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Abstract

This paper introduces a fast and efficient framework for practical compressive sensing. Our framework is mainly

based on a novel design called Structurally Random Matrix (SRM). It is highly promising for large-scale, real-time

compressive sensing applications because it can be realized as a product of simple and fast operators and thus, there is

no need for storing the sensing matrix explicitly. The introduced framework is flexible and provides relevant features

such as universality, block-based processing and hardware friendliness to analog and optical domain implementation.

Despite all of these practical advantages, the framework can be shown to approach optimal performance, i.e. the

number of measurements for exact signal reconstruction is at the minimum bound. Simulation results with several

interesting SRM under various practical settings are also presented to verify the validity of the theory as well as to

illustrate the promising potentials of the proposed framework.

Index Terms

compressed sensing, compressive sensing, random projection, sparse reconstruction, fast and efficient algorithm

I. INTRODUCTION

Compressed sensing (CS) [1], [2] has attracted a lot of interests over the past few years as a revolutionary signal

sampling paradigm. Suppose that xxx is a length-N signal. It is said to be K-sparse (or compressible) if xxx can be

well approximated using only K ¿ N coefficients under some linear transform:

xxx = ΨΨΨααα,

where ΨΨΨ is the sparsifying basis and ααα is the transform coefficient vector that has K (significant) nonzero entries.

According to the CS theory, such a signal can be acquired through the following random linear projection:

yyy = ΦΦΦxxx + eee,

where yyy is the sampled vector with M ¿ N data points, ΦΦΦ represents a M×N random matrix and eee is the acquisition

noise. The CS framework is attractive as it implies that xxx can be faithfully recovered from only M = O(K log N)

measurements, suggesting the potential of significant cost reduction in digital data acquisition.

While the sampling process is simply a random linear projection, the reconstruction to find the sparsest signal

from the received measurements is highly non-linear process. More precisely, the reconstruction algorithm is to

solve the l1-minimization of a transform coefficient vector:

min ‖ααα‖1 s.t. yyy = ΦΦΦΨΨΨααα.

Linear programming [1], [2] and other convex optimization algorithms [3], [4], [5] have been proposed to solve

the l1 minimization. Furthermore, there also exists a family of greedy pursuit algorithms [6], [7], [8], [9], [10]

offering another promising option for sparse reconstruction. These algorithms all need to compute ΦΦΦΨΨΨ and (ΦΦΦΨΨΨ)T

multiple times. Thus, computational complexity of the system depends on the structure of sensing matrix ΦΦΦ and its

transpose ΦΦΦT .
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Preferably, the sensing matrix ΦΦΦ should be highly incoherent with sparsifying basis ΨΨΨ, i.e. rows of ΦΦΦ do not

have any sparse representation in the basis ΨΨΨ. Incoherence between two matrices is mathematically quantified by

the mutual coherence coefficient [11].

Definition I.1. The mutual coherence of an orthonormal matrix N ×N ΦΦΦ and another orthonormal matrix N ×N

ΨΨΨ is defined as:

µ(ΦΦΦ,ΨΨΨ) = max
1≤i,j≤N

|〈Φi,Ψj〉|

where ΦΦΦi are rows of ΦΦΦ and ΨΨΨj are columns of ΨΨΨ, respectively.

If ΦΦΦ and ΨΨΨ are two orthonormal matrices, ‖ΦΦΦΨΨΨj‖2 = ‖ΨΨΨj‖2 = 1. Thus, it is easy to see that for two orthonormal

matrices ΦΦΦ and ΨΨΨ , 1/
√

N ≤ µ ≤ 1. Incoherence implies that the mutual coherence or the maximum magnitude

of entries of the product matrix ΦΦΦΨΨΨ is relatively small. Two matrices are completely incoherent if their mutual

coherence coefficient approaches the lower bound value of 1/
√

N .

A popular family of sensing matrices is a random projection or a random matrix of i.i.d random variables from

a sub-Gaussian distribution such as Gaussian or Bernoulli [12], [13]. This family of sensing matrix is well-known

as it is universally incoherent with all other sparsifying basis. For example, if ΦΦΦ is a random matrix of Gaussian

i.i.d entries and ΨΨΨ is an arbitrary orthonormal sparsifying basis, the sensing matrix in the transform domain ΦΦΦΨΨΨ is

also Gaussian i.i.d matrix. The universal property of a sensing matrix is important because it enables us to sense

a signal directly in its original domain without significant loss of sensing efficiency and without any other prior

knowledge. In addition, it can be shown that random projection approaches the optimal sensing performance of

M = O(K log N).

However, it is quite costly to realize random matrices in practical sensing applications as they require very high

computational complexity and huge memory buffering due to their completely unstructured nature [14]. For example,

to process a 512×512 image with 64K measurements (i.e., 25% of the original sampling rate), a Bernoulli random

matrix requires nearly gigabytes storage and giga-flop operations, which makes both the sampling and recovery

processes very expensive and in many cases, unrealistic.

Another class of sensing matrices is a uniformly random subset of rows of an orthonormal matrix in which

the partial Fourier matrix (or the partial FFT) is a special case [13], [14]. While the partial FFT is well known

for having fast and efficient implementation, it only works well in the transform domain or in the case that the

sparsifying basis is the identity matrix. More specifically, it is shown in [[14], Theorem 1.1] that the minimal number

of measurements required for exact recovery depends on the incoherence of ΦΦΦ and ΨΨΨ:

M = O(µ2
nK log N) (1)

where µn is the normalized mutual coherence: µn =
√

Nµ and 1 ≤ µn ≤
√

N . With many well-known sparsifying

basis such as wavelets, this mutual coherence coefficient might be large and thus, resulting in performance loss.

Another approach is to design a sensing matrix to be incoherent with a given sparsifying basis. For example, Noiselets

is designed to be incoherent with the Haar wavelet basis in [15], i.e. µn = 1 when ΦΦΦ is Noiselets transform and ΨΨΨ
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is the Haar wavelet basis. Noiselets also has low-complexity implementation O(N log N) although it is unknown

if noiselets is also incoherent with other bases.

II. COMPRESSIVE SENSING WITH STRUCTURALLY RANDOM MATRICES

A. Overview

One of remaining challenges for CS in practice is to design a CS framework that has the following features:

• Optimal or near optimal sensing performance: the number of measurements for exact recovery is almost

minimal, i.e. on the order of O(K log N);

• Universality: sensing performance is equally good with all sparsifying bases;

• Low complexity, fast implementation that can support block-based processing: this is necessary for large-scale,

realtime sensing applications;

• Easy and cheap to implement in hardware and optics domain: Preferably, entries of the sensing matrix should

only take values in the set {0, 1,−1}.

In this paper, we propose a framework that aims to satisfy the above wish-list. Lying at the heart of our framework

is the concept of Structurally Random Matrix(SRM) that is defined as a product of three matrices:

ΦΦΦ =

√
N

M
DDDFFFRRR (2)

where:

• RRR ∈ N × N is either a uniform random permutation matrix or a diagonal random matrix whose diagonal

entries Rii are i.i.d Bernoulli random variables with identical distribution P (Rii = ±1) = 1/2. A uniformly

random permutation matrix scrambles signal’s sample locations globally while a diagonal matrix of Bernoulli

random variables flips signal’s sample signs locally. Hence, we often refer the former as the global randomizer

and the latter as the local randomizer.

• FFF ∈ N × N is an orthonormal matrix that,in practice, is selected to be fast computable such as popular

fast transforms: FFT, DCT, WHT or their block diagonal versions. The purpose of the matrix FFF is to spread

information (or energy) of the signal’s samples over all measurements

• DDD ∈ M ×N is a subsampling matrix/operator. The operator DDD selects a random subset of rows of the matrix

FFFRRR. If the probability of selecting a row P (a row is selected) is M/N , the number of rows selected would

be M in average. In matrix representation, DDD is simply a random subset of M rows of the identity matrix

of size N ×N . The scale coefficient
√

N
M is to normalize the transform so that energy of the measurement

vector is almost similar to that of the input signal vector.

The proposed sensing algorithm can be described step by step as follows:

• Step 1 (Signal pre-randomization): Randomize a target signal by either flipping its sample signs or uniformly

permuting its sample locations. This step corresponds to multiplying the signal with the matrix DDD

• Step 2 (Signal transform): Apply a fast transform FFF to the randomized signal
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• Step 3 (Signal subsampling): randomly pick up M measurements out of N transform coefficients. This step

corresponds to multiplying the transform coefficients with the matrix DDD

Conventional CS reconstruction algorithm is employed to recover the transform coefficient vector ααα by solving

the l1 minimization:

α̂αα = argmin‖ααα‖1 s.t. yyy = ΦΦΦΨΨΨααα. (3)

Finally, the signal is recovered as x̂xx = ΨΨΨα̂αα. The framework can achieve perfect reconstruction if x̂xx = xxx.

From the best of our knowledge, the proposed sensing algorithm is distinct from currently existing methods such

as random projection [16], random filters [17], structured Toeplitz [18], random convolution [19] via the step of

pre-randomization. The main idea of this step is to deliberately scramble the structure of the signal, converting

the signal to be sampled into a white noise-like one. Detail analysis in the following section will show that pre-

randomization is necessary for obtaining universally incoherent sensing. The intuition behind this pre-randomization

strategy is that scrambling a signal into a white noise-like form enables the sensing process to be independent of

the signal’s sparsifying basis.

The remaining of the paper is organized as follows. We first discuss about incoherence between SRMs and

sparsifying transforms in Section III. More specifically, Section III-A will give us a rough intuition of why SRM

could work as well as a random Gaussian matrix. Detail quantitative analysis of the incoherence for SRM with

local randomizer and global randomizer is presented in Section III-B and Section III-C, respectively. Based on

these incoherence results, theoretical performance of the proposed framework is analyzed in Section IV and then

followed by experiment validation in Section V. Finally, Section VI concludes the paper with detail discussion of

practical advantages of the proposed framework and relationship between the proposed framework and other related

works.

B. Notations

We reserve a bold letter for a vector, a capital and bold letter for a matrix, a capital and bold letter with one

sub-index for a row or a column of a matrix and a capital letter with two sub-indices for an entry of a matrix.

We often employ xxx ∈ RN for the input signal, yyy ∈ RN for the measurement vector, ΦΦΦ ∈ RM×N for the sensing

matrix, ΨΨΨ ∈ RN×N for the sparsifying matrix and ααα ∈ RN for the transform coefficient vector (xxx = ΨΨΨααα). We use

the notation supp(zzz) to indicate the index set (or coordinate set) of nonzero entries of the vector zzz. Occasionally,

we also use T to alternatively refer to this index set of nonzero entries (i.e., T =supp(zzz)). In this case, zzzT denotes

the portion of vector zzz indexed by the set T and AAAT denotes the submatrix of AAA whose columns are indexed by

the set T .

Let Sij , Fij be the entry at the ith row and jth column of AAAΨΨΨ and FFF , Rkk be the kth entry on the diagonal of

the diagonal matrix R, AAAi and ΨΨΨj be the ith row of AAA and jth column of ΨΨΨ, respectively.

In addition, we also employ the following notations:
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• xn is on the order of o(zn), denoted as xn = o(zn), if

lim
n→∞

xn

zn
= 0.

• xn is on the order of O(zn), denoted as xn = O(zn), if

lim
n→∞

xn

zn
= c.

where c is some positive constant.

• A random variable Xn is called asymptotically normally distributed N (0, σ2), if

lim
n→∞

P (
Xn

σ
≤ x) =

1√
2π

∫ x

−∞
e
−y2

2 dy.

III. INCOHERENCE ANALYSIS

A. Asymptotical Distribution Analysis

If ΦΦΦ is an i.i.d Gaussian matrix N (0, 1
N ) and ΨΨΨ is an arbitrarily orthonormal matrix, ΦΦΦΨΨΨ is also i.i.d Gaussian

matrix N (0, 1
N ), implying that with overwhelming probability, a Gaussian matrix is highly incoherent with all

orthonormal ΨΨΨ. In other words, i.i.d. Gaussian matrices are universally incoherent with fixed transforms (with

overwhelming probability). In this section, we will argue that under some mild conditions, with ΦΦΦ = DDDFFFRRR, where

DDD,FFF ,RRR are defined as in the previous section, entries of ΦΦΦΨΨΨ are asymptotically normally distributed N (0, σ2),

where σ2 ≤ O( 1
N ). This claim is illustrated in Fig. 1, which depicts the quantile-quantile (QQ) plots of entries

of ΦΦΦΨΨΨ, where N = 256, FFF is the 256 × 256 DCT matrix and ΨΨΨ is the Daubechies-8 orthogonal wavelet basis.

Fig. 1(a) and Fig. 1(b) correspond to the case RRR is the local and global randomizer, respectively. In both cases, the

QQ-plots appear straight, as the Gaussian model demands.

Note that ΦΦΦ is a submatrix of AAA = FFFRRR. Thus, asymptotical distribution of the entries of AAAΨΨΨ is similar to that

of entries of ΦΦΦΨΨΨ.

Theorem III.1. Let AAA = FFFRRR, where RRR is an N ×N random diagonal matrix of i.i.d Bernoulli random variables

along its diagonal P (Rii = ±1) = 1/2. Let FFF be an N × N unit-norm row matrix with absolute magnitude

of all entries on the order of O( 1√
N

). Let ΨΨΨ be an N × N unit-norm column matrix with the maximal absolute

magnitude of entries on the order of o(1). Then, entries of AAAΨΨΨ are asymptotically normally distributed N (0, σ2)

with σ2 ≤ O( 1
N ).

Proof. With notations being defined in Section II-B, we have:

Sij = 〈AAAi,ΨΨΨj〉 =
N∑

k=1

FikΨkjRkk (4)

Denote Zk = FikΨkjRkk. Because Rkk are i.i.d Bernoulli random variables, Zk are i.i.d zero-mean random

variables with E(Zk) = 0. The assumption that |Fik| are on the order of O( 1√
N

) implies that there exist two

positive constants c1 and c2 such that:
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Fig. 1. QQ plots comparing distribution of entries of ΦΦΦΨΨΨ and Gaussian distribution. (a) RRR is the local randomizer. (b) RRR is the global

randomizer. The plots all appear nearly linear, indicating that entries of ΦΦΦΨΨΨ are nearly Normal distributed

c1

N
Ψ2

kj ≤ Var(Zk) = F 2
ikΨ2

kj ≤
c2

N
Ψ2

kj . (5)

The variance of Sij , σ2, can be bounded as the follows:

c1

N
=

c1

N

N∑

k=1

Ψ2
kj ≤ σ2 =

N∑

k=1

Var(Zk) ≤ c2

N

N∑

k=1

Ψ2
kj =

c2

N
. (6)

Because Sij is a sum of i.i.d zero-mean random variables {Zk}N
k=1, according to the Central Limit Theorem

(CLT)(see Appendix I), Sij → N (0,O( 1
N )). To apply CLT, we need to verify its convergence condition: for a

given ε > 0 and there exists N that is sufficiently large such that the Var(Zk) satisfy:

Var(Zk) < εσ2, k = 1, 2, ..., N. (7)

June 8, 2010 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. XXX, XXX 2009 8

To show that this convergence condition is met, we use the counterproof method. Assume there exists ε0 such

that ∀N , there exists at least k0 ∈ {1, 2, . . . , N}:

Var(Zk0) > ε0σ
2. (8)

From (5), (6) and (8), we achieve:

ε
c1

N
≤ Var(Zk0) ≤

c2

N
Ψ2

kj . (9)

This inequality can be true if all Ψkj are in the order of o(1). The underlying intuition of the convergence

condition is to guarantee that there is no random variable with dominant variance in the sum Sij . In this case, it

simply requires that there is no dominant entry on each column of ΨΨΨ.

Given a few more restrictions, we can establish a similar result when RRR is a uniformly random permutation

matrix,

Theorem III.2. Let AAA = FFFRRR, where RRR is an N ×N uniformly random permutation matrix. Let FFF be an N ×N

unit-norm row matrix with the maximal absolute magnitude of entries on the order of O( 1√
N

). Let ΨΨΨ be an N ×N

unit-norm column matrix with the maximal absolute magnitude of entries on the order of o(1) and the average

sum of entries on each column is on the order of o( 1√
N

). Assume that sum of entries on each row of FFF is zero.

Also, assume that entries on each row of FFF and on each column of ΨΨΨ are not all equal. Then, entries of AAAΨΨΨ are

asymptotically normally distributed N (0, σ2), where σ2 ≤ O( 1
N ).

Proof. Let [ω1, ω2, ..., ωN ] be a uniform random permutation of [1, 2, ..., N ]. Note that {ωk}N
k=1 can be viewed as

a sequence of random variables with identical distribution. In particular, for a fixed k:

P (ωk = i) =
1
N

, i = 1, 2, ..., N.

Denote Zk = Fiωk
Ψkj (we omit the dependence of Zk on i and j to simplify the notation), we have:

Sij = 〈AAAi,ΨΨΨj〉 =
N∑

k=1

Fiωk
Ψkj =

N∑

k=1

Zk.

Using the assumption that the vector FFF i has zero average sum and unit norm, we derive:

E(Zk) = ΨkjE(Fiωk
) =

Ψkj

N

N∑

j=1

Fij = 0.

and also,

E(Z2
k) = Ψ2

kjE(F 2
iωk

) =
Ψ2

kj

N

N∑

j=1

F 2
ij =

Ψ2
kj

N
.

In addition, note that although {ωk}N
k=1 have the identical distribution, they are correlated random variables

because of the uniformly random permutation without replacement. Thus, with a pair of k and l such that 1 ≤ k 6=
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l ≤ N , we have:

E(ZkZl) = ΨkjΨljE(Fiωk
Fiωl

)

=
ΨkjΨlj

N(N − 1)

∑

1≤p6=q≤N

FipFiq

=
ΨkjΨlj

N(N − 1)
((

N∑
p=1

Fip)2 −
N∑

p=1

F 2
ip)

= − ΨkjΨlj

N(N − 1)
.

The last equation holds because the vector FFF i has zero average sum and unit-norm. Then, we derive the expectation

and variance of Sij as follows:

E(Sij) = 0;

Var(Sij) =
N∑

k=1

E(Z2
k) +

∑

1≤k 6=q≤N

E(ZkZl)

=
1
N

N∑

k=1

Ψ2
kj −

1
N(N − 1)

∑

1≤k 6=l≤N

ΨkjΨlj

=
1
N
− 1

N(N − 1)
((

N∑

k=1

Ψkj)2 −
N∑

k=1

Ψ2
kj)

=
1
N
− 1

N(N − 1)
(

N∑

k=1

Ψkj)2 − 1)

≤ 1
N

+
1

N(N − 1)
= O(

1
N

).

The forth equations holds because the column ΨΨΨj has unit-norm. The theorem is then a simple corollary of

the Combinatorial Central Limit Theorem [20] (see Appendix 1), provided that its convergence condition can be

verified that is:

lim
N→∞

N
max1≤k≤N (Fik − Fi)2∑N

k=1(Fik − Fi)2
max1≤k≤N (Ψkj −Ψj)2∑N

k=1(Ψkj −Ψj)2
= 0, (10)

where

Fi =
1
N

N∑

k=1

Fik; Ψj =
1
N

N∑

k=1

Ψkj .

Because Fi = 0, ‖Fi‖22 = 1 and max1≤k≤N F 2
ik = O( 1

N ), the equation (10) holds if the following equation

holds:

lim
N→∞

max1≤k≤N (Ψjk −Ψj)2∑N
k=1(Ψjk −Ψj)2

= 0. (11)

Because {|Ψj |}N
j=1 are on the order of o( 1√

N
):

N∑

k=1

(Ψkj −Ψj)2 = ‖b‖22 −NΨj
2

= 1−NΨj
2

= O(1). (12)

Also, due to |Ψj | ≤ max1≤k≤N |Ψjk| and |Ψjk| are on the order of o(1):

max
1≤k≤N

(Ψjk −Ψj)2 ≤ 4 max
1≤k≤N

Ψ2
jk = o(1). (13)
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Combination of (12) and (13) implies (11) and thus the convergence condition of the Combinatorial Central Limit

Theorem is verified.

The condition that each row of FFF has zero average sum is to guarantee that entries of FFFΨΨΨ have zero mean while

the condition that entries on each row of FFF and on each column of ΨΨΨ are not all equal is to prevent the degenerate

case that entries of FFFΨΨΨ might become a deterministic quantity. For example, when entries of a row FFF i are all equal
1√
N

, Sij = 1√
N

∑N
k=1 Ψkj , which is a deterministic quantity, not a random variable. Note that these conditions are

not necessary when RRR is a diagonal matrix of Bernoulli random entries.

If FFF is a DCT matrix, a (normalized) WHT matrix or a (normalized) DFT matrix, all the rows (except for the first

one) have zero average sum due to the symmetry in these matrices. The first row, whose entries are all equal 1√
N

,

can be considered as the averaging row, or a lowpass filtering operation. When the input signal is zero-mean, this

row might be chosen or not without affecting quality of the reconstructed signal. Otherwise, it should be included in

the chose row set to encode the signal’s mean. Lastly, the condition that absolute average sum of every column of

the sparsifying basis ΨΨΨ are on the order of o( 1√
N

) is also close to the reality because the majority of columns of the

sparsifying basis ΨΨΨ can be roughly viewed as bandpass and highpass filters whose average sum of the coefficients

are always zero. For example, if ΨΨΨ is a wavelet basis (with at least one vanishing moment), then all columns of ΨΨΨ

(except one at DC) has column sum of zero.

The aforementioned theorems show that under certain conditions, the majority of entries of AAAΨΨΨ (also ΦΦΦΨΨΨ) behave

like Gaussian random variables N (0, σ2), where σ2 ≤ O( 1
N ). Roughly speaking, this behavior constitutes to a

good sensing performance for the proposed framework. However, these asymptotic results are not sufficient for an

explicit measurement of sensing performance because in general, entries of AAAΨΨΨ are not stochastically independent,

violating a condition of a Gaussian i.i.d matrix. In fact, the sensing performance might be quantitatively analyzed

by employing a powerful analysis framework of a random subset of rows of an orthonormal matrix [14]. Note that

AAA is also an orthonormal matrix when RRR is either a random permutation matrix or a diagonal matrix of Bernoulli

random entries.

Based on the Gaussian tail probability and a union bound for a supreme (i.e., maximum absolute value) of a

random sequence, the maximum absolute magnitude of AAAΨΨΨ can be asymptotically bounded as follows:

P ( max
1≤i,j≤N

|Sij | ≥ t) ¹ 2N2 exp(− t2

2σ2
)

where σ2 ≤ c
N and c is some positive constant and ¹ stands for ”asymptotically smaller or equal”, i.e., when N

goes to infinity, ¹ becomes ≤.

If we choose t =
√

2c log 2(N/δ)2

N , the above inequality is equivalent to:

P ( max
1≤i,j≤N

|Sij | ≤
√

c log 2(N/δ)2

N
) º 1− δ

which implies that with probability at least 1 − δ, the mutual coherence of AAA and ΨΨΨ is upper bounded by

O(
√

log(N/δ)
N ), which is close to the optimal value, except the log N factor.
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In the following section, we will employ a more powerful tool from the theory of concentration inequalities to

analyze the coherence between AAA and ΨΨΨ when N is finite.

B. Incoherence Analysis With The Local Randomizer

The first theorem is about the mutual coherence of AAA = FFFRRR and ΨΨΨ when RRR is a diagonal matrix of i.i.d Bernoulli

random variables.

Theorem III.3. Let AAA = FFFRRR, where RRR is an N ×N random diagonal matrix of i.i.d Bernoulli random variables

along its diagonal P (Rii = ±1) = 1/2. Let FFF be an N × N unit-norm row matrix with the maximal absolute

magnitude of entries on the order of O( 1√
B

), where 1 ≤ B ≤ N . Let ΨΨΨ be an N ×N unit-norm column matrix.

• With probability at least 1− δ, the mutual coherence of AAA and ΨΨΨ is upper bounded by O(
√

log(N/δ)
B ).

• In addition, if the maximal absolute magnitude of entries of ΨΨΨ is on the order of O( 1√
N

), the mutual coherence

is upper bounded by O(
√

log(N/δ)
N ), which is independent of B.

Proof. A common proof strategy for this theorem as well as for other theorems in this paper is to establish a large

deviation inequality that implies the quantity of our interest is concentrated around its expected value with high

probability. Proof steps include:

• Showing that the quantity of our interest is a sum of independent random variables;

• Bounding the expectation and variance of the quantity;

• Applying a relevant concentration inequality of a sum of random variables;

• Applying a union bound for the supreme of a random sequence.

In this case, the quantity of interest is:

Sij = 〈AAAi,ΨΨΨj〉 =
∑

k∈supp(FFF i)

FikΨkjRkk

Denote Zk = FikΨkjRkk, for k ∈ supp(FFF i) (in the support set of the row FFF i). Because Rkk are i.i.d Bernoulli

random variables, Zk are also i.i.d random variables with E(Zk) = 0. Zkk are also bounded because Zk = ±FikΨkj

Sij is a sum of independent, bounded random variables. Applying the Hoeffding’s inequality (see Appendix 2)

yields:

Pr(|Sij | ≥ t) ≤ 2 exp(− t2∑
k∈supp(fffi)

F 2
ikΨ2

jk

).

The next step is to evaluate σ2 =
∑

k∈supp(fffi)
F 2

ikΨ2
jk. Here, σ2 can be roughly viewed as an approximation of

the variance of Sij .

σ2 ≤ max
1≤i,j≤N

|Fij |2
∑

k∈supp(FFF i)

Ψ2
kj ≤ max

1≤i,j≤N
|Fij |2 =

c

B
(14)

If the maximal absolute magnitude of entries of ΨΨΨ is on the order of magnitude of O( 1√
N

):

max
1≤i,j≤N

|Ψij | = c√
N

,
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where c is some positive constant, then

σ2 ≤ max
1≤i,j≤N

|Ψij |2
∑

1≤k≤N

F 2
ik ≤ max

1≤i,j≤N
|Ψij |2 =

c

N
. (15)

Finally, we derive an upper bound of the mutual coherence µ = max1≤i,j≤N |Sij | by taking a union bound for

the supreme of a random sequence:

P ( max
1≤i,j≤N

|Sij| ≥ t) ≤ 2N2 exp(
−t2

σ2
).

Choose t =
√

σ2 log(2N2/δ), after simplifying the inequality, we get:

P ( max
1≤i,j≤N

|Sij | ≤
√

σ2 log(2N2/δ)) ≥ 1− δ.

Thus, with an arbitrarily ΨΨΨ, (14) holds and we achieve the first claim of the Theorem:

P ( max
1≤i,j≤N

|Sij | ≤
√

c log(2N2/δ)
B

) ≥ 1− δ.

In the case that (15) holds, we achieve the second claim of the Theorem:

P ( max
1≤i,j≤N

|Sij | ≤
√

c log(2N2/δ)
N

) ≥ 1− δ.

Remark III.1. When AAA is a popular transform such as the DCT or the normalized WHT, the maximal absolute

magnitude of entries is on the order of O( 1√
N

). As a result, the mutual coherence of the AAA and an arbitrary ΨΨΨ

is upper bounded by O(
√

log(N/δ)
N ), which is also consistent with our asymptotic analysis above. In other words,

when at least ΦΦΦ or ΨΨΨ is a dense and uniform matrix, i.e. the maximal absolute magnitude of their entries is on the

order of O( 1√
N

), their mutual coherence is nearly minimal, except the log N factor. Otherwise, mutual coherence

between any arbitrary ΨΨΨ and a sparse matrix AAA (e.g. block diagonal matrix of block size B) might be
√

N
B times

larger.

Cumulative coherence is more subtle way to quantify incoherence between two matrices [21].

Definition III.1. The cumulative coherence of an N ×N AAA and an N ×K BBB is defined as:

µc(AAA,BBB) = max
1≤i≤N

√ ∑

1≤j≤K

〈AAAi,BBBj〉2

where AAAi and BBBj are rows of AAA and columns of BBB, respectively.

The cumulative coherence µc(AAA,BBB) measures the average incoherence between two matrices AAA and BBB while

mutual coherence µ(AAA,BBB) measures the entry-wise incoherence. As a result, the cumulative coherence seems to be

a better indicator of average sensing performance. In many cases, we are only interested in cumulative coherence

between AAA and ΨΨΨT , where T is the support of the transform coefficient vector. As will be shown in the following

section, the cumulative coherence provides a more powerful tool to obtain a tighter bound of the number of

measurements required for exact recovery.
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From the definition of cumulative coherence, it is easy to verify that µc ≤
√

Kµ. If we directly apply the result

of the Theorem III.3, we obtain a trivial bound of the cumulative coherence: µc = O(
√

K log N
B ) for any arbitrary

basis ΨΨΨ and µc = O(
√

K log N
N ) for any dense and uniform ΨΨΨ. In fact, we can get rid of the factor log N by directly

measuring the cumulative coherence from its definition.

Theorem III.4. Let AAA = FFFRRR, where RRR is an N ×N random diagonal matrix of i.i.d Bernoulli random variables

along its diagonal P (Rii = ±1) = 1/2. Let FFF be an N × N unit-norm row matrix with the maximal absolute

magnitude of entries is on the order of O( 1√
B

), i.e. max1≤i,j≤N |Fij | = c√
B

, where 1 ≤ B ≤ N and c is some

positive constant. Let ΨΨΨ be an N × N unit-norm column matrix. With probability at least 1 − δ, the cumulative

coherence of AAA and ΨΨΨT , where |T | = K, is upper bounded by O(
√

K
B ) if K > 16c2 log(2N/δ).

Proof. Denote UUU = ΨΨΨ∗T and UUUk are columns of UUU . Let AAAi and ΨΨΨj (j ∈ T ) be rows of AAA and columns of ΨΨΨT ,

respectively.

Si =
√∑

j∈T
〈AAAi,ΨΨΨj〉2 = ‖AAAiΨΨΨT ‖2 = ‖

∑

k∈supp(FFF i)

RkkFikUUUk‖2.

Denote VVV k = FikUUUk and VVV is the matrix of columns VVV k, k ∈ supp(FFF i). First, we derive upper bound for the

Frobenius of VVV :

‖VVV ‖2F ≤ max
1≤i,j≤N

F 2
ij‖U‖2F =

c2K

B
.

The last equation holds because ‖UUU‖2F = K. Also, the bound for the spectral norm is:

‖V ‖22 = sup
‖βββ‖2=1

∑

k∈supp(FFF i)

|〈βββ,VVV k〉|2

= sup
‖βββ‖2=1

∑

k∈supp(FFF i)

F 2
ik(

K∑

j=1

βββjUkj)2

≤ max
1≤i,j≤N

F 2
ij sup
‖βββ‖2=1

∑

1≤k≤N

|〈βββ,UUUk〉|2

≤ c2

B
‖UUU‖22 =

c2

B
.

The last equation holds because ‖UUU‖22 = 1. Now, we have:

Si = ‖
∑

k∈supp(FFF i)

RkkFikUUUk‖2 = ‖
∑

k∈supp(FFF i)

RkkVVV k‖2.

Let us denote ZZZ =
∑

k∈supp(FFF i)
RkkVVV k.

ZZZ is a Rademacher sum of vectors and Si = ‖ZZZ‖2 is a random variable. To show that Si is concentrated around its

expectation, we first derive bound of E(‖ZZZ‖2). It is easy to verify that for a random variable X , E(X) ≤
√

E(X2).

Thus, we will derive the upper bound for the simpler quantity E(‖ZZZ‖22)
E(‖ZZZ‖22) = E(ZZZ∗ZZZ) =

∑

k,l∈supp(FFF i)

E(RkkRll)〈VVV k,VVV l〉

=
∑

k∈supp(FFF i)

〈VVV k,VVV k〉 = ‖VVV ‖2F =
c2K

B
.
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The third equality holds because Rkk are i.i.d Bernoulli random variables and thus, E(RkkRll) = 0 ∀k 6= l. As

a result,

E(Si) = E(‖ZZZ‖2) ≤ c

√
K

B
.

Applying Ledoux’s concentration inequality of the norm of a Rademacher sum of vectors [22] (see Appendix 2).

Noting that ‖VVV ‖22 can be viewed as the variance of Si, yields:

Pr(Si ≥ c

√
K

B
+ t) ≤ 2 exp(−t2

B

16c2
)

Finally, apply a union bound for the supreme of a random process,we obtain:

Pr( max
1≤i≤N

Si ≥ c

√
K

B
+ t) ≤ 2N exp(−t2

B

16c2
).

Choose t =
√

K
B . If K > 16c2 log(2N/δ), we get:

Pr( max
1≤i≤N

Si ≥ O(

√
K

B
)) ≤ δ.

Remark III.2. When FFF is some popular transform such as the DCT or the normalized WHT, the maximum absolute

magnitude of entries is on the order of O( 1√
N

). As a result, the cumulative coherence of AAA and any arbitrary

ΨΨΨT ,where |T | = K, is upper bounded by O(
√

K
N ) if K > 16c2 log( 2N

δ ), where c is some positive constant.

Remark III.3. The above theorem represents the worst-case analysis because ΨΨΨ can be an arbitrary matrix (the worst

case corresponds to the case when ΨΨΨ is the identity matrix). When ΨΨΨ is known to be dense and uniform, the upper

bound of cumulative coherence, according to the Theorem III.3 and the fact that µc ≤ µ
√

K, is O(
√

K log N
N ),

which is, in general, better than O(
√

K
B ).

C. Incoherence Analysis With The Global Randomizer

The asymptotical analysis above reveals a significant technical difference for two cases: when RRR is the local

randomizer and when RRR is the global randomizer. With the local randomizer, entries of AAAΨΨΨ are sums of independent

random variables while with global randomizer they are sums of dependent random variables. Stochastic dependence

among random variables makes it much harder to set up similar arguments of their sum’s concentration. In this

case, we will show that the incoherence of AAA and ΨΨΨ might depend on an extra quantity, the heterogeneity coefficient

of the matrix ΨΨΨ.

Definition III.2. Assume ΨΨΨ is an N ×N matrix. Let Tk be the support of the column ΨΨΨk. Define:

ρk =
max1≤i≤N |Ψki|√

1
|Tk|

∑
i∈ Tk

Ψ2
ki

. (16)
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The column-wise heterogeneity coefficient of the matrix ΨΨΨ is defined as:

ρΨΨΨ = max
1≤k≤N

ρk. (17)

Obviously, 1 ≤ ρk ≤
√
|Tk|. ρk illustrates the difference between the largest entry’s magnitude and the average

energy of nonzero entries. Roughly speaking, it indicates heterogeneity of nonzero entries of the vector ΨΨΨk. If

nonzero entries of a column ΨΨΨk are homogeneous, i.e. they are on the same order of magnitude, ρk is on the order

of a constant. If all nonzero entries of a matrix are homogeneous, the heterogeneity coefficient is also on the order

of a constant, CΨΨΨ = O(1) and ΨΨΨ is referred as a uniform matrix. Note that a uniform matrix is not necessarily

dense, for example, a block-diagonal matrix of DCT or WHT blocks

The following theorem indicates that when the global randomizer is employed, the mutual coherence between AAA

and ΨΨΨ is upper-bounded by O(ρΨΨΨ

√
log(N/δ)

B ), where B is the block size of ΦΦΦ and ΨΨΨ is an arbitrarily matrix with

the heterogeneity coefficient ρΨΨΨ.

Theorem III.5. Let AAA = FFFRRR, where RRR is an N ×N uniformly random permutation matrix. Let FFF be an N ×N

unit-norm row matrix with the maximal absolute magnitude of entries is on the order of O( 1√
B

). Assume that all

rows of FFF have zero average sum. Let ΨΨΨ be an N × N unit-norm column matrix with Tk and ρΨΨΨ defined as in

(16) and (17). Assume that ρk ≥ 4 log(2N2/δ) ∀k ∈ {1, 2, . . . , N}.

• With probability at least 1− δ, the mutual coherence of AAA and ΨΨΨ is upper-bounded by O(ρΨ

√
log(N/δ)

B ).

• In addition, if ΨΨΨ is dense and uniform, i.e. the maximum absolute magnitude of its entries is on the order

of O( 1√
N

) and B ≥ 4 log(2N2/δ), the mutual coherence is upper-bounded by O(
√

log(N/δ)
N ), which is

independent of B.

Proof. Let [ω1, ω2, . . . , ωN ] be a uniformly random permutation of [1, 2, . . . , N ]. With the same notation of AAAi,ΨΨΨj ,FFF i, Sij , Fik,Ψjk

as denoted previously:

Sij = 〈AAAi,ΨΨΨj〉 =
N∑

k=1

Fiωk
Ψjk.

As in the proof of the Theorem III.2, {ωk}N
k=1 can be viewed as a sequence of dependent random variables with

identical distribution, i.e. for a fixed k ∈ {1, 2, . . . , N}:

P (ωk = i) =
1
N

, i ∈ {1, 2, . . . , N}.

The condition of FFF is equivalent to max1≤i,j≤N |Fij | = c√
B

, where c is some positive constant. Define

{wkωk
}N

k=1 as the follows:

wkωk
=





√
B|Tk|

2cρΨΨΨ
Fiωk

Ψjk + 1
2 if Ψjk 6= 0

√
B|Tk|

2cρΨΨΨ
Fiωk

Ψjk if Ψjk = 0.
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It is easy to verify that 0 ≤ wkωk
≤ 1. Define Wk as the sum of dependent random variables wkωk

Wk =
N∑

k=1

wkωk
=

√
B|Tk|

2cρΨ

N∑

k=1

Fiωk
Ψjk +

|Tk|
2

=

√
B|Tk|

2cρΨ
Sij +

|Tk|
2

.

Note that {Fiωk
}N

k=1 are zero-mean random variables because FFF i has zero average sum. Thus, E(Sij) = 0 and

E(Wk) = |Tk|
2 . Then, applying the Sourav’s theorem of concentration inequality for a sum of dependent random

variables [23] (see Appendix 2) results in:

P{
√

B|Tk|
2cρΨΨΨ

|Sij | ≥ ε} ≤ 2 exp(− ε2

2|Tk|+ 2ε
).

Denote t = 2cρΨΨΨ√
B|Tk|

ε. The above inequality is equivalent to:

P{|Sij | ≥ t} ≤ 2 exp(−B|Tk|
4c2ρ2

Ψ

t2

2|Tk|+ t
cρΨΨΨ

√
B|Tk|

).

By choosing t = 4cρΨΨΨ

√
1
B log( 2N2

δ ), we achieve:

P{|Sij | ≥ t} ≤ 2 exp(
−4|Tk| log( 2N2

δ )

2|Tk|+ 4
√
|Tk| log( 2N2

δ )
).

If |Tk| ≥ 4 log( 2N2

δ ), the denominator inside the exponent is smaller than 4|Tk|. Thus,

P{|Sij | ≥ 2cρΨΨΨ

√
1
B

log(
2N2

δ
)} ≤ 2 exp(− log(

2N2

δ
)) =

δ

N2
.

Finally, after taking the union bound for the supreme of a random sequence and simplifying the inequality, we

obtain the first claim of the Theorem:

P{ max
1≤i,j≤N

|Sij | ≤ O(ρΨΨΨ

√
log(N/δ)

B
)} ≥ 1− δ.

If ΨΨΨ is known to be dense and uniform, i.e. max1≤i,j≤N |Ψij | = c1√
N

, where c1 is some positive constant. We

then define {wkωk
}N

k=1 as the following:

wkωk
=





√
BN

2cc1
FikΨjωk

+ 1
2 if Fik 6= 0

√
BN

2cc1
FikΨjωk

if Fik = 0.

Note that 0 ≤ wkωk
≤ 1 and E(wkωk

) = B
2 . Repeat the same arguments above, we have:

P{|Sij | ≥ t} ≤ 2 exp(− NB

4c2c2
1

t2

2B + t
cc1

√
NB

).

Similarly, choose t = 4cc1

√
1
N log( 2N2

δ ), we can derive:

P{|Sij | ≥ t} ≤ 2 exp(
−4B log( 2N2

δ )

2B + 4
√

B log( 2N2

δ )
).
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If B ≥ 4 log( 2N2

δ ), the denominator inside the exponent is smaller than 4B. Thus,

P{|Sij | ≥ 2cc1

√
1
N

log(
2N2

δ
)} ≤ δ

N2
.

After taking the union bound of the supreme of a random sequence, we achieve the second claim of the Theorem.

Remark III.4. The first part of theorem implies that when FFF is a dense and uniform matrix (e.g. DCT or normalized

WHT) and ΨΨΨ is a uniform matrix (not necessarily dense), the mutual coherence closely approaches the minimum

O(
√

log(N/δ)
N ). Although in this theorem, the mutual coherence depends on the heterogeneity coefficient, one will

see in the experimental Section ?? that this dependence is almost negligible in practice.

As a consequence of this theorem, when at least AAA or ΨΨΨ is dense and uniform, the mutual coherence of AAA and

ΨΨΨ is roughly on the order of O(
√

log N
N ), which is quite close to the lower bound 1√

N
, except for the log N factor.

Otherwise, the coherence linearly depends on the block size B of FFF and is on the order of O(
√

log N
B ). As a matter

of fact, this bound is almost optimal because when ΨΨΨ is the identity matrix, the mutual coherence is actually equal

the maximum absolute magnitude of entries of AAA, which is on the order of O( 1√
B

).

IV. COMPRESSIVE SAMPLING PERFORMANCE ANALYSIS

Section III demonstrates that under some mild conditions, the matrix AAA and ΨΨΨ are highly incoherent, implying

that the matrix AAAΨΨΨ is almost dense. When AAAΨΨΨ is dense, energy of nonzero transform coefficients αααT is distributed

over all measurements. Commonly speaking, this is good for signal recovery from a small subset of measurements

because if energy of some transform coefficients were concentrated in few measurements that happens to be bypassed

in the sampling process, there is no hope for exact signal recovery even when employing the most sophisticated

reconstruction method. This section shows that a random subset of rows of the matrix AAA = FFFRRR yields almost

optimal measurement matrix ΦΦΦ for compressive sensing.

A. Main Assumptions for Theoretical Analysis

We first discuss main assumptions for theoretical results in the next section to hold. A signal xxx is assumed to

be sparse in some sparsifying basis ΨΨΨ: xxx = ΨΨΨααα, where the vector of transform coefficients ααα has no more than K

nonzero entries. The sign sequence of nonzero transform coefficients αααT which is denoted as zzz, is assumed to be a

random vector of i.i.d Bernoulli random variables (i.e. P (zi = ±1) = 1
2 ). Let yyy = ΦΦΦxxx be the measurement vector,

where ΦΦΦ =
√

N
M DDDFFFRRR is a structurally random matrix. For a general analysis, F is assumed to be a block diagonal

(and uniform) matrix with block size B (1 ≤ B ≤ N). If RRR is the global randomizer, we also need the additional

assumption that ΨΨΨ is uniform so that the theorem III.5 holds with the heterogeneity coefficient of ΨΨΨ, ρΨΨΨ, is on the

order of a constant. Note that the sensing operation can be equivalently accomplished via applying the Algorithm

1.

June 8, 2010 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. XXX, XXX 2009 18

B. Theoretical Results

Theorem IV.1. With probability at least 1−δ, the proposed sensing framework can recover K-sparse signals exactly

if the number of measurements M ≥ O(N
B K log2(N

δ )). If FFF is a dense and uniform rather than block-diagonal(e.g.

DCT or normalized WHT matrix), the number of measurement needed is on the order of O(K log2(N
δ )).

Proof. This is a simple corollary of the theorem of Candès et. al. [[14] Theorem 1.1] (1) because (i) AAA = FFFRRR is an

orthonormal matrix, and (ii) our incoherence results between AAA and ΨΨΨ in the Theorem III.3 and Theorem III.5.

Remark IV.1. If ΨΨΨ is dense and uniform, the number of measurements for exact recovery is always O(K log2(N
δ ))

regardless of the block size B. This implies that we can use the identity matrix for the transform FFF (B = 1). For

example, when input signal is known in advance to be spectrally sparse, compressively sampling it in the time

domain is as efficient as in any other transform domain.

Compared with the framework that uses random projection, there is an upscale factor of log N for the number of

measurements for exact recovery. In fact, by employing the above result of cumulative coherence, we can eliminate

this upscale factor and thus, successfully showing optimal performance guarantee.

Theorem IV.2. Assume that the sparsity K > 16c2 log( 2N
δ ). With probability at least 1−δ, the proposed framework

employing the local randomizer can reconstruct K-sparse signals exactly if the number of measurements M ≥
O(N

B K log(N
δ )).If FFF is a dense and uniform matrix (e.g. DCT or normalized WHT), the minimal number of

required measurements is M = O(K log(N
δ )).

Proof. The proof is based on the result of cumulative coherence in the Theorem III.4 and a modification of the

proof framework of the compressed sensing [14].

Denote UUU =
√

N
M FFFRRRΨΨΨ, UUUT =

√
N
M FFFRRRΨΨΨT , UUUΩ =

√
N
M DDDFFFRRRΨΨΨ and UUUΩT =

√
N
M DDDFFFRRRΨΨΨT , where the support

Ω = {k|DDDkk = 1, k = 1, 2, .., N}. Let vvvk, k ∈ {1, 2, ..., N}, be columns of UUU∗
T . Denote µc = max1≤k≤N ‖vvvk‖2,

where µc = µc(AAA,ΨΨΨT ) is the cumulative coherence of AAA =
√

N
M FFFRRR and ΨΨΨT . According to the above incoherence

analysis, µc ≤ O(
√

KN
BM ). Also, denote µ as the mutual coherence of AAA and ΨΨΨT , µ ≤ O(

√
N log N

BM ).

As indicated in [12], [14], to show l1 minimization exact recovery, it is sufficient to verify the Exact Recovery

Principle.

Exact Recovery Principle. With high probability, |πk| < 1 for all k ∈ T c, where T c is the complementary set of

the set T and π = UUU∗
ΩUUUΩT (UUU∗

ΩTUUUΩT )−1zzz, where zzz is the sign vector of nonzero transform coefficients αααT .

Also note that πk = 〈νk(UUU∗
ΩTUUUΩT )−1, z〉, where νννk is the kth row of UUU∗

ΩUUUΩT , for some k ∈ T c. The proof

contains three major steps:

• Claim 1 (Bound the norm of νk): With high probability, ‖νννk‖ on the order of O(µc)

• Claim 2 (Bound the spectral norm of UUU∗
ΩTUUUΩT ): With probability 1− δ, ‖UUU∗

ΩTUUUΩT ‖ ≥ 1
2 .
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• Claim 3 (Bound the norm of wk = νννk(UUU∗
ΩTUUUΩT )−1): With high probability, ‖wk‖ is on the order of O(µc).

Finally, exploiting the assumption that zzz is a random vector of i.i.d Bernoulli random variables to show that

with probability 1−O(δ), |πk| = |〈wk, z〉| < 1

We first present proof for the Claim 1.

Proof. Let UUUk be columns of UUU . For k ∈ T c:

νννk =
1
M

N∑

i=1

DiiUikvvvi =
N∑

i=1

(Dii − M

N
)Uikvvvi

where the second equality holds because
∑N

i=1 Uikvvvi = UUU∗
TUUUk = 0 that results from the orthogonality of columns

of UUU . Let Zi = (Dii− M
N ). Because Dii are i.i.d binary random variables with P (Dii = 1) = M

N , Zi are zero mean

i.i.d random variables and E(Z2
i ) = M

N (1− M
N ). Let WWW be the matrix of columns WWW i = Uikvvvi, i ∈ {1, 2, . . . , N}

. Then, νννk can be viewed as a random weighted sum of column vectors wwwi:

νννk =
1
M

N∑

i=1

ZiWWW i

and ‖νννk‖ is a random variable. We have:

E(‖νννk‖2) =
∑

1≤i,j≤N

E(ZiZj)〈WWW i,WWW j〉 =
∑

1≤i≤N

E(Z2
i )‖WWW i‖2,

where the last equality holds due to E(ZiZj) = 0 if i 6= j. Thus,

E(‖νννk‖2) =
M

N
(1− M

N
)

∑

1≤i≤N

V 2
ki‖Ui‖2

≤ M

N
(1− M

N
)µ2

c

∑

1≤i≤N

U2
ik ≤ µ2

c .

where the last inequality holds due to ‖UUUk‖2 = N
M . This implies that E(‖νννk‖) ≤ µc. To show that ‖νννk‖ is

concentrated around its mean, we use the Talagrand’s theorem of concentration inequality [24]. First, we have:

‖WWW‖22 = sup
‖β‖=1

N∑

i=1

|〈β,WWW i〉|2 = sup
‖β‖=1

N∑

i=1

U2
ik|〈β, vi〉|2

≤ µ2 sup
‖β‖=1

N∑

i=1

|〈β, vi〉|2 = µ2‖UUUT ‖22 =
N

M
µ2.

where the last equation holds because ‖UUUT ‖22 = N
M . Thus, we derive the upper bound of the variance σ2:

σ2 = E(Z2
k)‖W‖22 ≤

M

N
(1− M

N
)
N

M
µ2 ≤ µ2.

In addition, it is obvious that |Zk| ≤ 1 and thus

B = max
1≤i≤N

‖WWW i‖2 ≤ µµc.

The Talagrand’s theorem [24] (see Appendix 2) shows that:

P (‖νννk‖ − E(‖νννk‖) ≥ t) ≤ 3 exp(
−t

cB
log(1 +

Bt

σ2 + BE(‖νννk‖) )),
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where c is some positive constant. Replacing E(‖νννk‖), σ2 and B by their upper bounds in the right-hand side, we

obtain:

P (‖νννk‖ − E(‖νννk‖) ≥ t) ≤ 3 exp(
−t

cµµc
log(1 +

µµct

µ2 + µµ2
c

)).

The next step is to simplify the right-hand side of the above inequality by replacing the denominator inside the

log by two times the dominant term and note that log(1 + x) ≥ x
2 when x ≤ 1. In particular, there are two cases:

• Case 1: µµ2
c ≥ µ2 or equivalently, µ2

c ≥ µ, denote σ2 = µµ2
c and t = aσ . If µµct ≤ 2µµ2

c or equivalently,

a ≤ 2(1/µ)
1
2 ,

P (‖νννk‖ − E(‖νννk‖) ≥ t) ≤ 3 exp(−γa2).

• Case 2: µ2 ≥ µµ2
c , denote σ2 = µ2 and t = aσ. If µµct ≤ 2µ2 or equivalently, a ≤ 2/µc

P (‖νννk‖ − E(‖νννk‖) ≥ t) ≤ 3 exp(−γa2).

where γ is some positive constant.

In conclusion, we just derive that

P (‖νννk‖ ≥ µc + aσ) ≤ 3 exp(−γa2), (18)

where γ is a positive constant and a is an arbitrary number that satisfies the above conditions.

The Theorem 1.2 in [14] shows that the Claim 2 holds when M ≥ µ2
c max(c1 log K, c2 log(3/δ)), where c1 and

c2 are some known positive constants.

Finally, we present proof for the Claim 3.

Proof. First, we show that:

P ( sup
k∈T c

‖WWW k‖ ≥ 2µc + 2aσ) ≤ 3N exp(−γa2) + P (‖U∗
ΩT UΩT ‖ ≤ 1

2
). (19)

where WWW k = νννk(UUU∗
ΩTUUUΩT )−1.

Let A be the event that {‖U∗
ΩT UΩT ‖ ≥ 1

2} or equivalently, {‖(U∗
ΩT UΩT )−1‖ ≤ 2} and B be the event that

{supk∈T c ‖νk‖ ≤ µc + aσ}. Note that

sup
k∈T c

‖WWW k‖ ≤ ‖(U∗
ΩT UΩT )−1‖ sup

k∈T c

‖νννk‖.

Thus,

P ( sup
k∈T c

‖WWW k‖ ≥ 2µc + 2aσ) ≤ P (A ∩ B) ≤ P (A) + P (B).

Note that P (B) ≤ 3N exp(−γa2) implies (19) holds.

The last step is to show that supk∈T c |〈WWW k, zzz〉| ≤ 1 with high probability. Note that because zzz is assumed to be

a vector of i.i.d Bernoulli random variables, |〈WWW k, zzz〉| is concentrated around its zero mean. In particular, according

to the Hoeffding’s inequality:

P (|〈WWW k, zzz〉| ≥ 1) ≤ 2 exp(− 1
2‖WWW k‖2 ).
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⇒ P (|〈WWW k, zzz〉| ≥ 1| sup
k∈T c

‖WWW k‖ ≤ λ) ≤ 2N exp(− 1
2λ2

).

Note that with two arbitrary probabilistic events A and B:

P (A) = P (A|B)P (B) + P (A|B)P (B) ≤ P (A|B) + P (B).

Now, let A be the event {supk∈T c |〈WWW k, zzz〉| ≥ 1} and B be the event {supk∈T c ‖WWW k‖ ≤ λ}, we can show that

P ( sup
k∈T c

|〈WWW k, zzz〉| ≥ 1) ≤ 2N exp(− 1
2λ2

) + P ( sup
k∈T c

‖WWW k‖ ≥ λ). (20)

Choose λ = 2µc + 2aσ, according to (19) and (20), the probability of our interest P (supk∈T c |〈WWW k, zzz〉| ≥ 1) is

upper bounded by:

3N exp(−γa2) + 2N exp(− 1
2λ2

) + δ.

To show that {supk∈T c |〈WWW k, zzz〉| ≤ 1} with probability 1 −O(δ), it is sufficient to show that the above upper

bound is not greater than 3δ. In particular, choose a2 = γ−1 log(3N/δ) that makes the first term to be equal δ.

To make the second term less than δ, it is required that

1
2λ2

≥ log(
2N

δ
). (21)

• Case 1: µ2
c ≥ µ. The condition that (18) holds is a ≤ 2(1/µ)

1
2 that is equivalent to:

1 ≥ 1
4
γ−2µ2 log2(3N/δ).

It is easy to see µc ≥ aσ, where σ = (µµ2
c)

1/2. In this case, λ ≤ 4µc. Thus, (21) holds if

1 ≥ 32µ2
c log(

2N

δ
). (22)

• Case 2: µ ≥ µ2
c . The condition that (18) holds is a ≤ 2/µc or equivalently,

1 ≥ 1
4
γ−2µ2

c log(3N/δ).

If µc ≥ aσ, where σ = µ, λ ≤ 4µc and the condition is again (22). Otherwise, λ ≤ 4aσ. In this case, (21)

holds if

1 ≥ 32γ−1µ2 log(
2N

δ
).

In conclusion, the Exact Recovery Principle is verified if 1 ≥ max(c1µ
2 log2(3N/δ), c2µ

2
c log(3N/δ)), where c1

and c2 are known positive constants.

Finally, note that µ2 ≤ O(N log N
BM ) and µ2

c ≤ O( NK
BM ) and the assumption that K ≥ 16c2 log( 2N

δ ), the sufficient

condition for exact recovery is M ≥ O(N
B K log(N

δ )). When FFF is dense and uniform, the condition becomes

M ≥ O(K log(N
δ )).
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TABLE I

SRMS EMPLOYED IN THE EXPERIMENT WITH SPARSE SIGNALS

Notation R F

WHT64-L Local randomizer 64× 64 block diagonal WHT

WHT64-G Global randomizer 64× 64 block diagonal WHT

WHT256-L Local randomizer 256× 256 block diagonal WHT

WHT256-G Global randomizer 256× 256 block diagonal WHT

V. NUMERICAL EXPERIMENTS

A. Simulation with Sparse Signals

In this section, we evaluate the sensing performance of several structurally random matrices and compare it with

that of completely random projection. We also explore the connection among sensing performance (probability of

exact recovery), streaming capacity (block size of FFF ) and structure of the sparsifying basis ΨΨΨ (e.g. sparsity and

heterogeneity).

In the first simulation, the input signal xxx of length N = 256 is sparse in the DCT domain, i.e. xxx = ΨΨΨααα, where the

sparsifying basis ΨΨΨ is the 256× 256 IDCT matrix. Its transform coefficient vector ααα has K nonzero entries whose

magnitudes are Gaussian distributed and locations are at uniformly random, where K ∈ {10, 20, 30, 40, 50, 60}.

With the signal xxx, we generate a measurement vector of length M = 128: yyy = ΦΦΦxxx, where ΦΦΦ is some structurally

random matrix or a completely Gaussian random matrix. SRMs under consideration are summarized in Table I.

The Orthogonal Matching Pursuit algorithm [6], is used to recover the signal from its measurements yyy. For each

value of sparsity K ∈ {10, 20, 30, 40, 50, 60}, we repeat the experiment 500 times and count the probability of

exact recovery. The performance curve is plotted in Fig. 2(a). Numerical values on the x-axis denote signal sparsity

K while those on the y-axis denote the probability of exact recovery. We then repeat similar experiments when an

input signal is sparse in some sparse and non-uniform basis ΨΨΨ. Fig. 2(b) and Fig. 2(c) illustrate the performance

curves when ΨΨΨ is the Daubechies-8 wavelet basis and the identity matrix, respectively.

These experiments verify that when performance of the SRM is comparable to that of a completely random

matrix when the transform matrix FFF is dense (all of its entries are non-zero) or when the sparsifying matrix ΨΨΨ

of the input signal is dense (e.g. DCT). This implies that if we know the signal is sparse in a dense domain ΨΨΨ,

we can sense the signal directly in its original domain (i.e., FFF = III) without performance loss. In addition, if we

have no prior knowledge of a sparsifying transform, employing a SRM with the dense matrix FFF guarantees optimal

performance.

However, when both sparsifying matrix and SRM are sparse, sensing performance might drop quickly as illustrated

in Fig. 2(c), revealing a trade-off between sensing performance and streaming capacity. In this case, Fig. 2(b)

shows that the SRM with the global randomizer seems to work much better than the SRM with the local randomizer.
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TABLE II

SRMS EMPLOYED IN THE EXPERIMENT WITH COMPRESSIBLE SIGNALS

Notation R F

DCT32-G Global randomizer 32× 32 block diagonal DCT

WHT32-G Global randomizer 32× 32 block diagonal WHT

DCT512-L Local randomizer 512× 512 block diagonal DCT

WHT512-L Local randomizer 512× 512 block diagonal WHT

B. Simulation with Compressible Signals

In this simulation, signals of interest are natural images of size 512× 512 such as the 512× 512 Lena, Barbara

and Boat images. The sparsifying basis ΨΨΨ used for these natural images is the well-known Daubechies 9/7 wavelet

transform. All images are implicitly regarded as 1-D signals of length 5122. The GPSR software in [3] is used for

signal reconstruction.

For such a large scale simulation, it takes a huge amount of system resources to implement the sensing method

of a completely random matrix. Thus, for the purpose of benchmark, we adopt a more practical scheme of partial

FFT in the wavelet domain (WPFFT). The WPFFT is to sense wavelet coefficients in the wavelet domain using

the method of partial FFT. Theoretically, WPFFT has optimal performance as the Fourier matrix is completely

incoherent with the identity matrix. The WPFFT is a method of sensing a signal in the transform domain that also

requires substantial amount of system resources. SRMs under consideration are summarized in Table II.

For the purpose of comparison, we also implement two popular sensing methods: partial FFT in the time domain

(PFFT)[1] and the Scrambled/Permutted FFT (SFFT) in [25], [26] that corresponds to a dense SRM using the global

randomizer.

The performance curves of these sensing ensembles are plotted in Fig. 3(a), Fig. 3(b) and Fig. 3(c), which

correspond to the input signal Lena, Barbara and Boat images, respectively. Numerical value on the x-axis represents

sampling rate, which is the number of measurements over the total number of samples. Value on y-axis is the quality

of reconstruction (PSNR in dB). Lastly, Fig. 4 shows the visually reconstructed 512× 512 Lena image from 25%

of measurements using WPFFT, WHT32-G and WHT512-L ensembles

As clearly seen in Fig. 3, the PFFT is not an efficient sensing matrix for smooth signals like images because

Fourier matrix and wavelet basis are highly coherent. On the other hand, the SRM method, which can roughly be

viewed as the PFFT preceded by the pre-randomization process, is very efficient. In particular, with a dense SRM

like SFFT, the performance difference between the SRM method and the benchmark one, WPFFT, is less than 1

dB. In addition, performance of DCT512-L and WHT512-L that are fully streaming capable SRM, degrades about

1.5 dB, which is a reasonable sacrifice as the buffer size required is less than 0.2 percent of the total length of

the original signal. Less degradation is obtainable when the buffer size is increased. Also, in all cases, there is no
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observable difference of performance between DCT and normalized WHT transforms. It implies that orthonormal

matrices whose entries have the same order of absolute magnitude generate comparable performance. In addition,

highly sparse SRM using the global randomizer such as DCT32-G and WHT32-G has experimental performance

comparable to that of the dense SRM. Note that these SRM are highly sparse because their density are only 2−13.

This observation again verifies that a SRM using the global randomizer might, in general, outperform a SRM using

the local randomizer. We leave the theoretical justification of this observation for our future research.

VI. DISCUSSION AND CONCLUSION

A. Complexity Discussion

We compare the computation and memory complexity between the proposed SRM and other random sensing

matrices such as Gaussian or Bernoulli i.i.d. matrices. In implementation, the i.i.d Bernoulli matrix is obviously

preferred than i.i.d Gaussian one as the former has integer entries 1,−1 and requires only 1 bit to represent each

entry. A M × N i.i.d. Bernoulli sensing matrix requires MN bits for storing the matrix and MN additions and

multiplications for sensing operation. A M × N structurally random matrix only requires 2N + N log N bits

for storage and N + N log N additions and multiplications for sensing operation. With SRM, its computational

complexity and memory space required is independent with the number of measurements M . Note that with SRM,

we do not need to store matrices DDD, FFF , RRR explicitly. We only need to store the diagonals of DDD and of RRR and the

fast transform FFF , resulting in significant saving of both memory space and computational complexity.

Sparse signal recovery algorithms often require to compute AAA and AAAT in each iteration for reconstructing the

original sparse signal xxx from the compressed measurement vector yyy, where AAA = ΦΦΦΨΨΨ. Speed of these reconstruction

algorithm often depends critically on whether matrix-vector multiplications AAAuuu and AAATuuu can be computed quickly

[3]. For the sake of simplicity, let’s now assume Ψ is identity matrix. AAAuuu = ΦΦΦuuu requires MN = O(KN log N)

additions and multiplications for a random sensing matrix ΦΦΦ and O(N log N) additions and multiplications for a

SRM. This implies that SRM can speed up the reconstruction algorithm with at least K folds. With compressible

signals (e.g., images), the number of measurements acquired tends to be proportional with the signal dimension,

for example, M = N/4, then computational complexity reduction if using SRM is N
4 log N .

Table III summarizes practical advantages of employing a SRM over a random sensing matrix.

B. Relationship with Other Related Works

When RRR is a local randomizer, the SRM matrix is a little reminiscent to the so-called Fast Johnson-Lindenstrauss

Transform (FJLT) [27]. However, the SRM is much easier and less expensive to implement due to the simplicity

of the matrix DDD. In FJLT, this matrix is a completely random matrix with sparse distribution . It is unknown if

there exists an efficient implementation of such a sparse random matrix. As a result, SRMs are more appropriate

for practical applications because of their simple implementation and its optimal performance guarantee.

In [25], [26], the Scrambled/Permuted FFT is experimentally proposed as a heuristic low-complexity sensing

method that is efficient for sensing of a large signal. To the best of our knowledge, however, there has not been
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TABLE III

PRACTICAL FEATURE COMPARISON

Features SRMs Completely Random Matrices

No. of measurements for exact recovery O(K log N) O(K log N)

Sensing complexity N log N O(KN log N)

Reconstruction complexity at each iteration O(N log N) O(KN log N)

Implementation in hardware and optics Very easy Difficult

Fast computability Yes No

Block-based processing Yes No

any theoretical analysis for Scrambled FFT. It turns out the Scrambled FFT is superseded by our unified SRM

framework.

Random Convolution convolving the input signal with a random pulse followed by randomly subsampling

measurements is proposed in [19] as a promising sensing method for large scale, real signals. Although there are a

few other methods that exploit the same idea of convolving a signal with a random pulse, for examples: Random

Filter in [17] and Toeplitz structured sensing matrix in [18], only random convolution method can be shown to

approach optimal sensing performance. The main difference among the random convolution method and other similar

methods is while other methods such as Random Filter and Toeplitz-based CS methods subsample measurements

structurally, the random convolution method applies a technique of randomly subsampling measurements that is

also employed in the proposed SRM framework. In addition, in random convolution, randomness is introduced in

the Fourier domain by randomizing phases of Fourier coefficients. These techniques help to decouple stochastic

dependence among measurements and thus, enabling us to establish stronger claims of sensing performance.

Although sharing a few common features, the proposed SRM framework is distinct from all aforementioned

methods, including random convolution. One of major differences is that in SRM, signal pre-randomization is

performed directly in its original domain (via the global randomizer or the local randomizer), rather than in Fourier

domain as in the random convolution method. As a result, the sensing system becomes much simpler and less

expensive to implement (without performance loss). In addition, it extends the random convolution method by

verifying that not only Fourier transform but also a wide variety of other popular fast transforms, especially ones

that are easier to implement such as WHT, can be used to obtain optimal performance. Last but not least, the SRM

framework presents a systematic method to design optimal and flexible sensing matrices with practical features.

APPENDIX I

Central Limit Theorem. Let Z1, Z2, . . . , ZN be mutually independent random variables. Assume E(Zk) = 0 and

denote σ2 =
∑N

k=1 Var(Zk) . If for a given ε ≥ 0 and N sufficiently large, the following inequalities hold:

Var(Zk) < εσ2 k = 1, 2, . . . , N
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then distribution of the normalized sum S =
∑N

k=1 Zk converges to N (0, σ2)

Combinatorial Central Limit Theorem. Given two sequences {ak}N
k=1 and {bk}N

k=1. Assume the ak are not all

equal and bk are also not all equal. Let [ω1, ω2, . . . , ωN ] be a uniform random permutation of [1, 2, ..., N ]. Denote

Zk = aωk
and

S =
N∑

k=1

Zkbk;

S is asymptotically normally distributed N (E(S), Var(S)) if

lim
N→∞

N
max1≤k≤N (Zk − Z)2∑N

k=1(Zk − Z)2
max1≤k≤N (bk − b)2∑N

k=1(bk − b)2
= 0;

where

b =
1
N

N∑

k=1

bk and Z =
1
N

N∑

k=1

Zk.

APPENDIX II

Hoeffding’s Concentration Inequality. Suppose X1, X2, ..., XN are independent random variables and ak ≤
XK ≤ bk (k = 1, 2, ..., N ). Define a new random variable S =

∑N
k=1 Xk. Then for any t > 0

P (|S − E(S)| ≥ t) ≤ 2e
− 2t2∑N

k=1(bk−ak)2 .

Ledoux’s Concentration Inequality. Let {ηi}1≤i≤N be a sequence of independent random variables such that

|ηi| ≤ 1 almost surely and vvv1, vvv2,. . . , vvvN be vectors in Banach space. Define a new random variable: S =

‖∑N
i=1 ηivi‖. Then for any t > 0,

P (S ≥ E(S) + t) ≤ 2 exp(− t2

16σ2
)

where σ2 denote the variance of S and σ2 = sup‖uuu‖≤1

∑N
i=1 |〈uuu,vvvi〉|2.

Talagrand’s Concentration Inequality. Let Zk be zero-mean i.i.d random variables and bounded |Zk| ≤ λ and

uuuk be column vectors of a matrix UUU . Define a new random variable: S = ‖∑N
i=1 Zkuuuk‖. Then for any t > 0:

P (S ≥ E(S) + t) ≤ 3 exp(− t

cB
log(1 +

Bt

σ2 + BE(S)
))

where c is some constant, variance σ2 = E(Z2
k)‖UUU‖2 and B = λ max1≤k≤N ‖uuuk‖.

Sourav’s Concentration Inequality. Let {Zij}1≤i,j≤N be a collection of numbers from [0, 1]. Let [ω1, ω2, . . . , ωN ]

be a uniformly random permutation of [1, 2, . . . , N ]. Define a new random variable: S =
∑N

i=1 Ziωi . Then for any

t ≥ 0

P (|S − E(S)| ≥ t) ≤ 2 exp(− t2

4E(S) + 2t
).
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Fig. 2. Performance curves: probability of exact recovery vs. Sparsity K. (a) when ΨΨΨ is IDCT basis. (b) when ΨΨΨ is Daubechies-8 wavlet

basis. (c) when ΨΨΨ is the identity basis
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Fig. 3. Performance curves: Quality of signal reconstruction vs. sampling rate M/N . (a) the 512 × 512 Lena image. (b) the 512 × 512

Barbara image. (c) the 512× 512 Boat image
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(a) (b)

(c) (d)

Fig. 4. Reconstructed 512×512 Lena images from M/N = 25% sampling rate. (a) The original Lena image; (b) using the WPFFT ensemble:

30.1dB; (c) using the WHT32-G ensemble: 29.3dB; (d) using the WHT512-L: 28.5dB
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