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In this paper for a class of symmetric multiparty pure states, we consider a conjec-
ture related to the geometric measure of entanglement: “for a symmetric pure state,
the closest product state in terms of the fidelity can be chosen as a symmetric
product state.” We show that this conjecture is true for symmetric pure states whose
amplitudes are all non-negative in a computational basis. The more general conjec-
ture is still open. © 2009 American Institute of Physics. �doi:10.1063/1.3271041�

I. INTRODUCTION

The geometric measure of entanglement, which was first proposed by Shimony1 and extended
to multipartite systems by Wei et al.,2 is one of the most natural entanglement measures for pure
states in multipartite systems and has applications in various different topics, including many body
physics,3–5 local discrimination,6 quantum computation,7,8 condensed matter systems,9,10 entangle-
ment witnesses,11,12 and the study of quantum channel capacities.13

Moreover, the same function �except its normalization� plays important roles in different fields
of science apart from physics. First, the geometric measure of entanglement is nothing but the
injective tensor norm itself, which appears in theory of operator algebra14 and is now becoming
increasingly important in theoretical physics—particularly in quantum information.15 Second, in
signal processing, especially in the field of multiway data analysis, high order statistics and
independent component analysis, this function has been intensively studied under the name of
Rank one approximation to high order tensors.16–21

In spite of its importance, its value has only been determined for limited classes of states with
large symmetries, such as Greenberger-Horne-Zeilinger �GHZ� states, generalized W states, and
certain families of stabilizer states.12,22,23 This is because the geometric measure of entanglement
is defined in terms of the maximum fidelity between the state and a pure product state, and
therefore poses a difficult optimization problem.

In quantum information, there are several entanglement measures that attempt to quantify the
“distance” between a quantum state and the set of separable states. For example, the relative
entropy of entanglement and the robustness of entanglement. For such measures, when a given
entangled state is invariant under a certain group action, we can normally choose a closest sepa-
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rable state as it is invariant under the same group action. This property of measures helps us derive
an exact value of these measures for such states with group symmetry.24

On the other hand, even though the geometric measure of entanglement is also defined in
terms of the distance from a set of product states, it does not possess this property. In other words,
for a given state, closest product states in terms of the fidelity do not inherit its group symmetry.
For example, it is known that a translationally invariant closest product state for the translationally
invariant GHZ-type state ��01¯01�+ �10¯10�� /�2 does not exist. Nevertheless, many research-
ers believed that permutation symmetry is exceptionally inherited by closest product states. In
other words, there is one prominent conjecture: for a symmetric pure state, the maximization can
be attained by a symmetric product state. If this conjecture was true, it could vastly reduce the
computation of the geometric measure of entanglement for a symmetric pure state. To our knowl-
edge, this conjecture first appeared in Ref. 2, where it was used in order to propose an analytical
formula for the geometric measure of entanglement for GHZ and W states. Subsequently, this
conjecture, and a stronger version �in which “symmetric” is replaced by “translationally invari-
ant”�, was used in calculations of the geometric measure for states of many body systems.4,5 In
Ref. 12, the authors attempted to prove this conjecture. However, it remained an open problem.

In this paper, we give a proof of this conjecture for a restricted but large class of symmetric
states: symmetric states whose amplitudes are all non-negative in a given computational basis.
This class involves many famous states such as GHZ states, W states, Dicke states, and also
superposition of these states involving only non-negative coefficients. Our result is hence suffi-
cient to give mathematical rigor to the computations of the entanglement of types of symmetric
pure state that were presented in Refs. 2, 12, and 22.

II. DEFINITIONS AND MAIN RESULT

Throughout this paper we will treat only finite dimensional Hilbert spaces obtained from
tensor products of a single space H. We start with the definition of the geometric measure of
entanglement.

Definition 1: For a state ���, the geometric measure of entanglement is defined as

Eg����� = min
����Pro�H�n�

− log2��������2� , �1�

where Pro�H�n� is the set of product states on H�n.
This is the distance between state ��� and the closest product state ��� in terms of fidelity and

has operational significance in several directions.3–8,11–13 The measure can be extended to the
mixed state case in a natural way via the convex roof method.2 Several properties of this measure
have already been studied and we know that it has many of the nice properties one might require
from an entanglement measure.1,2,22,25

The main result of this paper is the following theorem.
Theorem 1: If there exists a basis 	�i�
i=1

dim H of H such that a permutation invariant pure state
����Sn satisfies �����i1� � ¯ � �in���0 for all i1 , . . . , in, then a closest product state ��� may be
found in the symmetric Hilbert space. More precisely,

Eg����� = − log2 max
����H

�����n����2, �2�

where Sn is the symmetric subspace of H�n. In addition, we may choose an optimal state ��� such
that it satisfies �i ����0 for all i.

As we have already mentioned, the preconditions of this theorem are satisfied by a large class
of symmetric state, including GHZ and W states. The theorem hence gives a mathematically
rigorous proof for the calculations in Refs. 2, 12, and 22. Intriguingly, an identical result to
Theorem 1 has also been independently proven by Wei and Severini using methods from the
theory of permanents.26 It will be of interest to identify whether there are hidden similarities to the
proofs, or whether they are truly distinct.

122104-2 Hayashi et al. J. Math. Phys. 50, 122104 �2009�
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III. PROOF OF MAIN RESULT

In order to prove Theorem 1, we will need to utilize Perron–Frobenius �PF� theorem �Ref. 27,
Theorem 8.3.1� and another lemma, Lemma 1, which we now present and prove. We use the
following notation. First, for a vector u�Rd expressed in a certain privileged basis, we say that u
is non-negative if all elements of u are non-negative on that basis. We denote this using the
notation u�0. We use a similar notation for complex vector spaces: a pure state �v��H is said to
be non-negative if �i �v��0 for a privileged basis 	�i�
i, which we will define shortly. The non-
negativity of a pure state will be denoted by �v��0.

For a state ����H�2, a product basis 	�i1� � �i2�
 gives a natural isomorphism between all
states ��� on H � H and all d�d complex matrices � satisfying Tr �†�=1, where dªdim H.
If 	�i1� � �i2�
 satisfies �����i1� � �i2���R, then the state ��� corresponds to a real matrix �. If such
a bipartite state is permutationally invariant, then the matrix will also be symmetric. The real
symmetricity of � implies that its largest eigenvalue �1 is also a singular value so that

�1 = sup
�w�=1

w†�w = sup
�w�=1

��w� .

Since � has non-negative elements, the �extended� PF theorem �Ref. 27, Theorem 8.3.1� implies
that the largest singular value equals the largest eigenvalue and the corresponding eigenvector can
be chosen to have non-negative elements so that

�1 = sup	wT�w�wk � 0,w = 1
 = sup	uT�v�uk,vk � 0,�u� = �v� = 1
 . �3�

Here, we give a lemma.
Lemma 1: If u and v are normalized vectors with non-negative elements and �1=uT�v, then

w= �u+v� / �u+v� is an eigenvector of �1 with non-negative elements.
Proof: By the Cauchy–Schwarz inequality,

�1 = uT�v � ��v� � �1.

Therefore, equality holds above and by the conditions for equality in Cauchy–Schwarz, we must
have cu=�v. Then, the conditions on u and v imply that c=�. Applying the same argument to
��u�Tv, we obtain �u=�v. So, the relation ��u+v� / �u+v�=��u+v� / �u+v� holds. �

Now, we are ready to prove Theorem 1.
Proof of Theorem 1: We start the proof by noting two important facts. First, if the statement

of this theorem is valid, then the same statement is valid for a non-normalized state—the definition
of the geometric measure of entanglement Eg����� can be easily extended to a non-normalized
state. Second, suppose that the assumption of the theorem is valid. Then because the amplitudes of
� are non-negative, we can easily see that

max
����Pro�H�n�

������� = max
����Pro�H�n�

	�������i� � ¯ � �in���� � 0, ∀ i1, ¯ ,in
 , �4�

where Pro�H�n� is the set of all product states on H�n. So, we just need to consider the optimi-
zation problem in the right hand side of the above equation. We will prove Theorem 1 by induction
with respect to a number n of tensor copies of the Hilbert space.

For n=2, by means of the natural correspondence between bipartite states and matrices, we
derive

max
�u�,�v��H

	�u� � �v������i�u� � 0 and �i�v� � 0, ∀ i
 = max
u,v�Rd

	uT�v�u,v � 0
 . �5�

Thus, in the case n=2, Eq. �2� follows directly from �3�.
Suppose that for all n�k the statement of this theorem is valid, and ����H�k+1 satisfies the

assumption of the theorem. Then, since ��� is non-negative, it satisfies Eq. �4�. Thus, there exists
a non-negative product state �a1� � ¯ � �ak+1��0 satisfying

122104-3 Geometric measure of entanglement: Symmetric state J. Math. Phys. 50, 122104 �2009�
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�a1� � ¯ � �ak+1���� = max
����Pro�H�k+1�

������� . �6�

We now define a non-normalized state ��0���H�k as ��0�� =
def

IH
�k

� �ak+1 ���—clearly this state is
also non-negative. Then, this state satisfies

�a1� � ¯ � �ak���0�� = max
����Pro�H�k+1�

������� . �7�

Now suppose that there exists a non-negative product state �a1�� � ¯ � �ak���0 satisfying �a1��
� ¯ � �ak����0��	 �a1� � ¯ � �ak���0��. Then, a non-negative product state �a1�� � ¯ � �ak��
� �ak+1��0 satisfies �a1�� � ¯ � �ak�� � �ak+1����	max����Pro�H�k+1���� ����. However, since
�a1�� � ¯ � �ak�� � �ak+1��Pro�H�k+1�, this would be a contradiction. Hence, we obtain

�a1� � ¯ � �ak���0�� = max
�����Pro�H�k�

������0��� . �8�

We now impose the assumption of the induction, that there exists a state �v0��0 such that
�v0��k��0��= �a1� � ¯ � �ak���0��=max�����Pro�H�k����� ��0���. From Eq. �7�, we derive

�v0��k
� �ak+1���0�� = max

����Pro�H�k+1�
������� �9�

Now, we define a finite sequence of non-negative states 	�Cp
�0��
p=1

k+1 as

�Cp
�0�� ª �v0� for 1 � p � k ,

�Ck+1
�0� � ª �ak+1� .

By utilizing procedure detailed below, we will use this definition as a starting point for the
construction of an infinite sequence of sets of non-negative states 		�Cp

�i��
p=1
k+1
i=0


 satisfying

�C1
�i�� � ¯ � �Ck+1

�i� ���� = max
����Pro�H�k+1�

������� �10�

for all non-negative integers i. We note that because of the permutation symmetry of ���, there is
no significance to the order imposed by p. 	�Cp

�i+1��
p=1
k+1 is defined from 	�Cp

�i��
p=1
k+1 as follows. We

choose a couple of states 	�C�
�i�� , �C�

�i��
 from 	�Cp
�i��
p=1

k+1 such that their inner product �C�
�i� �C�

�i�� is
the least among the inner products of all pairs of states selected from 	�Cp

�i��
p=1
k+1. Then, �C�

�i+1�� and
�C�

�i+1�� are defined as

�C�
�i+1�� = �C�

�i+1�� ª
�C�

�i�� + �C�
�i��

��C�
�i�� + �C�

�i���
. �11�

For all other p�� ,�, we define �Cp
�i+1�� as �Cp

�i+1��= �Cp
�i��. We need to show that the set of

non-negative states 	�Cp
�i+1��
p=1

k+1 defined as above actually satisfies Eq. �10� for all i. From the
permutation symmetry of ���, we can set �=1 and �=2 without losing any generality. Then, we
define a non-negative non-normalized bipartite state ��i���H�2 as ��i��ª IH

�2
� �C3

�i��
� ¯ �Ck+1

�i� ����. By the same discussion, we used to derive Eq. �8�, we can conclude that

�C1
�i�� � �C2

�i����i�� = max
��Pro�H�2�

�����i��� . �12�

By means of Lemma 1, we obtain �C1
�i+1�� � �C2

�i+1����i��= �C1
�i�� � �C2

�i����i��
=max��Pro�H�2���� ��i���. This means that 	�Cp

�i+1��
p=1
k+1 satisfies Eq. �10� for all i. We are now at a

stage where we have a symmetrization procedure that produces a sequence of product states that
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all have the maximal inner product with the entangled state �. We must, however, show that this
sequence of product states converges to a symmetric product state. This is the step that we now
address.

Suppose ang��u� , �v�� is the angle between two single-party states �u� and �v�. We define 
i as

iªmax1�p,q�k+1 arg��Cp

�i�� , �Cq
�i���. Then, by the definition of 	�Cp

�i��
p=1
k+1, we can easily see 
i+1

�
i. Moreover, we can prove limi→
 
i=0 as follows.
Suppose 	�Cp

�i��
p=1
k+1 satisfies �Cp

�i��= �Cq
�i��= �u� for all 1� p, q��, and �Cp

�i��= �Cq
�i��= �v� for all

�+1� p, q�k+1. Without loss of generality, we can assume �� �k+1� /2. Defining � as �ªk
+1−�, we can easily see that 	�Cp

�i+���
p=1
k+1 satisfies �Cp

�i+���= �Cq
�i��= �u� for all 1� p, q��−�, and

�Cp
�i+���= �Cq

�i��= �u�+ �v� / ��u�+ �v�� for all �−�+1� p, q�k+1. Hence, if k+1 is an even number
and if �= �k+1� /2, then 
i+�=0. Otherwise, 
i+�=
i /2. Therefore, if 	�Cp

�i��
p=1
k+1 satisfies �Cp

�i��
= �Cq

�i��= �u� for all 1� p, q��, and �Cp
�i��= �Cq

�i��= �v� for all �+1� p, q�k+1, then, 
i+f �
i /2,
where f is the largest integer smaller than k+1 /2. Since 	�Cp

�0��
p=1
k+1 actually satisfies the above

condition, we derive 
h·f �
0 /2h for all positive integers h. Thus, we can conclude limi→
 
i=0.
A sequence of non-negative states 	�Cp

�i��
i=0

 hence converges to the same non-negative state

�C
�ª limi→
�Cp
�i�� without depending on p. Since Eq. �10� is valid for all non-negative integers i,

by means of the continuity of the inner product, we obtain �C
��k+1���
=max����Pro�H�k+1���� ����. That is, the statement is valid for n=k+1. Therefore, by induction
with respect of n, we have proved the statement of Theorem 1. �

Here, we add one remark concerning the necessity of our Lemma 1. Indeed, from the PF
theorem �Ref. 27, Theorem 8.3.1�, we can immediately show the existence of a non-negative w0,
which satisfies Eq. �3�. However, this is not enough to prove the theorem for the following
reasons: for fixed ���, the PF theorem does enable symmetrization of the closest product state so
that a new closest product state has the form of �C�

�i+1��= �C�
�i+1��. However, since the symmetriza-

tion on a pair of particles � and �, in principle, break the symmetry previously established among
other pairs of particles, simple application of the PF theorem cannot conclude that there exists a
sequence of closest product states converging to a completely symmetric state. Therefore, in order
to demonstrate the convergence, we really need a relation between 	�C�

�i�� , �C�
�i��
 and

	�C�
�i+1�� , �C�

�i+1��
, as in Lemma 1. Therefore, we need Lemma 1 to symmetrize a closest product
state and Lemma 1 is essential for our proof.

IV. DISCUSSION AND CONCLUSIONS

In last part of this paper, we give several comments on the theorem. A stronger �and still
unproven� version of the theorem could still be valid without the assumption of the “non-
negativity” of the symmetric state ���. As we have mentioned in the beginning of the paper, this
stronger conjecture first appeared in the paper of Wei et al.;2 they used this conjecture in order to
propose an analytical formula for the geometric measure of entanglement for GHZ and W states.
While we have not been able to prove the stronger version, the proof presented here of Theorem
1 applies to W and GHZ states, as they can be chosen to be non-negative in the sense that we
require.

In fact, all specific instances of the geometric measure calculated in our previous paper12

concern such “non-negative” states, and so the weaker version of the conjecture, Theorem 1,
proved here is sufficient for those cases �see Sec. III.B of Ref. 12�.

This weaker version of the conjecture proven above can be useful for calculations of the
geometric measure of entanglement of various multipartite systems. For instance, recently several
researches investigated possible connections between the behavior of the geometric measure of
entanglement and existence of quantum phase transition in natural physical systems.4,5 However,
it is generally impossible to calculate a value of the geometric measure of entanglement for such
large systems because the definition of the geometric measure involves a large optimization
problem over all product states. Theorem 1 above provides a way to reduce the size of the
optimization problem in those cases where the state is known to be symmetric and also non-

122104-5 Geometric measure of entanglement: Symmetric state J. Math. Phys. 50, 122104 �2009�
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negative. Actually, in almost all the calculations to date of the geometric measure for ground
states, the possibility of this type of reduction has been assumed. This paper gives a mathemati-
cally rigorous proof of this type of reduction for a restricted subset of pure states �“the set all
non-negative states”� on a symmetric Hilbert space.

Finally, we mention the possibility of the extension of this theorem for a larger subset of
symmetric states. The logic in the proof of Theorem 1 strongly depends on the reduction in the
optimization problem described by Eq. �4�. However, a similar reduction is no longer trivial for a
state ��� having negative amplitudes. Moreover, when the state ��� has complex amplitudes,
Lemma 1 is not valid �although it is, of course, clear that applying a local unitary U � U �¯ to a
“non-negative” state gives a “nonpositive” state for which the conjecture is true�. Hence, supply-
ing either a proof or a counterexample to the original stronger statement of Theorem 1 �Ref. 12�
is an interesting open problem.
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