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Abstract: Short fiber-reinforced semi-solid fresh cement pastes and mortars, tailored for 

extrusion, have much lower water-to-binder ratio and higher viscosity than normal cement 

pastes or mortars. The rheology of these pastes or mortars cannot be characterised by 

traditional rheology test methods suitable for normal fresh cement pastes or mortars with 

much greater water-to-binder ratio and lower viscosity. In this paper, orifice extrusion is 

employed to calibrate rheology of the semi-solid fresh cement mortar. An analytical model is 

developed for orifice extrusion of semi-solid pastes and mortars obeying a rigid-viscoplastic 

constitutive relationship, von-Mises yield criterion and the associated flow rule. Orifice 

extrusion results are interpreted using the analytical model and the established experiment 

data interpretation method and the associated rheological parameters are derived for the semi-

solid fresh cement mortar. This study provides a simple analytical model, together with 

experiment and data interpretation methods, for characterizing the complex intrinsic 

rheological behaviour of semi-solid fresh cement pastes or mortars. 
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1 Introduction 

Extrusion is a common material processing method throughout ceramic, mechanical, 

chemical and pharmaceutical industries for traditional products such as bricks, tiles, and pipes 

and for advanced products such as honeycomb panels, etc. The extrusion technology has been 

successfully introduced into cement and concrete industries, as an economical, efficient and 

environmental-friendly materials processing method, for manufacturing high-performance 

fiber-cement building materials and products [1-8]. To cement and concrete industries, the 

extrusion technique enables the flexibility in fast fabricating building products with 

complicated shapes, for example, finely structured honeycomb panels, window and door 

frames, wave-shaped roof tiles etc. without the needs of moulds which could largely reduce 

production cost. Qian et al. found that short discrete fibers can be aligned along extrusion 

direction [9], so that the extrusion technique can largely improve mechanical performance of 

fiber-reinforced cement composites [5,10]. The extrusion technique can produce fiber 

reinforced cement composites with a well consolidated matrix and good fiber packing, 

resulting in low porosity and strengthening of the fiber matrix bond [10]. 

A successful extrusion process of fiber cement products largely depends on the 

rheological properties of the fiber-reinforced semi-solid fresh cement paste or mortar in 

extrusion as well as the extrusion hardware system [11]. Though lots of extrusion practices 

have been successful on fiber-reinforced cement-based materials and products, limited 

research has been carried out on mechanical/rheological behavior of extrudable fresh cement 

paste or mortar itself, which is highly concentrated and semi-solid. So far, the rheological 

behavior of these fiber-reinforced semi-solid fresh cement pastes or mortars has not been well 

understood due to the complex elastic, plastic and viscous properties combined. It should be 

noted that the semi-solid fresh cement pastes or mortars suitable for extrusion, investigated in 

this study, are largely different from traditional fresh cement pastes, mortars, suspensions, 
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slurries, or concretes which normally have greater water-to-binder ratio, much lower 

viscosity and exhibit better fluidity. Short fiber-reinforced fresh cement pastes or mortars for 

extrusion purpose are dough-like materials normally incorporating rheology enhancing 

admixture, such as Methocel, to increase their viscosity and cohesion, which exhibit almost 

no fluidity, but high cohesion and viscoplastic behavior under normal conditions [12-14]. In 

addition, the discrete short fibers largely increase the viscosity and cohesion and reduce the 

fluidity of the fresh cement pastes or mortars tailored for extrusion. It should be noted that 

traditional rheology test methods, suitable for flowable fresh concretes, cement pastes or 

mortars, may not be appropriate for these highly concentrated, cohesive and semi-solid fresh 

cement-based materials for extrusion purpose [15]. 

So far, there are limited quantitative data available for describing rheological behavior 

of the highly concentrated semi-solid fresh cement pastes or mortars for extrusion purpose, 

mainly due to the lack of appropriate rheology test methods. Alfani and Guerrini [15] 

reviewed several most promising ‘non-traditional’ rheology test methods for concentrated 

and cohesive extrudable fresh cement-based materials and found that those test methods were 

initially developed for materials like plastics, rubber, clays, soils and metals, rather than 

traditional cement pastes or mortars. 

Ram extrusion is frequently utilized to characterize rheological properties of semi-solid 

pastes in ceramic and chemical engineering. Typical configuration of ram extrusion involves 

measuring the extrusion pressure required to extrude paste in a barrel with larger diameter 

through a die land with smaller diameter and certain length. This technique was adopted for 

characterizing rheological behavior of fiber-reinforced extrudable fresh cement pastes and 

mortars [12,16]. In those studies, the extrusion behavior of the highly concentrated fresh 

cement pastes or mortars was described in terms of the relationship between extrusion 

pressure and material flow velocity using an empirical phenomenological model proposed by 

3 
 



Benbow and Bridgewater [17]. It should be noted that these studies only provide apparent 

rheological properties, not intrinsic constitutive behavior, for fiber-reinforced semi-solid 

cement pastes or mortars, which will be discussed in details later in this paper. 

Capillary extrusion was also utilized for calibrating the rheological behavior of highly 

viscous semi-solid fresh cement pastes and mortars for extrusion purpose by Alfani et al. [15], 

Zhou and Li [18], and Kuder and Shah [19]. It was found by Zhou and Li [18] that the post-

yield steady-state shear flow behavior of the semi-solid extrudable fresh cement pastes and 

mortars can be described by the Herschel-Bulkley relationship between shear flow stress and 

shear strain rate while the study conducted by Alfani et al. [15] indicated that the shear flow 

behavior of the extrudable fresh cement-based materials obeys a power-law relationship 

which is the simplified Herschel-Bulkley relationship with the shear yield strength equal to 

zero. 

Squeezing flow test was investigated as an extrusion-ability-identifying tool to 

characterize rheology of highly concentrated firm fresh cement pastes and mortars by Toutou 

et al. [13]. It was concluded that extrusion ability requires a balance between processing 

environment and material rheological properties. The plastic behavior of the firm cement 

pastes and mortars for extrusion process was described by two different models: the perfect 

plastic model following the von Mises yield criterion and the plastic stress hardening model 

following the Drucker-Prager criterion, respectively [13]. It should be noted that these 

investigations do not consider the time- or rate-dependent effect and are only applicable to 

material processes in which the deformation rate is low, such as upsetting and squeezing flow, 

and may not be appropriate for high-rate extrusion process. Upsetting test was utilized to 

derive the quantitative relationship among the plastic flow stress, true strain and true strain 

rate of the short fiber-reinforced highly concentrated semi-solid fresh cement mortar for 

extrusion purpose at low strain rate [14]. It was concluded that the strain rate-hardening effect 
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dominates the constitutive behavior of the extrudable semi-solid fresh cement pastes [14]. 

Theoretical solution of squeezing flow was presented by Li and Li [20] for semi-solid fresh 

cement pastes and mortars obeying the Herschel-Bulkley constitutive relationship. They 

concluded that the constitutive behavior of the highly concentrated fresh cement pastes and 

mortars for extrusion purpose is mainly governed by rheological (strain rate-dependent) 

effect while plastic (strain-dependent) effect is not significant, especially when the semi-solid 

fresh cement pastes and mortars exhibit large deformation and/or strain. Recently, the 

squeezing flow test was adopted to evaluate the rheological behavior of cement-based 

mortars with relatively high entrained air but low water contents exhibiting highly viscous 

under different squeezing rates by Cardoso et al. [21]. All these studies indicate that it is 

possible to evaluate different aspects of the constitutive behavior of the highly viscous semi-

solid fresh cement pastes or mortars for extrusion purpose by combining several ‘non-

traditional’ test methods, but nevertheless the best test method is through extrusion itself, 

among which orifice extrusion is probably the simplest one to conduct. 

A computational elasto-viscoplastic constitutive model was successfully established for 

short fiber-reinforced highly concentrated semi-solid fresh cement pastes and mortars for 

extrusion purpose [22]. This constitutive model is based on the consistency viscoplasticity 

[23] and features the von-Mises yield criterion, the associated flow rule and nonlinear strain 

rate-hardening law with the Herschel-Bulkley relationship between the flow stress and strain 

rate. The rate-form constitutive model is integrated into an incremental formulation which 

enables it to be implemented into numerical frameworks, like finite element formulation [11, 

24]. For each of the physical phenomena included in the elasto-viscoplastic constitutive 

model, one or more material parameters are required, which need to be determined from 

those ‘non-traditional’ test methods, i.e., capillary extrusion, upsetting, squeezing flow etc., 

described above plus appropriate experimental data interpretation techniques. However, the 
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data interpretation technique could be very complicated. For instance, the data interpretation 

processes for upsetting tests [14], capillary extrusion [18], and squeezing flow [20] all require 

a large amount of experiment data involving different geometries and the data interpretation 

processes themselves are very complex and time-consuming. Besides, it may need several 

‘non-traditional’ test methods to be combined together in order to obtain various aspects of 

the constitutive behavior of the semi-solid fresh cement pastes or mortars [22], making their 

applications very limited. A simple material test method with relatively simple data 

interpretation procedure is thus greatly needed to obtain various aspects of the complex 

constitutive behavior of the fiber-reinforced highly concentrated semi-solid fresh cement 

pastes or mortars for extrusion purpose. 

In this study, orifice extrusion, with the geometry based on a cylindrical square-ended 

barrel with orifices of various diameters but zero-length, is adopted to characterize 

rheological properties of short fiber-reinforced highly concentrated fresh cement mortars for 

extrusion purpose. Experimental results are interpreted by an analytical model developed for 

orifice extrusion of semi-solid materials obeying a rigid-viscoplastic constitutive relationship 

in the format of Herschel-Bulkley equation incorporating incompressibility, the von-Mises 

yield criterion and the associated post-yield flow rule. The associated constitutive material 

parameters are derived for the highly concentrated semi-solid fresh cement mortar for 

extrusion purpose. Compared with capillary extrusion, upsetting or squeezing flow analyses, 

the present orifice extrusion analysis is relatively simple and requires much less experimental 

data and the data interpretation process is much less time-consuming. It is a promising 

technique for characterizing the complex constitutive behavior of short fiber-reinforced 

highly concentrated semi-solid fresh cement pastes and mortars, which consequently helps to 

tailor their rheology for successful extrusion processes. Furthermore, by using the analytical 
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model for orifice extrusion, it is possible to employ only one extrusion geometry to derive the 

constitutive rheological behavior of the semi-solid fresh cement pastes or mortars. 

 

2 Theoretical Approach 

2.1 Constitutive rheological models for semi-solid fresh cement pastes and mortars 

Previous studies have indicated that short fiber-reinforced highly concentrated fresh 

cement pastes and mortars for extrusion purpose exhibit complex elastic, viscous and plastic 

constitutive behaviour [12, 14, 15, 20, 22]. In theory, the rheological behaviour of short fiber-

reinforced highly concentrated semi-solid cement pastes and mortars, with the addition of 

rheology enhancing admixture, should be described as elasto-viscoplastic [22]. However, for 

most materials in extrusion, plastic strain is much greater compared with elastic strain. Under 

these conditions, these materials may be treated as rigid-viscoplastic. 

In ram and capillary extrusion, due to no wall available for developing the slip layer 

in the die-entrance (orifice) region, the semi-solid material is forced to shear and deform 

plastically without a thin layer of slip flow between the bulk material flow and the extruder 

wall [27, 28], therefore forming a combined differential (shear) flow plus an extensional 

(plastic) flow, i.e., viscoplastic flow. If the relationship among flow stress, strain and strain 

rate of the material flow in the die land-entrance (orifice) region can be obtained, it could be 

used to describe the constitutive rheological properties of the semi-solid paste or mortar. 

From this point of view, ram extrusion through dies with zero-length, i.e. orifice extrusion, is 

a useful technique for characterizing intrinsic material behaviour of highly concentrated 

semi-solid cohesive fresh cement pastes or mortars for extrusion purpose. A schematic 

diagram of orifice extrusion with square-ended geometries is shown in Fig. 1, which also 

indicates the material flow lines from the upstream towards the downstream in an orifice 

extruder. For square-ended geometries, static zones, in which the material flow velocity is 
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zero, exist at the flow exit region and the flow lines converge towards the orifice as indicated 

in Fig. 1. The static zones are bounded by slip planes, which form approximately a conical 

exit geometry at certain angle between 00 and 900 to the axis of symmetry of the orifice 

extruder. 

It has been found in previous studies [22] that the constitutive rheological behaviour 

of the semi-solid cohesive fresh cement pastes or mortars for extrusion purpose can be 

described by a generalized uniaxial-form Herschel and Bulkley relationship as: 

   nvpk )(0

•

+= εσσ  for 0σσ ≥     (1) 

where σ , 0σ , k  and n are the equivalent uniaxial flow stress, the uniaxial yield flow stress, 

the uniaxial flow consistency and the uniaxial flow index, respectively, and 
•
vpε is the 

equivalent viscoplastic strain rate. It can be seen from the constitutive rheological model Eq. 

(1), for materials design purpose, the effects of changes in individual ingredients on overall 

rheology of the extrudable semi-solid fresh cement pastes or mortars can be reflected by the 

changes in the three independent intrinsic material constants 0σ , k  and n. A stiffer semi-

solid fresh cement paste or mortar suitable for extrusion normally has a greater yield flow 

stress 0σ  which has to be overcome in order to initiate material flow in extrusion. A stiffer 

fresh cement paste or mortar extrudate normally has a lower water-to-binder ratio, higher 

solid contents, greater rheology enhancing admixture dosage, and/or greater cohesion. For 

materials design purpose, the yield flow stress 0σ  can be measured using shear box test [15] 

or upsetting test [14]. On the other hand, a semi-solid fresh cement paste or mortar suitable 

for extrusion with greater flow resistance, once the material flow has been initiated, usually 

has greater flow consistency k and flow index n. These two intrinsic material parameters 

mainly determine the steady state flow behavior of the semi-solid fresh cement pastes or 

mortars in continuous extrusion process. Semi-solid fresh cement pastes and mortars with 
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greater water-to-binder ratio and/or greater fiber volume ratio usually possess a greater flow 

consistency k and/or flow index n. For materials design purpose, these two parameters can be 

obtained through capillary extrusion test [18] or squeeze flow test [13, 20]. It should be noted 

that, as reviewed in Section 1 Introduction, it needs a series of capillary extrusion tests [18], 

upsetting tests [14] and squeeze flow tests [13, 20] involving with various geometries and/or 

processing rates in order to quantitatively determine the material constants 0σ , k  and/or n. 

Besides, the experimental data interpretation methods, for capillary extrusion test [18], 

upsetting test [14] and squeeze flow test [13, 20], respectively, could be very complicated. On 

the other hand, in this study a relatively simple experiment, orifice extrusion, is presented 

with the associated data interpretation method to quantify the three material constants 0σ , k  

and n together but much less experimental data are required for this purpose. The data 

interpretation method for orifice extrusion is much simpler which can benefit materials 

design by largely reducing try-and-error efforts on tailoring individual ingredients in semi-

solid fresh cement pastes or mortars to enable a successful extrusion process. 

 

2.2 Analytical models for orifice extrusion of semi-solid pastes and mortars 

The theoretical analyses of orifice extrusion are mainly provided by classical 

plasticity theory with the additional consideration of rate-dependent effect of material flow in 

high deformation rates. The most widely used method for analyzing orifice extrusion data of 

semi-solid paste-like materials is based on an equation proposed by Benbow et al. [30], 

Benbow and Bridgwater [17] as 

   )
D
Dln()V(2P 0j'

0 ασ +=      (2) 
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where P is the orifice extrusion pressure, '
0σ  is the initial orifice ‘yield stress’ when the paste 

flow velocity approaches zero, V is the mean paste flow velocity in the orifice, D0 and D are 

the barrel diameter and the orifice diameter (see Fig. 1), respectively, and α and j are two 

fitting parameters. This is an empirical extension of the ideal work equation used in 

engineering plasticity for rate-independent rigid-plastic materials. Though this equation 

provides reasonably satisfactory predictions for orifice extrusion data of many semi-solid 

paste-like materials, it is formulated in terms of flow velocity, rather than the strain and/or 

strain rate of the paste-like material in extrusion. As a result, it contains the velocity 

coefficient, α, in Eq. (2), which is not an intrinsic material parameter. Besides, the initial 

orifice ‘yield stress’, '
0σ , is a parameter obtained from fitting exercise, i.e., by interpreting 

orifice extrusion pressure at the paste flow velocity equal to zero, which is impossible to 

achieve in real experiment. It is not an intrinsic material parameter that is physically 

meaningful. This relationship is basically a physically phenomenal model for orifice 

extrusion and it is actually irrespective of material constitutive properties. Thus its accuracy 

is questionable. For instance, Zheng et al [25] found that the orifice extrusion pressure also 

depends on diameter of orifice which is consistent with the conclusions drawn by Horrobin 

and Nedderman [31] from numerical analysis. Since Benbow-Bridgwater model, i.e. Eq. (2), 

does not contain intrinsic material parameters, the interpretation of orifice extrusion data 

using this model does not enable any intrinsic material parameter of the highly concentrated 

semi-solid paste-like material to be derived. A more advanced and fundamental analytical 

model for orifice extrusion of semi-solid paste-like material is thus required. 

Using the spherical coordinates shown in Fig. 2, Gibson [32] developed an analytical 

equation 
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)],n())
D
D(1())cos1((sin

n3
2[)

D
V2(kP max

n3

0

n
maxmax

n
u θΦθθ +−×+=  (3) 

for predicting the orifice extrusion pressure of semi-solid paste-like material obeying the 

power-law constitutive model based on a spherically convergent flow, where θmax is the angle 

of the cone formed by the slip planes (also see Fig. 2). The term ),n( maxθΦ  is an end effect 

to take into account the transition from convergent to non-convergent flow and kinematic 

effect of the semi-solid paste-like material out of orifice, i.e., the material flow exiting the die 

entrance still carries some kinematic energy which is not able to be taken into account when 

deriving Eq. (3). 

Using the same spherical coordinate system adopted by Gibson [32], Basterfield et al. 

[28] proposed a framework for developing an analytical model for orifice extrusion of 

Herschel-Bulkley type paste-like materials. In this theoretical framework, the die entrance 

flow field is assumed to be radially convergent in the region max0 θθ << , maxmin rrr << , 

where θmax, rmin, and rmax depend on the orifice and barrel diameters (see Fig. 2). The 

theoretical analysis is based on the following assumptions: (1) incompressible material flow; 

(2) the material flow is sufficiently slow that inertial terms may be neglected; and (3) 

irrotational so that the rectangular material element shown in Fig. 2 stretches but does not 

rotate. Since both the sections of the barrel and the orifice perpendicular to the flow direction 

are circular and axis-symmetric, it is reasonable to assume that the velocity components, )(φu  

and )(θu , in the angular directions φ  and θ , respectively, are equal to zero so that only the 

velocity component in the radial direction, )(ru , is not equal to zero, which varies with respect 

to the radial position, r, only. Based on the assumption of incompressibility for the semi-solid 

paste-like material, the volumetric flow rates passing the spherical cap and the orifice can be 

equated: 
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where V is the material flow velocity along the axis of symmetry passing the orifice. Equation 

(4) yields the radial velocity of the material flow in the barrel as 
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So that, in a spherical coordinate system, the strain rate tensor is given by 
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Based on the von Mises yield criterion, the equivalent viscoplastic strain rate, 
−
•
vpε , can  be 

calculated by 

  
••

−
•

= vpvpvp εεε :
3
2        (7) 

while the von-Mises equivalent flow stress, 
−

σ , is given by 

  SS :
2
3

=
−

σ         (8) 

where )(tr
3
1S σσ −=  is the deviatoric stress. When the paste-like material evolves 

according to the associated flow rule after yielding, the following relationship exists: 
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On the other hand, the constitutive relationship, Eq. (1), can be re-written in a more general 

formulation as: 

  nvpk )(0

−
•−−

+= εσσ  for 00 3τσσ =≥
−−

    (10) 

The equilibrium equation for the rectangular material element (as shown in Fig. 2) in a 

spherical coordinate is given by 

 
0

0)(12

=−

=+−+
∂
∂

φφθθ

θθφφ

σσ

σσσσ
rrr rrrr       (11) 

From Eqs. (6), (7) and (9), the solution of Eq. (11) is seen as 

 
−

−

−−==

+−=

σσσ

σσ

θθφφ 3
1p

3
2prr

       (12) 

in which p is the hydrostatic stress in the material flow in orifice extrusion. 

The extrusion load needed at upstream in orifice extrusion to drive the material flow 

is the total transmitted load, L, divided by the area such that: 

 max
2

maxrr
2

max0 maxrr
2

max sin)r(rdcos)r(sinr2L max θσπθθθσπ
θ

θ
−=−= ∫ =

  (13) 

which enables the extrusion pressure at upstream to be determined as 
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By introducing the generalized Herschel-Bulkley constitutive law, i.e., Eq. (10), of the paste-

like material and neglecting the end effect, ),n( maxθΦ  in Eq. (3), an analytical relationship, 

between the orifice extrusion pressure, P , and the mean material flow velocity, V , through 

the orifice along the axis of symmetry, is given by [28]: 

 ))
D
D(1()

D
V(Ak

D
Dln2)r(P n3

0

n0
0maxrr −+=−= σσ     (15) 

where   n
maxmax ))cos1((sin

n3
2A θθ +=     (16) 

It should be noted that, different from the model proposed by Benbow et al. [30], the 

new analytical model, Eq. (15), for orifice extrusion is based on the intrinsic material 

parameters, 0σ , k  and n, of the semi-solid paste-like material itself. Thus by interpreting 

orifice extrusion data with various barrel and/or orifice diameters and material flow velocities 

with this equation, the constitutive material parameters of the semi-solid paste-like material 

can be derived. Certainly, in Eq. (16), the maximum convergent flow angle, maxθ , is still 

unknown. By speculating that the influence of the dead zones is such as to produce a slip 

plane of zero shear stress, which is roughly conical, Basterfield et al. [28] found that the 

angle θmax is in the range 40o-60o for most paste-like material flow, which is consistent with 

the detailed finite element analysis presented by Horrobin and Nedderman [31]. Furthermore, 

it was found that the sensitivity of the parameter, A, in Eqs. (15) and (16) to the choice of θmax 

is very small for typical values of n for semi-solid cohesive paste-like materials. Therefore, in 

this study, a value of 45o was adopted for θmax when comparing experimental data with 
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analytical predictions using Eq. (15) for the short fiber-reinforced highly concentrated semi-

solid fresh cement mortar for extrusion purpose. 

With the orifice extrusion analytical model Eq. (15), it will benefit materials design of 

extrudable fresh fiber cement pastes or mortars and quantify the role of individual ingredients 

on rheology of extrudate. Given two fiber cement pastes or mortars subjected to the same 

orifice extrusion test, i.e., with the same D0, D, and V, the paste or mortar requiring greater 

orifice extrusion pressure may demonstrate lower extrudability and may generally have 

greater 0σ , k  and/or n. In addition, the role of individual ingredients is implicitly reflected 

by Eq. (15). In order to quantity the role of individual ingredients, orifice extrusion test with 

only one die geometry under one extrusion velocity is needed. Once the experimental data is 

interpreted by Eq. (15), the effects of individual ingredients on the rheology of extrudable 

fiber cement paste or mortar can be quantified explicitly by the three material parameters 0σ , 

k  and n. For instance, a longer fiber length and a greater fiber volume ratio will result in 

higher flow consistency k and flow index n. 

  

3 Experiment, Results and Discussion 

3.1 Experiment 

Orifice extrusion was conducted on the short fiber-reinforced semi-solid fresh cement 

mortar, with the mix formulation shown in Table 1. The basic constitutive materials for 

making the cement mortar included Type I OPC (Ordinary Portland Cement) and slag with 

the weight ratio of 1:1 as the binder, 6mm-long PVA (Polyvinyl Alcohol) fiber with an 

average diameter of 14 μm, two types of silica sands (denoted as SS1 and SS2 with the 

nominal diameters of 300-600 µm and 90-150 µm, respectively) from David Ball Comp. Ltd 

with a weight ratio of 8:5 as aggregates, Methocel powder produced by Dow Chemical Comp. 
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Ltd as the rheology enhancing admixture and ADVA solution supplied by W. R. Grace Ltd as 

the superplasticiser. The chemical compositions of the OPC and slag are shown in Table 2. 

Slag was added to replace part of the OPC for the purpose to increase setting time, thus 

workablility, of the semi-solid fresh cement mortar. The water-to-binder weight ratio was 

0.25 while that of the silica sand-to-binder was 0.325. The dosage of ADVA solid powder in 

the mixture was 0.25% in weight of the binder. The ADVA solid power was incorporated 

into the mixture in the form of an aqueous solution with a concentration of 30% by weight as 

supplied by the manufacturer. The PVA fibers were provided by Kuraray Co. Ltd. and their 

physical and mechanical properties are shown in Table 3. The amount of PVA fibers 

incorporated was 2% by volume of the readily mixed fresh cement mortar. 

The procedure for preparing the fresh cement mortar for extrusion is as follows. First, 

the binder powders (cement and slag), the fibers and the Methocel powder were mixed for 3 

minutes in dry state at the lowest gauge of a stand-alone Hobart planetary mixer. Then, water 

(with superplasticiser) was added into the mixture and mixed with other components for 

another 3 minutes. Once the dry powders were sufficiently moistened, the fresh composite 

was subjected to high shear mixing under a higher speed till a dough-like semi-solid fresh 

cement mortar was produced, which was then lumped into the cylindrical barrel, with the 

inner diameter of 80 mm and the height of 150mm, of an in-house orifice extruder (as shown 

in Fig. 3) and was ready for extrusion. 

A typical orifice extrusion proceeded as follows. The barrel was filled with a certain 

amount in weight of ready-mixed fresh cement mortar up to its brim. One end of the piston 

‘A’ (see Fig. 3) was connected to a MTS materials test system while the other end was 

positioned in the barrel with the lower surface of the piston in direct contact with the mortar. 

The barrel was placed on Plate ‘B’ which was fastened on four vertical steel rods. A plate ‘C’ 

was fixed at the bottom of four steel rods and connected to the actuator of the MTS materials 
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test system. When the actuator of the MTS system was moving up to press the mortar inside 

the barrel, the piston ‘A’ prevented the up movement of the cement mortar. Subsequently, the 

mortar was extruded out of the barrel from the circular orifice underneath. At the beginning 

of each test, the mortar was driven with a velocity of 0.1mm/s to a displacement of 20mm, 

which was found to be long enough to achieve steady state with defect-free extrudate. Then 

the extrusion process continued under a designated constant driving velocity. Each extrusion 

process was repeated three times under the same driving velocity and the average extrusion 

load at the steady state was taken as the representative extrusion load. Fig. 4 shows an orifice 

extrusion of the highly concentrated semi-solid fresh cement mortar in process. 

In this study, the semi-solid fresh cement mortar in the cylindrical barrel of the orifice 

extruder was driven by an MTS materials test system at a series of velocities, respectively, 

listed in Table 4 through three different orifices with the diameter of 8, 12 and 15 mm, 

respectively. All the orifices were effectively sharp-edged dies with the lengths equal to zero. 

The corresponding mean material flow velocities along the axis of symmetry of the 

cylindrical extruder through orifice are also listed in Table 4. It should be noted that velocity 

of the mortar flow at orifice was not directly measured in experiment. Rather it was 

calculated based on the assumption that the semi-solid highly viscous fresh cement pastes and 

mortars for extrusion purpose are incompressible which is an assumption widely taken for 

highly viscous materials. 

 

3.2 Results and discussion 

An example of orifice extrusion pressure with respect to time is shown in Fig. 5, which 

indicates that the orifice extrusion pressure increased at the beginning of the test till the semi-

solid fresh cement mortar started to be extruded out of the orifice. Then the extrusion 
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pressure remained almost constant, i.e., reaching steady state, under constant driving velocity. 

After certain period, the driving velocity was reduced to zero and the extrusion process was 

stopped. Then the fresh cement mortar in the barrel began to relax due to the nature of its 

viscous and plastic behavior. The pressure during relaxation gradually leveled off and this 

value was taken as the relaxation pressure. It should be noted that no pressure sensor was 

used in the system. The extrusion pressure shown in Fig. 5 was actually the driving pressure 

applied by the piston at the upstream of the orifice extrusion flow. The steady-state orifice 

extrusion pressures are plotted as a function of the value, V/D, in Figs. 6-8 for each orifice 

diameter, respectively. It should be noted that the value of V/D designates the mean shear 

rate of the cement mortar when passing the orifice, which is somehow irrespective of 

diameter of orifice, while, on the other hand, the mean material flow velocity, V, does depend 

on diameter of orifice. So it is more meaningful to plot the orifice extrusion pressure as a 

function of V/D rather than V when comparing orifice extrusion data obtained from different 

orifice diameters. It can be seen from Figs. 6-8 that the pressures for greater mean shear rate 

are greater than those for smaller mean shear rate, suggesting that the highly concentrated 

semi-solid fresh cement mortar exhibits strain rate-hardening behavior. 

The analytical model, Eq. (15), was fitted to the orifice extrusion data using a nonlinear 

least squares regression analysis in Originlab to determine the values of the associated three 

independent material parameters, i.e., 0σ , k  and n, so that the root mean square (RMS) error 

is minimized. The fitted curves, in the formulation of Eq. (15), are also shown in Figs. 6 to 8, 

respectively, for each orifice diameter. The constitutive material parameters, 0σ , k  and n, 

from the fitting exercise with the analytical model, Eq. (15), are shown in Table 5 for each 

orifice diameter for the highly concentrated semi-solid fresh cement mortar for extrusion with 

the mix proportion shown in Table 1. It can be seen from Table 5 that the values of the RMS 

error is smaller for tests with greater orifice diameter. The fitting exercise yields greater 
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uniaxial yield flow stress, 0σ , but smaller uniaxial flow consistency, k , for smaller orifice 

diameter. It can be found that the values of 0σ  and k  obtained from fitting exercise do not 

differ much from the orifice extrusion results with different orifice diameters. On the other 

hand, the uniaxial flow index ranges between 0.36 and 0.44 obtained for the three orifice 

diameters and the value obtained from each orifice diameter is very close to each other. By 

considering that the rheological properties of the semi-solid fresh cement mortar may change 

as the progression of cement hydration during preparation and execution of extrusion, 

resulting in that the constitutive material parameters of the fresh cement mortar may change 

accordingly with respect to time and the progression of cement hydration, which was not able 

to be taken into account in the analytical model described in this study, the results shown in 

Table 5 obtained from fitting exercise from different orifice diameters are acceptable and 

consistent. Thus, in practice, it is possible to use only one orifice diameter in a series of 

orifice extrusion tests involving in different extrusion velocity to derive the relevant 

constitutive material parameters, i.e., 0σ , k  and n, of highly viscous semi-solid fresh cement 

pastes and mortars for extrusion purpose to reduce experimental work needed for 

characterizing rheology of those pastes or mortars. 

 

4 Conclusions 

(1) Short discrete fiber-reinforced fresh cement pastes and mortars tailored for extrusion 

exhibit largely different rheological behavior from traditional fresh cement pastes, mortars or 

concretes, which normally possess much greater water-to-binder ratio, lower viscosity and 

better fluidity. The traditional rheology test methods suitable for flowable fresh cement pastes, 

mortars and concretes may not be appropriate to the highly viscous semi-solid fresh cement 

pastes or mortars for extrusion purpose. 

19 
 



(2) In this study, orifice extrusion is employed as a non-traditional rheology test method 

to characterize the complex rheological properties of semi-solid fresh cement mortars with 

mix formulation suitable for extrusion. An analytical model is successfully developed for 

orifice extrusion of semi-solid paste-like materials obeying the Herschel-Bulkley viscoplastic 

constitutive law, the von-Mises yield criterion and the associated flow rule. Different from 

those phenomenological models for orifice extrusion, which are established normally 

irrespective of the intrinsic properties of the material in extrusion, this analytical model 

includes only physically meaningful material parameters. It can be used for deriving the 

constitutive material parameters of the semi-solid pastes or mortars for extrusion. 

(3) A series of orifice extrusion tests are conducted on the highly concentrated semi-solid 

fresh cement mortar under various extrusion velocities through orifices with different 

diameters. The analytical model is then utilized to interpret the experimental data. The 

associated rheological parameters are derived for the semi-solid fresh cement mortar. It can 

be concluded that the analytical model provides an effective data interpretation approach for 

orifice extrusion in quantifying the intrinsic rheological behaviour of extrudable cement 

pastes or mortars. More importantly, by using the analytical model for orifice extrusion, it is 

possible to employ only one extrusion geometry to derive the constitutive rheological 

behavior of the semi-solid fresh cement pastes or mortars. Compared with other methods, it 

will largely reduce experimental efforts required for quantifying rheology of semi-solid fresh 

fiber cement pastes or mortars suitable for extrusion. 

(4) The orifice extrusion itself is a simple but promising rheology test method for 

characterizing the complex rheological behaviour of highly concentrated semi-solid fresh 

cement pastes or mortars. By combining with the analytical model, orifice extrusion can be 

used for tailoring mix proportions of semi-solid fresh cement pastes or mortars to achieve 

successful extrusion processes. 

20 
 



 

ACKNOWLEDGEMENT 

The financial support from the Brunel Research & Innovative Enterprise Fund under the 

award LBK909(904/2009), from the European Commission 7th Framework Programme 

through the call FP7-NMP-2010-SMALL-4 under the grant 262954, and from the China 

Ministry of Science and Technology under grant 2009CB623200 is gratefully acknowledged. 

 

REFERENCE 

1. Shao Y, Marikunte S, Shah SP. Extruded fiber-reinforced composites. Concr Int 

1995;17(4):48-52. 

2. Shao Y, Shah SP. Mechanical properties of PVA fiber reinforced cement composites 

fabricated by extrusion processing. ACI Mater J 1997;94(6):555-564. 

3. Aldea C, Marikunte S, Shah SP. Extruded fiber reinforced cement pressure pipes. Adv 

Cem Based Mater 1998;8(2):47-55. 

4. Li ZJ, Mu B, Chui SNC. Systematic study of properties of extrudates with incorporated 

metakaolin or silica fume. ACI Mater J 1999;96(5):574-579. 

5. Li ZJ, Mu B, Chui SNC. Static and dynamic behaviour of extruded sheets with short fibers. 

J Mater Civ Engrg ASCE 2001;13(4):248-254. 

6. Li ZJ, Zhou XM, Shen B. Fiber-cement extrudates with perlite subjected to high 

temperatures. J Mater Civ Engrg ASCE 2004;16(3):221-229. 

7. Li ZJ, Zhang YS, Zhou XM. Short fiber-reinforced geopolymer composites manufactured 

by extrusion. J Mater Civ Engrg ASCE 2005;17(6):624-631. 

8. Kuder KG, Shah SP. Tailoring extruded HPFRCC to Be Nailable. ACI Mater J 

2007;104(5):526-534. 

21 
 



9. Qian XQ, Zhou XM, Mu B, Li ZJ. Fiber alignment and property direction dependency of 

FRC extrudate. Cem Concr Res 2003;33(10):1575-1581. 

10. Peled A, Shah SP. Processing effects in cementitious composites: extrusion and casting. J 

Mater Civ Engrg ASCE 2003;15(2):192-199. 

11. Zhou XM, Li ZJ. Numerical simulation of ram extrusion process of short fiber-reinforced 

fresh cementitious composite. J Mech Mater Struct 2009;4(10):1755-1769. 

12. Srinivasan R, DeFord D, Shah SP. The use of extrusion rheometry in the development of 

extruded fiber-reinforced cement composites. Concr Sci Engrg 1999;1(1):26-36. 

13. Toutou Z, Roussel N, Lanos C. The squeeze test: a tool to identify firm cement-based 

material’s rheological behaviour and evaluate their extrusion ability. Cem Concr Res 

2005;35(10):1891-1899. 

14. Zhou XM, Li ZJ. Upsetting tests of fresh cementitious composites for extrusion. J Engrg 

Mech ASCE 2006;132(2):149-157. 

15. Alfani R, Guerrini GL. Rheology test methods for the characterization of extrudable 

cement-based materials – A review. Mater Struct RILEM 2005;38(2):239-247. 

16. Zhou X, Li Z. Characterization of rheology of fresh fiber reinforced cementitious 

composites through ram extrusion. Mater Struct RILEM 2005;38(1):17-24. 

17. Benbow JJ, Bridgwater J. Paste flow and extrusion. Oxford: Clarendon Press, 1993. 

18. Zhou XM, Li ZJ. Characterizing rheology of fresh short fiber reinforced cementitious 

composite through capillary extrusion. J Mater Civ Engrg ASCE 2005;17(1):28-35. 

19. Kuder KG, Shah SP. Rheology of extruded cement-based materials. ACI Mater J 

2007;104(3):283-290. 

20. Li ZJ, Li XY. Squeeze flow of viscoplastic cement-based extrudate. J Engrg Mech ASCE 

2007;133(9):1003-1008. 

22 
 

http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=Z2joHPe9bhDp6cDL4nn&page=9&doc=87&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=Z2joHPe9bhDp6cDL4nn&page=9&doc=87&colname=WOS


21. Cardoso FB, John VM, Pileggi RG. Rheological behavior of mortars under different 

squeezing rates. Cem Concr Res 2009;39(9):748-753. 

22. Zhou XM, Li ZJ. A constitutive model for fiber-reinforced extrudable fresh cementitious 

paste. Comput Concr: An Inter J 2011;8(4):371-388. 

23. Ponthot JP. Unified stress update algorithms for the numerical simulation of large 

deformation elasto-plastic and elasto-viscoplastic processes. Int J Plasticity 2002;18(1):91-

126. 

24. Zhou XM, Li ZJ. Numerical simulations of upsetting process of the fresh fiber-cement 

paste. J Engrg Mech ASCE 2007;133(11):1192-1199. 

25. Zheng J, Carlson WB, Reed JS. Flow mechanics on extrusion through a square-entry die. 

J Am Ceram Soc 1992;75(11):3011-3016. 

26. Khan AU, Briscoe BJ, Luckham PF. Evaluation of slip on capillary extrusion of ceramic 

pastes. J Eur Ceram Soc 2001;21(4):483-491. 

27. Adams MJ, Briscoe BJ, Kamjab M. The deformation and flow of highly concentrated 

dispersions. Adv Colloid Interf Sci 1993;44:143-182. 

28. Basterfield RA, Lawrence CJ, Adams MJ. On the interpretation of orifice extrusion data 

for viscoplastic materials. Chem Engrg Sci 2005;60(10):2599-2607. 

29. Aydin I, Biglari FR, Briscoe BJ, Lawrence CJ, Adams MJ. Physical and numerical 

modelling of ram extrusion of paste materials: conical die entry case. Comput Mater Sci 

2000;18(2):141-155. 

30. Benbow JJ, Oxley EW, Bridgwater J. The extrusion mechanics of pastes – the influence 

of paste formulation on extrusion parameters. Chem Engrg Sci 1987;42(9):2151-2162. 

31. Horrobin DJ, Nedderman RM. Die entry pressure drops in paste extrusion. Chem Engrg 

Sci 1998;53(18):3215-3225. 

23 
 



32. Gibson AG. Converging dies. In: Collyer AA, Clegg DW, editors. Rheological 

measurement. Barking: Elsevier, 1988. p. 49-92. 

24 
 



APPENDIX 

TABLES 
 

Table 1 Mix formulation of the short fiber-reinforced fresh cement mortar for extrusion 
 

Cement Slag SS1 SS2 PVA Methocel ADVA W/B 
0.5 0.5 0.2 0.125 2% 1% 0.25% 0.25 

 
Note: SS1 and SS2: silica sand with 300-600 µm and 90-150 µm in diameter, respectively, 

from David Ball Comp. Ltd; 
PVA: Polyvinyl alcohol fiber from Kuraray Co. Ltd.; B: binder (Type I ordinary Portland 

cement + slag); W: water; 
ADVA: superplasticiser produced by W.R. Grace (HK) Ltd;  

Methocel: rheology enhancing admixture produced by Dow Chemical, USA; 
SS1, SS2, Methocel and ADVA are presented in weight ratio of the binder; 

PVA fiber is presented in the volume ratio of the readily mixed fresh cement mortar. 
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Table 2 Chemical compositions of OPC and slag (% in weight) 
 

Binder CaO SiO2 Al2O3 Fe2O3 TiO2 K2O Na2O MgO LOI SO3 
OPC 63.12 20.83 6.28 2.47 0.21 0.61 0.25 1.16 - 2.04 
Slag 39.50 28.48 12.56 1.56 0.44 0.44 0.20 7.40 0.50 8.48 
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Table 3 Properties of short polyvinyl alcohol (PVA) fibers 
 

Density 
(g/cm3) 

Tensile strength 
(Mpa) 

Elastic modulus 
(Gpa) 

Length 
(mm) 

Diameter 
(μm) 

Aspect ratio 

1.30 1,500 36 6 14 430 
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Table 4 Piston driving velocity and material flow velocity in orifice 
  

Piston driving 
velocity (mm/s) 

Paste flow velocity at orifice (mm/s) 
D = 8 mm D = 12 

mm 
D = 15 mm 

0.02 2 0.89 0.57 
0.05 5 2.22 1.42 
0.10 10 4.44 2.84 
0.20 20 8.89 5.69 
0.30 30 13.33 8.53 
0.40 40 17.78 11.38 
0.50 50 22.22 14.22 
0.60 60 26.67 17.07 
0.70 70 31.11 19.91 
0.80 80 35.56 22.76 
0.90 90 40.00 25.60 
1.00 100 44.44 28.44 
1.20 120 53.33 34.13 
1.50 150 66.67 42.67 
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Table 5 Material parameters obtained from fitting experimental data with the analytical 
model (Eq. (15)) 

 
D (mm) 8 12 15 

D/D0 0.1 0.15 0.1875 
0σ  (kPa) 20.55±2.68 13.73±1.65 11.29±1.28 

k (kPa.sn) 170.13±3.06 188.52±3.55 206.26±4.97 
n 0.40±0.02 0.36±0.02 0.44±0.02 

RMS error (%) 9.86% 7.85% 6.68% 
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FIGURES 
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Fig. 1 Schematic illustration of orifice extrusion with paste flow and static zones 
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Fig. 2 Schematic diagram of orifice extrusion flow in a spherical coordinate system 
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Fig. 3 Schematic diagram of the in-house orifice extruder used for this study 
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Fig. 4 Orifice extrusion in process 
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Fig. 5 A typical plot of orifice extrusion and relaxation pressure vs. time 
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Fig. 6 Orifice extrusion pressure vs. mean shear rate, V/D, and curve fitting to the analytical 

model (Eq. (15)) for the orifice diameter D = 8 mm   
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Fig. 7 Orifice extrusion pressure vs. mean shear rate, V/D, and curve fitting to the analytical 

model (Eq. (15)) for the orifice diameter D = 12 mm  
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Fig. 8 Orifice extrusion pressure vs. mean shear rate, V/D, and curve fitting to the analytical 

model (Eq. (15)) for the orifice diameter D = 15 mm 
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