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Abstract

We show that if G is a simple outerplanar graph and H is a graph with
the same Tutte polynomial as G, then H is also outerplanar. Examples
show that the condition of G being simple cannot be omitted.

1 Introduction

All graphs in this paper may have multiple edges and loops, unless otherwise
stated. A loopless graph is 2-connected if and only if it has no cut vertices; a
single loop is considered to be 2-connected, but no other graph with loops is.
The blocks of a graph are its maximal 2-connected subgraphs.

We refer the reader to [4] for the definition and a detailed account of the
properties of the Tutte polynomial. We mention here only the facts that are
relevant to our work. The contraction-deletion rule states that if e is an edge of
G then

t(G;x, y) =

 t(G− e;x, y) + t(G/e;x, y), if e is neither a loop nor a bridge;
y t(G− e;x, y), if e is a loop;
x t(G− e;x, y), if e is a bridge.

The boundary condition to this recurrence is that t(G;x, y) = 1 when G
has no edges. It is clear from the recurrence that the coefficients of the Tutte
polynomial are non-negative; we denote by ti,j(G) the coefficient of xiyj in
t(G;x, y). If G has at least one edge, then t0,0(G) = 0.

We shall use the following properties of the Tutte polynomial.

(i) If G has at least two edges then t1,0(G) = t0,1(G).
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(ii) A graph G, not a loop, is 2-connected if and only if t1,0(G) ≥ 1.

(iii) If H is a minor of a 2-connected graph G then ti,j(H) ≤ ti,j(G).

(iv) The irreducible factors of t(G;x, y) over Z[x, y] correspond precisely to
the Tutte polynomials of the blocks of G.

Statements (i) and (ii) are well-known facts, easily proved by induction;
(iii) was noticed by Brylawski [3, Corollary 6.9]; (iv) was proved in [8]. The
coefficient t1,0(G) is known as Crapo’s beta invariant, denoted by β(G).

A 2-connected graph is series-parallel if it can be obtained from K2 by
subdividing and doubling edges; an arbitrary graph is series-parallel if all its
blocks are series-parallel. Equivalently, a loopless graph is series-parallel if it
does not contain K4 as a minor [6]. It was proved in [2] that a 2-connected graph
is series-parallel if and only if β(G) = 1. Let us recall the simple proof of this
fact. If G is simple, series-parallel, 2-connected and has at least three vertices,
then it has a vertex x of degree two. Let e and f be the edges incident with
x. Then G/e is series-parallel and 2-connected, and by induction β(G/e) = 1.
On the other hand, G − e has f as a bridge, hence β(G − e) = 0. By the
contraction-deletion rule, we deduce that β(G) = 1. The base case of the
induction is a single edge K2. If G has multiple edges, it follows easily from the
contraction-deletion rule that β(G) is the value of β of the simplification of G
(i. e., the graph obtained from G by replacing every multiple edge by a single
edge). Conversely, assume G is a 2-connected garph that is not series-parallel.
Then G contains a minor H isomorphic to K4. By statement (iii) above, this
implies β(G) ≥ β(K4). Since β(K4) = 2, we are done.

The previous results, together with the fact that a graph is series-parallel
if and only if its blocks are series-parallel, imply the following: if G is series-
parallel and t(G;x, y) = t(H;x, y), then H is also series-parallel. In other words,
the Tutte polynomial characterizes the class of series-parallel graphs. (It does
not characterize series-parallel graphs individually, since a Whitney twist can
be used to change a graph but not its Tutte polynomial.)

The goal of this paper is to prove a similar result for outerplanar graphs.
Recall that a graph is outerplanar if it can be drawn in the plane in such a way
that all the vertices are on the outer face. A 2-connected outerplanar graph
with at least three vertices has a unique Hamilton cycle, which can be chosen to
bound the outer face: for such a graph, an edge is called external if it lies on the
boundary of the outer face, and internal otherwise. A graph is outerplanar if
it does not contain K4 or K2,3 as a minor [5]. Notice that loopless outerplanar
graphs form a subclass of series-parallel graphs, and that a graph is outerplanar
if and only if its blocks are outerplanar.

Theorem 1. If G is a simple outerplanar graph and t(G;x, y) = t(H;x, y),
then H is also outerplanar.

The proof is given in Section 3, and is based on characterizing outerplanar
graphs by means of the coefficients of degree two in t(G;x, y) (see Theorem 5),
while for series-parallel graphs the linear coefficients were sufficient. It must be
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stressed that the condition of G being simple is essential, otherwise the result is
not true, as shown later by the examples in Section 4. This is in contrast with the
characterization of series-parallel graphs, where simplicity is not needed. Let us
also remark that the Tutte polynomial does not characterize simple outerplanar
graphs individually : there are pairs of simple non-isomorphic outerplanar graphs
sharing the same Tutte polynomial (see [10]); moreover, they have different cycle
matroids, i. e., one cannot be obtained from the other by Whitney twists.

Generally speaking, classes of graphs defined in terms of forbidden minors are
not characterized by the Tutte polynomial. For example there are planar graphs
that have the same Tutte polynomial as a non-planar graph (see [9]). Thus, it
is interesting to note the following consequence of our result. We denote by
Ex(H) the class of graphs not containing H as a minor. A 2-connected, simple
graph in Ex(K2,3) is either outerplanar or isomorphic to K4 ([1]). Since K4

is uniquely characterized by its Tutte polynomial, it follows from the previous
arguments that if G is a simple graph in Ex(K2,3) and t(G;x, y) = t(H;x, y),
then H is also in Ex(K2,3).

We shall briefly return to the topic of classes of graphs characterized by the
Tutte polynomial in the final section, the rest of the paper being devoted to the
proof of Theorem 1.

2 Open ear decompositions

An open ear decomposition of a graph G is a partition of the edges of G into
a sequence of simple paths P0, P1, . . . , Ps such that P0 is a single edge, each
endpoint of Pi, 1 ≤ i ≤ s, is contained in some Pj , j < i, and the internal
vertices of Pi are not vertices of any other Pj , j < i. The Pi are called the ears
of the decomposition. A graph has an open ear decomposition if and only if it
is 2-connected [12]. The length s of an open ear decomposition of G equals its
nullity or cyclomatic number, i. e., s = |E| − |V |+ 1.

An ear Pi is nested in Pj , j < i, if both endpoints of Pi belong to Pj . The
nest interval of Pi in Pj is the path in Pj between the two endpoints of Pi. An
open ear decomposition is nested if

(i) For each i > 1 there is some j < i such that Pi is nested in Pj ,

(ii) If two ears Pi and Pi′ are nested in the same ear Pj then either the nest
interval of Pi contains that of Pi′ or vice versa, or the two nest intervals
are disjoint.

Note that two ears that prevent an ear decomposition from being nested
create a K4 minor. Indeed, we have the following result:

Lemma 2. [7] A 2-connected graph G is series-parallel if and only if every open
ear decomposition of G is nested.

A useful corollary for us is the following lemma.
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Lemma 3. A simple 2-connected series-parallel graph G 6= K2 admits an open
ear decomposition in which the last ear contains at least two edges.

Proof. The proof is by induction on the number of edges of G. If G is a
triangle then the result is true. Otherwise since G is simple there exists a vertex
v incident with just two edges e and f . If e and f form a triangle with edge
g then G − e − f is 2-connected. So G − e − f has an open ear decomposition
and e, f can be added as the last ear to form an open ear decomposition as
required. On the other hand if e and f are not part of a triangle then G/e is
simple, 2-connected and series parallel, and so by the inductive hypothesis, G/e
has an open ear decomposition with the last ear having at least two edges. This
can be modified to give an open ear decomposition of G by adding e to the ear
containing f . �

The last ear P in an open ear decomposition of G is an induced path. Let
G\P denote the minor of G obtained by deleting all the edges in P , and G/P
the minor obtained by successively contracting all the edges in P (in any order).

The following lemma is elementary and we omit its proof.

Lemma 4. If P is the last path in an open ear decomposition of G and has k
edges then

t(G;x, y) = (xk−1 + · · ·+ x + 1)t(G\P ;x, y) + t(G/P ;x, y). (1)

3 Simple outerplanar graphs

In this section we prove that the Tutte polynomial characterizes the class of
simple outerplanar graphs.

Theorem 5. Let G 6= K2 be a simple, 2-connected, series-parallel graph. Then

t2,0(G) ≥ t0,2(G) + 1, (2)

with equality if and only if G is outerplanar. Moreover, when G is outerplanar
t2,0(G) is equal to the number of inner faces of G.

Proof. The k-cycle Ck, k ≥ 3, is outerplanar. Here t2,0(Ck) = 1 and t0,2(Ck) =
0, so equality holds in equation (2). Assume inductively that the theorem holds
for every simple, 2-connected, series-parallel graph with nullity at most s (open
ear decompositions of length at most s). Since the theorem is true for all cycles,
we can take s ≥ 1. Given a simple, 2-connected, series-parallel graph G with
nullity s + 1, let P be the last ear in a given open ear decomposition of G. By
Lemma 3 we can assume P has at least two edges.

The graph G\P is 2-connected since it has an open ear decomposition. If
G/P were also 2-connected, Lemma 4 and property (ii) of the Tutte polynomial
would imply that β(G) ≥ 2, which is contrary to G being series-parallel. Thus
G/P has at least two blocks, none of which are bridges, since by contracting an
edge in a bridgeless graph one cannot obtain a bridge. The graph G/P has a
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loop if and only if the endpoints of P are the endpoints of an edge of G, and
there can be no other loops other than this one.

The graph G\P is a simple, 2-connected, series-parallel graph with nullity
s. By the inductive hypothesis, t2,0(G\P ) ≥ t0,2(G\P ) + 1 with equality if and
only if G\P is outerplanar. Note that if G is outerplanar then G\P is also
outerplanar.

By equation (1) together with t1,0(G\P ) = 1, we have

t2,0(G) = t2,0(G\P ) + 1 + t2,0(G/P ), (3)

where

t2,0(G/P ) =

{
1 if G/P has two blocks, neither a loop,
0 otherwise.

.

Equation (1) also gives

t0,2(G) = t0,2(G\P ) + t0,2(G/P ). (4)

Since G/P cannot have any bridges, by property (i) of the Tutte polynomial
the coefficient of y in all of its blocks is equal to 1, and hence

t0,2(G/P ) =

{
1 if G/P has two blocks,
0 otherwise.

Equations (3) and (4) now imply

t2,0(G)− t0,2(G)− 1 = [t2,0(G\P )− t0,2(G\P )− 1] + 1 + t2,0(G/P )− t0,2(G/P )
≥ 1 + t2,0(G/P )− t0,2(G/P ),

where the inequality follows by the inductive hypotheses on G\P . There is
equality if and only if G\P is outerplanar.

Since

1 + t2,0(G/P )− t0,2(G/P ) =

{
0 if G/P has two blocks, one a loop,
1 otherwise,

we obtain
t2,0(G)− t0,2(G)− 1 ≥ 0

with equality if and only if G\P is outerplanar and G/P has two blocks, one
a loop. The latter can be achieved if and only if P has the same endpoints as
an external edge of G\P (in which case G is also outerplanar). Indeed, if the
endpoints of P are those of an internal edge of the outerplanar graph G\P , then
G/P has three blocks including the loop. In this case adding P to G\P creates
a K2,3 minor, so that G is not outerplanar. If P has endpoints on the external
face at distance more than one apart then G/P has no loops, and in this case
G is not outerplanar, the addition of P to G\P again forming a K2,3 minor.
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We conclude that t2,0(G) ≥ t0,2(G) + 1 with equality if and only if G is
outerplanar, and this completes the induction step.

Finally we prove that when G is a simple, 2-connected, outerplanar graph,
t2,0(G) is equal to the number of interior faces, equivalently, the nullity of G.
Alternatively, t0,2(G) is equal to the number of internal edges of G.

The statement is true for the cycles Ck, k ≥ 3, that have no internal edges.
Take inductively a simple, 2-connected, outerplanar graph G and let e be one of
its internal edges. Since t0,2(G) = t0,2(G\e) + t0,2(G/e), and G/e has precisely
two blocks, neither of which is a bridge (or loop), so that t0,2(G/e) = 1, the
result now follows by induction. �

Theorem 1 is a direct consequence of Theorem 5.
Brylawski’s relations [3, Theorem 6.6] are a set of linear equations satisfied

by the coefficients of the Tutte polynomial. One of them states that

t0,2(G)− t1,1(G) + t2,0(G) = t1,0(G)

if G has at least three edges. (Property (i) in the introduction is also one of the
relations.) From the previous theorem we obtain as a corollary:

Corollary 6. Let G 6= K2 be a simple, 2-connected, series-parallel graph. Then

2t2,0(G)− 2 ≥ t1,1(G), (5)

with equality if and only if G is outerplanar.

4 Concluding remarks

The graphs G and H on the left of Figure 1 have the same Tutte polynomial,
equal to

x5 + 2 x4y + 2 x3y2 + 2 x2y3 + 2 xy4 + y5 + 3 x4 + 7 x3y + 8 x2y2 + 7 xy3 + 3 y4

+4x3 + 9 x2y + 9 xy2 + 4 y3 + 3 x2 + 5 xy + 3 y2 + x + y.

The first one is outerplanar, while the second one is not. This shows that the
condition of G being simple in Theorem 1 cannot be omitted. This example can
be generalized to the infinite families Gn and Hn, shown in Figure 1, where n
is the number of triangles to the left of the central quadrilateral. To prove that
they have the same Tutte polynomial, we argue by induction on n. First notice
that G1 = G and H1 = H. If G∗

n and H∗
n are as on the right of Figure 1, then

by the contraction-deletion rule we have

t(Gn) = x t(Gn−1) + t(G∗
n−1),

t(G∗
n) = y t(G∗

n−1) + t(Gn).

We write t(G) instead of t(G;x, y) for simplicity. From the relations above it is
not difficult to check that

t(Gn) = (x + y + 1) t(Gn−1)− xy t(Gn−2).

6



Hn

GnG

H

G*n

H*n

Figure 1: Non-outerplanar graphs with the same Tutte polynomial as outerpla-
nar graphs.

In the same way we obtain

t(Hn) = (x + y + 1) t(Hn−1)− xy t(Hn−2).

One can check that t(G2) = t(H2), and since t(G1) = t(H1), the result follows
by induction.

One may wonder which other natural classes of graphs G have the property
that whenever G is a member of G and t(G;x, y) = t(H;x, y) for some graph H,
then H is also in G. As the chromatic polynomial is an evalution of the Tutte
polynomial, graphs whose chromatic number is at most k form one such class.
For instance, bipartite graphs are precisely those that satisfy t(G;−1, 0) 6= 0.

A possibility is to look at minor-closed classes of graphs. From now on all
graphs are assumed to be simple. The easiest example are forests, the graphs
in Ex(K3), whose Tutte polynomials are of the form xk for some k. As men-
tioned in the introduction, the class Ex(K2,3) is also characterized by the Tutte
polynomial, but planar graphs are not.

Let G = Ex(F) be the class of graphs not containing any of the graphs in F
as a minor. If all the graphs in F are 2-connected, then a graph G belongs to
G if and only if the blocks of G belong to G. For a characterization of a class
with this property by the Tutte polynomial, statement (iv) in the introduction
implies that it suffices to consider the 2-connected members of G.

Let C+
4 denote the 4-cycle with a chord. The 2-connected members of the

class Ex(C+
4 ) are K2 and Ck, k ≥ 3, each of which is uniquely determined by its

Tutte polynomial. Hence the class Ex(C+
4 ) is also characterized by the Tutte

polynomial. Another slightly less trivial example is given by Ex(C5), whose
2-connected members are K2,n, n ≥ 2, and K+

2,n, n ≥ 1, (the complete bipartite
graph K2,n with an extra edge joining the vertices of degree n). Again, K2,n and
K+

2,n are easily seen to be uniquely determined by their Tutte polynomial. All
these examples of minor-closed classes characterized by the Tutte polynomial
have the stronger property that each 2-connected member of the class is itself
uniquely determined by the Tutte polynomial. This is not commonly the case
for minor-closed classes.
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In [11] we can find two graphs with the same Tutte polynomial such that
one of them has a cycle of length 8, while the longest cycle in the other one has
length 7. This shows that Ex(C8) is not characterized by the Tutte polynomial.
The example can be easily modified (by subdividing the edge e in Figure 1
from [11]), to show that Ex(Ck) is not characterized by the Tutte polynomial
when k ≥ 8. We do not know whether this is the case for Ex(C6) and Ex(C7).

To conclude, we believe it is worth exploring further classes of graphs char-
acterized by the Tutte polynomial, whether defined in terms of minors or oth-
erwise.
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