
A

Combining centralised and distributed testing

Robert M. Hierons, Brunel University

Many systems interact with their environment at distributed interfaces (ports) and sometimes it is not pos-
sible to place synchronised local testers at the ports of the system under test (SUT). There are then two
main approaches to testing: having independent local testers or a single centralised tester that interacts
asynchronously with the SUT. The power of using independent testers has been captured using implemen-
tation relation dioco. In this paper we define implementation relation diococ for the centralised approach
and prove that dioco and diococ are incomparable. This shows that the frameworks detect different types
of faults and so we devise a hybrid framework and define an implementation relation diocos for this. We
prove that the hybrid framework is more powerful than the distributed and centralised approaches. We then
prove that the Oracle problem is NP-complete for diococ and diocos but can be solved in polynomial time
if we place an upper bound on the number of ports. Finally, we consider the problem of deciding whether
there is a test case that is guaranteed to force a finite state model into a particular state or to distinguish
two states, proving that both problems are undecidable for the centralised and hybrid frameworks.

Categories and Subject Descriptors: B4.5 [Reliability, Testing, and Fault-Tolerance]: Test generation;
C.1.4 [Parallel Architectures]: Distributed architectures; D2.5 [Testing and Debugging]: Testing Tools;
H.3.4 [Systems and Software]: Distributed systems

General Terms: Reliability, Verification

Additional Key Words and Phrases: Centralised testing, distributed testing, model based testing

ACM Reference Format:

R. M. Hierons, 2014. Combining centralised and distributed testing. ACM Trans. Softw. Eng. Methodol. V,
N, Article A (January YYYY), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Testing is a significant part of the software development process but is typically man-
ual and, as a result, expensive and error prone. This observation has led to interest in
automating testing including work on model-based testing (MBT) in which testing is
based on a model of the required behaviour of the system under test (SUT) or some as-
pect of this (see, for example, [En-Nouaary 2013; Farchi et al. 2002; Grieskamp 2006;
Hwang et al. 2012; Miller and Strooper 2012; Tahat et al. 2012; Tretmans 1996]). Given
a model, there is the potential to automate test case generation and execution but also
to automatically check that an observed behaviour is one allowed: the model acts as
an Oracle. Recent industrial experience has shown that the use of MBT can lead to
significant reductions in the cost of testing [Grieskamp et al. 2011] but MBT builds on
much earlier work in the context of automata theory (see, for example, [Moore 1956;
Hennie 1964; Chow 1978]).

Author’s addresses: R.M. Hierons, Department of Computer Science, Brunel University, Uxbridge, Middle-
sex, UB8 3PH, UK
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 R.M. Hierons

Most work in MBT has focussed on testing from either finite state machines (FSMs)
(see, for example, [Moore 1956; Hennie 1964; Gonenc 1970; Chow 1978; Lee and Yan-
nakakis 1996; Hierons and Ural 2008b]) or input output transition systems (IOTSs)
(see, for example, [Tretmans 1996]). While the tester might produce a model in a more
expressive language, such models are typically mapped to an FSM or IOTS by the
MBT tool used (see, for example, [Farchi et al. 2002; Grieskamp 2006]). Typically, a
model in a language such as state-charts can be mapped to an FSM or IOTS by ei-
ther abstracting out the data or expanding the data. In the former the data is simply
ignored, something that is possible when the data is not referred to in guards of tran-
sitions and so does not affect whether a path through a model is feasible. In the latter
approach, each combination of logical state (of the model) and tuple of values of the
model variables potentially forms a separate state of the IOTS or FSM (see, for exam-
ple, [Petrenko et al. 2004]). A model written using a process algebra such as LOTOS
can also be given an IOTS semantics. [Tretmans 2008].

The classic notion of correctness (implementation relation) used with IOTSs is ioco
[Tretmans 1996]. Recent work has showed that ioco is equivalent to an alternative
implementation relation called alternating simulation, used with interface automata,
if the IOTSs are input-enabled1 [Veanes and Bjørner 2010]. As a result, it should be
possible to adapt methods devised for IOTSs and ioco to languages whose semantics
is expressed using alternating simulation. It has also been shown that, by including
the notion of inputs being illegal in some states, it is possible to map between interface
automata and FSMs [Aarts and Vaandrager 2010].

When testing from a model M , we need to say what it means for the SUT to be
correct. In this context, it is normal to assume that the SUT behaves like some un-
known model N , typically written using the same formalism as M . This assumption is
sometimes called the minimum hypothesis [Gaudel 1995] and allows one to formally
state what it means for the SUT to be a correct implementation of M by defining an
implementation relation between models N and M . It is important to use a suitable
implementation relation since this can be involved in driving test generation (the im-
plementation relation states what behaviours constitute failures) and is used in solv-
ing the Oracle problem (of checking an observation against the specification). If we use
the wrong implementation relation then automated testing might use inappropriate
test cases (ones that cannot lead to failures) and might also give the wrong outcome
(pass/fail) for a test.

Many systems interact with their environment at physically distributed interfaces,
called ports, with important classes of such systems including communications proto-
cols, web services, cloud systems, and wireless sensor networks. In testing such a sys-
tem, it is sometimes possible to place separate testers at the ports and coordinate test-
ing through the testers exchanging messages or being controlled by a central coordina-
tor via message exchange [Cacciari and Rafiq 1999; Jard et al. 1998; Rafiq and Cacciari
2003]. However, this message exchange introduces a network overhead and can also
introduce delays in testing since message exchange is not instantaneous. Two alterna-
tives, that do not require additional coordination messages, have been described in the
literature:

— Place a separate independent tester at each interface of the SUT and require these
testers to act independently in communicating with the SUT [Chen et al. 2005; Chen
and Ural 1995; Dssouli and von Bochmann 1985; 1986; Hierons and Ural 2008a].

1An IOTS is input-enabled if for every state s and input ?i there is at least one transition from s with label
?i.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:3

The tester at a port p has its own strategy, only observes events that occur at p, and
interacts synchronously with the port p of the SUT.

— Have a single centralised tester that interacts asynchronously with the separate
ports of the SUT [Simão and Petrenko 2011].

Recent work has shown that the use of separate independent testers significantly
affects testing. For example, even when testing from a deterministic finite state ma-
chine M , it is undecidable whether there is a test case that is guaranteed to reach a
particular state s of M or distinguish two given states of M [Hierons 2010]. In addi-
tion, the Oracle problem (of deciding whether an observation is consistent with the
specification) is NP-complete [Hierons 2012b]. This contrasts with the case in which
there is only a single port, where it is decidable whether there is a test case that
reaches a state or distinguishes two states [Alur et al. 1995] and the Oracle problem
corresponds to the membership problem for finite automata and so can be solved in
low-order polynomial time. One of the reasons for the increased complexity of testing
is that the testers cannot coordinate their actions and so each tester has only partial
information about the sequence of events that has occurred. The alternative, of hav-
ing a centralised tester, has the advantage of having only one tester and so no need
to coordinate testing. However, it has the disadvantage that communication with the
SUT is asynchronous and so there can be a loss of information regarding the relative
order of inputs and outputs. For example, if the tester sends input ?i, then sends input
?i′, and finally observes output !o then while it might appear that !o was produced in
response to ?i′, it is possible that !o was output before ?i′ was received by the SUT and
the observed order of events resulted from the communications latency. Interestingly,
it appears that the centralised and distributed approaches have not previously been
formally compared. Since the centralised approach has been described for input out-
put transition systems (IOTSs) and the distributed approach has been investigated for
both finite state machines and IOTSs, this paper compares these approaches in the
context of testing from an IOTS (the more general formalism).

We show that the centralised and distributed approaches are incomparable and so
they will identify different sets of traces (sequences of inputs and outputs) of an SUT
that are not defined by the specification. We therefore define a hybrid framework that
combines these two approaches by having a centralised tester that interacts asyn-
chronously with the SUT and local testers that observe local traces. We prove that
this framework is strictly more effective than either the centralised or distributed ap-
proaches. Having defined the hybrid framework we investigate some standard testing
problems. We prove that the Oracle problem is NP-complete for the hybrid and cen-
tralised approaches (it is already known that this is NP-complete for distributed test-
ing [Hierons 2012b]). We also give an algorithm for the Oracle problem that operates
in polynomial time when there is an upper bound on the number of ports. Thus, it
appears that the Oracle problem being NP-complete may not be problematic for sys-
tems where there are only a few ports, an example being communications protocols
where there are two ports. We then consider the problems of deciding whether there
is a test case that is guaranteed to force an IOTS M into a given state s and whether
there is a test case that is guaranteed to distinguish two states s and s′ of an IOTS.
We prove that these problems are generally undecidable for both the centralised and
hybrid approaches.

In practice, one might allow the testers to exchange coordination messages in order
to support testing and this topic has received much attention (see, for example, [Chen
and Ural 1995; Cacciari and Rafiq 1999; Jourdan et al. 2006; Tai and Young 1998]).
However, when testing a system with physically distributed interfaces (ports), the ex-
change of coordination messages is asynchronous and so this approach might add no

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 R.M. Hierons

value beyond the centralised framework2 and it will then be weaker than the hybrid
framework described in this paper. The problems addressed are therefore inherent in
testing a system that has physically distributed interfaces: either we have indepen-
dent distributed testers that interact synchronously with the SUT or we have one or
more testers that interact asynchronously with the SUT. The use of coordination mes-
sages does not solve the underlying problem since the exchange of such coordination
messages will be asynchronous.

The work in this paper relates to several lines of research. The early work in the
area of distributed testing focussed on testing from an FSM and this work demon-
strated that having distributed observations affects the ability of testing to distinguish
between an SUT and a specification [Sarikaya and von Bochmann 1984; Dssouli and
von Bochmann 1985; 1986]. This work also showed that the use of distributed testers
can introduce controllability problems, which can make it harder to apply a given test
case; essentially, the tester at a port p might not know when to apply an input since
it does not observe previous events at the other ports. Another line of work defined
an implementation relation for distributed testing from an FSM for the case where
we restrict attention to test cases that introduce no controllability problems [Hierons
and Ural 2008b]. Only relatively recently have researchers investigated distributed
testing when the specification is an IOTS, defining the implementation relation dioco
for the case where there is a separate tester at each port of the SUT [Hierons et al.
2012]. It has also been shown that the Oracle problem is NP-complete for dioco [Hi-
erons 2012b]. Earlier work defined the implementation relation mioco that adapts
the implementation relation ioco, typically used for testing from a single port IOTS,
for testing distributed systems. However, mioco does not take into account the dis-
tributed nature of observations: observations are still global traces with mioco differ-
ing from ioco through the SUT being allowed to block all input at a port (see, for exam-
ple, [Brinksma et al. 1998; Heerink and Tretmans 1997; Li et al. 2004]). Recent work
has investigated testing when interacting with the SUT through asynchronous chan-
nels [Hierons 2012a; Noroozi et al. 2011; Simão and Petrenko 2011; Weiglhofer and
Wotawa 2009], but has only considered single-port systems. This work has shown that
for first-in-first-out (FIFO) channels, it is possible to decide whether there is a test case
that is guaranteed to move an IOTS into a particular state as long as the specification
is not output-divergent3 [Hierons 2012a]. It has also defined implementation relations
and shown that it is generally undecidable whether a model N of the SUT conforms to
a specification M [Hierons 2013]. This latter result, that conformance is undecidable,
immediately extends to centralised testing of an SUT that has distributed interfaces
since the above result is for the special case where the SUT has only one port. There
has also been work that considers the case where a single centralised tester inter-
acts asynchronously with the separate ports of the SUT, an approach that the hybrid
framework extends [Simão and Petrenko 2011].

There are several practical factors that motivate the work in this paper. First, many
systems interact with their environment at multiple physically distributed ports with
examples including communications protocols, web services, cloud systems, and wire-
less sensor networks. The problem of testing such systems is therefore important and,
as noted above, it is not always feasible or desirable to synchronise testing through
the exchange of coordination messages. It is important to use the correct implemen-

2It is, however, known that testing can be synchronised using coordination messages when testing from a
deterministic finite state machine since input and output alternate: having produced an output the SUT
waits for the next input.
3An IOTS is output-divergent if it has a state from which it can take an infinite path that does not contain
inputs.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:5

tation relation since this relation drives testing (it states what behaviours would con-
stitute failures and so what test cases are potentially useful) and is also the basis
of an automated Oracle. As a result, if we use the wrong implementation relation
then testing can be inefficient and/or unsound. Having defined implementation rela-
tions it is also possible to formally reason about the differences between an SUT and
a specification that can be found by testing and by comparing implementation rela-
tions we identify weaknesses in the previously discussed distributed and centralised
approaches. We define a stronger approach, the hybrid framework, which is strictly
more effective (in finding differences between the SUT and specification) than the cen-
tralised and distributed approaches. Interestingly, it transpires that the hybrid frame-
work is more effective than separately applying both the centralised and distributed
approaches. The decision problems examined in this paper are also important in the
context of test automation: they either correspond to checking an observation against
a model/specification (the Oracle problem) or to finding test cases that achieve certain
objectives (reaching a state or distinguishing two states). The complexity and decid-
ability results have the potential to inform practice and lead to notions of testability
for distributed testing.

As previously discussed, the initial work regarding distributed testing was carried
out in the context of communications protocols. Here there are two testers: when test-
ing the implementation N of a protocol there is an upper tester U that acts as the
layer above N (it attempts to communicate using features provided by N) and there
is a lower tester L that sits on a separate machine. The use of separate independent
testers for protocol conformance testing was formalised by ISO as the distributed test
architecture [ISO/IEC 1995]. Now there are, however, many other classes of systems
that interact with their environment at physically distributed interfaces. Consider, for
example, the networked controllers in a car, aircraft or a manufacturing plant. These
controllers access information from different sensors in real time, leading to interest in
decentralised control (see, for example [Yang et al. 1999; Swigart and Lall 2011]) and
potentially the need for distributed testing. While it may be possible to test individual
components by employing a single tester, it seems likely that the testing of the system
as a whole will require a distributed approach. Many companies have web services,
with some functions potentially requiring the involvement of customers and staff at
different locations, and here testing is likely to be distributed. There has also been
increasing interest in online gaming; again, there are customers and staff at physi-
cally distributed locations. It seems likely that the importance of distribution will only
increase if organisations continue to move some services to cloud systems.

The following are the main contributions of the paper. First, we define an imple-
mentation relation diococ that corresponds to centralised testing of an SUT through
asynchronous message exchange. We then prove that the implementation relations
dioco and diococ are incomparable and so the corresponding approaches to testing
find different classes of differences between the SUT and the specification. This leads
to the definition of a hybrid framework and a corresponding implementation relation
diocos that is strictly stronger than both dioco and diococ. We therefore know that
this hybrid framework is more effective than the two previously described approaches.
We then prove that the Oracle problem is NP-complete for both diococ and diocos but
can be solved in polynomial time if there is an upper bound on the number of ports. We
also show that, for the hybrid and centralised frameworks, it is undecidable whether
there is a test case that is guaranteed to take an IOTS to a particular state or to dis-
tinguish two given states. The proof uses an IOTS that can be represented using an
FSM and so the result also holds for FSMs.

The paper is structured as follows. In Section 2 we start by defining IOTSs and
associated notation. In Section 3 we define an implementation relation diococ for cen-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 R.M. Hierons

GFED@ABCT1 ``

 ❆
❆❆

❆❆
❆❆

❆❆
GFED@ABCT2>>

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;N

GFED@ABCT3

��

OO

Fig. 1. Distributed Test Architecture

tralised testing of an SUT with distributed ports. In Section 4 we prove that dioco and
diococ are incomparable. We therefore define a hybrid framework and corresponding
implementation relation diocos and prove that diocos is strictly stronger than both
dioco and diococ. Section 5 then explores the Oracle problem, proving that it is NP-
complete for both diococ and diocos. In Section 6, we prove that, when applying a
centralised or hybrid approach, it is undecidable whether there is a test case that is
guaranteed to reach a particular state or distinguish two given states. Finally, we draw
conclusions and discuss future work in Section 7.

2. PRELIMINARIES

2.1. Observations

This paper considers systems that interact with their environment at n > 1 physically
distributed ports and we let P = {1, . . . , n} denote the set of names of the ports. We let
I denote the set of inputs that the SUT might receive and O denote the set of outputs
that it might potentially produce. Given port p we let Ip denote the set of inputs at
p and Op denote the set of outputs at p. We assume that the Ip partition I and the
Op partition O: if necessary we can label inputs and outputs with the corresponding
port number to ensure that this is the case. We use the normal convention where the
name of an input is preceded by ? and the name of an output is preceded by !. We use
subscripts to denote the port number and so, for example, ?i1 denotes an input at port
1 and !o2 denotes an output at port 2.

The distributed test architecture is illustrated by Figure 1 in which T1, T2, and T3 are
the local testers and N is the SUT. The essential idea is that each tester interacts syn-
chronously with the SUT and only observes the events (inputs and outputs) involved in
its interaction with the SUT. Thus, no tester observes the global trace produced: each
observes the projection in which it is involved, with this observation being called a
local trace. Let us suppose, for example, that the SUT produces a trace ?i1?i2!o2 where
input ?i1 is an input at port 1, ?i2 is an input at port 2, and !o2 is an output at port 2. In
this case the SUT produced ?i1?i2!o2, the tester at port 1 observed ?i1, and the tester
at port 2 observed ?i2!o2. The testers are called local testers in order differentiate this
situation from the case where there is a single global tester that observes all of the
events.

Work in the context of testing from an IOTS often considers quiescence: the SUT is
quiescent if it cannot change state or produce output without first receiving input. It is
often assumed that quiescence can be observed and δ is used to denote the observation
of quiescence (in this paper we consider both the case where quiescent is observable
and where it is not). Throughout the paper we let Act = I ∪ O ∪ {δ} denote the set of

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:7

possible events and given port p ∈ P we let Actp = Ip∪Op∪{δ} denote the set of events
that can be observed at p.

As usual, given a set A we use A∗ to denote the set of finite sequences of elements of
A. When we have separate testers at the ports of the SUT, the tester at port p observes
only the events at p. Thus, if the SUT produces (global) trace σ then the tester at p ∈ P
observes the local trace πp(σ) defined by the following in which σ ∈ Act∗ and a ∈ Act
(see, for example, [Hierons and Ural 2008b]).

πp(ǫ) = ǫ

πp(aσ) = πp(σ) if a ∈ Act \ Actp

πp(aσ) = aπp(σ) if a ∈ Actp

Two traces σ1 and σ2 cannot be distinguished when using local testers if they have
the same sets of corresponding local traces and we then write σ1 ∼ σ2. More formally,
σ1 ∼ σ2 if for all p ∈ P we have that πp(σ1) = πp(σ2).

For centralised testing we assume that there are asynchronous channels between
the tester and the ports of the SUT. We assume that these channels are first-in-first-out
(FIFO); the use of non-FIFO channels is a topic for future work and will be discussed
further in Section 7.

2.2. Input output transition systems

We start by defining input output transition systems.

Definition 2.1. An input output transition system (IOTS) M is defined by a tuple
(S, I, O, T, s0) in which S is the countable set of states, s0 ∈ S is the initial state, I is
the countable set of inputs, O is the countable set of outputs, and T ⊆ S × (I ∪ O ∪
{τ})× S, where τ represents internal (unobservable) events, is the transition relation.
A transition (s, a, s′) should be interpreted as meaning that from state s it is possible
to move to state s′ with event a ∈ I ∪O ∪ {τ}. We assume that I and O are disjoint and
τ 6∈ I ∪ O. State s ∈ S is said to be quiescent if from s it is not possible to change state
or produce output without first receiving input and δ is used to represent the tester
observing quiescence. We can extend T , the transition relation, to Tδ by adding the
transition (s, δ, s) for each quiescent state s. IOTS M is input enabled if for all s ∈ S
and ?i ∈ I there exists s′ ∈ S such that (s, ?i, s′) ∈ T . An IOTS is output-divergent if it
can reach a state in which there is an infinite path that contains outputs and internal
events only.

Figure 2 gives an IOTS from [Hierons et al. 2012] that represents a distributed
majority voting system; we will call this M0. Two agents U and L interact with a
system via their terminals. The initial state of M0 is s0; this is shown twice in order to
simplify the diagram. The system starts by sending output !rU to port U and then !rL
to port L to tell the agents that a poll is to start. Each agent then replies with a vote:
?l0 and ?l1 denote agent l voting 0 and 1 respectively and, similarly, ?u0 and ?u1 denote
agent U voting 0 and 1 respectively. If the votes are identical then the SUT sends
confirmation to the two agents; either !0L and !0U (to L and U respectively) if the vote
was 0 and otherwise !1L and !1U . If the votes differ then the process is repeated. Where
a state s has no transition with an input ?x there is an implicit self-loop transition
from s to s with input ?x.

The global traces of IOTS M0 include σ =!rU !rL?l1?u1!1U !1L and this has correspond-
ing local traces πL(σ) =!rL?l1!1L and πU (σ) =!rU?u1!1U . It is straightforward to see that
M0 is not output-divergent but that not all of its states are quiescent. For example, s0

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 R.M. Hierons

?>=<89:;s0

!rU
 ❅

❅❅
❅❅

❅❅
❅❅

/.-,()*+

!rL
��
❄❄

❄❄
❄❄

❄❄
/.-,()*+

?u0

��

?u1

!!❈
❈❈

❈❈
❈❈

❈❈

/.-,()*+
?l1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦

?u1

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

?l0

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

?u0

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

/.-,()*+!rLoo /.-,()*+!rUoo /.-,()*+
!1U

��/.-,()*+
!rL

OO

/.-,()*+
?l0

OO

?l1

==④④④④④④④④④ /.-,()*+

!1L

��

/.-,()*+
?u1

//

?u0

��
❂❂

❂❂
❂❂

❂❂
❂ /.-,()*+

!rU

OO

/.-,()*+
?l1

oo

?l0
��✁✁
✁✁
✁✁
✁✁
✁

/.-,()*+
!0U

///.-,()*+
!0L

// ?>=<89:;s0

Fig. 2. IOTS M0

is not quiescent since there is a transition from s0 with output !rU . In contrast, the
state reached from s0 by !rU !rL is quiescent.

Let us suppose that we wish to test an SUT that should implement M0 and we are
interested in testing the behaviour that corresponds to trace σ =!rU !rL?l1?u1!1U !1L. In
distributed testing there would be a single tester at each port. The tester at U would
wait to observe output !rU , would apply ?u1, and then wait to observe !1U . Similarly,
the tester at L would wait to observe output !rL, would apply ?l1, and then wait to
observe !1L. If, for example, the SUT produced trace σ′ =!rU?u1!rL?l1!1U !1L then the
local testers would observe the expected local traces !rU?u1!1U and !rL?l1!1L and so σ′

would not lead to a failure. In the centralised approach the central tester might wait to
observe !rU and !rL (in either order), then send ?u1 and ?l1 and finally wait to observe
!1U and !1L. Here, if the tester produced trace σ′′ =!rU !rL!1U !1L?l1?u1 then the tester
might still observe σ due to the message latency: even though the SUT produces !1U
and !1L before receiving ?l1 and ?u1 the message delay leads to the tester observing ?l1
and ?u1 before !1U and !1L.

As usual, in this paper we assume that all processes are input-enabled and are not
output divergent. If a process is not input-enabled then typically it is possible to com-
plete this process by adding either self-loops (denoting that an unspecified input should
have no effect) or transitions to an error state (denoting the situation in which the SUT
is allowed to do anything after an unspecified input). While this is not always possi-
ble, since an input ?i not being specified in state s might correspond to the situation
where ?i should not be received in state s, only considering input-enabled processes is
not a significant restriction. We will restrict attention to processes that are not output-
divergent since, as we will see, we wish to only consider traces of the SUT that take it
to a quiescent state; as long as the SUT is not output-divergent, every trace of the SUT
is a prefix of such a trace. In addition, output-divergence can be seen as being similar
to a livelock and might reflect a failure. An alternative devised for dioco4 is to define

4Distributed input-output conformance.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:9

the implementation relation in terms of infinite traces [Hierons et al. 2012] but this
complicates the exposition.

Definition 2.2. Given IOTS M = (S, I, O, T, s0) we use the following notation.

(1) If (s, a, s′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write s
a−−→ s′.

(2) We write s
ǫ

==⇒ s′ if there exist s1, . . . , sk, for k ≥ 1, such that s = s1, s′ = sk,
s1

τ−−→ s2, . . . , sk−1
τ−−→ sk.

(3) We write s
a

==⇒ s′, for a ∈ Act, if there exist s1, s2 such that s
ǫ

==⇒ s1, s1
a−−→ s2,

and s2
ǫ

==⇒ s′.
(4) We write s

σ
==⇒ s′ for σ = a1 . . . ak ∈ Act∗ if there exist s1, . . . , sk+1, s = s1, s′ = sk+1

such that for all 1 ≤ i < k we have that si
ai

==⇒ si+1.

(5) We write s
σ

==⇒ if there exists s′ such that s
σ

==⇒ s′ and we say that σ is a trace

of M if s0
σ

==⇒ . We let T r(M) denote the set of traces of M . We say that trace σ of

M is a quiescent trace if there is a quiescent state s of M such that s0
σ

==⇒ s.

Much of the research in testing state-based systems assumes that a test case is an
input sequence. However, if we have nondeterminism in either the specification or the
SUT then it can be useful to have adaptive test cases: test cases where the next action
of the tester (send an input or wait and observe output) depends on the sequence of
events that has been observed. Such test cases correspond to the notion of a strategy
in game theory [Alur et al. 1995; Lee and Yannakakis 1994]. However, in the proof that
it is undecidable whether there is a test case that is guaranteed to take an IOTS to a
particular state we will use IOTSs with no outputs. Here adaptivity adds nothing and
so it is sufficient to consider test cases that are input sequences and we do this since it
simplifies the discussion.

3. IMPLEMENTATION RELATIONS FOR CENTRALISED AND DISTRIBUTED TESTING

The types of testing considered in this paper introduce implementation relations,
which state whether testing can distinguish an SUT process N from a specification
process M . An implementation relation captures the power of a particular type of test-
ing: its ability to lead to differences between N and M being observed.

One important decision to make regarding testing is the role of quiescence. Much of
the work on testing from an IOTS assumes that quiescence is observed and, as noted
earlier, represents this observation using δ. However, when communicating with an
SUT through asynchronous channels the observation of quiescence introduces addi-
tional issues since it requires either knowledge regarding message latency or the abil-
ity to determine the current contents of the channels. This may be feasible for some
distributed systems that are on one site but otherwise it seems likely that this assump-
tion will not hold. We therefore define two versions of each implementation relation:
one in which we allow quiescence to be observed and one where we do not. However, we
will assume that a complete test takes the SUT to a quiescent state since any output
produced will eventually be observed. It will transpire that the main results in this
paper are not affected by whether we can observe quiescence in testing: we prove the
results for the case where quiescence is not observed but comment on what happens
when we include quiescence.

First, we review the implementation relation dioco introduced for distributed test-
ing from an IOTS. The dioco implementation relation is a version of the implementa-
tion relation ioco [Tretmans 1996], which is widely used in work on testing from an
IOTS that has a single port.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 R.M. Hierons

When we have independent distributed testers, the tester at port p observes the pro-
jection πp(σ) of the global trace σ that occurs. After testing has finished the projections
are brought together and compared with the traces of the specification. We use pro-
jections of traces ending in quiescence in order to ensure that the local observations
are all projections of the same global trace. To see why this is the case, consider the
situation where the specification is M0 and the SUT produces output sequence !rU !rL
before becoming quiescent. If we do not restrict ourselves to making observations in
quiescent states then the tester at port U might stop testing before it observes !rU and
the tester at port L might still observe !rL since the testers do not synchronise. We
might then incorrectly conclude that the SUT produced a trace starting with !rL. This
could lead to the verdict fail if the SUT produced !rU !rL, even though !rU !rL is a trace
of the specification M0.

The observation of projections of quiescent traces leads to the following definition of
implementation relation dioco [Hierons et al. 2012].

Definition 3.1. Given IOTSs N and M with the same sets of inputs and outputs we
have that N dioco M if for every trace σ ∈ Act∗ such that σδ ∈ T r(N) we have that
there exists a quiescent trace σ′ ∈ T r(M) such that σ′ ∼ σ.

The following adapts dioco to the case where we do not observe quiescence during
testing.

Definition 3.2. Given IOTSs N and M with the same sets of inputs and outputs we
have that N dioco

′
M if for every trace σ ∈ (Act \ {δ})∗ such that σδ ∈ T r(N) we have

that there exists a quiescent trace σ′ ∈ T r(M) such that σ′ ∼ σ.

As noted earlier, since we only consider processes that are not output-divergent,
every trace of a process is a prefix of a quiescent trace5.

Work on using a centralised tester also assumes that observations are made in qui-
escent states [Petrenko et al. 2003; Simão and Petrenko 2011] and we now explain
how an implementation relation (that we call diococ) can be defined; previous work
has not formally defined such an implementation relation. Work on asynchronous test-
ing used the notion of a delay operator that can be defined in the following way [Huo
and Petrenko 2004].

Definition 3.3. Given trace σ ∈ Act∗, delay(σ) is the smallest set of traces defined
by the following rules.

(1) σ ∈ delay(σ)
(2) If σ1a

1a2σ2 ∈ delay(σ), a1 ∈ O, a2 ∈ I then σ1a
2a1σ2 ∈ delay(σ)

Given set A of traces, we let delay(A) = ∪σ∈Adelay(σ).

The idea is that if a trace σ is one that can be produced by an IOTS that we are
communicating with through asynchronous FIFO channels then the output can be ob-
served later than it was produced by the IOTS; it can be delayed sufficiently to be ob-
served after later input is sent. This is illustrated in Figure 3 in which time progresses
as we go down the lines that represent the processes (the tester and the SUT), with this
showing that ?i?i′!o ∈ delay(?i!o?i′). Thus, given a trace σ we have that delay(σ) is
the set of traces that might be observed if the SUT produces σ. For example, !rU !rL?u0

is a trace of M0 and we have that delay(!rU !rL?u0) = {!rU !rL?u0, !rU?u0!rL, ?u0!rU !rL}.
In distributed testing with a centralised tester and asynchronous channels there are

separate channels to the different ports. Thus, without additional timing information,

5Recent work has generalised dioco to the case where processes can be output-divergent and has done this
by considering infinite traces [Hierons et al. 2012].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:11

Tester SUT

?i

!o
?i′

msc MSC1

Fig. 3. A delay in testing a single-port system

we have relatively little information regarding the relative order of events at different
ports: all we know is that if input ?i is sent after an output !o is observed then ?i is
received by the SUT after !o was produced. This leads to a generalised delay operator
parameterised by the port set.

Definition 3.4. Given port set P and σ ∈ Act∗, delayP(σ) is the smallest set of
traces defined by the following rules.

(1) σ ∈ delayP(σ)
(2) If σ1a

1a2σ2 ∈ delayP(σ) then we have that σ1a
2a1σ2 ∈ delayP(σ) if one of the

following holds:
(a) We have that a1 and a2 are at the same port, a1 ∈ O, and a2 ∈ I
(b) We have that a1 and a2 are at different ports and either a1 ∈ O or a2 ∈ I.

Given set A of traces, we let delayP(A) = ∪σ∈AdelayP(σ).

If global trace σ is produced by the SUT then delayP(σ) is the set of obser-
vations that might be made. For example, !rU !rL?l0?u0 is a trace of M0 and we
have that ?l0!rL!rU?u0 ∈ delay{U,L}(!rU !rL?l0?u0). This is because !rU?l0!rL?u0 ∈
delay{U,L}(!rU !rL?l0?u0) (rule 2a), ?l0!rU !rL?u0 ∈ delay{U,L}(!rU?l0!rL?u0) (rule 2b),

and ?l0!rL!rU?u0 ∈ delay{U,L}(?l0!rU !rL?u0) (rule 2b).

The above definition adds the ability for an event a1 to be delayed so that it is ob-
served later than event a2, which is at a different port, as long as we do not have that
a1 ∈ I and a2 ∈ O. The rules thus capture the following situations in which we can
swap a1a2 when a1 and a2 are at different ports.

(1) a1 and a2 are inputs: since there are separate channels between the different ports
of the SUT and the centralised tester, the orders in which they were sent by the
tester and received by the SUT may be different. This case it shown in Figure 4.

(2) a1 and a2 are outputs: since there are separate channels between the different
ports of the SUT and the centralised tester, the orders in which they were received
by the tester and sent by the SUT may be different. This case it shown in Figure 5.

(3) a1 is an output and a2 is an input: if output a1 is produced by the SUT before input
a2 is received, it is possible that the tester observes the output after it sends the
input. This case it shown in Figure 6.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 R.M. Hierons

Tester SUT port 1 SUT port 2

?i1 ?i2

msc MSC2

Fig. 4. Order of inputs swapped

Tester SUT port 1 SUT port 2

!o1 !o2

msc MSC2

Fig. 5. Order of outputs swapped

Tester SUT port 1 SUT port 2

!o1
?i2

msc MSC2

Fig. 6. Order of outputs swapped

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:13

Tester SUT port 1 SUT port 2

?i2

!o1

msc MSC2

Fig. 7. Input followed by output

The rules do not allow a1 and a2 to be swapped in the following cases.

(1) Both values are inputs at a common port p. Here the order is preserved as a result
of communications being FIFO.

(2) Both values are outputs at a common port p. Here the order is preserved as a result
of communications being FIFO.

(3) The values a1 and a2 are at different ports, a1 is an input, and a2 is an output. In
this case the SUT receives input a1 and then produces output a2. In addition, the
input is sent by the tester before it is received by the SUT, and the output is sent
by the SUT before it is received by the tester. Thus, the tester sends a1 before it
receives a2. This case it shown in Figure 7.

We can now define an implementation relation for centralised testing through asyn-
chronous channels. This is not quite the same as the implementation relation implicit
in the previous work [Simão and Petrenko 2011] since this previous work assumes
that inputs are received by the SUT in the order they are sent even if they are sent to
different ports. The paper notes that this assumption can be enforced in testing if we
can determine when the input queues are empty; we only send inputs when all input
queues are empty [Simão and Petrenko 2011]. However, it seems likely that many net-
works used by real systems will not allow the tester to determine when the network
channels are empty. As a result, we do not assume that we can determine when the
input queues are empty even though this will be possible for some systems. Note that
an additional consequence of the earlier approach [Simão and Petrenko 2011] was that
it was only possible to apply inputs in quiescent states and this clearly restricts testing
since it does not allow some behaviours of the SUT to be explored.

First we define an implementation relation for the case in which it is possible to
observe quiescence.

Definition 3.5. Given IOTSs N and M with the same input and output alphabets
we have that N diococ M if for every trace σ ∈ Act∗ with σδ ∈ T r(N) we have that
there exists a quiescent trace σ′ ∈ T r(M) such that σ ∈ delayP(σ

′).

This requires that for every quiescent trace σ of the SUT there is a quiescent trace σ′

of M such that σ is an observation that might be made if the SUT produces σ′; this is
because delayP(σ

′) is the set of observations that might be made if the SUT produces

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 R.M. Hierons

σ′. For example, if we produce an IOTS M ′
0 from M0 by swapping the labels (!rU and

!rL) of the transitions on the path of length 2 from s0 then we have that M ′
0 diococ M0.

Note that Definition 3.5 only refers to the traces of N and not to the set of obser-
vations that a centralised tester might make when interacting with N . However, the
actual observation need not be a trace of the SUT: if the SUT produces trace σ then
the observation could be any element of delayP(σ). Thus, we might instead have re-
quired that for every trace σ′′ in delayP (σ) there is some σ′ ∈ T r(M) such that σ′′

is in delayP(σ
′). The following shows that all of these observations are allowed if

N diococ M and so this would lead to a definition that is equivalent to Definition 3.5.

PROPOSITION 3.6. Let us suppose that N and M are IOTSs with the same input
and output alphabets such that N diococ M and also that σ ∈ Act∗ is a quiescent
trace of N . If σ′′ ∈ delayP(σ) then there exists a quiescent trace σ′ ∈ T r(M) such that
σ′′ ∈ delayP(σ

′).

PROOF. Since N diococ M , there exists a quiescent trace σ′ ∈ T r(M) such that
σ ∈ delayP(σ

′). But, by the definition of delayP , since σ ∈ delayP(σ
′) we have that

all elements of delayP(σ) are in delayP(σ
′). The result thus follows.

It is straightforward to adapt diococ to the case where we do not observe quiescence.

Definition 3.7. Given IOTSs N and M with the same input and output alphabets
we have that N dioco

′
c M if for every trace σ ∈ (Act \ {δ})∗ with σδ ∈ T r(N) we have

that there exists a quiescent trace σ′ ∈ T r(M) such that σ ∈ delayP(σ
′).

4. A HYBRID FRAMEWORK

Now that we have defined implementation relations for the centralised and distributed
approaches it is possible to formally compare them. First we show that an SUT N
might conform to the specification M in centralised testing but not in distributed test-
ing. This shows that there are behaviours of possible SUTs that are not behaviours
of the specification, and so can be seen as failures, where this can be identified in
distributed testing but not in centralised testing.

PROPOSITION 4.1. There are IOTSs N and M with the same input and output
alphabets such that N diococ M but where we do not have that N dioco M .

PROOF. Consider the IOTSs M1 and N1 shown in Figure 8 in which there is only
one port. The quiescent traces of N1 are all those in the sets {ǫ}, {?i!o}{?i}∗ and
{?i?i!o}{?i}∗. To see that N1 diococ M1 it is sufficient to observe that ǫ and ?i!o are
quiescent traces of M1 and that ?i?i!o can be formed from the quiescent trace ?i!o?i of
M1 by delaying output. However, the quiescent trace ?i?i!o of N1 is not equivalent to a
trace of M1 under ∼ and so we have that N1 does not conform to M1 under dioco as
required.

The following shows that there are also cases where the centralised approach is more
effective than distributed testing. This uses Figure 9 in which an arc with multiple
labels corresponds to multiple transitions (one per label). For example, the arc from
the initial state of M2 with labels ?i1, ?i2 corresponds to two transitions: one with label
?i1 and one with label ?i2.

PROPOSITION 4.2. There are IOTSs N and M with the same input and output
alphabets such that N dioco M but where we do not have that N diococ M .

PROOF. Consider the IOTSs M2 and N2 shown in Figure 9 in which there are
two ports. A quiescent trace of N2 is either ǫ or a sequence formed from the follow-
ing by adding a (possibly empty) suffix that is an input sequence: ?i2, ?i1?i1, ?i1?i2,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:15

/.-,()*+
?i

��

/.-,()*+
?i

��/.-,()*+
?i

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

!o

��
❄❄

❄❄
❄❄

❄❄
/.-,()*+

?i

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

!o

��
❄❄

❄❄
❄❄

❄❄

/.-,()*+?i 99
/.-,()*+ ?iee

/.-,()*+
!o

��

/.-,()*+ ?iee

/.-,()*+?i 99

Fig. 8. IOTSs M1 (left) and N1 (right)

/.-,()*+

?i1,?i2

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎ ?i1

��
❄❄

❄❄
❄❄

❄❄
/.-,()*+

?i1

��
?i2

��☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎

/.-,()*+
?i2

��

?i1,?i2

!o1
ww♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦♦

/.-,()*+
!o1

��
?i1,?i2

yyrr
rr
rr
rr
rr
rr

/.-,()*+?i1?,i2 99
/.-,()*+

!o1

��

?i1,?i2

oo /.-,()*+?i1,?i2 99
/.-,()*+

?i2

��

?i1,?i2

oo

/.-,()*+
!o2

��

?i1,?i2

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖ /.-,()*+
!o2

��

?i1,?i2

ee▲▲▲▲▲▲▲▲▲▲▲▲

/.-,()*+?i1?i2 99
/.-,()*+ ?i1?i2ee

Fig. 9. IOTSs M2 (left) and N2 (right)

?i1!o1, ?i1!o1?i2!o2. However, ǫ, ?i1?i1, ?i1?i2 and ?i1!o1 are quiescent traces of M2 and
?i1!o1?i2!o2 is equivalent to the quiescent trace ?i1?i2!o1!o2 of M2 under ∼. Thus, we
have that N2 dioco M2.

To see that N2 diococ M2 does not hold it is sufficient to consider the quiescent trace
?i1!o1?i2!o2 of N2. The only quiescent trace of M2 that contains these inputs and outputs
is ?i1?i2!o1!o2 and ?i1!o1?i2!o2 6∈ delayP(?i1?i2!o1!o2). The result therefore holds.

We therefore have that dioco and diococ are incomparable and can distinguish dif-
ferent potential SUTs from the specification. The same examples show that dioco

′

and dioco
′
c are also incomparable. This suggests that we should consider a hybrid ap-

proach. Under this hybrid approach there is a centralised tester that interacts asyn-
chronously with the SUT and at each port p there is a local tester. The centralised
tester is responsible for sending input to the SUT and receives outputs. However, the
local tester at port p logs the sequence of observations made at p. Under this hybrid
approach the centralised tester observes a trace as with diococ but, in addition, the
local projections of the global trace produced by the SUT are recorded.

The hybrid framework is outlined in Figure 10 in which N is the SUT, the Tp are
local testers, and T is a centralised tester. Dotted lines denote asynchronous communi-
cations and solid lines denote synchronous communications. The observation made in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 R.M. Hierons

GFED@ABCT1 ``

 ❆
❆❆

❆❆
❆❆

❆❆
GFED@ABCT2>>

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;T
yy

99

ss

33

ii

))

?>=<89:;N

GFED@ABCT3

��

OO

Fig. 10. Hybrid Test Architecture

testing consists of one trace that contains all of the events, observed by T , in addition
to the local traces. Thus, if the SUT produces global trace σ then the tester at port
p ∈ P observes πp(σ) and the centralised tester T observes some element of delayP(σ).
For example, if the SUT produced trace ?i1!o2?i2 then the tester at port 1 observes ?i1,
the tester at port 2 observes !o2?i2, and the centralised tester might observe ?i1?i2!o2.

The hybrid and centralised approaches are identical when it comes to applying test
cases: they only differ in the observations made. Let us suppose again that we test from
M0 (Figure 2) and we are interested in the trace σ =!rU !rL?l1?u1!1U !1L and the SUT
produces σ′′ =!rU !rL!1U !1L?l1?u1. As with the centralised approach, the central tester
might still observe σ. However, the local testers will observe local traces !rU !1U?u1 and
!rL!1L?l1; once we gather together the test logs we will be able to determine that the
trace was not σ.

The effectiveness of the hybrid framework is represented by the following implemen-
tation relation.

Definition 4.3. Given IOTSs N and M with the same input and output alphabets
we have that N diocos M if for every trace σ ∈ Act∗ with σδ ∈ T r(N) we have that
there exists a quiescent trace σ′ ∈ T r(M) such that σ′ ∼ σ and σ ∈ delayP(σ

′).

This essentially requires that the observation made, which is a set of local traces
plus a global trace observed by the centralised tester, is also one that can be made
when interacting with the specification.

If we cannot observe quiescence during testing then we obtain the following varia-
tion.

Definition 4.4. Given IOTSs N and M with the same input and output alphabets
we have that N dioco

′
s M if for every trace σ ∈ (Act \ {δ})∗ with σδ ∈ T r(N) we have

that there exists a quiescent trace σ′ ∈ T r(M) such that σ′ ∼ σ and σ ∈ delayP(σ
′).

The following shows how diocos relates to dioco and diococ.

PROPOSITION 4.5. Given IOTSs N and M with the same input and output al-
phabets, if we have that N diocos M then we also have that both N dioco M and
N diococ M hold. In addition, it is possible for N dioco M to hold and for N diocos M
not to hold or for N diococ M to hold and for N diocos M not to hold.

PROOF. The first part is immediate from the definition. The second part follows in
the same way as Propositions 4.1 and 4.2.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:17

/.-,()*+
?i1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

!o2

��

!o2

��
❄❄

❄❄
❄❄

❄❄
/.-,()*+

!o2

��/.-,()*+
!o1

��

/.-,()*+
!o1

��

/.-,()*+
!o2

��

/.-,()*+
?i1

��
!o2

��
❄❄

❄❄
❄❄

❄❄

/.-,()*+
!o2

��

/.-,()*+
?i1

��

/.-,()*+ /.-,()*+
!o1

��

/.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+
Fig. 11. IOTSs M3(left) and N3 (right)

Interestingly, diocos need not hold even if dioco and diococ both hold. This tells
us that the hybrid framework is more effective that separately applying both the cen-
tralised and distributed approaches.

PROPOSITION 4.6. Given IOTSs N and M with the same input and output alpha-
bets, it is possible for both N dioco M and N diococ M to hold and for N diocos M
not to hold.

PROOF. Consider the IOTSs M3 and N3 shown in Figure 11 in which self-loops la-
belled with input are implicit (in order to make the processes input-enabled). The qui-
escent traces of N3 are !o2!o2 and traces that can be formed by adding to !o2?i1!o1 a
suffix in the form of a (possibly empty) input sequence. Clearly !o2!o2 is a quiescent
trace of M3 and so it is sufficient to consider traces starting with !o2?i1!o1.

Now consider the three implementation relations. We have that N3 dioco M3 since
!o2?i1!o1 ∼?i1!o1!o2 and ?i1!o1!o2 is a trace of M3. We have that N3 diococ M3 since M3

has the trace !o2!o1?i1 and !o2?i1!o1 ∈ delayP(!o2!o1?i1). However, the trace !o2?i1!o1
is not allowed under diocos since we require a trace σ that is equivalent to !o2?i1!o1
under ∼, the only such trace is ?i1!o1!o2 but !o2?i1!o1 6∈ delayP(?i1!o1!o2). The result
therefore holds.

It is straightforward to see that corresponding results also hold for dioco
′, dioco

′
c

and dioco
′
s.

5. THE ORACLE PROBLEM

The Oracle problem is that of deciding whether an observation is allowed by the speci-
fication. It is known that the Oracle problem is NP-hard when using the dioco imple-
mentation relation [Hierons 2012b]. In this section we prove that it is also NP-hard to
determine whether an observation is one allowed by a specification when using diococ

or diocos. We prove that the Oracle problem is NP-hard by showing that we can reduce
the following problem to it.

Definition 5.1. Given boolean variables z1, . . . , zr let C1, . . . , Ck denote sets of three
literals, where each literal is either a variable zi or its negation. The one-in-three SAT
problem is: Does there exist an assignment to the boolean variables such that each Ci

contains exactly one true literal.

The one-in-three SAT problem considers the case where a proposition is written in
conjunctive normal form C1 ∧ . . . ∧ Ck, each Ci being the disjunction of three literals.
The one-in-three SAT problem is known to be NP-complete [Schaefer 1978].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 R.M. Hierons

If we do not place restrictions on M then the Oracle problem is undecidable even
for synchronous testing. We therefore restrict attention to the case where M has finite
sets of states, inputs and outputs. The following is adapted from the proof of the Oracle
problem being NP-hard for dioco [Hierons 2012b].

THEOREM 5.2. Let us suppose that M is an IOTS with finite sets of states, inputs
and outputs. Given trace σ ∈ Act∗, the problem of deciding whether there exists a qui-
escent trace σ′ of M such that σ ∈ delayP(σ

′) is NP-complete.

PROOF. First we prove that the problem is in NP. In polynomial time we can ran-
domly choose some σ′ such that σ ∈ delayP(σ

′). It is then possible to determine
whether σ′ is a quiescent trace of M in polynomial time: this corresponds to solving the
membership problem for a finite automaton. Thus, a nondeterministic Turing machine
can solve this problem in polynomial time by guessing a σ′ and then checking that it
is allowed by M and so the problem is in NP.

We now prove that this problem is NP-hard. The proof will operate by showing that
the one-in-three SAT problem can be reduced to this problem. We thus suppose that
we have boolean variables z1, . . . , zr and clauses C1, . . . , Ck. We will define an IOTS M
with r+ k ports, inputs ?i1, . . . , ?ir at ports 1, . . . , r and outputs !or+1, . . . , !or+k at ports
r + 1, . . . , r + k.

IOTS M has initial state s0 and input ?ip (1 ≤ p ≤ r) in this state can lead to either
of the following.

(1) A transition with input ?ip that is followed by a sequence of transitions, returning
to s0, that (between them) send output !or+j to port r + j if and only if Cj contains
literal zp and otherwise send no output to port r + j (1 ≤ j ≤ k).

(2) A transition with input ?ip that is followed by a sequence of transitions, returning
to s0, that (between them) send output !or+j to port r + j if and only if Cj contains
literal ¬zp and otherwise send no output to port r + j (1 ≤ j ≤ k).

If input is received in any of the states in these cycles, other than s0, then M moves
to error state se from which it produces output !oe at port 1 and then moves to a state
s′e that has only self-loop transitions labelled with inputs. There are also self-loop tran-
sitions labelled with inputs in state se in order to make M input-enabled.

Now consider the trace σ =?i1?i2 . . .?ir!or+1 . . .!or+k. Since output !oe is not produced,
if there exists a quiescent trace σ′ of M such that σ ∈ delayP(σ

′) then each input ?ip
in σ′ is received once and in state s0. Since σ′ is a quiescent trace, σ′ must be able to
take M from s0 to s0. As a result, on receiving ?ip, either an output is sent to all ports
that correspond to clauses that contain literal zp or output is sent to all ports that
correspond to clauses that contain literal ¬zp. Thus, there exists quiescent σ′ ∈ T r(M)
such that σ ∈ delayP(σ

′) if and only if there exists an assignment to the boolean
variables z1, . . . , zr such that each Ci contains exactly one true literal. The result thus
follows from the one-in-three SAT problem being NP-hard and it being possible to
construct M and σ in polynomial time.

THEOREM 5.3. The Oracle problem is NP-complete for diococ, dioco
′
c, diocos, and

dioco
′
s.

PROOF. The result for diococ follows immediately from Theorem 5.2. For diocos,
it is sufficient to observe that the example used in the proof of Theorem 5.2 only has
one observation at each port and so the notions of observation are equivalent for the
centralised and hybrid approaches. Finally, the proofs for dioco

′
c and dioco

′
s follow in

the same way since we do not observe quiescence before the end of the trace.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:19

We now consider the case where there is an upper bound b on the number of ports and
show that this allows us to define a polynomial time algorithm that solves the Oracle
problem. This result suggests that the Oracle problem being NP-complete should not
be a practical barrier for classes of systems such as communications protocols where
there are only a few ports (typically two in the case of communications protocols).

Let us suppose that the centralised tester observes trace σ and the local tester at
port p observes σp (p ∈ P). Let us also suppose that all inputs and outputs are labelled
by the tester in order to make them unique; this will allow us to place a partial order
over a set of elements, rather than a multi-set. This can be achieved by, for example,
replacing the occurrence of an observation a with the pair (a, k) such that there have
been exactly k−1 previous observations of a. Thus, for example, if the centralised tester
observes ?i1!o1?i2?i1 then we would use the trace (?i1, 1)(!o1, 1)(?i2, 1)(?i1, 2). Below we
show how we can define a finite automaton M(σ, σ1, . . . , σn) that accepts all traces that
the SUT might have produced given the observations made. Once we have done this,
we simply ask whether there is any common trace in the languages defined by M and
M(σ, σ1, . . . , σn), a problem that can be solved in time that is polynomial in the number
of states of M and M(σ, σ1, . . . , σn).

Let E(σ) denote the set of observations (events) in σ, labelled to make them unique
if necessary. Given σ and the σp (p ∈ P) we define a partial order ≪ on the observations
in E(σ) such that given e, e′ ∈ E(σ) we know that the SUT must have produced e before
e′ if and only if e ≪ e′. The partial order ≪ is defined as follows.

Definition 5.4. Let us suppose that the central tester observes σ = e1 . . . ek and the
local trace observed at port p is σp (p ∈ P). For port p let <p denote the ordering of
the events at p in σp. The partial order ≪ is the transitive closure of the following, in
which ei, ej ∈ E(σ).

(1) ei ≪ ej if there exists port p ∈ P such that ei, ej ∈ Actp and ei <p ej ;
(2) ei ≪ ej if ei and ej are at different ports, i < j, ei ∈ O, and ej ∈ I.

The following is immediate from the definition and says that the events ordered
under ≪ must have been produced in the same order by the SUT.

PROPOSITION 5.5. If in testing the centralised tester observes trace σ and the local
tester at port p observes σp (all p ∈ P) then the SUT must have produced a trace e1 . . . ek
that is a permutation of σ such that if ei ≪ ej then i < j.

From this it is clear also that if σ is a trace that the SUT might have produced then
for every prefix σ′ of σ we have that the set of observations E(σ′) in σ′ is downwardly
closed under ≪: if e ∈ E(σ′) and e′ ≪ e then e′ ∈ E(σ′). This is the key property: we will
define a finite automaton whose states correspond to the downwardly closed subsets of
E(σ). First we briefly say what a finite automaton is.

Definition 5.6. A finite automaton N is defined by a tuple (Q,A,U, qo, F) such that
Q is the finite set of states, A is the finite alphabet, U ⊆ Q × A × Q is the set of
transitions, q0 ∈ Q is the initial state, and F is the set of final states.

A finite automaton N = (Q,A,U, qo, F) defines the language L(N) of labels of paths
that start at the initial state of N and end at a final state from F .

Definition 5.7. The finite automaton M(σ, σ1, . . . , σn) is defined by the tuple (Q, I ∪
O,U, qo, F) in which Q is the set of subsets of E(σ) that are downwardly closed under
≪, q0 is the empty set, F contains one final state which is E(σ), and (q, a, q′) ∈ U if and
only if q′ = q ∪ {a}.

The following is immediate from Proposition 5.5.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 R.M. Hierons

PROPOSITION 5.8. L(M(σ, σ1, . . . , σn)) is the set of traces that the SUT might have
produced if in testing the centralised tester observes trace σ and the local tester at port
p observes σp (all p ∈ P).

We therefore have the following result.

THEOREM 5.9. The Oracle problem when we have a centralised tester, local testers,
an SUT with at most b ports, and an IOTS specification with at most ℓ transitions can
be solved in time of O(ℓb|σ|b).

PROOF. By Proposition 5.8, given σ and the σp (p ∈ P), it is sufficient to determine
whether there is a trace of M that is accepted by M(σ, σ1, . . . , σn). Given two finite
automata with k1 and k2 transitions one can decide whether their languages contain
a common word by taking their product and performing a depth-first search for a final
state. Since the product machine has O(k1k2) transitions and a depth-first search can
be performed in linear time [Tarjan 1972], this can be achieved in O(k1k2) time.

Now consider the finite automaton M(σ, σ1, . . . , σn). A state of M(σ, σ1, . . . , σn) corre-
sponds to a downwardly closed subset of E(σ). Observe that for a port p, all events at p
in E(σ) are ordered under ≪ (forming a chain). Thus, every downwardly closed subset
of E(σ) is defined by a set E′ of events and all events below these under ≪ and where
for each port p we have that E′ contains at most one event. Thus, M(σ, σ1, . . . , σn) has
O(|σ|b) states. Further, for a state q and port p, since all events at p in E(σ) are ordered
under ≪ there is only one possible next event at p. Thus, for each state q there are at
most b transitions leaving q. Thus, M(σ, σ1, . . . , σn) has O(b|σ|b) transitions. The result
therefore follows.

While this complexity is exponential in terms of b, if we have an upper bound on
the number of ports then the complexity is polynomial. This result is relevant for ap-
plication domains where there are usually only a few ports. For example, for commu-
nications protocols there are typically two ports representing the two agents that are
exchanging information. The distributed test architecture [ISO/IEC 1995], as stan-
dardised by ISO, has two ports U and L for this situation. Ports U and L represent the
upper interface and lower interface respectively. The tester at U is an agent that in-
teracts with the implementation of the protocol on a machine A (and so acts as a layer
above the SUT in the protocol stack), while the tester at L is on a separate machine
and interacts with the SUT through a physical network. See, for example, [Sarikaya
and von Bochmann 1984; Dssouli and von Bochmann 1985; 1986].

6. REACHING AND DISTINGUISHING STATES

It is known that it is generally undecidable whether there is a distributed test case
consisting of independent testers that is guaranteed to force a deterministic finite state
machine M into a given state s or to distinguish two states s, s′ of M [Hierons 2010].
Naturally, these results immediately extend to IOTSs even if we restrict the sets of
states, inputs, and outputs to being finite. In this section we consider the corresponding
problems for testing against an IOTS M using a single centralised tester that interacts
asynchronously with M through FIFO channels. The IOTS M used in the proof will
not produce any output before the objective is achieved and so we will see that the
results apply to both the centralised and hybrid approaches. We start by considering
the problem of reaching a state; the result regarding distinguishing states then follows
easily.

The proof, that reachability is undecidable for distributed testing (as opposed to cen-
tralised testing or testing in the hybrid framework) [Hierons 2010], used the result
that it is undecidable whether there is a winning strategy in multi-player games [Pe-
terson and Reif 1979; Demaine and Hearn 2008]. In this section we adapt the proof of

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:21

Demaine and Hearn [Demaine and Hearn 2008], that it is undecidable whether there
is a winning strategy in a multi-player game, to the problem of deciding whether there
is a test case that is guaranteed to move an IOTS M into state s when using a cen-
tralised tester that interacts with M through asynchronous channels. The proof also
has some conceptual similarities to Floyd’s proof that Post’s Correspondence Problem
is undecidable [Floyd 1964], as described by Davis and Weyuker [Davis and Weyuker
1993].

We will assume that we have been given a Turing Machine T M that halts on an
empty tape (it is said to halt if it reaches halting state h and the tape is empty). We
will show how a 2-port IOTS MT M can be constructed such that deciding whether
there is a test case guaranteed to take MTM to a particular state hM is equivalent to
deciding whether T M halts, a problem that is known to be undecidable. All paths of
MTM will contain only inputs as labels and so in testing we gain nothing through being
adaptive: the tester has no observations to use as the basis of adapting its behaviour.
In addition, the hybrid and centralised approaches are equivalent. A test case will
thus correspond to an input sequence σ and if σ ∈ I∗ is used then MT M will receive
an input sequence that is equivalent to σ under ∼. An important property is that we
cannot know which σ′ ∼ σ is received by MT M and so for σ to be guaranteed to reach
hM we require that all σ′ ∼ σ are guaranteed to take MTM to hM . We will define MTM

with a state hM such that given an input sequence σ, the input sequence received by
MTM is guaranteed to reach hM if and only if the local traces π1(σ) and π2(σ) define
the same halting computation of T M .

A computation of T M is a sequence of consecutive configurations, starting with the
initial configuration. A configuration of a Turing machine is defined by the current
state, the tape contents, and the location of the tape head. We use the position of
the state name, in a sequence defining a configuration, to indicate the location of the
tape head. A sequence of the form σqσ′ thus represents a configuration in which the
state is q, the tape contains σσ′ and the tape head is on the cell represented by the
first element of σ′. The input set of MT M will contain the special values #1 ∈ I1 and
#2 ∈ I2 that will be used to separate configurations and also γ1 and γ2 that will be
used to mark the end of a computation. Given Turing machine T M with state set Q
and alphabet Σ, MTM will have (disjoint) input alphabets I1 = Σ1 ∪ Q1 ∪ {#1, γ1} and
I2 = Σ2 ∪Q2 ∪ {#2, γ2} in which Σ1 and Σ2 are sets of copies of the elements of Σ and
Q1 and Q2 are sets of copies of the elements of Q. We use labels to ensure that the sets
Σ1,Σ2, Q1, Q2, {#1, γ1}, {#2, γ2} are pairwise disjoint.

Now consider two consecutive configurations c1 and c2 in a computation of T M and
assume that c1 is represented by σ1q1σ

′
1 and c2 is represented by σ2q2σ

′
2. The allowed

differences between the sequences representing these configurations are defined by
the transitions of T M and cannot be more than three letters since at most the con-
tents of the cell that the tape head is on is changed and the tape head moves one place.
As a result, if we are given two sequences representing configurations c1 and c2 inter-
leaved so that the values of c1 and c2 alternate (e.g. it starts with the first value from
c1, followed by the first value from c2, then the second value from c1 etc.) then we can
check in finite (and bounded) space whether there is a transition that takes T M from
configuration c1 to configuration c2. This process involves looping while the values in
the sequences are the same, then checking that the sequences of three values from the
first change are consistent with the transitions of T M , and finally checking that there
are no additional changes. Thus, if we are given the representations of c1 and c2 with
values alternating then we can define an IOTS that checks whether c2 is a configura-
tion that can follow c1 in a computation of T M . This check will be implemented by the
component CheckConf of MTM described below.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 R.M. Hierons

The IOTS MT M will be constructed from a set of components that operate in parallel,
synchronising on common events (inputs and outputs). Each component will have a
state set and the target final state hM is thus a tuple of states: one for each component.
We briefly outline the roles of these components before defining them.

(1) Startp, 1 ≤ p ≤ 2, is a component that ends in the desired state sp that forms part
of hM if and only if the projection on p of the input sequence received starts with
the initial configuration of T M . Thus, an input sequence σ is guaranteed to take
MTM to a state where Startp is in state sp, 1 ≤ p ≤ 2, if and only if the π1(σ) and
π2(σ) both start with representations of the initial configuration of T M .

(2) Endp, 1 ≤ p ≤ 2, is a component that ends in the desired state ep that forms
part of hM if and only if the projection on p of the input sequence received ends
with a representation of the halting configuration of T M followed by γp. Thus, an
input sequence σ is guaranteed to take MT M to a state where Endp is in state
ep, 1 ≤ p ≤ 2, if and only if π1(σ) and π2(σ) both end with representations of the
halting configuration of T M followed by γ1 and γ2 respectively.

(3) CheckSeq is a component that is guaranteed to end in state hS when given input
sequence σ if and only if π1(σ) and π2(σ) are equivalent (they are the same if labels
are removed) and end with γ1 and γ2 respectively.

(4) The component CheckConf relies on the projections π1(σ) and π2(σ) being equiv-
alent and to start with representations of the initial configuration (checked by
Start1, Start2, and CheckSeq). In this case the component CheckConf is guaran-
teed to end in state hC if and only if π1(σ) and π2(σ) represent the same computa-
tion of T M : a sequence of configurations c1 . . . ck such that for all 1 ≤ i < k we have
that T M can move from ci to ci+1.

The basic idea is that if input sequence σ is guaranteed to take MTM to hM then we
have that the following hold.

(1) Both π1(σ) and π2(σ) start with representations of the initial configuration
and end with representations of the halting configuration (as a result of
Start1, Start2, End1, End2 ending in the desired states).

(2) The projections π1(σ) and π2(σ) are equivalent up to labelling, as a result of
CheckSeq ending in the desired state.

(3) The projections π1(σ) and π2(σ) represent the same computation of T M , as a result
of the above and CheckConf ending in the desired state.

Thus, if an input sequence σ is guaranteed to take MTM to hM then we must have
that π1(σ) and π2(σ) represent the same halting computation of T M . As a result, there
is such an input sequence σ if and only if T M has a halting computation (an undecid-
able problem).

We will define MT M in terms of (IOTS) components acting in parallel. Given compo-
nents M1 and M2, M1 ‖ M2 will denote M1 and M2 acting in parallel and synchronising
on observable events. Since MT M will be formed from the parallel composition of sev-
eral components, a state of MT M will be a tuple of the states of these components and
whenever an input ?i is received by MT M each component takes a transition with la-
bel ?i. We now describe the components, assuming that Turing machine T M has been
given.

Components Start1 and Start2 check that the projections of the input sequence σ
received both start with the unique initial configuration. Once this is confirmed these
components move to states s1 and s2 and further transitions do not change their state.
An input at port q does not change the state of Startp, q 6= p. State hM has these
components being in states s1 and s2. We have the following property regarding an

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:23

input sequence σ sent by a centralised tester (and the resultant input sequence σ′

received by the SUT).

LEMMA 6.1. An input sequence σ ∈ Act∗ sent by a centralised tester is guaranteed
to lead to Start1 ‖ Start2 receiving an input sequence that takes it to state (s1, s2) if and
only if the local traces π1(σ) and π2(σ) both start with copies of the initial configuration
of T M .

PROOF. Consider 1 ≤ p ≤ 2 and IOTS Startp. By definition, inputs at port q 6= p
do not change the state of Startp. By construction σ takes Startp to state sp if and
only if πp(σ) starts with a representation of the initial configuration of T M . The result
therefore follows.

Component Endp, 1 ≤ p ≤ 2, checks whether the projection on port p of the trace
received ends in the unique halting configuration followed by γp; if this is the case
then the component Endp is in state ep. Further input at p after γp takes Endp to
an error state, as does the input of γp if not preceded by a description of the halting
configuration. An input at port q does not change the state of Endp, q 6= p. State hM

has these components being in states e1 and e2.

LEMMA 6.2. An input sequence σ ∈ Act∗ sent by a centralised tester is guaranteed
to lead to End1 ‖ End2 receiving an input sequence that takes it to state (e1, e2) if and
only if the local traces π1(σ) and π2(σ) both end with copies of the halting configuration
of T M followed by γ1 and γ2 respectively.

PROOF. Consider 1 ≤ p ≤ 2 and IOTS Endp. By definition, inputs at port q 6= p do
not change the state of Endp. By construction σ takes Endp to state ep if and only if
πp(σ) ends with a representation of the halting configuration of T M followed by γp.
The result therefore follows.

There is a component CheckSeq that is responsible for checking that the projections
π1(σ) and π2(σ) represent equivalent sequences (they only differ in the labels). This
component is designed to be guaranteed to end in state hS when using σ ∈ Act∗ if
and only if the projections π1(σ) and π2(σ) are equivalent up to labelling. This uses a
flag seq, which can take on the values 0, 1, 2, 3, ⊥, ⊥1, and ⊥2 and initially is 0. The
flag having value 0 represents a situation in which we know that the same number
of inputs have been received at the ports. If seq is 0 and input ?ip is received at port
1 ≤ p ≤ 2 then ?ip is stored and seq becomes p. If seq is p and input ?iq is received at
port q 6= p and ?iq is equivalent to the value ?ip stored then seq becomes 0; if ?iq is not
equivalent to ?ip then the component moves to state ⊥ and cannot then change state
(state hM is then unreachable). Thus, if the sequence σ′ ∼ σ received by MT M does
alternate between values at ports 1 and 2 then this component ends in state seq = 0 if
and only if the two projections are equivalent.

We now explain what happens if seq is 1 and input at port 1 is received or, equiv-
alently, seq is 2 and input at port 2 is received; this can happen even if the two local
traces are equivalent. In these cases we no longer compare inputs received at the ports
(to ensure that we only need a finite number of states in making comparisons) and seq
becomes ⊥1 or ⊥2 respectively. From ⊥1 any input at port 2 moves the component to 3;
from ⊥2 any input at port 1 moves the component to 3. This avoids the possibility of a
test sequence ‘cheating’, by having more inputs at a port p, by requiring that at least
one more input ?i is received at the other port. Thus, if the local trace at a port p is
longer than the local trace at q 6= p then the component can become stuck in the state
⊥p: this is achieved by starting with an input at port q and then alternating between
the ports and finally apply the remaining elements from p.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 R.M. Hierons

As a result of the above, if the two local traces do not have the same length then there
is an interleaving that leads to the component being stuck in either ⊥1 or ⊥2 and, in
addition, the final value can only be ⊥1 or ⊥2 if the two local traces have different
lengths. If the two local traces have the same length then it is possible that the input
sequence σ′ received has these alternating in which case the final state has seq = 0 if
and only if the local traces are equivalent.

Thus, in order to ensure that this component ends with seq being either 0 or 3 we
require an input sequence with equivalent projections. If γ1 and γ2 have been received
and seq is either 0 or 3 then the component moves to the special state hS , which is the
state of CheckSeq in hM . This component therefore has the following property.

LEMMA 6.3. An input sequence σ ∈ Act∗ sent by a centralised tester is guaranteed
to lead to CheckSeq receiving an input sequence that takes it to state hS if and only
if the local traces π1(σ) and π2(σ) are equivalent up to labelling and end in γ1 and γ2
respectively.

PROOF. Observe that the inputs in σ can arrive in an order that alternates between
inputs at port 1 and inputs at port 2. However, by construction in this case σ takes
CheckSeq to state hS if and only if π1(σ) and π2(σ) are equivalent up to labelling and
end in γ1 and γ2 respectively. Thus, if σ ∈ Act∗ is guaranteed to take CheckSeq to state
hS then the local traces π1(σ) and π2(σ) are equivalent up to labelling and end in γ1
and γ2 respectively.

Now consider the case where the local traces π1(σ) and π2(σ) are equivalent up to
labelling and end in γ1 and γ2 respectively and we are required to prove that σ must
take CheckSeq to state hS . If the values alternate between ports 1 and 2 then the result
follows immediately. We therefore consider the case where the values do not alternate
between ports 1 and 2 and so at some point we must have a subsequence of the form
apbpcq for ports p 6= q, ap, bp ∈ Actp and cq ∈ Actq. By construction, if CheckSeq was not
already in state 3 then apbp takes it to state ⊥p and cq then takes CheckSeq to state 3.
From state 3 there is no change in state until γ1 and γ2 have been received and then
CheckSeq moves to state hS as required.

The final component CheckConf checks that two consecutive configurations form a
valid change of configuration of T M . This component maintains a flag conf that can
take the values 0, 1, 2, or ⊥. Similar to seq, conf is used to state whether it is known
that the current positions in the projections of σ received so far either represent the
same configuration (conf = 0), the configuration at port 1 represents the one after
the configuration at port 2 (conf = 1), or the configuration at port 2 represents the
one after the configuration at port 1 (conf = 2). Once the number of configurations
differs by more than one, conf becomes ⊥. The value of conf is updated when a new
configuration separator (#1 or #2) is received. If conf is either 1 or 2 and the most
recently received values at the ports are #1 and #2 then the component checks - as
far as possible - that the change in configuration is one that is allowed by T M . This
process is only conclusive if the inputs at the two ports, for these two configurations,
alternate: as discussed above we can then check in bounded space that the change
in configuration is one allowed by T M . If the check is completed and the change in
configuration is not one allowed then the component moves to state ⊥C and it cannot
then change state.

If this component is not in state ⊥C when γ1 and γ2 have been received then it moves
to the special state hC required in hM .

If CheckSeq is guaranteed to end in state hS then the projections of σ on ports 1 and
2 must be equivalent (Lemma 6.3). For such a σ, if there are consecutive configurations
c and c′ such that T M cannot move from c to c′ then there is some σ′ ∼ σ that will lead

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:25

to component CheckConf moving to state ⊥C ; otherwise, CheckConf cannot move to
state ⊥C .

LEMMA 6.4. An input sequence σ ∈ Act∗ sent by a centralised tester is guaranteed
to lead to CheckSeq ‖ CheckConf receiving an input sequence that takes it to state
(hS , hC) if and only if the local traces π1(σ) and π2(σ) represent identical computations
of T M .

PROOF. First assume that trace σ ∈ Act∗ is guaranteed to take CheckSeq ‖
CheckConf to state (hS , hC). By Proposition 6.3 we know that the local traces π1(σ)
and π2(σ) are equivalent.

Now consider the interleaving in which the representation of the first configuration
at port 1 arrives and then inputs alternate between the ports. By construction in this
case σ takes CheckSeq ‖ CheckConf to state (hS , hC) if and only if the local traces π1(σ)
and π2(σ) represent identical computations of T M . Thus, if σ ∈ Act∗ is guaranteed to
take CheckSeq ‖ CheckConf to state (hS , hC) then the local traces π1(σ) and π2(σ)
represent identical computations of T M .

Now consider the case where the local traces π1(σ) and π2(σ) represent identical com-
putations of T M and we are required to prove that σ must take CheckSeq ‖ CheckConf
to state (hS , hC). We will use proof by contradiction and assume that σ is not guar-
anteed to take CheckSeq ‖ CheckConf to state (hS , hC). But this must mean that
CheckConf can reach state ⊥C (since otherwise the final γ1 and γ2 take it to hC and
we know that CheckSeq must end in hS). By construction, this can only be the case
if πp(γ) represents a common sequence c1, . . . , ck of configurations of T M where there
is some 1 ≤ i < k such that T M cannot move from ci to ci+1. But this contradicts
π1(σ) and π2(σ) represent identical computations of T M as required. The result thus
follows.

We are now in the position to prove that it is undecidable whether there is a test case
that is guaranteed to move an IOTS model into a particular state. Since such problems
are generally undecidable for single port systems if models are allowed to be infinite,
we restrict attention to IOTSs with finite sets of states, inputs and outputs.

THEOREM 6.5. Let us suppose that M is an IOTS with finite sets of states, inputs
and outputs. The following problem is generally undecidable even if M has only two
ports: given state s of M , is there a test case that is guaranteed to take M to s when
testing is centralised and asynchronous?

PROOF. Given a Turing machine T M we construct MTM = Start1 ‖ Start2 ‖ End1 ‖
End2 ‖ CheckSeq ‖ CheckConf and set hM = (s1, s2, e1, e2, hS , hC). Consider an input
sequence σ that is guaranteed to reach hM in MT M . From Lemma 6.3 we know that
π1(σ) = σ1γ1 and π2(σ) = σ2γ2 for some σ1 ∈ (Act1 \ {γ1})∗ and σ2 ∈ (Act2 \ {γ2})∗.
From Lemma 6.1 we must have that σ1 and σ2 both start with copies of the initial
configuration of T M and by Lemma 6.2 we know that σ1 and σ2 both end with copies
of the halting configuration of T M . By Lemma 6.3 we know that σ1 and σ2 are identical
up to labelling. Further, by Lemma 6.4 we know that σ1 and σ2 represent computations
of T M . Thus, σ is guaranteed to take MT M to hM if and only if σ1 and σ2 represent the
same halting computation of T M . The result thus follows from the halting problem for
Turing machines being undecidable.

Now consider the problem of finding a test case that is guaranteed to distinguish
two states of an IOTS M . A test case distinguishes two states s and s′ of M if there
is no observation that can be made when applying the test case when M is in state
s and also when applying the test case when M is in state s′. Similar to [Alur et al.
1995; Hierons 2010], we show that the problem of reaching a state can be expressed in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 R.M. Hierons

terms of distinguishing two states; it is straightforward to show that the result is not
affected by whether one can observe quiescence in testing.

THEOREM 6.6. The following problem is generally undecidable: given states s and
s′ of IOTS M , is there a test case that is guaranteed to distinguish between s and s′

when testing is centralised and asynchronous?

PROOF. From Theorem 6.5 we know that reachability is undecidable even if we
restrict to IOTSs that have no transitions labelled with outputs. We therefore let M =
(S, I, O, T, s0) be an IOTS that has no transitions labelled with outputs (O = ∅), let
S = {s1, . . . , sm} and let sk be a state of M . We now define an IOTS M ′ where a test case
is guaranteed to reach sk in M if and only if it is guaranteed to distinguish between
two particular states of M ′. We define two copies M1 and M2 of M , where M1 is a copy
of M and M2 is a copy of M in which we add a transition with label !o from state sk
to a new state se from which all transitions are self-loops with input. Then, consider
IOTS M ′ that is the disjoint union of M1 and M2 and the problem of distinguishing the
initial states of M1 and M2. Clearly, a test case is guaranteed to distinguish the initial
states of M1 and M2 in M ′ if and only if it is guaranteed to take M to state sk. Thus,
the result follows from Theorem 6.5.

Since all states except sk are quiescent it is straightforward to see that the ability to
observe quiescence does not affect the proof.

7. CONCLUSIONS

This paper considered the testing of a system that interacts with its environment
through distributed interfaces, called ports. Such systems are relatively common, with
examples including communications protocols, web services, cloud systems, and wire-
less sensor networks. For such systems it is not possible to have a single tester that
interacts synchronously with all of the ports of the system under test (SUT). Two alter-
native approaches to testing have previously been discussed: either we have multiple
independent distributed testers that interact synchronously with the ports of the SUT
or we have a centralised tester that interacts asynchronously with these ports. The
former approach has been represented in terms of an implementation relation dioco
and in this paper we defined an implementation relation diococ for the centralised
approach.

We showed that the implementation relations dioco and diococ are incomparable
and so the two approaches to testing find different traces not defined by the specifica-
tion and so potentially different faults. Based on this observation we defined a hybrid
framework that has a centralised tester and also a local tester at each port with the
local tester at port p observing the sequence of events at p. This leads to a strictly
stronger implementation relation diocos and so to more effective testing. There are
two versions of each implementation relation: one for situations in which quiescence
can be observed during testing and one for when it cannot. However, the main results
hold for both versions. Interestingly, the hybrid framework is more effective than sep-
arately applying both the centralised and distributed approaches.

Having defined the hybrid framework, we explored properties of this and the cen-
tralised approach. We proved that the Oracle problem, of deciding whether an obser-
vation is consistent with the specification, is NP-complete for both. However, we gave
a polynomial time solution for the case where there is an upper bound on the num-
ber of ports. This suggests that the Oracle problem being NP-complete should not be a
barrier for systems where there are only a few ports. An example of this is communica-
tions protocols, which have two ports. It also suggests that there are benefits in using
tests that have relatively few local testers. We also showed that in both the centralised

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:27

and hybrid frameworks it is generally undecidable whether there is a test case that
is guaranteed to take an IOTS model to a particular state or that is guaranteed to
distinguish two states. The problems considered are all motivated by test automation:
either the desire to automatically check an observation against a specification or to au-
tomatically generate test cases that achieve certain objectives. The results also have
the potential to feed into notions of testability for distributed testing.

It is possible to change the hybrid framework by making one of the local testers also
act as the centralised tester. This would lead to a slightly different implementation
relation. We did not do this since it would lead to a slightly more involved definition
of the delayP operator and so would complicate the exposition. However, it should be
straightforward to adapt the proofs to such a case by, for example, taking the construc-
tions/IOTSs defined and adding a local tester that is also the centralised tester but
makes no local observation. Thus, such a change should not affect the main results.

There are several lines of future work. First, while we know that it is generally
undecidable whether there is a test case that is guaranteed to force an IOTS into a
particular state or to distinguish two states, it would be interesting to explore condi-
tions under which these problems become decidable. There may also be other useful
conditions under which the Oracle problem can be solved in polynomial time. Both
of these have the potential to feed into notions of testability for distributed testing.
There is also the important problem of extending this work to non-FIFO channels. It
is straightforward to adapt the implementation relations and hybrid framework to the
case where there are non-FIFO channels; it is sufficient to change the definition of
the generalised delay operator to allow inputs to port p to overtake one another and
outputs from p also to overtake one another. The proof of the Oracle problem being
NP-complete also applies to the non-FIFO case since the trace used in the proof that
the problem is NP-hard has only one event at a port p (so the FIFO and non-FIFO
cases coincide). In contrast, it appears not to be possible to directly extend the proof
that reachability is undecidable.

REFERENCES

F. Aarts and F. W. Vaandrager. 2010. Learning I/O Automata. In 21th International Conference on Concur-
rency Theory (CONCUR 2010) (Lecture Notes in Computer Science), Vol. 6269. Springer, 71–85.

R. Alur, C. Courcoubetis, and M. Yannakakis. 1995. Distinguishing tests for nondeterministic and proba-
bilistic machines. In 27th ACM Symposium on Theory of Computing. 363–372.

E. Brinksma, L. Heerink, and J. Tretmans. 1998. Factorized Test Generation for Multi-Input/Output Transi-
tion Systems. In 11th IFIP International Workshop on Testing Communicating Systems (IWTCS) (IFIP
Conference Proceedings), Vol. 131. Kluwer, 67–82.

L. Cacciari and O. Rafiq. 1999. Controllability and observability in distributed testing. Information and
Software Technology 41, 11–12 (1999), 767–780.

J. Chen, R. M. Hierons, and H. Ural. 2005. Resolving Observability Problems in Distributed Test Architec-
tures. In Formal Techniques for Networked and Distributed Systems (FORTE 2005) (Lecture Notes in
Computer Science), Vol. 3731. Springer, 219–232.

W.-H. Chen and H. Ural. 1995. Synchronizable checking sequences based on multiple UIO sequences.
IEEE/ACM Transactions on Networking 3 (1995), 152–157.

T. S. Chow. 1978. Testing Software Design Modelled by Finite State Machines. IEEE Transactions on Soft-
ware Engineering 4 (1978), 178–187.

M. D. Davis and E. J. Weyuker. 1993. Computability, Complexity and Languages. Academic Press.

E. D. Demaine and R. A. Hearn. 2008. Constraint Logic: A Uniform Framework for Modeling Computation
as Games. In 23rd Annual IEEE Conference on Computational Complexity (CCC 2008). 149–162.

R. Dssouli and G. von Bochmann. 1985. Error detection with multiple observers. In Protocol Specification,
Testing and Verification V. Elsevier Science (North Holland), 483–494.

R. Dssouli and G. von Bochmann. 1986. Conformance testing with multiple observers. In Protocol Specifica-
tion, Testing and Verification VI. Elsevier Science (North Holland), 217–229.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 R.M. Hierons

A. En-Nouaary. 2013. A test purpose-based approach for testing timed input output automata. Journal of
Software Testing, Verification and Reliability 23, 1 (2013), 53–76.

E. Farchi, A. Hartman, and S. S. Pinter. 2002. Using a model-based test generator to test for standard
conformance. IBM Systems Fournal 41, 1 (2002), 89–110.

R. W. Floyd. 1964. New Proofs and Old Theorems in Logic and Formal Linguistics. Computer Associated Inc,
Wakefield, Mas. (1964).

M.-C. Gaudel. 1995. Testing can be formal Too. In 6th International Joint Conference CAAP/FASE Theory
and Practice of Software Development (TAPSOFT’95) (Lecture Notes in Computer Science), Vol. 915.
Springer, 82–96.

G. Gonenc. 1970. A method for the design of fault detection experiments. IEEE Trans. Comput. 19 (1970),
551–558.

W. Grieskamp. 2006. Multi-paradigmatic Model-Based Testing. In Formal Approaches to Software Testing
and Runtime Verification (FATES/RV 2006) (Lecture Notes in Computer Science), Vol. 4262. Springer,
1–19.

W. Grieskamp, N. Kicillof, K. Stobie, and V. A. Braberman. 2011. Model-based quality assurance of protocol
documentation: tools and methodology. Software Testing, Verification and Reliability 21, 1 (2011), 55–71.

L. Heerink and J. Tretmans. 1997. Refusal Testing for Classes of Transition Systems with Inputs and Out-
puts. In Formal Description Techniques and Protocol Specification, Testing and Verification (FORTE
X/PSTV XVII) (IFIP Conference Proceedings), Vol. 107. Chapman & Hall, 23–38.

F. C. Hennie. 1964. Fault-detecting experiments for sequential circuits. In Proceedings of Fifth Annual Sym-
posium on Switching Circuit Theory and Logical Design. Princeton, New Jersey, 95–110.

R. M. Hierons. 2010. Reaching and Distinguishing States of Distributed Systems. SIAM J. Comput. 39, 8
(2010), 3480–3500.

R. M. Hierons. 2012a. The complexity of asynchronous model based testing. Theoretical Computer Science
451 (2012), 70–82.

R. M. Hierons. 2012b. Oracles for Distributed Testing. IEEE Transactions on Software Engineering 38, 3
(2012), 629–641.

R. M. Hierons. 2013. Implementation Relations for Testing Through Asynchronous Channels. Comput. J.
56, 11 (2013), 1305–1319.

R. M. Hierons, M. G. Merayo, and M. Núñez. 2012. Implementation relations and test generation for systems
with distributed interfaces. Distributed Computing 25, 1 (2012), 35–62.

R. M. Hierons and H. Ural. 2008a. Checking sequences for distributed test architectures. Distributed Com-
puting 21, 3 (2008), 223–238.

R. M. Hierons and H. Ural. 2008b. The Effect of the Distributed Test Architecture on the Power of Testing.
Comput. J. 51, 4 (2008), 497–510.

J. Huo and A. Petrenko. 2004. On Testing Partially Specified IOTS through Lossless Queues. In 16th IFIP
International Conference on the Testing of Communicating Systems (TestCom 2004) (Lecture Notes in
Computer Science), Vol. 2978. Springer, 76–94.

I. Hwang, A. R. Cavalli, M. Lallali, and D. Verchère. 2012. Applying formal methods to PCEP: an industrial
case study from modeling to test generation. Software Testing, Verification and Reliability 22, 5 (2012),
343–361.

ISO/IEC. 1995. Information technology - Opens Systems Interconnection, 9646 Parts 1-7. ISO/IEC.

C. Jard, T. Jéron, H. Kahlouche, and C. Viho. 1998. Towards Automatic Distribution of Testers for Dis-
tributed Conformance Testing. In TC6 WG6.1 Joint International Conference on Formal Description
Techniques and Protocol Specification, Testing and Verification (FORTE 1998) (IFIP Conference Pro-
ceedings), Vol. 135. Kluwer, 353–368.

G.-V. Jourdan, H. Ural, and H. Yenigün. 2006. Minimizing Coordination Channels in Distributed Testing. In
Formal Techniques for Networked and Distributed Systems (FORTE 2006) (Lecture Notes in Computer
Science), Vol. 4229. Springer, 451–466.

D. Lee and M. Yannakakis. 1994. Testing Finite-State Machines: State Identification and Verification. IEEE
Trans. Comput. 43, 3 (1994), 306–320.

D. Lee and M. Yannakakis. 1996. Principles and Methods of Testing Finite-State Machines - A Survey. Proc.
IEEE 84, 8 (1996), 1089–1123.

Z. Li, J. Wu, and X. Yin. 2004. Testing Multi Input/Output Transition System with All-Observer. In 16th
IFIP International Conference on Testing of Communicating Systems (TestCom 2004) (Lecture Notes in
Computer Science), Vol. 2978. Springer, 95–111.

T. Miller and P. A. Strooper. 2012. A case study in model-based testing of specifications and implementations.
Software Testing, Verification and Reliability 22, 1 (2012), 33–63.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Combining centralised and distributed testing A:29

E. F. Moore. 1956. Gedanken-Experiments. In Automata Studies, C. Shannon and J. McCarthy (Eds.).
Princeton University Press.

N. Noroozi, R. Khosravi, M. R. Mousavi, and T. A. C. Willemse. 2011. Synchronizing Asynchronous Confor-
mance Testing. In 9th International Conference on Software Engineering and Formal Methods (SEFM
2011) (Lecture Notes in Computer Science), Vol. 7041. Springer, 334–349.

G. L. Peterson and J. H. Reif. 1979. Multiple-Person Alternation. In 20th Annual Symposium on Foundations
of Computer Science (FOCS 79). IEEE, 348–363.

A. Petrenko, S. Boroday, and R. Groz. 2004. Confirming Configurations in EFSM Testing. IEEE Transactions
on Software Engineering 30, 1 (2004), 29–42.

A. Petrenko, N. Yevtushenko, and J. Huo. 2003. Testing Transition Systems with Input and Output Testers.
In 15th IFIP International Conference on Testing of Communicating Systems (TestCom 2003) (Lecture
Notes in Computer Science), Vol. 2644. Springer, 129–145.

O. Rafiq and L. Cacciari. 2003. Coordination Algorithm for Distributed Testing. The Journal of Supercom-
puting 24, 2 (2003), 203–211.

B. Sarikaya and G. von Bochmann. 1984. Synchronization and specification issues in protocol testing. IEEE
Transactions on Communications 32 (April 1984), 389–395.

T. J. Schaefer. 1978. The Complexity of Satisfiability Problems. In Tenth Annual ACM Symposium on Theory
of Computing (STOC). 216–226.

A. Simão and A. Petrenko. 2011. Generating asynchronous test cases from test purposes. Information and
Software Technology 53 (2011), 1252–1262.

J. Swigart and S. Lall. 2011. Optimal controller synthesis for a decentralized two-player system with partial
output feedback. In American Control Conference (ACC), 2011. 317–323.

L. H. Tahat, B. Korel, M. Harman, and H. Ural. 2012. Regression test suite prioritization using system
models. Software Testing, Verification and Reliability 22, 7 (2012), 481–506.

K.-C. Tai and Y.-C. Young. 1998. Synchronizable test sequences of finite state machines. Computer Networks
and ISDN Systems 30, 12 (1998), 1111–1134.

R. E. Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.

J. Tretmans. 1996. Conformance testing with labelled transitions systems: Implementation relations and
test generation. Computer Networks and ISDN Systems 29, 1 (1996), 49–79.

J. Tretmans. 2008. Model Based Testing with Labelled Transition Systems. In Formal Methods and Testing
(Lecture Notes in Computer Science), Vol. 4949. Springer, 1–38.

M. Veanes and N. Bjørner. 2010. Alternating Simulation and IOCO. In 22nd IFIP WG 6.1 International
Conference on Testing Software and Systems (ICTSS) (Lecture Notes in Computer Science), Vol. 6435.
Springer, 47–62.

M. Weiglhofer and F. Wotawa. 2009. Asynchronous Input-Output Conformance Testing. In Proceedings of the
33rd Annual IEEE International Computer Software and Applications Conference (COMPSAC 2009).
IEEE Computer Society, 154–159.

T.C. Yang, J.H. Zhang, and H. Yu. 1999. A new decentralised controller design method with appli-
cation to power-system stabiliser design. Control Engineering Practice 7, 4 (1999), 537 – 545.
DOI:http://dx.doi.org/10.1016/S0967-0661(99)00014-3

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

