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Abstract

In this paper, we present a novel and efficient gait recognition system. The proposed system uses

two novel gait representations, the Shifted Energy Image and the Gait Structural Profile, that have

increased robustness to some classes of structural variations. Furthermore, we introduce a novel method

for the simulation of walking conditions and the generation of artificial subjects that are used for the

application of Linear Discriminant Analysis. In the decision stage, the two representations are fused.

Thorough experimental evaluation, conducted using one traditional and two new databases, demonstrates

the advantages of the proposed system in comparison to current state-of-the-art systems.
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I. INTRODUCTION

The human walking style, termed gait, has been known to have the capacity to be used for

recognition purposes [3]. Biometric systems based on gait recognition aim to identify individuals

based on their idiosyncratic walking style. Gait is a very appealing biometric trait due to its

unobtrusiveness and the ease with which it can be captured. It has been shown that gait has

promising discriminatory power as a biometric trait, and it can be combined with other biometrics

[4] in order to achieve reliable authentication results.

A gait recognition system normally consists of three modules. Firstly, a pre-processing module,

i.e., background subtraction and silhouette extraction from the original frames. Secondly, a gait
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feature extraction module. Finally, a data storage/retrieval and recognition decision module.

Several methods for gait recognition have been proposed with most research focusing on the

second module.

The averaged silhouette [5], also known as Gait Energy Image (GEI) [6], is a simple gait

representation with high discriminative power. It is calculated as the averaged frame in one or

all of the gait cycles in a gait sequence. In order to extract the most relevant and informative

features from a GEI, a supervised and an unsupervised feature selection method were introduced

in [7]. However, this selection process did not compensate for GEI’s sensitivity to variations of

observed body structure that could originate from heavy clothing, fatigue, or carried objects.

This aspect of gait recognition algorithms will be explored in more detail in the ensuing parts

of the present paper.

Instead of condensing the holistic information from all gait frames into one template, some

other approaches explore holistic information extracted on a frame by frame basis. In [8], a

Hidden Markov Model (HMM) is used to capture the Frame to Exemplar Distance, which

represents the gait information. In [9], a generic gait walking model was constructed using a

population Hidden Markov Model (pHMM), the states of which represented gait stances over

one gait cycle. The corresponding gait stances in each gait cycle were averaged over one gait

sequence in order to form a dynamically-normalized gait cycle of fixed length that can be used

for recognition. In [10], three gait features were proposed based on the Radon transform and

the weighted Krawtchouk moments. Other approaches construct gait features based on human

body models [11], [12].

The common characteristic of the feature extraction approaches outlined above is that they

rely on side-view gait sequences. Other approaches, however, are based on sequences taken from

other view angles. Frontal-view gait recognition methods have been proposed in [13] and [14].

In [15], three view angles were considered by using two gait representations: Motion Silhouette

Image (MSI) and Gait Energy Image (GEI). In [16], the impact of view-angle variations on

recognition performance was investigated. Each of the reference and test sets have 11 view-

angles. Two typical gait features - GEI and key Fourier descriptors (KFDs) - were extracted

from each reference and test gait sequence. Subsequently, the reference and test features that

were extracted from every view-angle were used to separate recognition results. It was shown

that superior results were obtained when the gallery and probe sets have the same view-angles.
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A more systematic approach for mitigating view-dependency and moderate occlusion problems

of fixed cameras was presented in [17], which aimed at view-invariant representation of human

appearance.

From the above discussion, the conclusion that can be reached is that the side-view normally

yields better results than other view angles. Furthermore, model-based features are usually

extracted from side-view sequences. At the same time, there are limitations for the existing

approaches: 1) no specific provision is made for the very common situation in which the walking

subjects wear heavy clothing or carry an object, 2) it is routinely assumed that more than one

gait cycles are available in each gait sequence. However, in practical scenarios, the above two

assumptions will not always hold. Instead, in typical everyday situations the subjects will walk

casually, and the way they walk may be affected by heavy clothing, carried objects, fatigue, or

other factors. Conditions encountered in practical scenarios will have an impact on the shape of

the extracted silhouettes and will pose difficulties to the extraction of appropriate discriminative

features. Furthermore, in some cases, e.g., in sequences captured in smaller areas, no more than

one gait cycle may be captured and recognition will have to rely on limited information.

In this paper, we propose a gait recognition system, which is aimed to overcome such obstacles

and achieve superior performance. The proposed system has the following features:

• A novel gait representation, termed Shifted Energy Image (SEI), that is resistant to walking

changes that originate from heavy clothing, carried objects, or other factors. A further gait

representation, named Gait Structural Profile (GSP) that is combined with the SEI and yields

superior performance.

• A novel method for dimensionality reduction based on artificial subjects and Linear

Discriminant Analysis (LDA). The artificial subjects are generated based on rotation and

the introduction of artificial clothing.

• A fusion method for the combination of recognition results obtained using these two

representations.

The proposed algorithm is experimentally assessed using the CMU (Carnegie Mellon Univer-

sity) database [18], the CASIA (Chinese Academy of Sciences) database [19], and the ACTIBIO

database, which was compiled under the European Commission project ACTIBIO1. Experimental

1http://www.actibio.eu/
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Fig. 1. Block diagram of the proposed gait recognition system.

evaluation shows the benefits of the proposed algorithm over existing gait recognition algorithms.

With excellent performance and high computational efficiency, the proposed system is very

suitable for deployment in gait-based recognition scenarios.

The rest of the paper is organized as follows: the proposed system is outlined in Section II. The

extraction of side-view sub-sequences is briefly described in Section III. The construction of the

proposed gait representations is presented in Sections IV, V, and VI. Section VII describes the

combination of the two representations in a single framework. Experimental results are presented

in Section VIII, and, finally, conclusions are drawn in Section IX.

II. SYSTEM OVERVIEW

The first module of a gait recognition system is the input and pre-processing of the original raw

frames. This module mainly includes two consecutive processes: initial background subtraction

and silhouette extraction. The first process generates a foreground map that is re-scaled in order

to yield a normalized silhouette of the walking subject. In the present work, the initial background

subtraction step is based on the algorithm presented in [20], with the difference that, in order to

reduce the computational cost, we use fixed rather than adaptive thresholds.

The extraction of silhouettes is followed by feature extraction. The gait feature extraction

process comprises two steps: side-view extraction, and gait template construction. These are

graphically depicted in Figure 1. Specifically, we first determine the number of frames in one

cycle using the method in [21]. Then we introduce a method for determining the first frame

of a side-view cycle, based on which the side-view cycle can be segmented out of the whole

sequence. Finally, we construct two new gait representations by using the side-view cycle, and
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fuse them at the decision stage. These processes are described in more detail in the ensuing

sections.

III. SIDE-VIEW EXTRACTION

It has been shown that side-view silhouettes contain more gait information than silhouettes

taken from other view angles [16]. In order to exploit this fact, we developed a side-view

extraction methodology that detects side-view gait cycles. The assumption made is that there is

at least one, or almost one, side-view (or near side-view) cycle in each gait sequence. In case

no near side-view is expected to be presented, view-invariant approaches in the spirit of [22],

[17], [23] would be more appropriate to achieve recognition efficiency (at the cost of higher

complexity).

In order to locate, within the gait sequence, one cycle that only, or mainly, includes side-view

frames, we first determine the number of frames within one gait cycle. Several approaches [21],

[24], [25] have been developed so far for such determination. In our system, we use the approach

in [21]. It must be noted that the detection of the number of frames is usually very reliable but,

in any case, it does not normally have a significant impact on the performance on the final

system. After the number T of frames in a gait cycle is determined, we locate the starting frame

of the side-view cycle. To this end, we propose an algorithm that is based on the variation

of the subject’s apparent height in the frames comprising the gait sequence. If the subject is

walking in a front-to-parallel direction (i.e., showing his/her side-view in the frame), the height

of his/her silhouette in consecutive frames will change far less than when he/she is walking in

other directions. Therefore, the beginning of a side-view cycle will be followed by T frames

in which the variance of the subject’s height HB (before normalization) will be minimum. This

means that the starting frame F of a side-view cycle will be determined by:

F = argmin
Z

√√√√ 1

T

Z+T∑
n=Z

(
Hn

B −HB

)2
(1)

where n is the frame index. The above process is visualized in Figure 2, which shows the

apparent height of the subject in a sample sequence. The determination of HB, on which the

above equation relies, is usually easy, except in cases of very cluttered background. Inaccurate

calculation of HB will have a measurable performance impact only in the random path scenario.
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Fig. 2. Side-view cycle partitioning based on the subject’s apparent height in each frame. The size T of a gait cycle in this

sequence has been determined to be equal to 27. As seen, the variance of the subject’s apparent height is minimum between

frames 35 to 61. This indicates that frame 35 is the starting frame of the most suitable side-view cycle in this sequence.

(a) (b) (c)

Fig. 3. Averaged silhouettes of the same subject: (a) Gallery template, (b) Probe template, (c) Difference between Gallery and

Probe templates.

In general, the impact on performance is negligible in case the detected first frame is within T/10

frames of the actual first frame. It must be emphasized that the above approach calculates the

part of the gait sequence with the minimum variance and, therefore, this calculation is insensitive

to the camera height (an exception would be a camera observing from the top, in which case

no height variation would be reliably observable).

December 14, 2011 DRAFT



7

IV. FEATURE EXTRACTION

The averaged silhouette representation [5], widely known as Gait Energy Image (GEI) [6], is an

efficient representation that captures gait information from all frames together, instead of relying

on information from each frame separately. Shape information is captured in the upper body

part (i.e., head and torso area) of the GEI, while dynamic information is contained mainly in the

lower body part (i.e., the leg area). However, the averaged silhouette exhibits poor performance

in some cases. One such case is shown in the top row of Figure 3, where recognition would be

difficult due to the fact that the same subject is walking with his head up and his torso straight

in the gallery set, but keeps his head down and leans forward in the probe set. Another example

is shown in the bottom row of Figure 3, where the subject walks without / with a bag in the

gallery / probe set. In the above two cases, the difference, especially along the contour of the

silhouettes, between the same subject’s gallery and probe averaged silhouette templates is large.

This is due to the fact that, when the person was leaning forward or carrying a bag, the body

shape changed and the gravity centres of the silhouettes were shifted.

Although in strict lab conditions, such situations may be uncommon (as subjects are requested

to walk according to a strict experimental protocol), in more practical situations they are rather

common. Therefore, in most practical cases, possible differences, e.g., due to heavy clothing or

carried objects, will introduce variability that can prevent recognition. At the same time, however,

these differences may contain discriminative information, e.g, the subject’s walking style. In

order to remove the effect of structural differences, while retaining the useful gait information,

we develop two gait representations based on the average frame: the Shifted Energy Image (SEI)

and the Gait Structural Profile (GSP).

V. GAIT REPRESENTATION USING THE SHIFTED ENERGY IMAGE (SEI)

Even if a specific person’s walking style may be different when he/she walks on two different

occasions, the general shape and the size of this person’s body components remain the same

and maintain their discriminating capacity. However, the position of the gravity centre of the

body may change due to the existence of factors like carried objects, heavy clothing, fatigue,

etc. Consequently, due to such variations, the direct comparison of averaged silhouette templates

can lead to erroneous decisions. For this reason, we propose a new representation based on
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Fig. 4. The construction of SEI.

the averaged silhouette. Due to its robustness to structural variations, the new feature exhibits

enhanced discriminating performance.

The construction of the new representation is graphically presented in Figure 4. First, since all

the silhouettes are scaled and their heights are normalized, it is mainly the horizontal component

of the gravity centre that will be affected by structural variations. This consideration motivated

us to divide the averaged silhouette into three predefined areas, head, torso and legs. The reason

why three and no more areas were chosen was the expectation that most appearance changes due

to heavy clothing or carried objects would mainly affect one of the above areas and, therefore,

could be mitigated by its re-centering. In the experimental results section we confirm the validity

of this assumption by performing tests using additional segments. According to the anatomical

model in [26], the heights of a human’s shoulder and his / her pelvis are respectively equal

to 81.8% and 48% of the total body height. Therefore, if the height (in pixels) of the scaled

silhouette is H , the head area includes the first 0.182H rows of the silhouette, and the torso and

legs include the next 0.338H and 0.48H rows respectively.

After the areas are defined on an averaged silhouette, their horizontal centres are calculated.

Specifically, if the number of foreground pixels in the head area Ah is Nh, and the intensity of

pixel (x, y) in the averaged silhouette is denoted by I(x, y), the new horizontal centre xch of

the head area can be calculated as:

xch =
1

Nh

∑
(x,y)∈Ah

x · I(x, y) (2)

The new horizontal centres of the torso (xct) and the leg (xcl) areas can be trivially calculated in a
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(a) (b) (c)

Fig. 5. SEIs of the same subject: (a) Gallery SEI, (b) Probe SEI, (c) Difference between Gallery and Probe SEIs.

similar manner. Subsequently, the three trunks are shifted according to their centres separately, in

order to obtain the Shifted Energy Images (SEI). If the horizontal centre of the averaged silhouette

is xcI , we denote the SEI of the head, torso and leg area by Qh, Qt and Ql respectively, and

they can be calculated as:

Qh(x, y) = I (x+ (xch − xcI ), y) , 0.818H ≤ y < H

Qt(x, y) = I (x+ (xct − xcI ), y) , 0.48H ≤ y < 0.818H (3)

Ql(x, y) = I (x+ (xcl − xcI ), y) , 0 ≤ y < 0.48H

An example of the impact of the SEI in the evaluation of the difference between different gait

sequences of the same subject is shown in Figure 5. As seen, the difference between different gait

sequences of the same subject is considerably smaller than the one calculated using averaged

silhouettes (see Figure 3). This is particularly noticeable in the head area, where the gravity

centre has undergone a very noticeable displacement.

A. Segment partitioning insights

In the above analysis, our method was presented using three segments determined based on

an anthropometric model. However, the number of segments used could be higher. In order

to assess the performance of our method for higher numbers of segments, we explored ways

in which each average silhouette can be partitioned into horizontal segments. To this end, we
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Fig. 6. Energy of the difference between the two global templates.

calculated two global templates, i.e., templates that are calculated based on all gait sequences in

our training set. The first template is the average of all silhouettes in our training set. The second

template is calculated by re-centering on a row-by-row basis of the average silhouette for each

subject in our training set, followed by averaging over all subjects. The calculation of the two

templates is meant to highlight the silhouette areas that are mostly affected by the re-centering

as well as disclose possible areas that are robust to the re-centering operation.

The squared difference between the the two global templates is shown in Figure 6. As

seen, there are several low-energy horizontal lines on the difference template that appear to

act as boundaries between wide horizontal segments that are mostly affected by re-centering.

Interestingly, these segments are remarkably similar to the ones determined based on the

anthropometric model discussed earlier. This similarity is evident by comparing the segments

shown in Figure 6 to those shown in Figure 4. This conclusion offers concrete supportive evidence

about the validity of the semantic segments determined based on the model. In the experimental

results section, we include additional experimental results and analysis for SEI construction

based on three or more segments.

B. Dimensionally Reduction for SEIs

The final SEI template is formed using the shifted segments described above. Since not all SEI

coefficients are important for recognition, we perform Linear Discriminant Analysis (LDA) in

order to concentrate the discriminatory information on a few subspace coefficients [27]. Linear

discriminant analysis provides a systematic methodology for the calculation of a subspace in

which recognition is easier. In particular, a matrix W is calculated such that the Fisher’s criterion
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(a) (b)

Fig. 7. (a) Construction of rotated SEI, (b) Construction of SEI with artificial coat.

is maximized:

J(W) =
|W · SB ·WT |
|W · SW ·WT |

(4)

where SB is the between-class scatter matrix, and SW is the within-class scatter matrix. In

order to calculate SB and SW , we use the method in [28] to construct feature vectors from the

templates. If the dimensions of a template Q are M ×N , it is converted into an I × 1 vector q,

where I = M×N . Let Ng denote the number of classes (i.e., the number of different subjects) in

the Gallery set, and Ns denote the total number of feature vectors from all Ng classes. Trivially,

Ns =
∑Ng

i=1Ni, with Ni denoting the number of feature vectors of the ith class. The within-class

scatter SW is defined as:

SW =

Ng∑
i=1

∑
q∈Ci

(q−mi)(q−mi)
T (5)

where Ci is the ith class, q is one of the feature vectors of the ith class, and mi =
1
Ni

∑
q∈Ci q,

is the mean feature vector of the ith class. The between-class scatter SB is defined as:

SB =

Ng∑
i=1

Ni(mi −m)(mi −m)T (6)

where mi is the mean feature vector of the ith class, and m = 1
Ng

∑Ng

i=1 mi, is the global mean

feature vector.

The application of LDA relies on the availability of more than one training feature vectors

(SEIs) for each class. However, we would like to be able to use our proposed algorithm even
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(a) (b)

Fig. 8. Eigenvectors corresponding to the two largest eigenvalues. (a) corresponds to the largest eigenvalue, (b) corresponds

to the second largest eigenvalue.

in cases where only one full gait cycle is available. This is why we resort to constructing three

SEIs for each subject based on a single full gait cycle and its two constituent half-cycles. Since

the three SEIs are constructed based on a single gait cycle, the resultant within-class scatter

matrix may not be very appropriate for use in the application of LDA. In order to deal with this

problem, we introduce within-class variance using the three SEIs constructed earlier. As a result,

we develop two novel approaches for the construction of artificial templates by simulating two

conditions: 1) the subject is leaning forward when walking, 2) the subject is wearing a coat.

Additional variability could be used by using different view-direction variations, but we chose

not to take this approach as our focus is on dealing with real structural variations rather than

appearance changes that are due to viewpoint variations.

The first condition can be simulated by rotating the original averaged silhouette by r degrees

using its gravity centre as the centre of rotation. In our experiments, we used r = 10◦ as this

is close to the maximum inclination that would be realistically expected when walking. Using

smaller values would gradually erode the efficiency of LDA. For reasons of symmetry, we also

create a rotated template using the opposite rotation (−r). Subsequently, two new SEIs are

constructed based on the rotated averaged silhouettes using equation (3). This construction is

shown in Figure 7(a).

The existence of a coat can be simulated by taking the following steps, which are graphically

described in Figure 7(b): 1) In the torso area of the SEI, we locate pixels, (xl, yl) and (xr, yr),

that indicate the front and back boundaries of the torso. 2) We extract the torso area between

xl to xr and expand the extracted segment horizontally by 50% so that it resembles a coat.
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Although smaller expansion factors are conceivable, expanding by considerably less than 50%

would diminish the efficiency of LDA to handle different clothing and the performance achieved

would be close to that exhibited by a system not using LDA. 3) We use the artificially expanded

area in place of the extracted area. 4) We construct a new SEI by using the averaged silhouette

with artificial coat.

The combination of the SEI construction and the subspace projection allows the selection of

the most discriminative features of an SEI. Using LDA, a SEI can be represented as a short

feature vector of projection coefficients derived using the eigen-SEIs of the LDA. Figure 8 shows

the first two eigen-SEIs of a subspace projection.

VI. STRUCTURAL GAIT REPRESENTATION USING THE GAIT STRUCTURAL PROFILE (GSP)

The SEI, presented in the previous section, distorts the structural coherence of averaged

silhouettes in order to achieve improved insensitivity to a variety of changes. However, structural

information can be useful in gait recognition and this is why we follow an additional approach

that can capture body geometry without any distortion. This approach is based on vectors defined

by the gravity centre of the body as well as the centres of a few selected areas in each averaged

silhouette. These vectors have been shown [29], [30] to contain high discriminatory power. In the

present paper, instead of extracting information from each of the frames separately, we propose

a gait representation based on vectors calculated directly from the averaged silhouette. This new

representaion will be, henceforth, called the Gait Structural Profile (GSP) and it is graphically

explained in Figure 9.

Unlike the method in [30], the present method does not require the availability of manually-

labelled silhouettes. Instead, initially the averaged silhouette is segmented into four predefined

body areas - head, torso, left leg and right leg - based on anatomical knowledge of the human

body [26] and subsequently the gravity centre of each body area is calculated. If the gravity

centre of the entire body and the head are denoted g and gh respectively, the GSP vector for

the head area is calculated as:

ph = gh − g (7)

i.e., it represents the co-ordinates of the centre of the head area in the co-ordinate system that

has as origin the gravity centre of the entire body. The GSPs of the other body areas are trivially

calculated in a similar way.

December 14, 2011 DRAFT



14

Fig. 9. The construction of GSP.

When the GSP distance between two subjects is calculated, the distances of the gallery and

the probe subjects are calculated separately for each area α, i.e.,

dGSPα = ∥pgallery
α − pprobe

α ∥ (8)

where ∥ · ∥ denotes Euclidean distance and the subscript α denotes the relevant body area with

α ∈ {head, torso, left leg, right leg}.

After the distances are calculated for each of the four body parts, they are combined into

a single dissimilarity measure DGSP using weighting. Specifically, since the discriminatory

capabilities of the four body areas are different, we develop a weighting method based on

the within and between variances of the gallery subjects. The within-variance σ2
within,α of pα is

calculated as:

σ2
within,α =

1

Ng

Ng∑
i=1

∑
pa∈Ci

∥pα − pα,i∥2 (9)

where pa ∈ Ci represents instances of the ath body area in the ith class, Ng is the number of

different subjects (i.e., classes) in the gallery and pα,i is the average GSP vector for area α of

subject i. The between-variance of the pα, denoted as σ2
between,α, is calculated as:

σ2
between,α =

1

Ng · (Ng − 1)

Ng∑
i=1

Ng∑
f=1

i ̸=f

∥pα,i − pα,f∥2 (10)

where pα,i and pα,f are the average GSP vectors of subject i and f for i ̸= f .

December 14, 2011 DRAFT



15

Apparently, a large within-variance leads to large False Reject Rates whereas a small between-

variance leads to large False Accept Rates. Our objective is to ensure the robustness of the system

by minimizing the impact of both cases above. To this end, the importance of the αth area is

taken into account by utilizing a weight calculated as:

wGSPα =
σ2
between,α

σ2
within,α

(11)

where α denotes the head (h), torso (t), left leg (ll), and the right leg (rl) area. Weights calculated

as above offer a clear performance improvement over using equal weights.

Finally, the total distance for the GSP representation is defined as:

DGSP = wT
GSP · dGSP (12)

where

wGSP = [wGSPh
, wGSPt , wGSPll

, wGSPrl
]T

dGSP = [dGSPh
, dGSPt , dGSPll

, dGSPrl
]T

In the above analysis, we used four body areas. Alternative choices about the number of

assumed body areas could have been made. Related experimental results and analysis, showing

the impact of alternative choices to recognition performance, are included in section VIII-A2

showing the impact of alternative choices to recognition performance.

VII. FEATURE COMBINATION

As is obvious from our discussion so far, the gait representation proposed in this paper consists

in the division of the averaged silhouette into predefined areas, the extraction of characteristic

vectors for these areas and the construction of new templates based on re-centered areas. This

approach allows improved performance without disregarding important structural information.

As seen in the previous sections, the distances among the SEI templates and among the

GSP vectors are calculated separately. In order to achieve better recognition performance, we

combine these distances. Since DSEI and DGSP are not directly comparable, we first normalize

them using the min-max normalization method. Because the discriminatory power of the two

features is different, weights for the normalized distances are calculated using the mean-variance

method. This method yielded superior results in comparison to other normalization methods [31]:
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wSEI =
mSEI

σSEI

, wGSP =
mGSP

σGSP

(13)

where mSEI (mGSP ) and σSEI (σGSP ) are the mean Euclidean distances and the standard

deviations between different gallery subjects for the SEI (GSP) representations.

The final distance for the combination of the two features is:

D = wSEI · D̃SEI + wGSP · D̃GSP (14)

where D̃SEI and D̃GSP are the normalized distances using the SEI and GSP representations

respectively. This distance is used for making recognition decisions in our final system, named

SEIS, based on the SEI representations as well as on the extracted Structural features.

VIII. EXPERIMENTAL RESULTS

By using the pre-processing and gait representations that were introduced in the present paper,

we developed a complete gait recognition / authentication system that can work in real time.

Our system is based on a camera from Point Grey Research2 for video capturing. The entire

system is implemented in C++ and can run on a laptop with Intel Core 2 Duo 2.66GHz CPU,

4 GB RAM and 64-bit Windows Vista Operating System.

The computational efficiency of our proposed method is presented in Table I, in which the

average running time is shown for enrolment and recognition using the GEI, SEI and SEIS

methods respectively. The pre-processing stage (i.e., initial background subtraction and silhouette

extraction) is common for all methods and for this reason it is omitted. It should be noted,

however, that the pre-processing is taking place in parallel with video capturing and, therefore,

the required preprocessing time (3-4 seconds) is not additional to the time needed for the rest

of the calculations.

The enrolment process includes side-view extraction and gait template construction, and

the recognition process includes side-view extraction, gait template construction and decision

making. As seen the additional computations needed by SEI in comparison to GEI are minor.

Our complete SEIS system is more complex, but still fast enough to operate close to real time.

2http://www.ptgrey.com/
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TABLE I

COMPUTATIONAL EFFICIENCY OF THE PROPOSED GAIT RECOGNITION SYSTEM (IN SECONDS).

Method
Enrolment Recognition

Side-view

extraction

Template

construction
Total

Side-view

extraction

Template

construction

Comparison

and decision

making

Total

GEI 0.4s 0.1s 0.5s 0.2s 0.1s 1.3s 1.6s

SEI 0.4s 0.2s 0.6s 0.2s 0.2s 1.5s 1.9s

SEIS 0.4s 0.3s 0.7s 0.2s 0.2s 2.5s 2.9s

A. Sensitivity to variations in the degrees of freedom

In order to evaluate the sensitivity of our algorithm to variations in the number of SEI segments

or GSP body areas, we conducted comparative experiments that are presented below.

1) Body-part segmentation for SEI: According to the anatomical model and our proposed

SEI feature extraction method, there are limited ways of forming body segment sets, a) three

segments: head-torso-legs, b) four segments: head-torso-thighs-shins, c) five segments: head-

chest-abdomen-thighs-shins. We evaluate the above segment sets using the ACTIBIO database

(a detailed description of the database is provided later in this section), and the results are

shown in table II. As seen, the best performance is achieved by using the three-segment set (i.e.,

head, torso, and legs) although the performance differences in case more segments are used are

generally marginal.

2) Body-part combinations for GSP: Similar to SEI construction, more than one segment-

set formations can be applied to GSP extraction. In order to assess our method, we tried the

following: a) 4 segments: head - torso - left leg - right leg, b) 6 segments: head - torso - left

thigh - right thigh - left shin - right shin, c) 8 segments: head - left torso - right torso - left

thigh - right thigh - left shin - right shin. We extracted GSP features based on the above three

combinations, and combined each GSP with the three-segment SEI (i.e., the best performing

SEI) using the fusion method presented in section VII. The combined results are shown in table

III. As seen, the best performance is achieved by using four segments (i.e., head, torso, left leg

and right leg), although in several cases the performance differences are small. The results show

the intrinsic efficiency of the approach taken and highlight its general insensitivity to variations
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TABLE II

RANK 1 AND RANK 5 RECOGNITION RESULTS FOR SEI USING DIFFERENT NUMBERS OF BODY SEGMENTS.

Rank 1 Rank 5

segments 3 4 5 3 4 5

Probe A 29 28 25 58 57 54

Probe B 16 15 11 45 42 40

Probe C 42 47 38 76 77 76

Probe D 42 36 40 82 82 81

Probe E 78 80 81 92 89 88

Probe F 49 45 45 60 55 58

Probe G 30 29 32 52 52 55

Average 41 40 39 66 65 65

TABLE III

RANK 1 AND RANK 5 RECOGNITION RESULTS FOR GSP COMBINED WITH SEI, WHERE GSP IS USING DIFFERENT NUMBERS

OF BODY SEGMENTS.

Rank 1 Rank 5

segments 4 6 8 4 6 8

Probe A 29 29 29 58 58 58

Probe B 19 16 16 47 45 44

Probe C 48 48 52 76 76 78

Probe D 41 41 38 82 82 81

Probe E 78 78 78 93 92 92

Probe F 52 45 48 63 60 60

Probe G 29 29 29 52 52 52

Average 42 41 41 67 66 66

of the free parameters.

B. Experimental evaluations using three different gait databases

Our proposed algorithm is tailored to gait recognition that is robust to body shape changes.

For the experimental evaluation of our method, we use the CMU database [18], the CASIA

database [19] and the gait database that was recorded in the framework of the ACTIBIO
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project (Unobtrusive Authentication Using ACTIvity Related and Soft BIOmetrics)3. In the above

databases, there are test gait sequences in which the walking person is carrying a bag or wearing

a coat, which facilitates the demonstration of the benefits of our approach.

C. Experimental evaluation using the CMU MoBo database

The CMU database is an established database and in the present work we use it in order to

compare our proposed method with other methods in the literature. In the CMU MoBo database,

25 walking subjects were captured under three conditions, i.e., fastwalk, slowwalk, and walking

with a ball, and from six view angles, i.e., east, southeast, south, southwest, northwest and

north. Based on the CMU database, the best performing method that uses side-view sequences

is the one using pHMMs [9], and this is why we include it in our comparison. In addition, we

compare with the popular averaged silhouette template in [5], which is widely known as GEI [6],

as well as with the multiview method introduced in [32]. It should be noted that the purpose of

this comparison is to comparatively assess the efficiency of gait representations in their simplest

form, and therefore no LDA was applied in combination with any of the representations in the

comparison.

In our experiments, we used the fastwalk sequence as the the gallery (reference) set while

slowwalk was used as the probe set. We only used the side-view sequences for the proposed gait

template construction. Results are reported in terms of cumulative match scores. Essentially, we

measure rank-n performance, i.e., the percentage of tests in which the correct subject appears

in the top n matches [33]. The results for the proposed algorithm and the other three existing

methods are tabulated in Table IV. It can be seen that the proposed algorithm outperforms the

other two methods, based on the averaged silhouette (GEI) and the pHMM. Moreover, despite

the fact that the proposed system detects and uses only side-views, it still rivals the recognition

performance of the system that combines multiple views [32]. This provides further evidence

about the robustness of the proposed system.

D. Experimental evaluation using the CASIA database

The CASIA database is one of the largest publicly available gait databases. It consists of three

data sets, which are captured in different environments. In our experiments, we use Dataset B,

3For more information please see http://www.actibio.eu/
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TABLE IV

RECOGNITION RATES FOR THE PROPOSED AND THREE OTHER EXISTING METHODS ON THE CMU DATABASE.

Method
Recognition Rate (%)

Rank 1 Rank 3 Rank 5 Rank 7

GEI [6] 84 92 92 96

pHMM [9] 84 - - -

Multi [32] 92 96 96 100

SEI (non-LDA) 88 96 96 100

SEIS (non-LDA) 92 96 100 100

TABLE V

RECOGNITION RATES FOR THE PROPOSED AND TWO OTHER STATE-OF-THE-ART METHODS ON THE CASIA DATABASE.

Probe
Rank 1 Recognition Rate (%)

CAS [19] GEI [6] SEI SEI(LDA) SEIS

Set A 98 99 99 99 99

Set B 33 60 42 63 64

Set C 52 22 63 72 72

because it has a large number of subjects and the walking conditions are close to the ones that

our system aims to work in. There are 124 subjects in CASIA Dataset B, and the gait data were

captured from 11 views. In addition, three walking conditions are included, namely, normal

walking (“nm”), walking in a coat (“cl”) and walking with a bag (“bg”).4

For the experimental evaluation based on CASIA database, we followed the protocol described

in [19]. Specifically, we use sequences “nm-01”, “nm-02”, “nm-03” and “nm-04” as the gallery

(reference) set, sequences “nm-05” and “nm-06” as probe (test) Set A, sequences “cl-01” and

“cl-02” as probe Set B, and sequences “bg-01” and “bg-02” as probe Set C.

Rank 1 recognition rates (i.e., correct classification rates) using our method, as well as two

other existing methods, are tabulated in Table V. The CAS (Chinese Academy of Sciences)

method is based on GEI, and its recognition results for all 11 views were initially reported in

[19]. In that work, it was concluded that the best results were achieved using the side view (i.e.,

90◦ view-angle), which is in agreement with the assumptions made in our proposed method.

4http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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Fig. 10. Experimental results on the CASIA database using the proposed SEIS algorithm (i.e., combination of SEI and GSP):

(a) Recognition results, (b) Verification results.

For this reason, we only compare our results to the side-view CAS results. As seen in Table V,

the recognition rates achieved using SEI without LDA are superior to those achieved using the

CAS method (i.e., using simple GEI) in all probe sets. That clearly demonstrates the advantage

of our proposed SEI template over the conventional GEI template. The method developed at the

University of California at Riverside [6] is also based on GEI but it additionally deploys Principal

Component Analysis (PCA) and Multiple Discriminant Analysis (MDA) for dimensionality

reduction. In our proposed method, we apply LDA on the SEI for dimensionality reduction,

therefore, it is reasonable to compare the results of SEI with LDA to that method. As seen in

Table V, our SEI-LDA method consistently outperforms the two other state-of-the-art methods

in all probe sets. Finally, further improvement is achieved when SEI is combined with structural

information. The resultant SEIS algorithm is the best-performing method, outperforming all

others in Table V, and its full recognition and verification results are presented in Figure 10.

E. Experimental evaluation using the ACTIBIO database

The ACTIBIO database was compiled in 2009 in the framework of the ACTIBIO project5 and

is probably the newest such database. In this database, there are 28 subjects who are walking

in an indoor environment. Each subject is not necessarily walking in straight lines but instead

5http://www.actibio.eu/
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TABLE VI

EIGHT DIFFERENT SETS IN THE ACTIBIO DATABASE.

Set Day Rep. Subjects Condition

Gallery 1 1 28 Normal walking

Probe A 1 1 28 Carrying a bag

Probe B 1 1 27 Wearing a coat

Probe C 1 1 28 Wearing slippers or socks only

Probe D 1 1 28 Walking diagonally

Probe E 1 2 28 Normal walking

Probe F 2 1 27 Normal walking

Probe G 2 2 27 Stop for a while

he / she is walking casually along random paths. Therefore, this database is very suitable for

the experimental assessment of our proposed algorithm. For each subject, there are up to eight

gait sequences, captured on two recordings with the second recording taking place one month

after the first. Two repetitions were captured in each day and several walking conditions were

recorded in each repetition. A full description of each recorded condition is presented in Table

VI. For each subject, one of the eight sequences is used as a gallery (reference) sequence and

the others are probe (test) sequences. Figure 11 shows sample frames taken from two sequences

of the same subject. As seen,

• in both sequences, the subject is not walking in a strictly straight line, i.e., the view-angle

of the frames change during the walking period,

• the body is not always kept erect; in sequence 1 (upper row), the subject is walking with

his head inclined downwards, while in sequence 2 (lower row), the same subject is looking

straight ahead when walking,

• in sequence 2, the subject is carrying a bag.

In our experiments, we used our side-view partitioning algorithm in order to extract one

side-view cycle out of each gait sequence. Subsequently, we constructed our proposed gait

representations using the extracted side-view cycle.

First, we assessed the performance of the proposed SEI representation in comparison with

the GEI. To this end, we constructed the GEI and SEI separately without applying Linear
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Fig. 11. Sample frames from the ACTIBIO database.
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Fig. 12. Recognition rates on the ACTIBIO database using: (a) GEI, (b) SEI. No LDA was used with either of the tested

algorithms.

Discriminant Analysis. The recognition results of using these two representations are shown

in Figure 12. The Rank 1 and Rank 5 performance is also summarized in the first two columns

of Table VIII. Furthermore, in Figure 13, we report verification results in terms of Receiver

Operating Characteristic curves (ROC). The ROCs report the probability of positive recognition

of an authorized subject versus the probability of granting access to an unauthorized subject. As

seen in all comparisons, the SEI outperforms the GEI at almost every rank for all probe sets,

clearly demonstrating the advantage gained when the SEI is used.
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Fig. 13. Verification rates on the ACTIBIO database using: (a) GEI, (b) SEI. No LDA was used with either of the tested

algorithms.

TABLE VII

AVERAGE RECOGNITION AND VERIFICATION RATES ON THE ACTIBIO DATABASE USING THE SEI-LDA METHOD WITH

DIFFERENT TRAINING SETS .

Training sets
Recognition Rate (%)

Rank 1 Rank 5

I 45 77

II 53 82

III 59 88

Training sets
Verification Rate (%)

FAR 5% FAR 10%

I 50 61

II 55 67

III 63 75

Secondly, we applied LDA on the original SEIs. The subspace projection transformed the

original SEIs into short vectors of Ng−1 coefficients, where Ng is the number of subjects in the

gallery, i.e., 28 in this case. In order to improve the efficiency of the calculation of the appropriate

subspace, as explained in Section V-B, we created artificial gait subjects by using rotation of

gait half-cycles as well as introducing artificial clothing. In order to assess the efficiency of the

artificial training sets, several experiments are conducted using different training sets:

• Training sets I: They are using only the original templates that are created from the full

gait cycle and the half-cycles.

• Training sets II: The artificial sets created by rotation are included.

• Training sets III: Both artificial sets with rotation and extra clothing, are included.
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Fig. 14. Recognition rates on the ACTIBIO database: (a) GEI with LDA using training sets with artificial rotation and clothing,

(b) SEI with LDA using training sets with artificial rotation and clothing.
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Fig. 15. Verification rates on the ACTIBIO database: (a) GEI with LDA using training sets with artificial rotation and clothing,

(b) SEI with LDA using training sets with artificial rotation and clothing.

The recognition and verification results of the above three experiments are shown in Table

VII. As seen, the results using rotated training sets are superior to those obtained using original

templates only. The combination of both rotated sets and artificial clothing sets yields even

better results. This proves that the rotation and artificial clothing training sets improve the system

performance. For the purpose of comparison, the recognition and verification results by applying

LDA on the GEI using the training sets III are also provided in Figure 14 and 15. As seen, the

approach using SEI with LDA still outperforms the approach using GEI with LDA.
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Fig. 16. Experimental results on the ACTIBIO database using the proposed SEIS algorithm (i.e., combination of SEI and

GSP): (a) Recognition results, (b) Verification results.

TABLE VIII

RANK 1 AND RANK 5 RECOGNITION RESULTS ON THE ACTIBIO DATABASE.

Probe
Rank 1 Recognition results

GEI SEI GEI(LDA) SEI(LDA) SEIS

Probe A 32 29 21 36 37

Probe B 19 16 41 41 41

Probe C 29 42 42 71 77

Probe D 39 42 50 58 64

Probe E 64 78 92 100 97

Probe F 41 49 57 60 62

Probe G 19 30 30 44 57

Average 35 41 48 59 62

Probe
Rank 5 Recognition results

GEI SEI GEI(LDA) SEI(LDA) SEIS

Probe A 47 58 58 69 71

Probe B 49 45 75 89 92

Probe C 61 76 90 96 96

Probe D 69 82 72 89 92

Probe E 82 92 100 100 100

Probe F 67 60 75 85 85

Probe G 40 52 67 85 85

Average 59 66 77 88 89

Our final and most important experiment is based on the combination of the SEI-LDA with

GSP, as described in Section VII. The recognition and verification results for the resulting method

using the SEI and Structural features (SEIS) are shown in Figure 16.

For the sake of comparison, for all above approaches, the recognition results at Rank 1 and

Rank 5 and the Equal Error Rates (EER), i.e., the error rate when FAR equals FRR, are presented

in Table VIII and IX respectively. From these results, the following conclusions can be drawn:

• Compared to the GEI, a clear advantage of the SEI is shown. On average, the SEI yields

6% and 7% recognition rate improvements at rank 1 and rank 5 respectively. Additionally,
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TABLE IX

EQUAL ERROR RATE (EER) ON THE ACTIBIO DATABASE.

Probe
Equal Error Rate (%)

GEI SEI GEI(LDA) SEI(LDA) SEIS

Probe A 39 36 32 29 31

Probe B 30 35 24 15 15

Probe C 24 25 10 10 10

Probe D 25 27 18 11 11

Probe E 15 7 2 0 1

Probe F 23 25 22 17 15

Probe G 37 26 26 15 15

Average 28 26 19 14 14

the EER of the SEI is lower than that of the GEI.

• After the proposed LDA method is applied, improvements on both GEI and SEI are achieved.

In this case, SEI still outperforms GEI by a significant margin. Specifically, when using

LDA, on average, the SEI gives 11% higher recognition rate than GEI at both rank 1 and

rank 5. Moreover, our method achieves a lower EER.

• The combination of SEI-LDA and GSP, i.e., the SEIS method, achieves even better rank

1 and rank 5 recognition rates although these additional improvements are occasionally

marginal.

For reasons of completeness, we also tested our method using low-quality silhouettes from the

USF database. Direct comparison between the GEI and the SEI (without application of LDA)

on the average brings the performance of the two methods within two percentage points of each

other. This is due to the fact that the segment displacement of SEI becomes largely inaccurate

as a result of the very low quality of the extracted outdoor silhouettes and, therefore, the

expected performance gains materialize in part. Another conclusion is that, in case of low quality

silhouettes, the final SEIS method improves on the recognition accuracy of SEI marginally. This

should be expected as the discriminatory capacity of the GSP component of the final system is

low in the presence of excessive noise. These results underline the fact that the clear performance

gains achieved by our method in conditions of medium- or good-quality silhouettes are coupled

with very robust performance, which is directly competitive to conventional methods, in cases
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of low (or very low) quality silhouettes.

In conclusion, our best-performing SEIS approach, combining template shifts and structural

features, generally outperforms all other methods in our extensive experimental assessment. This

improved performance of our system comes with the valuable additional convenience of real-time

operation in casual walking situations.

IX. CONCLUSIONS

We presented a very efficient, novel gait recognition system. The proposed system is based

on two novel gait representations, the Shifted Energy Image and the Gait Structural Profile,

that are robust to appearance variations such as those arising from heavy clothing or carried

objects. Furthermore, a novel method is introduced for the simulation of walking conditions

and the generation of artificial subjects that are used for the application of Linear Discriminant

Analysis. At the decision stage, fusion of the two representations was conducted. Extensive

experimental assessment using one traditional and two newer databases showed that our proposed

system exhibits superior performance in comparison to current state-of-the-art methods for gait

recognition.
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