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Abstract—In this letter, a novel salient region detection 

approach is proposed. Firstly, color contrast cue and color 

distribution cue are computed by exploiting patch level and 

region level image abstractions in a unified way, where these two 

cues are fused to compute an initial saliency map. A simple and 

computationally efficient adaptive saliency refinement approach 

is applied to suppress saliency of background noises, and to 

emphasize saliency of objects uniformly. Finally, the saliency 

map is computed by integrating the refined saliency map with 

center prior map. In order to compensate different needs in 

speed/accuracy tradeoff, three variants of the proposed approach 

are also presented in this letter. The experimental results on a 

large image dataset show that the proposed approach achieve the 

best performance over several state-of-the-art approaches. 

 
Index Terms—saliency detection, color contrast, color 

distribution, center prior, adaptive saliency refinement. 

I. INTRODUCTION 

Detecting salient regions in images is an interesting and 

difficult multidisciplinary problem. The field has considerable 

attention in the recent years, and has become an active area of 

research in Computer Vision due to its various applications in 

object detection, object recognition, adaptive image and video 

compression, and image retargeting. Many computational 

saliency detection models have been proposed over the years, 

which can be roughly categorized into bottom-up and top-

down approaches [1].  

Bottom-up saliency is data-driven and is often estimated 

using color contrast cue [1]-[5], since salient objects always 

pose high contrast from the background. Recent contrast based 

approaches estimate saliency of an image element by 

computing its contrast with respect to rest of the image 

elements in a global manner. Most recent approaches [1], [3], 

[5] compute saliency by estimating color contrast cue along 

with another important saliency cue called color distribution. 

Since color components of a salient object are always spatially 

compact rather than widely spread around the image, lower 

spatial distribution of a color component indicates its higher 

spatial saliency. Apart from these two cues, another widely 

used cue is center prior [1]. The center prior gives more 
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weight to regions that are near to image center, since salient 

objects are placed near the image center most of the time. 

Most existing salient region detection approaches operate 

on either patch level [1], [5] or region level [3], [6], [7] image 

abstractions. A major problem with patch level approaches is 

that, they often fail to suppress saliencies of textured 

background noises, and to highlight the saliency of objects 

uniformly. This issue can be solved by using region level 

image abstractions for saliency detection. Since these methods 

compute and assign saliency at region-level, imprecise region 

segmentation leads to degraded performance. Applications of 

saliency detection such as image thumbnail generation, object 

extraction and image retargeting do not need pixel accurate 

saliency maps, but require high speed saliency estimation. 

In order to solve the aforementioned issues, this letter 

proposes a novel salient region detection approach. The major 

contributions of this paper are: 1) Salient region detection is 

achieved by exploiting both patch and region abstractions in a 

novel and unified way. 2) The proposed region abstraction 

approach makes the proposed saliency detection approach 

robust to different region segmentation methods and different 

numbers of regions. 3) The proposed computationally feasible 

saliency refinement approach effectively removes the 

background noises and highlights the salient objects 

uniformly. 4) The faster variants of the proposed approach 

also present fast and robust saliency detection performance. 

II. PROPOSED APPROACH 

Firstly, an image is abstracted at patch level, where the 

patch abstractions are used for region level image abstraction. 

Both patch and region abstractions are further used for 

estimation color contrast and color distribution cues. These 

two cues are fused to compute initial saliency of an image, 

which is further refined, and integrated with center prior map 

to generate the final saliency map. Fig. 1 depicts the main 

phases involved in the proposed approach. 

A. Patch Level Image Abstraction 

The given image I is segmented into homogenous patches 

using SLIC superpixel segmentation [8]. The number of 

superpixels N is set to 500. Each superpixel si is represented 

by a mean color sci (in CIELab) and a spatial position spi (x 

and y coordinates). Since SLIC suffers from slow computation 

speed, a faster patch level abstraction is achieved by uniformly 

segmenting the image into non-overlapping square patches of 

size w×w, where w is set to 15. 

B. Region Level Image Abstraction 

The segmented superpixels are grouped into regions using 

spectral clustering [9]. Let G = {V, E} be a weighted 

undirected graph, having nodes V = {s1, s2, s3…sn} denote to 

the set of superpixels in an image, where the edges E represent 

the set of links that connect adjacent superpixels. An NN 

affinity matrix A is constructed for G, where each element aij 
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Fig. 1. Main phases of the proposed approach. (a) source image. (b) patch 

level abstraction. (c) region level abstraction. (d) color contrast cue. (e) color 

distribution cue. (f) fused saliency. (g) refined saliency. (h) center prior map. 

(i) final saliency map. (j) ground truth. 

denotes the similarity between adjacent superpixels si and sj, 

calculated as: 

 2
1exp ( , ) / 2ij i ja d sc sc          (1) 

where d(sci,scj) is the Euclidean distance between colors of 

the superpixels which is normalized to [0,1] using min-max 

normalization. The scaling parameter σ1 is set to 0.4. Then, a 

spectral clustering algorithm [9] is applied to cluster the graph 

G into M clusters. Here, Eigen-gap heuristic [9] is used to 

automatically determine M, which is still restricted to be 

within a specific range [Mmin, Mmax], where they are set to 5 

and 10 correspondingly. Each region rj is represented using a 

prototype that comprises of a dominant color rcj and a spatial 

position rpj. Averaging superpixels’ colors of a region is prone 

to region segmentation errors. Here, the region prototyping is 

formulated as a multivariate feature mediation problem. So, 

geometrical mediation is used to determine the dominant color 

rcj of a region rj which is defined as: 

1
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j

j

i j

r

j
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d sc rcrc
 

          (2) 

where |rj| denotes the number of superpixels in region rj and 

sc is the set of colors of superpixels in rj. Equation (2) finds a 

superpixel that has the minimum color distance from the rest 

of the superpixels in rj, and sets its color as dominant color rcj. 

The spatial position rpj (i.e. geographical midpoint) is also 

determined in the same manner as a center of minimum 

distance: 
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where sp is a set of spatial positions of superpixels in rj. 

Since the mediation based prototyping is robust to region 

segmentation errors, comparatively faster region segmentation 

can be achieved by uniformly segmenting image into z×z 

rectangle regions, where z is set to 2. The superpixels or the 

square patches that fall into a rectangle area are considered to 

belong to that region. 

C. Color Contrast Estimation 

The color contrast of a patch si is measured by computing 

the spatially weighted color contrast to all regions of the 

image except the region it belongs, which is formulated as: 

 1( ) exp ( , ) ( , )
j

i i j i j
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(4) 

where |rj| is the number of superpixels in a region rj, which 

is used to favour contrast to bigger regions to have more 

influence. The exponential function gives spatial weighting to 

the contrast measure, where contrast to the spatially near 

regions will be given more weight than the farther regions. 

The scaling parameter β1 is empirically set to 2. The spatial 

distance d(spi,rpj) is normalized into [0,1] using the maximum 

dimension of the image. The function d(sci,rcj) return the color 

contrast of a patch to the region compared. Finally, the 

contrast cue con(si) is normalized to a range [0,1] using min-

max normalization. 

D. Color Distribution Estimation 

The color distribution of a patch is estimated by computing 

the spatial variance of its color [5]. Firstly, the weighted mean 

position of a superpixel’s color sci is computed as: 

 2

1
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msp d sc rc rp
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where the exponential function weights the position of each 

region based on its color similarity to si. The color distribution 

of the superpixel si is defined as: 

 2( ) ( , ) exp ( , )
j

i i j i j
j i

r
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where |rj| is used to emphasize the color distribution of si 

comparing to bigger regions. Because, the higher similarity to 

bigger regions indicates wider distribution of a superpixel 

color sci. The spatial distance between a superpixel’s mean 

color position and a region position d(mspi,rpj) is normalized 

to a range [0,1] using the maximum dimension of the image. 

The exponential function returns the color similarity between 

superpixel si and a region rj. The parameter β2 is empirically 

set to 8. The color distribution of each superpixel is then 

normalized to range [0,1] using min-max normalization. The 

higher color distribution indicates that the color component is 

widely spread over the image, which is less likely to be the 

color of the salient object. So, the color distribution cue for 

saliency is defined as: 

( ) 1 ( )i idis s cdis s         (7) 

The proposed color distribution cue estimation is similar to 

[5]. But the major difference here is [5] determines it only 

using patches. 

E. Saliency Assignment and Adaptive Refinement 

The saliency is computed by fusing two independent 

saliency cues using a simple multiplication defined as: 

( ) ( ) ( )i i isal s con s dis s        (8) 

The spatial saliency sal(si) is normalized to a range [0,1] 

using min-max normalization. There may be some noises in 

the fused saliency map due to small scale textured patterns in 

the background. Simply averaging the surrounding 

superpixels’ saliencies [5] cannot preserve saliency near 

object boundaries. Since a salient object will be comprised of 

group of spatially connected salient superpixels, a superpixel 

surrounded by highly salient superpixels belongs to the salient 

object. Also, a superpixel surrounded by low salient 

superpixels belongs to the background. The refined saliency of 

a superpixel is defined as: 
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Fig. 2. Statistical comparison with 10 state-of-the-art methods on MSRA-1000 dataset. (a) Precision recall rates using fixed thresholding. (b) Precision, recall 
and f-measure values using adaptive thresholding. (c) Mean Absolute Errors of the different methods. (d) Precision-recall curves of variants of the proposed 

method. 

Equation (9) first finds average saliency of the adjacent 

superpixels of si. If the average neighborhood saliency 

exceeds 1-µ, then it sets the maximum among neighborhood 

superpixels’ saliencies as the saliency of si. If it is less than µ, 

then the minimum among the neighborhood saliencies is set as 

the saliency of si. The parameter ns denote the set of 

neighborhood superpixels of si, where |ns| is the number of 

neighborhood superpixels. The parameters µ is set to 0.2 

empirically. The average neighborhood saliency between 1-µ 

and µ denotes that superpixel si is adjacent to the boundary of 

salient object where the saliency of si remains the same after 

refinement. The adaptive saliency refinement method 

highlights the salient object uniformly, and detects the 

background efficiently by removing the textured noises from 

the background (Fig. 1(g)). 

F. Incorporation of Center Prior 

A widely used high-level prior called center prior [1] is 

incorporated into the saliency detection framework. The center 

prior gives more a weight to the regions that are nearer the 

image center than the regions near to the image boundaries. 

The center prior weight for a superpixel is defined as: 

 2
2( ) exp ( , ) / 2i icen s d sp c          (10) 

where d(spi,c) is the Euclidean distance between a 

superpixel and the image center c. The parameter σ2 is set to 

min(W,H)/2.5, where W and H are the width and height of the 

image. The center prior cue integrated into the refined saliency 

cue using a simple multiplication defined as: 

( ) ( ) ( )i i isal s sal s cen s        (11) 

The saliency sal(si) is normalized into [0,1] using min-max 

normalization. The saliency values can be normalized to a 

range [0,255] to produce a grey scale saliency map. 

III. EXPERIMENTAL RESULTS 

The experimental comparison is performed on the most 

widely used MSRA-1000 dataset [10] with pixel accurate 

ground truth annotations. The proposed Patch-Region based 

saliency detection approach (PR) is compared with 10 state-

of-the-art methods, RC[2], HC[2], CA[4], FT[10], COV[11], 

SS[12], WS[13], FS[14], SIM[15] and UL[16]. 

A. Quantitative Evaluation 

Similar to [2], [10], performance of the proposed approach is 

evaluated using precision recall rate. Precision and recall rates 

are computed by comparing the binary saliency maps that are 

obtained using a number of fixed thresholds in [0,1,…,255] 

with the ground truth. These precision and recall values are 

averaged over all the images, which results in a precision-

recall curve. Fig. 2(a) shows that the proposed method 

presents the best precision recall curve. The proposed method 

maintains more than 90% precision rate for higher thresholds. 

However precision decreases only after recall rate reaches 

90%. This is due to the inclusion of some false positives in the 

binary maps for very lower thresholds. 

Since precision recall analysis using fixed thresholding 

alone is not a sufficient measure for saliency evaluation, 

Similar to that in [2], [10], precision, recall and F-measure 

analysis using image dependent adaptive thresholding method 

is carried out. The adaptive threshold is defined as twice the 

mean saliency of the saliency map. The proposed method 

achieves the best performance in terms of recall and F-

measure, while also maintaining fair precision (Fig. 2(b)). 

Even though the precision of the proposed method is slightly 

lower than that of RC[2], the proposed method outperforms 

RC[2] in terms of recall and F-measure. In many application 

of saliency detection, both high precision and high recall are 

always required, where the proposed method has a good 

balance between the three measures.  

 In order to evaluate the detection of the salient as well as 

non-salient pixels in an image, the mean absolute error 

(MAE) between the continuous saliency map and ground truth 

is measured as proposed in [5]. Fig. 2(c) depicts that the 

proposed method presents the smallest MAE. Fig. 2(d) shows 

the robust performance of the faster variants of the proposed 

approach. The variant method PFR uses superpixel based 

Patch segmentation and uniform sampling based Faster 

Region segmentation, where FPR uses uniform sampling 

based Faster Patch segmentation and spectral clustering based 

Region segmentation. The variant FPFR uses Faster Patch 

segmentation and Faster Region segmentation. 

Fig. 3(a) and 3(b) shows the performance of the proposed 

approach with different numbers of patches. Fig. 3(c) and 3(d) 

show the robustness of the proposed approach by varying the 

numbers of regions. Even though higher numbers of patches 

and regions result slightly improved performance, it also 

increases the overall computation time. 

Fig. 4(a) and 4(b) depict the performance of the individual 

phases of the proposed approach, and the influence of the 

saliency refinement parameter µ respectively. Fig. 5 shows the 

visual comparison of the different methods. Despite the robust 

performance, the proposed approach sometimes fails to detect 

salient regions from highly cluttered background. 

B. Computational Complexity and Running Time 



  

Fig. 3. Precision-recall curves for different parameter settings. (a) Proposed method with different numbers of superpixels N. (b) Proposed method with different 

values for w. (c) Proposed method with different numbers of regions M. (d) Proposed method with different values for z. 

 
Fig. 5. Visual comparison of saliency maps of different methods. 

 
Fig. 4. (a) Precision-recall curves of individual phases of the proposed 
method. (b) Precision-recall curves of proposed method with different values 

for refinement parameter µ. 

 

In the proposed approach PR, approximate time complexity 

of superpixel segmentation, region abstraction and saliency 

estimation are O(P), O(N
3
) and O(NM) respectively, where P 

is the number of pixels in an image. So, the total time 

complexity of the proposed approach PR is O(P+N
3
+NM). 

The superpixel segmentation and region abstraction dominate 

the total time cost. Since M is a relatively smaller number, 

saliency estimation takes only less computation time. 

Table 1 shows the average running times of methods on the 

MSRA-1000 dataset which are taken on a laptop with Intel i5 

2.50 GHz CPU and 4 GB RAM. The proposed method is 

much faster than some of the previous methods. The proposed 

method PR takes 1.12s (44%), 0.89s (35%) and 0.54s (0.21%) 

for superpixel segmentation, region abstraction and saliency 

estimation respectively. Table 1 also shows that the FPFR 

presents the fastest performance among the variants of the 

proposed method. 
TABLE I 

AVERAGE RUNNING TIME MEASURED ON MSRA -1000 DATASET 

 

IV. CONCLUSION 

In this letter, a novel salient region detection approach based 

on patch level and region level image abstractions is 

presented. The proposed approach presents robust 

performance for different numbers of patches and regions. The 

adaptive refinement strategy greatly reduces noises in the 

saliency maps and emphasizes salient object uniformly. The 

experimental results have shown the potential performance of 

the proposed approach in comparison with 10 state-of-the-art 

methods. In addition, faster variants of the proposed approach 

were also presented for achieving high speed as well as robust 

saliency estimation. In future, other saliency cues such as 

semantic prior, color prior, and background prior will also be 

incorporated into the proposed approach. 
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