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ABSTRACTS   

Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort 

to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures are 

discussed. MHS of different gradients are modelled by stacks of hollow spheres of the same external 

diameter but different wall thicknesses in the crushing direction. Then based on the dynamic performance of 

MHS structures with uniform density, a crude semi-empirical model is developed, showing the effect of 

density gradient in energy absorption and protection against dynamic crush. The model provides some 

guidance in the design of MHS structures. Following this, dynamic responses of density graded MHS foams 

are analyzed using explicit finite element simulation and the proposed formula. Results show that the simple 

semi-empirical model can predict the response of density gradient MHS foams, thus be used for the gradient 

design of MHS structures. 
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1. INTRODUCTION 

Due to the high uniformity of the internal topologies, metallic hollow sphere (MHS) structures are studied as 

alternative microstructures for improving the properties of low-density metal materials, and are notably 

preferential in fast moving machine parts for their good flexibility and shock absorption compared to heavier 

aluminum-alloy counterparts [1, 2]. Further improvement and optimization of their energy absorption 

capacity is always the target. By using the concept of functionally graded materials, which optimizes 

performance through controlled property gradients, density graded foams, have been produced to have 

improved the performance compared with uniform foams [3], which show the advantage that the stress 

distribution and the energy absorption can be controlled by gradient variations, allowing designers to achieve 

significantly enhancement in structural safety against impact loading. 

Recently, increased effects have been seen to investigate the (quasi-) static [4-7] or dynamic [8-10] 

properties of density-graded foams. Zeng et al. [11] performed a series of experiments to test the dynamic 

responses of MHS foams with density gradients. Liu et al. [12] also discussed the dynamic properties of 

MHS arrays with density gradients. Their results show that through proper design of the density gradient, the 

performance of foams can be controlled. Under the low velocity impact, the effects of gradient profiles are 

rather limited; whereas for the high velocity impact, the influence of gradient profiles is profound. However, 

understanding on the roles of the density gradient and the gradient profile are still limited, and design 

guidance for such materials is still not available.  

The objective of this paper is to study the roles of the density gradient on the dynamic performance of MHS 

foams under different crushing velocities, aiming to provide a simple-to-use guide for design purpose. The 

paper is arranged as follows. The model material, foams of metal hollow spheres with the same radius but 

various density gradient profiles through the control of the wall thicknesses, are described in Section 2. In 

section 3, the dynamic characteristic of uniform MHS foams is investigated. Based on these results, the 

relation between the dynamic response of density graded MHS foams and imposed crushing velocities is 

established in a semi-empirical approach in section 4. Finally, the conclusion is given. 

 

 



 

 

2. METHODOLOGY 

For functionally graded MHS foams, gradient variation can be obtained through the use of different bulk 

materials, or by the adjustment of the spheres’ geometrical parameters, or both. In fact, there is a particular 

interest [11] in the second option, to make such graded metal hollow sphere foams with a gradient in the 

strength/density profile by selecting the wall thickness of the spheres, while at the same time, keeping the 

component material and the outer radii of the spheres unchanged, thus other properties, such as the acoustic 

and thermal properties remain the same.  

In the present discussion, interest is focused on the effects of the variation of the sphere wall thickness along 

the impact direction. As shown in Fig. 1, the graded MHS foams are comprised of three layers of hollow 

spheres with different wall thicknesses in the crush direction, whilst each layer contains three rows of 

spheres of the same wall thickness (the layer number and rows of spheres in each layer can be changed 

according to application demands). All spheres are of the same outer radius. If all spheres have the same wall 

thickness, the MHS foam has the uniform density. Here we restrict ourselves to the simple cubic lattice as an 

example of MHS functionally graded material. The influence of the lattice structures on the performance of 

MHSS could refer to [13]. 

In order to minimize the size effect [14], the specimen dimensions along the X and Z directions (Fig. 1) is 

kept at least 6 times of the size of the unit cell (leading to either 6 or 8 spheres in these lengths), and the 

thickness of each row in the Y (impact) direction 2 times of unit cell size. So in the model used here, the 

number of spheres in each layer along the X, Y, and Z directions is nxnynz=836, respectively, bringing 

the total number of sphere to 432 in a typical model, as shown in Fig. 1.  

The general expression of the relative densities of the MHS foams can be expressed as  
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where *  is the effective density of the MHS foams, s is the density of the bulk material, N the total 

number of spheres in the model, ti the wall thickness of the i
th
 sphere. All spheres are of the same outer radius 

R=20mm. 

As shown in Fig. 1, the MHS foam is supported by a fixed rigid plate at one end (distal end) in the XZ plane 



 

 

and deformed dynamically by a rigid plate in the Y direction with an initial velocity V at the other end 

(proximal end). The mass of the impact plate is kept large at 2×10
4
 kg so that the reduction in the velocity of 

the striking plate is insignificant throughout the process. The spheres are perfectly bonded together and no 

necking due to bonding is considered in the contact regions. The side surfaces of the model are free of lateral 

constraints. The top and bottom surfaces are not tied to the two impacting and supportive plates, allowing for 

possible separation.  

An explicit dynamic finite element analysis was conducted using LS-DYNA [15]. Element type Shell163, a 

4-node quadrilateral shell element provided by the code was used to discretize the spheres. Five integration 

points through the sphere wall thickness, as well as a full integral element formation, were adopted for 

accuracy. Each sphere was modeled with 256 elements, which was shown to be sufficient to produce reliable 

results through a mesh sensitivity study. The automatic time step calculation option from the code was 

chosen. All possible contacts were considered during the process of crushing, including self-contact of 

internal surface. All contacts were assumed friction free.  

In order to test the validity of the FE model, dynamic responses of uniform iron MHS foams were first 

calculated and compared to the experimental results available [16]. Here, the nominal compressive stress  is 

defined as the ratio of the normal reaction force on the striking plate to the initial cross section areas of the 

model. The nominal strain is defined as the ratio of the overall compression of the model to its original 

length along the Y direction. Note that the FE model simulated was an SC lattice while the experiment was 

on random packing. Fig. 2a shows a simulated stress-strain curve under a crushing velocity V=8m/s, whilst 

the nominal dynamic plateau stresses at the impact end under different impact velocities are given in Fig. 2b, 

with the dynamic plateau stress defined as  
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where εcr is the strain corresponding to the quasi-static plastic collapse stress qs

cr , and εD the densification 

strain. It is seen that the numerical results show a similar trend in terms of impact velocity to that of the 

experimental ones, but are consistently about 10% higher than the latter. Apart from the packing differences, 

the discrepancy may also be partially due to the existence of cohesive materials and defects which weaken 

the experimental specimens inherently. Nevertheless, the trend in the response is borne out by the model.  



 

 

3. DYNAMIC RESPONSES OF MHS FOAMS WITH UNIFORM DENSITY 

In order to provide a simple formula for the design purpose, the dynamic response of uniform MHS foam is 

modeled using a pragmatic adaptation of the rigid-plastic-locking theory previously outlined in [17, 18]. This 

allows the constants in the shock theory equation to be determined. In our discussion, the bulk material of the 

MHS foams is aluminum with a density 2700 kg/m
3
, and is assumed to be elastic-perfectly plastic. The 

Young’s modulus, yield stress and Poisson’s ratio are taken as Es=69GPa, ys=76MPa, and =0.3, 

respectively. The influence of the air inside the hollow sphere is not considered. 

Figure 3 shows the deformation modes of a uniform MHS foam (wall thickness 0.4mm) at t=0.4s after the 

impact. It shows clearly a progressive crush through the uniform foam. The nominal stress-strain curves for 

MHS foams are given in Fig. 4. It illustrates a dominant hardening feature under a low crushing velocity (Fig. 

4a), and a constant mean-stress phenomenon (plateau stress) then locking under higher crushing velocity (Fig. 

4b and 4c) with higher velocity for higher plateau stress. 

To estimate the plateau stress level, the rigid-perfectly plastic-locking (R-P-P-L) idealization is applied 

where the quasi-static plastic collapse stress qs

cr , the dynamic collapse stress p , and the densification 

strain 
D  are used. Reid and co-workers [17, 18] gave a simple form for the dynamic stress of cellular 

materials based on one-dimensional shock wave theory, 
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where ρ* is the density of the cellular material. A is a parameter equal to ρ*/D, with D the densification 

strain. In order to investigate the plateau stresses of MHS foams, the values for qs

cr  and A must be given. 

The definition of the value of D is debatable. Several authors (e.g. Pattofattto et al., [19]) have commented 

on the ‘parameter identification uncertainty’. Reid et al. [17, 18] used the definition by Avalle [20] based 

on the concept of efficiency, 
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where E, the efficiency parameter of the foam, is defined as the ratio of the absorbed energy up to a given 

nominal strain divided by the corresponding stress value, as follows [20]: 
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The densification strain is the strain at the point corresponding to the maximum efficiency (as indicated by 

the circle shown in Fig. 6a and b). For (quasi-) static situation, Tan et al. [18] gave an empirical scaling 

relation of the form  

    3
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However, the analysis shows that εD is likely to be a velocity-sensitive quantity [21], dependent on the 

degree of cellular collapse which is most likely affected by the inertia. When the impact velocity is greater 

than the critical velocity */2  DyssV  , beyond which progressive cell crushing occurs [18], it tends 

to a certain value. Seen as Fig. 5, the maximum efficiency point (circle in Fig. 5b) does not correspond to 

the densification. The full densification can however be determined by the last main local maximum point 

(triangular point in Fig. 5a and b), with the corresponding strain as the densification strain D. A more 

detailed discussion about the definition of the densification strain, which is warranted by the various 

opinions seen in the literature, is beyond the scope of this paper, and will be given in a companion paper.  

Following the choice of the last main local point in Fig. 5b, the corresponding estimation of the steady 

dynamic density densification strain D can be obtained for V=150m/s. Whilst, the static values of the 

densification strain, marked as DS in Table 1, are also obtained from Eq. (6) for different ratios of the wall 

thickness to outer radius. It is seen that DS is much smaller than the corresponding dynamic densification 

strain D. Values of parameter A are calculated from Eq. (3), also given in Table 1. By a linear fitting, 



 

 

parameter A could be formulated as 

*1.25 45A   ,                  (6) 

with the numerical values listed as Ai in Table 1. 

For the values of qs

cr , referring to Sanders and Gibson [22, 23], we have  
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Then the dynamic plateau stresses of uniform MHS foams can be predicted by 
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To look at the influence of the foam’s relative density, the plateau stress of MHS foams under velocity 

crushing velocity V=150m/s is plotted in Fig.6. Results evaluated using Eq. (8) are marked as σEq, whilst 

those obtained by FE simulation are denoted by σFEM. As can be seen, results from the FE analysis and Eq. (8) 

agree well with each other, with the maximum relative difference within 5%.   

The effect of different striking velocities on the plateau stress is plotted in Fig. 7 for the case t/R=0.02. It is 

seen that results of FEA and from Eq. (8) agree well.  

 

4. DYNAMIC RESPONSES OF MHS FOAMS WITH DENSITY GRADIENTS 

As shown in Fig. 1, a model of density-graded MHS foam (composed by layers of uniform MHS foams) is 

proposed. Through the adjustment of sphere wall thickness in different layers, the density gradient is 

controlled. In this section, the performance of density-graded MHS foams is discussed. The sphere wall 

thicknesses in the three layers are taken as t1=0.4mm, t2=0.64mm, and t3=0.88mm, respectively. From Eq. (1), 

the average relative density of the graded MHS foam is 0.0485. Two gradient profiles G123 and G321 are 

considered, with the increasing value of the suffix numbers denoting increased wall thickness though the 

layers. Thus G123 (G321) is a graded structure with an increasing (decreasing) density along the loading 

direction.  



 

 

Figs. 8 and 9 illustrate the 3D views of the deformation modes of density-graded MHS foams at strain ε=0.5, 

where the nominal strain ε is defined as the ratio between the overall compressive displacement of the foams 

and its original length in the Y direction.  

 

The overall deforming mechanisms show that for both gradient profiles, when loaded under a low speed 

(5m/s), the dynamic deformation is initiated at the interface between the weaker layers t1 and t2, then 

concentrated within the weakest layer t1. With layer t1 having been compacted and becoming stronger, 

deformation occurs at the next level of strength - the interface of layer t2 and t3, then in t2, and then t3. For a 

higher velocity (V=50m/s), the above progressive mechanism is exhibited in G123, but for G321, deformation 

starts to occur simultaneously at both the proximal end within the strongest layer t3, like a ‘shock’ 

phenomenon, and the weakest layer t1 at the distal end under a wave reflection effect. Further increase of the 

crushing velocity (V=150m/s, V>Vs) leads to a complete ‘shock wave’ pattern, with deformation initiated 

from the proximal end then progressing row by row to the distal end, irrespective of the layout of the 

gradient.  

The calculated reaction stresses from FEA at both the proximal and distal ends (indexed as ‘PE’ and ‘DE’ 

respectively) are plotted in Fig. 10. At the proximal end, three stepped stress plateaus are observed in the 

nominal stress-strain curves, which are corresponding to the crushing progress from the weakest layer to the 

strongest one. The step length s is approximated by 

/si D il L   ,                   (9) 

where li and L are the thickness of each layer and the specimen in the impact direction. It is seen that under 

a low crushing velocity (V=5m/s), the responses of G123 and G321 are similar (Fig. 10a), as reported by 

experimental studies [11]. It is also seen the stress levels at both the proximal and distal ends are almost 

identical, implying a state of equilibrium throughout the impact process, i.e. the weakest layer collapse first, 

followed by the 2
nd

 weakest layer, and so on. For higher impact velocities (V=50 and 150 m/s), the ‘shock 

type’ effect becomes progressively dominant. The collapse force of a sphere depends on the sphere wall 

thickness, the thicker the sphere wall, the larger the collapse force. As shown in Fig. 10b and 10c for G321, a 



 

 

high stress level at the beginning corresponds to the deformation of the proximal layer with the largest wall 

thickness t3, which was also observed in experiments [11]. Fig. 10b (V=50m/s) is an intermediate situation 

with a partial shock-type effect. Fig. 10c clearly illustrates the shock effect where the crush progresses 

clearly from the proximal end to the distal one, irrespective of the layout of the density gradient, resulting in 

a step-up stress profile for G123 and a step-down one for G321. It is noticed that for G321, the stress at the distal 

end is at a lower level, which indicates that placing the ‘weakest’ layer at the output or distal end with the 

‘strongest’ layer at the impact or proximal end will reduce the stress level transmitted to the protected 

structures at the distal end, a potentially useful feature for protective application. However, it should be noted 

that at a low crushing velocity, the stress at the distal end is always enhanced in a progressive crushing mode, 

in both increasing and decreasing density gradient cases.  

According to Eq. (8), the dynamic responses of each component uniform layer in density-graded MHS foam 

are calculated and marked in Fig. 10 by dash-dot lines with the length determined by Eq. (9). It is seen that 

Eq. (8) predicts well the plateau stress of layered density-graded MHS foams, especially under a higher 

velocity crush with the shock type effect. It is noticed that for intermediate velocity crush (V=50m/s) of G321, 

the order of the stress plateau changes due to the transmission from the static state to the shock one (Fig. 

10b). But the values for the stress plateaus agree well with the results given by Eq. (8).  

Another key indicator for the energy absorption capabilities of materials is the energy density, which is 

defined as 

v
0
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d
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    .                   (10) 

Figure 11 displays the energy density for both MHS with gradient G123 and G321 under different crushing 

velocities. It is seen that under a low velocity, it shows a negligible effect of gradient profiles. With increased 

velocity, the influence of the gradient profiles becomes evident. WV- curves are convex for G321, but 

concave for G123 (Figs. 11b and 11c), which results in more energy absorbed in early stages by G321. Seen in 

Fig. 11b, at the strain value of 0.4, about 44% more energy has been absorbed 



 

 

(  
321 321 321VG 0.4 VG 0.4 VG 0.4W W W W       ) by G321. Fig. 11c illustrates that when the crushing velocity is 

increased further, more than 50% energy is absorbed at the strain 0.4 in G321, which indicates that the 

increase of the crushing velocity leads to more energy absorption at the early crushing stage. It is also 

noticed that the total absorbed energy is independent of the gradient profile. 

Based on Eqs. (8) and (9), the predicted energy densities are also plotted in Fig. 11 by blue solid and dash dot 

lines. It is seen that the predicted values agrees well with the numerical results.   

 

The results displayed in Fig 10 indicate that under a higher velocity impact, the responses of layered 

density-graded MHS foams display stepped plateau characteristics. The order of the stress plateau is 

determined by the gradient profile from the proximal end to the distal end. The larger the relative density is, 

the higher the plateau stress is. The plateau profile, the stress value and the plateau length could be well 

predicted by the responses of the component uniform layers using Eqs. (8) and (9), especially under a higher 

crush velocity (V>Vs), where of the shock wave theory applies [17, 18]. Since the influence of lattice 

structures could be ignored [13] under a higher velocity crush, the formula is also available to the MHS 

foams with other lattice structures.   

 

5. CONCLUSIONS 

Aiming at providing a strategy for gradient selection in the design of functional MHS structures, the relation 

between the dynamic responses of density graded MHS foams and uniform component MHS foam layers 

was investigated. Instead of the detailed evaluation of the shock wave propagation through different density 

interface, this study focuses on the global response and the overall stress response of graded MHS foams. 

The results show that the responses of the density-graded MHS foams could be approximately determined by 

the dynamic behavior of component uniform layers. Based on this observation, a semi-empirical formula is 

obtained which is proved to be effective to predict the plateau stress. This method provides a simple 

guideline in gradient design of density graded MHS foams.  
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A list of Figure and Table Captions: 

 

Fig. 1 (color on line) Model of MHS foams with density gradients. 

Fig. 2 (color on line) (a) Nominal stress versus strain curves for MHS with SC lattice under crushing velocity 

V=8m/s; (b) Comparison of plateau stresses between the experiment [16] and the FE model.   

Fig. 3 (color on line) Deformation modes for uniform MHS foams with SC lattice under different crushing 

velocity at t=0.4s. (a) V=5m/s; (b) V =50m/s; (c) V =150m/s. 

Fig. 4 Nominal stress-strain curves for uniform MHS foams. (a) V=5m/s; (b) V=50m/s; (c) V=150m/s. 

Fig. 5 (color on line) Response of uniform MHS foam under a crushing velocity V=5m/s (a) Typical 

stress-strain curve; (b) efficiency-strain curve. 

Fig. 6 Variation of dynamic plateau stresses of uniform MHS foams versus t/R under the crushing velocity 

V=150m/s.  

Fig. 7 Variation of dynamic plateau stresses versus the crushing velocity (t/R=0.02).  

Fig. 8 (color on line) Deformation of MHS foams with density profile G123 at ε=0.5. (a) V=5m/s; (b) V=50m/s; 

(c) V=150m/s. The green layer has the thinnest wall thickness and red the thickest. 

Fig. 9 (color on line) Deformation of MHS foams with density profile G321 at ε=0.5. (a) V=5m/s; (b) 

V=50m/s; (c) V=150m/s. The green layer has the thinnest wall thickness and red the thickest. 

Fig. 10 Nominal stress-strain curves at then proximal and distal ends for graded MHS foams under different 

impact velocities: (a) V=5m/s; (b) V=50m/s; (c) V=150 m/s. 

Fig.11 (color online) Energy density for density-graded MHS foams under different impact velocities. (a) 

V=5m/s; (b) V=50m/s; (c) V=150m/s. 

Table 1 Values for dynamic responses of uniform MHS arrays. 
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Fig.11  



 

 

 

 

Table 1 

 

t /R Δρ ρ
*
 εD εDS A Ai 

0.02 0.0308 83.13 0.95 0.686 87.5 58.9 

0.032 0.0487 131.4 0.94 0.64 139.78 119.25 

0.044 0.0661 178.5 0.93 0.6 191.94 178.1 

0.05 0.0747 201.6 0.92 0.58 219.13 207 

0.15 0.2020 545.5 0.79 0.28 690.5 636.9 

 

 

 

 

 

 


