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Abstract

Networks appear in many fields, from finance to medicine, engineering, biology
and social science. They often comprise of a very large number of entities, the
nodes, and the interest lies in inferring the interactions between these entities, the
edges, from relatively limited data. If the underlying network of interactions is
sparse, two main statistical approaches are used to retrieve such a structure: co-
variance modeling approaches with a penalty constraint that encourages sparsity
of the network, and nodewise regression approaches with sparse regression meth-
ods applied at each node. In the presence of outliers or departures from normality,
robust approaches have been developed which relax the assumption of normal-
ity. Robust covariance modeling approaches are reviewed and compared with
novel nodewise approaches where robust methods are used at each node. For low-
dimensional problems, classical deviance tests are also included and compared
with penalised likelihood approaches. Overall, copula approaches are found to
perform best: they are comparable to the other methods under an assumption of
normality or mild departures from this, but they are superior to the other methods
when the assumption of normality is strongly violated.

Keywords: Penalised inference, covariance graphical models, robust regression,
regularised regression, copula

1. Background

Interactions between entities of a system, such as a biological system or a so-
cial or telecommunication network, are graphically represented by links amongst
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a set of nodes. In statistics, this naturally points to the use of graphical mod-
els. Graphical models are in fact defined by a set of vertices, or nodes, and a
set of edges, or links between the nodes. The nodes correspond to p random
variables, which in a multivariate framework can be represented by the vector
Y = (Y (1), . . . ,Y (p)). A Gaussian graphical model makes the assumption that the
vector Y follows a multivariate Gaussian distribution, so

Y ∼ N(µ,Σ),

with mean µ = (µ1, . . . ,µp) and variance-covariance matrix Σ = (σi j)i j. Of par-
ticular importance is the inverse of the variance-covariance matrix, also called
precision or concentration matrix, which is usually denoted by

Θ = Σ−1 = (θi j)i j.

This matrix holds a special role in Gaussian graphical models: in fact, whereas
zeros in the covariance matrix Σ are equivalent, under the Gaussian assumption,
to marginal independence between the corresponding variables, zeros in the pre-
cision matrix correspond to conditional independence between the corresponding
variables, i.e. the absence of an edge in the corresponding graph. Thus infer-
ring the network of interactions can be recasted into the problem of estimating the
precision matrix Θ and extracting its zero structure.

Given that the conditional distribution of every node given all other nodes
reflects the conditional independence structure of the graph, an alternative and
equivalent representation of a graphical model is by viewing it as a set of regres-
sion functions for each node against all remaining nodes. The idea goes back to
Meinshausen and Bühlmann (2006). Let us write the joint multivariate Gaussian
vector Y as Y = (Y (−p),Y (p)), where Y (−p) = (Y (1), . . . ,Y (p−1)) is the vector of all
nodes except for the last one. Then by partitioning the mean µ and covariance Σ
as

µ =

(
µ−p
µp

)
, Σ =

(
Σ−p,−p σ−p,p
σ t
−p,p σp,p,

)
,

we can write the conditional distribution of node Y (p) on all other nodes as

Y (p)|Y (−p) = y ∼ N
(
µp +(y−µ−p)

tΣ−1
−p,−pσ−p,p,σp,p −σ t

−p,pΣ−1
−p,−pσ−p,p

)
.

So the regression coefficients β = Σ−1
−p,−pσ−p,p determine the conditional inde-

pendence structure. If β j = 0, then Y (p) and Y ( j) are conditionally independent
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given the rest. Furthermore, one can show that the coefficients β can be written in
terms of the precision matrix as

β =−θ−p,p/θp,p,

and therefore knowledge about the regression coefficients β is equivalent to knowl-
edge about the structure of the precision matrix.

The problem of estimating the structure of a graph has proven to be partic-
ularly challenging for high-dimensional cases, where the number of nodes p is
very large, easily in the range of thousands, and the number of observations n is
relatively small, the familiar n << p case. In this case, maximum likelihood esti-
mation does not provide a good estimate of the covariance matrix and the inverse
of the sample covariance matrix does not exist, so alternatives have been proposed
for the detection of a sparse representation of the interactions between the nodes.
Here the assumption is that the underlying true network of interactions is sparse,
which is often believed to be the case. Two main approaches have been developed
for this purpose. The first approach is to estimate the precision matrix within a
penalised likelihood approach where a penalty is chosen to encourage sparsity of
the network, i.e. many zeros in the precision matrix. The second approach is to
use sparse regression methods, such as lasso, for each node of the graph. Here the
penalty is imposed on the regression coefficients for each node. Both approaches
and their relative merits are described extensively by Bühlmann and van de Geer
(2011).

Most of the methods available in the literature for estimating sparse undirected
graphs in high dimensional problems rely on the assumption of normality. How-
ever, many real applications show departures from normality, often as a result of
data contamination and the presence of outliers. A small number of methods have
been developed to overcome this limitation in the context of penalised likelihood
estimation for high-dimensional problems (Finegold and Drton, 2011; Liu et al.,
2009). Robust estimators of the covariance matrix and adjusted statistical tests
have also been developed, but they are limited to low-dimensional problems with
n < p (Miyamura and Kano, 2006; Gottard and Pacillo, 2010; Vogel and Fried,
2011). All these methods lead to a robust estimation of a partial correlation graph.
In this context, we remark that, in contrast to the Gaussian case, a zero partial
correlation cannot in general be interpreted as conditional independence of the
corresponding variables. Rather, in this case, it should be treated as linear inde-
pendence, conditioning on all the other variables (Vogel and Fried, 2011).

In this paper, inspired by the nodewise lasso approach of Meinshausen and
Bühlmann (2006), we consider novel nodewise approaches which use robust sparse
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regression methods at each node. In particular, we consider the use of regression
methods where the coefficients are estimated by minimizing a Huber or Least Ab-
solute Deviation (LAD) loss function together with an L1 penalty for sparsity, e.g.
Lambert-Lacroix and Zwald (2011). In Section 2, we describe these methods in
detail. In Section 3, we present an extensive simulation study: firstly, we compare
a number of robust regression methods and, secondly, we assess their performance
within a nodewise graphical model approach, in comparison with robust covari-
ance estimation methods. For low-dimensional cases, we consider also adjusted
deviance tests. Finally, we present a real application from the field of biology and
draw some final conclusions.

2. Methods

2.1. Robust methods for penalised covariance estimation
A sparse estimate of the precision matrix Θ can be obtained by imposing the

L1-penalty constraint on the entries of the precision matrix. This results in the
optimization

max
||Θ||1≤ρ

[log |Θ|−Trace(SΘ)] ,

where ||Θ||1 =∑i, j |θi j|, S is the sample covariance matrix, and ρ is a non-negative
tuning parameter. As both the negative log-likelihood and the region defined by
the constraint are convex in Θ, one can equivalently work with the Lagrangian
dual form, resulting in the penalised likelihood optimization

max
Θ

[log |Θ|−Trace(SΘ)−λ ||Θ||1] ,

with λ the non-negative Lagrange multiplier. When λ = 0, the optimal solution
corresponds to the maximum likelihood; the larger the value of λ the sparser
the solution, so the larger the number of zero elements in the precision matrix
Θ, but the lower the associated likelihood. Hence, this optimization problem al-
lows to obtain a sparse estimate of the precision matrix. Furthermore, the optimal
solution has the property of being symmetric, which is a requirement of variance-
covariance and precision matrices, and always invertible when λ > 0 (Banerjee
et al., 2008). Friedman et al. (2008) provide an efficient optimization procedure
for this problem, by maximising the penalised log-likelihood iteratively for each
node and, at each step, by re-writing the problem into an equivalent lasso regres-
sion problem. The latter is estimated efficiently using coordinate descent methods.
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The method is implemented in the glasso R package and has been successfully
used in many applications due to its efficiency (Witten et al., 2011).

Two significant extensions of this approach have been developed in order
to model data which show departures from normality. In Finegold and Drton
(2011), an approach is developed based on the assumption of a multivariate t-
distribution. This approach uses the fact that given a normal multivariate vari-
able X ∼ N(0,Ψ) and an independent Gamma random variable τ ∼ Γ(ν/2,ν/2),
the variable Y = µ +X/

√
τ has a multivariate t-distribution with ν degrees of

freedom, tp,v(µ,Ψ), and the inverse of Ψ provides the structure of the corre-
sponding graph. Given this result, the authors devise an EM algorithm, which
makes use of the efficient glasso approach. In Liu et al. (2009), a semiparamet-
ric Gaussian copula is presented, which allows the transformation of non-normal
data to normal data, on which a glasso approach can then be used. In particu-
lar, the multivariate variable Y is transformed into a normally distributed variable
Z = f (Y ) = ( f1(Y (1)), . . . , fp(Y (p))) using a Gaussian copula transformation with
parameters µ and Σ, with Σ−1 giving the partial correlation graph. In order to
estimate Σ−1, Liu et al. (2009) show that f j(y) = µ j +σ jΦ−1(Fj(y)), with Φ the
cumulative distribution function (cdf) of a N(0,1) distribution, Fj(y) the cdf of
Y ( j), and µ j and σ j the mean and standard deviation of Y ( j), respectively. The
cdf Fj(y) is estimated using a robust truncation of the empirical distributions. In
particular, if F̂j(y) is the empirical cdf, then the truncated cdf is defined by

F̃j(y) =


δn if F̂j(y)< δn
F̂j(y) if δn < F̂j(y)< 1−δn
1−δn if F̂j(y)> 1−δn,

with δn chosen as δn =
1

4n1/4√π logn
(Liu et al., 2009). From this, f̃ j(y) =

µ̂ j + σ̂ jΦ−1(F̃j(y)), with µ̂ j and σ̂ j chosen as the sample mean and sample stan-
dard deviation of Y ( j), respectively. Finally, a standard glasso is used on the
transformed variables ( f̃1(Y (1)), . . . , f̃p(Y (p))) to return an estimate of Σ−1.

2.2. Robust nodewise regression methods
An alternative to the global approaches above is to estimate the precision ma-

trix by regressing each node against the remaining nodes. Here sparsity of the
precision matrix is obtained by imposing a penalty on the size of the regression
coefficients. Meinshausen and Bühlmann (2006) were the first to suggest this ap-
proach in the context of Gaussian graphical models: in order to obtain zeros in the
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precision matrix, they suggest using an L1 penalty, that is a lasso regression for
each node. So for each node Y (i), the regression coefficients β (i) are estimated by
minimising the loss function

n

∑
j=1

(yi j −αi − x jβ (i))2 +λ
p

∑
t=1

|β (i)
t |, (1)

where n is the sample size, β (i) is the p−1 dimensional vector of regression coef-
ficients for node i and x j is the n×(p−1) matrix of observations on the nodes Y ( j)

for j ̸= i. This method is very efficient and it works well in practice (Bühlmann
and van de Geer, 2011), but it has the clear drawback that the resulting preci-
sion matrix is not necessarily symmetric: it can happen that βi j is found to be
zero when predicting Y ( j) from the rest, but β ji is not zero when Y (i) is predicted
from the rest. This is expected with regression models but it is not true for condi-
tional independence statements, which instead are symmetric. Meinshausen and
Bühlmann (2006) suggest two possible ways of overcoming this problem: one
can either use an AND rule, that is a link is included if both associated regression
coefficients are non-zero, or an OR rule, where it is enough that one of the two
coefficients is non-zero for allowing an edge. Obviously an AND rule results in a
sparser network than an OR rule and so it is preferred if one is interested in a very
sparse solution. One other possible problem with the lasso approach is that by im-
posing sparsity on each node independently, one reduces the chances of obtaining
hubs in the resulting network. These are expected in some applications such as
biological networks.

The nodewise lasso approach has been extended to an adaptive version, which
is implemented in the R package parcor (Krämer et al., 2009): here adaptive
lasso is used at each node, by minimising

n

∑
j=1

(yi j −αi − x jβ (i))2 +λ
p

∑
t=1

wt |β (i)
t |, (2)

with the weights defined by wt =
1

|β (i),lasso
t |

and β (i),lasso taken as the lasso solution

at node i. This approach leads to a precision matrix which is at least as sparse as
the nodewise lasso solution, since it corresponds to a weighted lasso regression on
the variables with a non-zero lasso coefficient.

In this paper, we take this approach further and exploit the use of alternative
regression methods at each node. With a view to achieving robustness against
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departure from normality, we use robust regression methods at each node, while
preserving the L1 penalty for sparseness. A number of approaches have been
developed in this context. Among these, the two most popular approaches re-
place the quadratic loss in equations (1) and (2) with the Least Absolute Deviation
(LAD) and Huber losses, respectively. Recent methods have appeared which sug-
gest alternative losses, such as L1 and L2 combined losses (Bradic and Fan, 2011)
or a weighted LAD loss (Arslan, 2012).

More in detail, Li and Zhu (2008) introduce L1-norm regularized quantile re-
gression. In a graphical modeling context, we propose to estimate a sparse median
regression for each node, by minimizing the loss function

n

∑
j=1

|yi j −αi − x jβ (i)|+λ
p

∑
t=1

|β (i)
t |, (3)

that is replacing the quadratic loss in equation (1) by the absolute values. We will
also consider the adaptive version of the LAD-lasso regression method above,
which has been developed by Wu and Liu (2009) and Xu and Ying (2010) using
as initial weights the LAD solution. A second approach is developed by Rosset
and Zhu (2007), where the Huber loss is considered in place of the quadratic or
LAD loss. In the graphical modeling context, this corresponds to estimating the
regression coefficients for each node by minimizing the loss function

n

∑
j=1

LH(yi j,x j,αi,β (i))+λ
p

∑
t=1

|β (i)
t |, (4)

with the loss LH defined in terms of the Huber proposal function (Huber, 1981)
by

LH(yi j,x j,αi,β (i)) =

{
2M|yi j −αi − x jβ (i)|−M2 |yi j −αi − x jβ (i)|> M
(yi j −αi − x jβ (i))2 |yi j −αi − x jβ (i)| ≤ M.

The LH definition shows how the loss is quadratic for small residuals but it be-
comes linear for large residuals, thus penalising outliers. This method has been
used for regression problems in a number of applications and has shown robust-
ness against outliers. The constant M depends on the level of noise and outliers in
the data and is often set to the value M = 1.345, which has been shown to perform
well in real applications. An adaptive version of the Huber lasso regression has
been recently proposed by Lambert-Lacroix and Zwald (2011), with the initial
weights defined by the Huber lasso solution.
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In the next section, we first show a comparison of the regularized and ro-
bust regression methods on simulated high-dimensional data. We will then use
these methods within a nodewise approach for the inference of network structure
and compare them with global penalised covariance approaches. Finally, we will
compare penalised likelihood approaches with more traditional model selection
approaches for graphical models.

3. Results and Discussion

3.1. Comparison of robust regression methods on simulated data
In this section, we compare regularized regression methods in a high dimen-

sional setting where the number of variables p = 100 and the number of observa-
tions n = 50. We use a classical simulation setting, e.g. (Bradic and Fan, 2011),
where y = α + xβ + ε , with α = 0 and β = (3,1.5,0,0,2,0, . . . ,0). We draw the
independent variables x from a multivariate normal distribution, N(0,Σx), with
(Σx)i, j = r|i− j|. For the error ε , we choose a range of distributions in order
to test the robustness of the methods to departures from normality. In particu-
lar, we consider the following cases: ε ∼ N(0,1), DoubleExponential (DE), t3,
Gamma(3,1) and Mixture. We design a mixture distribution with large outliers,
similar to Lambert-Lacroix and Zwald (2011), by drawing 90% of the data from
a N(0,1) distribution and 10% from a N(0,1000) distribution. Under all these
cases, we compare the regularized regression methods described in the previous
section, namely lasso (Tibshirani, 1996), LAD (Li and Zhu, 2008) and Huber
lasso (Rosset and Zhu, 2007), with their adaptive versions (Xu and Ying, 2010;
Lambert-Lacroix and Zwald, 2011). For lasso we use the R package lars, for
LAD and Huber lasso we use the R implementations provided by Li and Zhu
(2008) and Rosset and Zhu (2007), respectively, for adaptive lasso we adapt some
of the functions in the parcor R package and we code in a similar way the adap-
tive LAD and adaptive Huber lasso methods. For the adaptive versions of the
methods, we define the weights using the corresponding non-adaptive lasso ver-
sions with a penalty parameter chosen to optimize a BIC criterion. As for the main
penalty parameter, we fix this to the parameter that selects exactly three non-zero
coefficients, for each of the six methods. In this way, all methods can be compared
at the same level of sparseness and the true positives can be directly compared.

Figure 1 reports the results of the simulation. We consider both the case of low
correlation (r = 0.5) and that of high correlation (r = 0.95) of the predictors. The
top panels report the median model error over 500 iterations (similar results for the
mean error), with the model error computed by (β̂ −β )tSx(β̂ −β )t , where β̂ are
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the estimated parameters and Sx the sample covariance. The bottom panels report
the true positives, that is the number of correctly classified non-zero coefficients.
Here three corresponds to the case of all non-zero coefficients being correctly
detected. The results support existing knowledge about the performance of the
methods: lasso does not perform well when the predictors are highly correlated,
the adaptive methods tend to outperform their non-adaptive versions, particularly
for the adaptive LAD lasso method, and the robust methods generally outperform
the non-robust ones as departures from normality increases. This is particularly
evident for the case of the mixture model simulation, which has a severe departure
from normality.

For the results in Figure 1, we fixed the value of the penalty parameter λ such
that exactly three non-zero coefficients are selected. The choice of the penalty
parameter is in general the crucial question when applying regularized methods,
particularly in a high-dimensional setting. This is not the main focus of this paper,
as long as a consistent approach is chosen for all the models compared. However,
in the context of non-normal data, there is also a question about the possible sen-
sitivity of the penalty parameter to outliers and departures from normality. Figure
2 shows the degree of sparsity achieved at different penalization levels, for lasso,
LAD and Huber regression methods. For each method, the x-axis reports the L1
norm of the β coefficients along the path of solutions, divided by the L1 norm of
the final solution on the path. The y-axis reports the average number of non-zero
coefficients, over 500 iterations, for a grid of fraction values between 0 and 1.
On the left plot, we generate data from a normal distribution with low correla-
tion of the predictors, whereas on the right plot we generate data from a mixture
distribution with high correlation of the predictors. The plots show how the meth-
ods achieve a similar trade-off between sparsity and penalization on normal data,
whereas lasso generally returns sparser solutions than the robust methods on non-
normal data.

3.2. Robust covariance and nodewise regression methods on simulated networks
In this section, we investigate the use of robust lasso methods in a nodewise ap-

proach for high-dimensional graphical modeling, and compare their performance
with traditional nodewise methods and robust covariance modeling approaches.
We use a simulation setup similar to Finegold and Drton (2011), where we sim-
ulate p covariates from either a multivariate normal N(0,Θ−1) or a multivariate
t-distribution, tp,3(0,Θ−1). In defining the concentration matrix Θ, we allow only
a certain percentage of non-zero edges, which for our simulations we set to 10%,
and randomly assign edges. As in Finegold and Drton (2011), we also consider
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Figure 1: Comparison of regression lasso methods under different error distributions, for low
(left) and high (right) correlated predictors. The top panels plot the median model error over 500
iterations and the bottom panels the average true positives.
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Figure 2: Sparsity versus penalization for lasso, LAD and Huber regression methods, for normal
data with low correlation (left) and mixture data with high correlation (right).

a third case where we contaminate multivariate normal data. In particular, we
simulate data from a multivariate normal distribution and contaminate a certain
percentage of the data for each predictor using a N(µ,0.2) distribution, with µ
chosen to be 2.5 times the largest diagonal element of Θ−1. This is a case of mild
contamination, which would generally not be picked up manually.

Figure 3 shows ROC curves for four different cases, averaged over 500 iter-
ations. Here, we simulate data with p = 20 and n = 50. We use the R package
huge for the nodewise lasso, glasso and copula methods, whereas we use the
code provided by Finegold and Drton (2011) for the tLasso method. The ROC
curves show the true positive rate (percentage of correctly detected edges) ver-
sus the false positive rate (percentage of missing edges incorrectly classified as
edges) as the penalty λ varies over a carefully selected grid of values. For the
adaptive methods, we use the same penalty λ at both steps of the procedure, i.e.
for defining the weights and for estimating the final regression coefficients. This
is so that a wide range of sparseness of the solution can be obtained. In particular,
it also means that the adaptive lasso nodewise approach uses the lasso nodewise
solution to set the initial weights for each node. Finally, we use the OR rule for
nodewise approaches, so an edge is included if at least one of the two correspond-
ing β coefficients is non-zero. The R code for the nodewise adaptive methods
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is available at http://people.brunel.ac.uk/˜mastvvv/Software.
The plots in Figure 3 show how the methods perform all similarly well for the
case of data generated from a Normal distribution (top left), whereas the tLasso
method outperforms the other methods when the data is generate by a multivari-
ate t-distribution (top right), but even in this case it is very closely followed by the
copula approach. The two plots at the bottom show the case of mild contamination
(2% of the data, bottom left), versus a more severe case (10% of the data, bottom
right). It is clear how the robust methods perform better than the non-robust ones
as the contamination levels increase, supporting the results in the previous section.
Looking at all four cases, the copula approach seems to be the clear favorite, as
it performs well in all cases and it clearly outperforms the other methods for high
departures from normality. This strengthens the results of Liu et al. (2009) where
the approach was compared only against glasso. The adaptive robust methods out-
perform the non-robust methods, such as lasso and glasso, only for high levels of
contamination, which seems to support the results found in the previous section.
However, the improvement is quite small. Generally, one drawback on the use of
LAD and Huber-regression methods for graphical modelling is that these methods
are not robust against outliers in the explanatory variables and protect only against
outliers in the response variable.

The power of all these methods is on the high dimensional setting. In this
second simulation, we evaluate the performance of the methods as dimensional-
ity increases. For the error, we consider the contaminated normal error, with 2%
contamination, as before (bottom left case of Figure 3). To overcome biases in the
selection of the sparsity penalty parameter λ , we fix this to the value that gives
approximately 20% of unconnected nodes. Figure 4 (top) shows the results of
this simulation: the left plot shows the true positive rates as the number of vari-
ables increase from p = 20 (as in the ROC curves) to p = 100, and the number
of observations is fixed at n = 50. On the right panel, the true discovery rate is
plotted, that is the ratio of the number of true edges detected versus the number
of all discovered edges. In the bottom plots, we investigate the performance of
the methods as n increases, while keeping p = 20. This is the more traditional
case of n larger than p, where sparse regression methods are often used as vari-
able selection methods. This simulation is closer to our real data application. The
plots show a general outperformance of the copula method, particularly for cases
with large number of variables and relatively small number of observations, both
in terms of true positive and true discovery rates. In general, the differences be-
tween the methods become less pronounced as the difference between n and p
gets smaller. However, for extreme cases with very large sample sizes and a rel-
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Figure 3: ROC curves, averaged over 500 iterations and networks of 10% density: n = 50, p = 20,
true positive rate and false positive rate across 30 values of the penalty parameter λ .
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Figure 4: True positive and true discovery rates as the number of variables increases (top panel, n=
50) and the number of observations increases (bottom panel, p= 20), averaged over 500 iterations.
The data are generated by a N(0,Θ−1) distribution with 2% of the data contaminated using a
N(µ ,0.2) distribution for each predictor, with µ equal to 2.5 times the largest diagonal element of
Θ−1. The sparsity penalty is chosen so that approximately 20% of networks are unconnected.
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atively small number of variables (e.g. n = 300 and p = 20) the copula approach
has a significantly smaller true positive rate than other approaches, such as the
nodewise adaptive LAD approach.

In a final simulation, we extend the results of Figure 3 by studying the perfor-
mance of the methods as the percentage of data contaminated and the degree of
contamination increase, respectively. Figure 5 shows the results of this simulation.
As before, the data are generated by a N(0,Θ−1) distribution with a percentage of
the data contaminated using a N(µ,0.2) distribution for each predictor. In the top
panel, we increase the percentage of data contaminated from 0% (no contamina-
tion) to 20%, while fixing the degree of contamination µ to 2.5 times the largest
diagonal element of Θ−1. In the bottom panel, the percentage of data contam-
inated is set to 2% and µ is varied between 1 and 5 times the largest diagonal
element of Θ−1. The results show once again a clear outperformance of the cop-
ula method. The bottom panel in particular shows how this method is insensitive
to the degree of contamination, in contrast to all other methods which deteriorate
as the degree of contamination increases.

3.3. Penalised likelihood versus classical deviance tests on simulated networks
Penalised likelihood methods, such as the ones considered above, perform

parameter estimation and model selection at the same time. This is the result of
using an L1 penalty on the parameters of interest, which forces components of the
solutions to be exactly zero under penalisation. For completeness, we consider in
this section a comparison of these methods with more traditional model selection
procedures for graphical models and their robust extensions. We consider the
low-dimensional case (n < p) where these traditional methods are applicable.

Figure 6 shows the results of a simulation. In the left plot, we simulate
data from a normal distribution and compare the tLasso, glasso and copula ap-
proaches with a simple one-step model selection procedure. For the latter, the
inclusion/exclusion of a potential edge is based on a classical deviance test which
compares the full graph without the edge against the full graph with the edge (im-
plemented in the R function fitConGraph). The results show how the penalised
likelihood methods outperform the classical method in this case. In the right plot,
we simulate data from a multivariate tp,3 distribution, and perform a similar com-
parison. For the deviance test, we use the more robust maximum likelihood esti-
mate of the covariance matrix (implemented in the R function cov.trob). Fur-
thermore, since the t-distribution is an elliptical distribution, we use the adjusted
deviance test of Vogel and Fried (2011) for improved performance. In this case,
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Figure 5: True positive and true discovery rates as the percentage of data contaminated increases
(top panel, n = 50, p = 20) and the degree of contamination increases (bottom panel, n = 50,
p = 20), averaged over 500 iterations. The data are generated by a N(0,Θ−1) distribution with
a percentage of the data contaminated using a N(µ,0.2) distribution for each predictor. For the
top panel, µ is set to 2.5 times the largest diagonal element of Θ−1 and the percentage is varied
between 0 and 20%. For the bottom panel, the percentage of data contaminated is set to 2% and
µ is varied between 1 and 5 times the largest diagonal element of Θ−1. The sparsity penalty is
chosen so that approximately 20% of networks are unconnected.
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Figure 6: ROC curves, averaged over 500 iterations and networks of 10% density: n = 50, p = 20,
true positive rate and false positive rate across 30 values of the penalty parameter λ .

the deviance gets adjusted by a factor σ1 = 1+
2

p+ν
, with ν denoting the de-

grees of freedom (Tyler, 1983). The results show how the adjusted deviance test
is superior to the classical deviance test for non-normal data, but it is comparable
to the glasso approach and inferior to both the tLasso and copula approaches.

3.4. Comparison of methods on real data
In this section, we evaluate the performance of the different methods on real

data. We consider the gene expression data on yeast generated by the microarray
study in Gasch et al. (2000). We restrict our attention to 8 genes involved in a
complex network of interactions for the regulation of galactose utilization (Ideker
et al., 2001). This dataset is particularly suited for the comparison in this paper
as 11 out of the 136 experiments show unusually large negative values for 4 out
of these 8 genes: GAL1, GAL2, GAL7, GAL10 (Finegold and Drton, 2011).
This corresponds to about 4% of the data being contaminated, so it is a scenario
close to our previous simulations (note that a 2% contamination for each predictor
in the ROC simulation would correspond to about 8% of the overall data being
contaminated). However, the mechanism of contamination is different: here the
contamination is concentrated on four genes rather than equally spread out across
all predictors. Table 1 reports the results, where the sparsity penalty parameter

17



Table 1: Comparison of the two networks inferred by the same method on clean and contaminated
data. Column 1: overall agreement between the two networks, column 2: number of edges on the
contaminated data that are found also on the clean data; columns 3-4: number of links found on
clean and contaminated data, respectively, for the subnetworks of the four contaminated genes.

Method Total Agreement (%) Common Edges Density of Subnetwork
Clean Contaminated

Lasso 0.79 6 4 5
Glasso 0.86 7 4 6
Adalasso 0.79 6 4 4
tLasso 0.86 7 3 4
AdaLAD 0.79 6 3 5
AdaHuber 0.79 6 3 4
Copula 0.79 6 3 6

is tuned so that the resulting networks contain only 9 edges, as in Finegold and
Drton (2011). For the nodewise adaptive methods, the weights are chosen by
a BIC criterion. Furthermore, we scale the data so that each gene has mean 0
and variance 1: we generally find that all of the methods, except for the copula
approach, are sensitive to data scaling.

The first column reports the percentage of agreement, in terms of present and
missing edges, of the two networks inferred by the same method on the clean and
contaminated data, respectively. For the clean data, we remove the expression
data for the 11 experiments in question. All methods show generally a good level
of agreement, with no clear distinction between the robust and non-robust meth-
ods. The tLasso and glasso methods achieve the highest agreement. The second
column reports the number of edges (between 1 and 9) in the network inferred
from the contaminated data which are found also in the network from the clean
data. Given that we select networks with 9 edges, tLasso and glasso show the best
results here, with a high consistency of discovered edges in the two networks.
Finally in the last two columns, we report the number of edges detected in the
subnetwork of the four contaminated genes (6 corresponds to a fully connected
subnetwork). These results show a greater robustness of the tLasso method versus
the glasso method. In the glasso approach, two edges are detected on the con-
taminated data which were not detected in the clean data and these are exactly
the ones that generate a fully connected subnetwork for GAL1, GAL2, GAL7 and
GAL10. This general conclusion supports the one of Finegold and Drton (2011).
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Table 2: Comparison of the two networks inferred by the same method on a subset (n = 55) of the
clean data and on contaminated data. Col 1: overall agreement between the two networks, col 2:
# edges on the contaminated data that are found also on the clean data; cols 3-4: # links found on
clean and contaminated data, respectively, for the subnetworks of the 4 contaminated genes.

Method Total Agreement (%) Common Edges Density of Subnetwork
Clean Contaminated

Lasso 0.86 7 4 6
Glasso 0.86 7 5 6
Adalasso 0.79 6 3 6
tLasso 0.86 7 4 6
AdaLAD 0.86 7 4 5
AdaHuber 0.86 7 5 6
Copula 1 9 4 4

The copula method did not outperform the other methods on this dataset. The net-
work generated by this method on the contaminated data discovered 3 more edges
than the network on the clean data. These three edges generate a fully connected
subnetwork for the four genes in question. In fact, a closer inspection reveals that
glasso and copula infer exactly the same network on the contaminated data.

The results showed a slight improvement of the tLasso method over the other
methods and not much difference overall between robust and non-robust methods.
Given our simulation results in the previous section, we have run a comparison for
a more extreme case of data contamination. In particular, we consider a subset of
the data by randomly selecting 44 of the 125 ”clean” experiments. In this way, the
resulting dataset has n = 55 observations for p = 8 genes, with four of the genes
having data contaminated for 11 experiments. This corresponds to a 10% level
of contamination, as in our ROC comparisons (figure 3, bottom right). Table 2
shows the results in this case.

This comparison reflects closely the results in our previous simulation. Now the
copula approach recovers exactly the same network for clean and contaminated
data, with the other methods, including tLasso, often detecting a fully connected
subnetwork for the four genes in question.

4. Conclusion

Many approaches are developed in statistics that rely on the assumption of
normality. These approaches are not suited to data that show clear departures
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from normality. This is often the case when data are contaminated, resulting in
the presence of outliers. In this paper, we have considered recently developed
methods that encourage the use of robust loss functions, such as the Huber or
LAD function, in place of the more traditional quadratic loss. In a high dimen-
sional setting, when p >> n, an L1 penalty on the regression coefficients is also
considered. In a simulation study, we show how robust methods are superior to
the non-robust counterparts, particularly for cases where there is a large departure
from normality. Adaptive versions of robust and traditional regression methods
have been developed by carefully setting a weight on the β coefficients and these
have shown a very good performance, as confirmed also by our simulation study.

Encouraged by these results and inspired by the method proposed by Mein-
shausen and Bühlmann (2006), the focus of the paper is on the use of these robust
lasso regression methods as part of a nodewise approach for graphical model-
ing. This has not been considered before in the literature. Instead, two main
approaches have been developed for robust covariance estimation in high dimen-
sional graphical models, namely tLasso (Finegold and Drton, 2011) and a copula
approach (Liu et al., 2009). An extensive simulation study, supported by a real
data analysis, show how the nodewise and covariance approaches perform simi-
larly well when the data are generated from a multivariate Gaussian distribution or
with a small level of contamination, but the copula approach clearly outperforms
all other methods for high level of data contamination. These results extends sig-
nificantly the comparison of Liu et al. (2009).

The current study has focussed on methods for inferring graphical models
from continuous data, such as microarray data. The power of copula methods is
that they can be developed also for discrete data. Given the high performance of
the copula approach observed in this paper, future work will consider an extension
of this method to graphical modeling on discrete data, such as data generated by
the latest RNA-sequencing technologies.
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