figure S2A, 9–16). Third, overex-

pression of the active Ran mutant Q69L, which should promote

release of import substrates from Importin b, has no detectable

effect on the colocalization of Importin b and Repo-ManTA3 in

early mitosis (Figure 5F and Figure S2C).

These results reveal that Repo-Man has two chromosome-tar-

geting domains that function in a spatiotemporally independent

manner during mitotic exit.

Repo-Man Participates in Both Chromatin Remodeling
and Nuclear Envelope Reassembly in Anaphase
RNAi experiments in HeLa cells confirmed that Repo-Man

targets PP1 for dephosphorylation of histone H3 during mitotic

exit. These experiments used an oligonucleotide previously

shown to be effective at specifically knocking down human

Repo-Man (Trinkle-Mulcahy et al., 2006). When pairs of cells

undergoingmitotic exit (e.g., still joined by an intercellular bridge)

were examined following Repo-Man RNAi, we observed signifi-

cantly elevated levels of histone H3 phosphorylated at Ser10

(Figure 6A). After Repo-Man depletion, the bulk cell population

had a 2.93 higher level of H3Ser10ph and 3.23 higher level of

H3Thr3ph relative to the control RNAi, despite the fact that the

mitotic index is, if anything, slightly lower following Repo-Man

RNAi (control RNAi, 3%; Repo-Man RNAi, 1.5%; Figure 6B).

In Neurospora, PP1 depletion causes a decrease in the levels

of H3K9me3 (Adhvaryu and Selker, 2008), the histone mark that

directs HP1 binding to chromatin (Bannister et al., 2001; Lachner

et al., 2001). HP1 binding to this mark has been reported to be

negatively regulated by phosphorylation of H3S10 in early

mitosis (Fischle et al., 2005; Hirota et al., 2005). We therefore

examined the localization of HP1a in Repo-Man-depleted cells

undergoing mitotic exit.

HP1a normally accumulates on chromosomes during mitotic

exit (Figure 6D, 1–4, and Figure S4A). This accumulation was

substantially decreased following Repo-Man RNAi (Figure 6D,

5–9). Nuclear staining for HP1a remained low also in interphase

following Repo-Man depletion. Furthermore, the typical accu-

mulation of HP1 in heterochromatic nuclear foci was absent (Fig-

ure 6E, 5, 6, 11, and 12).

Surprisingly, Repo-Man depletion also caused dramatic

changes in nuclear morphology after mitosis. This phenotype

appears to result from depletion of the N-terminal Repo-Man

module that targets Importin b to the chromosome periphery

during mitotic exit.
Develop
Importin b targeting to the chromosome periphery normally

occurs in anaphase prior to lamina deposition (Figures S4B

and S4C). However, in Repo-Man-depleted cells, Importin

b was not yet properly loaded around the chromatin in late

mitotic figures when robust lamina staining was already present

(Figure 6F, 5–9).

Strikingly, in HeLa cells depleted of Repo-Man by RNAi, lamin

A/C staining revealed clearly abnormal nuclear shapes (Figures

7A and 7B and Figure S5A). In cells showing this abnormal

nuclear shape, Importin b accumulated in patches in the cyto-

plasm that resembled annulate lamellae (Figure 7B) (Ito et al.,

2007). Indeed, staining of Repo-Man-depleted cells with the

mAb414 antibody recognizing multiple nucleoporins revealed

the same cytoplasmic patches appearing after Repo-Man

RNAi (Figure S5B).

Repo-Man overexpression also caused nuclei to exhibit an

abnormal morphology. Overexpressed Repo-Man often local-

ized in patches in the cytoplasm (Figure S6, 1–5). In those cells,

Importin b was delocalized from the nuclear rim and accumu-

lated in the same patches. Repo-Man overexpression also

caused a reduction of NUP153 present at the NE (Figure S6,

6–10). However, under these conditions, staining for both

ELYS/MEL-28, one of the earliest known proteins deposited on

chromatin in anaphase and linked to NE reassembly (Fernandez

and Piano, 2006; Galy et al., 2006), and lamin B1 (a late nuclear

reassembly marker) was not diminished (Figure S6, 13 and 18).

Indeed, neither ELYS/MEL-28 nor lamin B1 was targeted to the

chromatin of early mitotic cells expressing Repo-Man phos-

pho-site mutants that exhibit premature targeting to the chro-

matin (Figure 4C, 1–12).

These abnormal distributions of Importin b, HP1a, and the

formation of an abnormal Lamina appear to have their origin in

an aberrant mitotic exit, rather than reflecting an interphase func-

tion of Repo-Man. Live cell imaging of a cell line stably expressing

both GFP:Lamin A and H2B:mRFP showed that the abnormal

laminamorphology appearedascells exitmitosis.Moreover, cells

depleted of Repo-Man never gained a smooth Lamina rim even

when observed for up to 10 hr after cell division (Figure S5C, 1–3).

Results of RNAi rescue experiments are consistent with the

hypothesis that the N terminus of Repo-Man is a module that

functions in nuclear reassembly, whereas C-terminal Repo-

Man functions in chromatin remodelling. Expression of

GFP:Repo-Man1–135 in the RNAi background partially rescued

both the nuclear shape defects and the abnormal distribution

of Importin b in anaphase and interphase (Figure 7C and Fig-

ure S7). However, GFP:Repo-Man1–135, which does not bind

PP1, was unable to rescue the HP1 mislocalization seen

following Repo-Man RNAi (data not shown).

Overall, our studies reveal that Repo-Man functions both as

a PP1 regulatory subunit in chromatin remodelling at the end of

mitosis and in a PP1-independent pathway affecting early events

during reassembly of the G1 nucleus.

DISCUSSION

CDK Phosphorylation Regulates Repo-Man/PP1
Complex Localization and Function
In interphase, Repo-Man-PP1 is closely associated with nucleo-

somal histone H2B and plays an important role in regulating the
mental Cell 21, 328–342, August 16, 2011 ª2011 Elsevier Inc. 335



Figure 5. Repo-Man Contains Two Independent Chromosome-Targeting Domains

(A) Diagram of Repo-Man showing the deletion mutants generated (1–4) and their localization in anaphase.

(B) Anaphase cells transfected with GFP:Repo-Man1–1203(WT) (1), GFP:Repo-Man1–397 (2), GFP:Repo-Man403–1023 (3), and GFP:Repo-Man1–135 (4).

(C) Untransfected HeLa anaphase cell stained with an antibody recognizing endogenous Repo-Man (red) and Importin b (green); 20–40 blowups showing the

colocalization of the two proteins.
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DNA damage response (Peng et al., 2010). Upon mitotic entry,

CdK1-cyclin B (possibly with other kinases) phosphorylates

Repo-Man, decreasing its affinity for chromatin.

Several aspects of Repo-Man function are regulated by phos-

phorylation (Figure 7D). Phosphorylation at T412 prevents PP1

from binding to the RVTF motif. Based on similar observations

with other mitotic phosphatase complexes including KNL1-

PP1 (Liu et al., 2010; Welburn et al., 2010) and CENP-E-PP1

(Kim et al., 2010), we propose that phosphorylation at or near

the PP1-binding motif constitutes a general mechanism for

regulation of mitotic PP1 holoenzymes by mitotic kinases,

including CDKs (for Repo-Man) and Aurora B (for KNL-1 and

CENP-E).

Repo-Man localization is also regulated by phosphorylation.

Repo-Man T412A can bind to chromosomes during early

mitosis. However, if the T412A mutation is combined with

a PP1-nonbinding RAXA mutation, then Repo-Man remains

diffuse. This strongly suggests that Repo-Man:PP1 undergoes

a two-step phosphoregulation during mitotic exit. At anaphase

onset, T412 dephosphorylation by an as-yet-unidentified phos-

phatase allows PP1 binding. Next, PP1, or another phosphatase

activated by the drop in CDK activity, dephosphorylates other

sites on Repo-Man, converting it to a form that can bind

anaphase chromatin.

This regulation of the Repo-Man:PP1 complex acts as a ‘‘fail

safe device’’ as suggested previously for MYPT1:PP1 (Walker

et al., 2000). Mitotic phosphorylation ensures that Repo-Man is

released from the chromatin and also blocks the formation and

activation of the phosphatase complex.

Repo-Man Has Dual Functions in Anaphase
Repo-Man has two separate regions that direct it to distinct loca-

tions during mitotic exit. The C terminus targets the protein to

anaphase chromatin, while the N terminus directs it to distinct

foci at the chromosome periphery. These different localization

patterns are temporally resolved during mitotic exit.

How can a single protein specifically target to two mutually

exclusive locations? It may be that the C-terminal ‘‘general

chromatin-binding’’ motif in Repo-Man has a higher affinity for

chromosomes and that its chromosomal-binding sites must be

saturated before the second motif can target the protein to the

chromosome periphery. Alternatively, recognition of the second

binding site might require another chromatin modification event,

e.g., chromatin dephosphorylation by the early-binding popula-

tion of Repo-Man:PP1. It is possible that Repo-Man binding to

the chromosome periphery involves interactions with other as-

yet-unidentified proteins.

Repo-Man docked on anaphase chromosomes contributes to

the dephosphorylation of histone H3 at its mitotic phospho-sites

(Thr3, Ser10, and Ser28). Dephosphorylation of H3Thr3 removes

the chromatin docking site for the CPC (Kelly et al., 2010; Wang

et al., 2010; Yamagishi et al., 2010). Thus, Repo-Man:PP1 acti-

vation at anaphase onset could promote CPC transfer from the

chromatin to the central spindle and cleavage furrow (Ruchaud

et al., 2007). This might be analogous to Cdc14 function in
(D and E) Stills from movies of cells transfected with H2B:mRFP (red) and GFP:

panels show the GFP channel.

(F) Mitotic cell transfected with TrAP:Repo-ManTA3 (green) plus RanQ69L in pTra

Develop
budding yeast, although Cdc14 acts on INCENP (Sli15) rather

than H3 (Pereira and Schiebel, 2003). Premature targeting of

mutant Repo-ManTA3:PP1 to the chromatin causes dephosphor-

ylation of H3T3ph, resulting in CPC delocalization and chromo-

some alignment defects. Consistent with this, a recent study

has shown that Repo-Man:PP1 can dephosphorylate H3T3

and cause delocalization of the CPC in early mitosis (Qian

et al., 2011).

Depletion of Repo-Man interferes with H3Ser10 dephosphor-

ylation in HeLa cells. H3S10ph has been reported to interfere

with HP1 binding to H3K9me3 (Fischle et al., 2005; Hirota

et al., 2005). Indeed, HP1a accumulation in foci on chromo-

somes is impaired during mitotic exit in Repo-Man-depleted

cells. Thus, Repo-Man:PP1 dephosphorylation of H3Ser10

appears to be required for normal heterochromatin formation

in G1 (Figure 7D).

The population of Repo-Man that accumulates at the chromo-

some periphery is important for normal NE reformation. The

abnormal lobulated nuclear morphology observed following

Repo-Man depletion by RNAi is a consequence of abnormal

mitotic exit that occurs when Importin b localization is no longer

correctly regulated by Repo-Man. We have shown that Repo-

Man binds directly to Importin b and recruits it to sites at the

chromosome periphery (Figure 7D). Importin b is an early factor

involved in NE reassembly (Zhang et al., 2002; Clarke and Zhang,

2008), possibly also regulating NPC formation (Rotem et al.,

2009). Rotem et al. (2009) predicted that additional regulators

beside Importin b and Ran may be involved in coordinating the

initial seeding of chromatin during NE reassembly. Repo-Man

may be one such factor.

Importin b has recently been shown to associate with PP2A/

B55a and function during mitotic exit either by targeting the

phosphatase or acting as a molecular chaperone (Schmitz

et al., 2010). However, the mechanism of its recruitment and

positioning during nuclear reassembly was not previously under-

stood. We show here that Repo-Man binding to Importin b is

direct, resides within the N-terminal domain of Repo-Man

(aa 1–135)—i.e., is independent of the PP1-binding activity of

Repo-Man—and is inhibited by CDK-cyclin B phosphorylation.

Repo-Man bound to the chromosome periphery could serve as

an anchoring site for Importin b, potentially marking sites for

NPC reassembly (Figure 7D).

Localized catalytic activity of Repo-Man:PP1 may also be

required for later steps during NPC reassembly. Dephosphoryla-

tion of nucleoporins is essential in NPC reassembly (Onischenko

et al., 2005), and we have identified NUP153 as a Repo-Man in-

teractor. Moreover, recent work has also identified NUP153 as

a PP1 substrate using an affinity chromatography approach in

a search for PP1 nuclear substrates (Moorhead et al., 2008).

Importantly, Repo-Man binding to the chromosome periphery

is not sufficient to trigger the complete pathway of NE reassem-

bly. Other key proteins, including ELYS-MEL28 and lamins, are

not recruited to chromatin by Repo-Man. We postulate that

Repo-Man targeting of Importin b acts either downstream or in

parallel to the ELYS-MEL28 pathway.
Repo-Man403–1023 (D) or GFP:Repo-Man1–397 (E) (green). AO, A onset. Lower

cer (GFP, blue) and stained with antibodies against Importin b (red).
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Figure 6. Repo-Man Depletion Affects H3 Dephosphorylation and HP1 Loading during Mitotic Exit

(A and B) H3 phosphorylation in cells after control and Repo-Man RNAi.

(A) (1) Quantitation of H3Ser10ph levels in postmitotic cells still joined bymidbodies after control or Repo-Man RNAi (R-M). (2 and 3) Postmitotic cells from control

(2 and 20) or Repo-Man RNAi (3 and 30) stained for a-tubulin (red), H3Ser10Ph (green), and DNA (blue).

(B) Whole-cell extracts from control or Repo-Man RNAi were blotted with antibodies to H3Ser10, H3Thr3, and a-tubulin.

(C) Quantification of the phenotypes of Repo-Man RNAi. c, control RNAi; R-M, Repo-Man RNAi. Error bars, average ± SD.

(D) Telophase/cytokinesis from HeLa cells transfected with control (1–4) or Repo-Man oligos (5–9) and stained 48 hr later for HP1a and Repo-Man.

(E) HeLa cells transfected with control (1–6) or Repo-Man oligos (7–12) and stained for Repo-Man and HP1a (1–12). (5 and 6) and (11 and 12) show blowups of

boxed areas in 2 and 8.

(F) Telophase/cytokinesis from HeLa cells transfected with control (1–4) or Repo-Man oligos (5–9) and stained for Importin b and Lamin A/C.
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Figure 7. Repo-Man N-Terminal Domain Has a Structural Function during Mitotic Exit

(A andB) HeLa cells transfectedwith control (A, 1–7, andB, 1–7) or Repo-Man oligos (A, 8–14, and B, 8–14). Forty-eight hours later, cells were fixed and stained for

Lamin A/C and Repo-Man (A, 1–14); or Lamin A/C and Importin b (B, 1–14). Panels 5–7 and 12–14 show blowups of selected nuclei.

(C) HeLa cells were transfected with control or Repo-Man oligos plus plasmid expressing GFP:Repo-Man1–135 and stained 48 hr later for Importin b. The nucleus

of the cell transfected with GFP:Repo-Man1–135 (white arrow) has a normal distribution of Importin b and an improved nuclear morphology, compared to nearby

untransfected cells (asterisks).

(D) Model for the activation and function of the Repo-Man/PP1 complex during mitotic exit.
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Conclusions
The PP1g-regulatory/targeting subunit Repo-Man is a modular

protein that coordinates chromatin remodeling with nuclear

envelope reassembly during mitotic exit (Figure 7D). A

C-terminal Repo-Manmodule remodels the chromatin by target-

ing PP1 to anaphase chromosomes and directing the dephos-

phorylation of histone H3. This mobilizes the CPC and prepares

the chromatin for heterochromatin assembly during G1. An

N-terminal Repo-Man module binds Importin b and targets it to

the periphery of the anaphase chromosomes. This is required

for normal nuclear envelope assembly.
EXPERIMENTAL PROCEDURES

Cell Culture, Cloning, and Transfections

hRepo-ManWT and hRepo-ManRAXA were cloned into the pTrAP vector (Same-

jima et al., 2008); DT40 cell lines were obtained by G418 selection (2 mg/ml).

A HeLa cell line expressing H2B:mRFP and Lamin A:GFP was obtained by

cotransfection of both constructs and selection in G418 (2 mg/ml). Cells

positive for both GFP and RFP were selected by FACS.

Repo-Manmutants were generated byQuikChange Site-DirectedMutagen-

esis Kit (Agilent Technologies) using the plasmid GFP:Repo-Man (Table S1).

The following primer sequences were used: T412A, 50-tctttgccagcaaatgatc
cattgcgtaaagga-30; T34A, 50-actgggaagattgtggatcctcagaagcatgcc-30; and

T419A, 50-ttgcgtaaaggaggagcacctgtttgtaaaaaa-30. Repo-Man deletion

mutants were generated by PCR, sequenced, and cloned into pEGFP-N1.

For the GFP:Laci-Repo-ManWT and GFP:Laci-Repo-Man1–135 constructs,

the Laci sequence was obtained by PCR and cloned into GFP:Repo-Man by

XhoI/KpnI. Chicken PP1g and b were obtained by RT-PCR and cloned into

pEGFPN1. For a list of all new constructs generated, see Table S1.

Transient transfections for DT40 were conducted as previously described

(Vagnarelli et al., 2006), and transient transfection in HeLa cells was performed

by FuGENE 6 following the manufacturer’s directions.

For quantification of mitotic localization (Figure 1D), cells were fixed with

paraformaldehyde 24 hr posttransfection. For each transfected prometa-

phase-metaphase cell (50 cells), it was recorded if the GFP signal was diffuse

in the cytoplasm as in Figure 1B, 2, or was present on the chromosomes as in

Figure 1B, 5, 8, and 11.

For quantification of lamina morphology, Importin b staining, and HP1 local-

ization, the control RNAi staining was used as a reference (for Lamin A

Figure 7A, 6; for Importin b Figure 7B, 6; for HP1 Figure 6C, 6). A total of 300

nuclei and three separate experiments were averaged to produce Figure 6D.
Indirect Immunofluorescence Microscopy

Cells were fixed in 4% PFA and processed as previously described (Vagnarelli

et al., 2006). The antibodies used and dilutions are listed in Table S2. Fluores-

cence-labeled secondary antibodies were applied at 1:200 (Jackson Immu-

noResearch). 3D data sets were acquired using a cooled CCD camera

(CH350; Photometrics) on a wide-field microscope (DeltaVision Spectris;

Applied Precision) with a NA 1.4 Plan Apochromat lens. The data sets were

deconvolved with softWoRx (Applied Precision). Three-dimensional data

sets were converted to Quick Projection in softWoRx, exported as TIFF files,

and imported into Adobe Photoshop for final presentation.

Live cell imaging was performed with a DeltaVision microscope as previ-

ously described (Vagnarelli et al., 2006).

For quantification of H3 phosphorylation levels on chromosomes, images of

prometaphases from transfected and untransfected cells were acquired from

the same slide, and the intensity of chromosomal staining for each anti-phos-

pho-H3 antibodywas determined. The 3-dimensional data sets obtained at the

same exposure for transfected and untransfected cells were projected as

mean intensity. A 10 3 10 pixel area contained within the chromosomes was

used to measure the total intensity of the signal. Ten different measurements

per mitosis on different chromosomes were collected and averaged. An area

of the same size was used to identify the background signal in each meta-

phase, and this value was subtracted from the measurement of the chromo-
340 Developmental Cell 21, 328–342, August 16, 2011 ª2011 Elsevie
some area. The staining intensity of the transfected cells was normalized rela-

tive to the untransfected cells on each slide.

For quantification of the H3 phosphorylation levels following Repo-Man

RNAi, cells were stained with a-tubulin and H3Ser10ph. Only cells joined by

a midbody were analyzed. The 3D data were projected as mean intensity,

and the total fluorescence signal of a square including the entire nucleus

was analyzed. A square of the same sizewas used to calculate the background

adjacent to the cell, and the values were subtracted from the nuclear

measurement.

Quantitative Immunoblotting

Membranes were incubated with primary antibodies recognizing a-tubulin,

H3S10ph, H3T3ph, and subsequently with IRDye-labeled secondary anti-

bodies (LI-COR). Fluorescence intensities were subsequently determined

using an LI-COR Odyssey CCD scanner according to the manufacturer’s

instructions (LI-COR Biosciences).

In vitro Phosphorylation

GST-Repo-Man166–659 or GST-Repo-Man1–135 was expressed in E. coli and

purified on a glutathione-Sepharose column. After elution, the recombinant

protein was incubated with 100 mM 32P-ATP and Cdk1-cyclin B in the

manufacturer kinase buffer (NEB) at 30�C for 1 hr. The reaction was stopped

by addition of SDS sample buffer, separated by SDS-PAGE, and stained

with Coomassie blue. The gel was dried on 3MM paper and exposed to

X-ray film.

In vitro Binding Assay

His-tagged Importin b (gift of M. Platani, Edinburgh) was expressed in E. coli

and purified on TALON beads. We incubated 15 ml of beads with

GST-Repo-Man1–135 or GST alone for 1 hr at 4�C in Binding Buffer (20 mM

HEPES [pH 7.4], 110 mM K Acetate, 2 mM Mg Acetate, 0.2 mM DTT). Beads

were washed three times in Binding Buffer and boiled in SDS sample buffer

before separation on SDS-PAGE followed by Coomassie blue staining.

RNAi

A 21-mer oligonucleotide (CGUACGCGGAAUACUUCGAdTdT) was used as

a control (Elbashir et al., 2001). For Repo-Man RNAi, 5-0UGACAGA

CUUGACCAGAAATT-30 with a 50Cy5 labeled was used. A second oligonucle-

otide, 50-CCUAAUAAUCAUCAAUCU-30, was also used to confirm the

phenotypes.

HeLa cells in exponential growth were seeded onto polylysine-coated glass

coverslips and grown overnight in RPMI/10% FBS. RNAi was performed as

previously described (Elbashir et al., 2001).

For the rescue experiment, RNAi was performed using Polyplus jetPRIME

(PEQLAB). HeLa cells at 50% confluence were transfected with 400 ng of

plasmid DNA and 50 nM of SiRNA oligonucleotides. Analyses were carried

out 48 hr posttransfection.

Pull-Down Experiments and Mass Spectrometry Analysis

Cell lines stably expressing TrAP:hRepo-ManWT, TrAP:hRepo-ManRAXA, and

TrAP:GFP were incubated with colcemid overnight. After 18 hr, 50 mM rosco-

vitine was added to the cultures for 10 min where indicated. A total of 1 3 108

cells was collected by centrifugation and resuspended in Buffer A (75 mM

Tris:HCl [pH 7.4], 40 mM KCl, 1 mM K-EDTA [pH 7.4], 0.3 mM Spermidine,

0.2 mM Spermine plus protease and phosphatase inhibitors) for 5 min at

room temperature. The pellet was then resuspended in 23 Buffer A plus

digitonin and lysed on ice by Dounce homogenization. The chromosomes

were collected on a sucrose cushion, washed in 13Buffer A, and resuspended

in lysis buffer (50 mM Tris:HCl [pH 7.4], 200 mM NaCl, 0.5% NP40, and

protease and phosphatase inhibitors). The samples were sonicated, and the

soluble fraction was collected after centrifugation. The lysate was incubated

with streptavidin beads for 1 hr at 4�C, washed three times, and eluted with

D-Biotin for 20 min. The elutes were bound to a S-column for 1 hr. After

washes, the bound fraction was eluted with SDS sample buffer, separated

by a short SDS-PAGE run, and subjected to mass spectrometry analysis.

For SILAC analyses, the cell lines were grown in RPMI(-)Arg(-)Lys supple-

mented with 100 ng/ml 13C Lysine plus 30 nm/ml 13C Arginine (Cambridge
r Inc.
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Isotope Laboratories) for the heavy labeling, or 12C Lysine/12C Arginine for the

light labeling in media supplemented with 10% dialyzed FBS.

Mass Spectrometry Analysis

For all mass spectrometric analyses, in-gel digestion was performed as

described (Shevchenko et al., 2006). Digested material was cleaned up on

a reverse-phase C18 StageTip (Rappsilber et al., 2003) and reduced to

a 5 ml volume by vacuum evaporation. All samples were analyzed on an

LTQ-Orbitrap Classic (Thermo Fisher), connected to an HTC-PAL auto-

sampler (CTC Analytics), and a 1200 nanoHPLC pump (Agilent). Gradients

(5%–20% acetonitrile in 90 min) ran at 300 nl/min over a C18-packed pico-

spray emitter (Proxeon).

Mass spectrometric data were acquired in cycles of one FT-full scan (30,000

resolution) in the Orbitrap and up to six MS2-events in the LTQ-ion trap. Iden-

tification and quantification were performed using MaxQuant v 1.0.11.1 for

processing and Mascot for searches. Peak lists of individual runs were gener-

ated usingMaxQuant with the variable modifications oxidation (M), acetylation

(K), and fixed modification carbamidomethylation (C), and the doublet quanti-

fication mode for arg-6 and lys-6. Precursor mass tolerance was set to 7 ppm

(default). For phosphorylation searches, DTASuperCharge v 1.19 was used at

default parameters to generate peak lists. The peak data were searched using

Mascot as above except using Phospho (STY) as additional variable modifica-

tion and mass tolerance set to 10 ppm. Peak lists were searched against

IPI-chicken (quantitative pull down) or a custom database containing the

sequence of GST-tagged H2B (for phosphorylation identification) using

Mascot v 2.1.

FLIM/FRET

FLIM experiments were performed on a Leica SP5 laser-scanning confocal

microscope equipped with a Spectra-Physics Mai-Tai multiphoton laser

(700–1020 nm). GFP:Repo-Man was imaged using multiphoton excitation

wavelength of 890 nm. Emission detection was through a 500–550 nm

band-pass filter (Chroma). Fluorescence lifetimes were measured using

a Becker & Hickel PMC-100 external detector and SPC/830 acquisition card

controlled by SPCM software for time-correlated single photon counting.

Images were analyzed using SPCImage (Becker & Hickel).

Lifetimes of GFP alone and GFP:Repo-Man ± H2B:mRFP were measured.

Data were collected from a minimum of 20 cells for each experimental

condition.
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